Optimal parametrizations of adiabatic paths

Yosi Avron, Martin Fraas, Gian Michele Graf, Philip Grech http://arxiv.org/abs/1003.2172

December 10, 2010

Outline

- Optimal parameterization problem
- Announcement of Results
- Dephasing Lindbladians
- Adiabatic theorem
- Results

Evolution:

$$\dot{\rho}(t) = -i[H(u(t)), \, \rho(t)]; \quad \rho(0) = P(0)$$

where

$$H(u) = \sum e_i P_i, \quad P(u) := P_0(u) \quad e_0 < e_i$$

Evolution:

$$\dot{\rho}(t) = -i[H(u(t)), \, \rho(t)]; \quad \rho(0) = P(0)$$

where

$$H(u) = \sum e_i P_i, \quad P(u) := P_0(u) \quad e_0 < e_i$$

Control:

$$u:(0, T) \to (0, 1)$$
 $u(0) = 0, u(T) = 1$

Evolution:

$$\dot{\rho}(t) = -i[H(u(t)), \, \rho(t)]; \quad \rho(0) = P(0)$$

where

$$H(u) = \sum e_i P_i, \quad P(u) := P_0(u) \quad e_0 < e_i$$

Control:

$$u:(0, T) \to (0, 1)$$
 $u(0) = 0, u(T) = 1$

Cost function:

$$J(u)=1-\mathrm{Tr}(P(1)\rho(T))$$

Evolution:

$$\dot{\rho}(t) = -i[H(u(t)), \, \rho(t)]; \quad \rho(0) = P(0)$$

where

$$H(u) = \sum e_i P_i, \quad P(u) := P_0(u) \quad e_0 < e_i$$

Control:

$$u:(0, T) \to (0, 1)$$
 $u(0) = 0, u(T) = 1$

Cost function:

$$J(u)=1-\mathrm{Tr}(P(1)\rho(T))$$

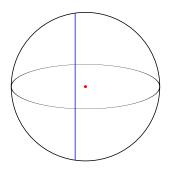
Adiabatic control: $\dot{u} \to 0$ $T \to \infty$ (observe that $\int_0^T \dot{u} = 1$)

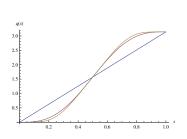
Examples

- ▶ Linear Control: $H(u) = H_0 + uH_1$
- Qubit : $H(u) = b(u) \cdot \sigma$

Examples

- ▶ Linear Control: $H(u) = H_0 + uH_1$
- Qubit : $H(u) = b(u) \cdot \sigma$





Adiabatic theorem

Consider

$$\dot{\rho} = -i[H(u), \, \rho] =: \mathcal{L}_u(\rho); \quad \rho(0) = P(0).$$

Adiabatic theorem

Consider

$$\dot{\rho} = -i[H(u), \, \rho] =: \mathcal{L}_u(\rho); \quad \rho(0) = P(0).$$

Theorem (Adiabatic evolution)

Let $H(s) = \sum e_i(s)P_i(s)$ be smooth family of non-degenerate Hamiltonians. Then the above time-dependent Liouville equation has a solution

$$\rho(t) = P(u) + \dot{u}\mathcal{L}_{u}^{-1}P'(u) + O(\dot{u}^{2}).$$

Solutions are

- ▶ non-unique
- ▶ step like (with J(u) = 0)
- ▶ Non-local, sensitive to details (like *T* etc.)

Solutions are

- non-unique
- step like (with J(u) = 0)
- ▶ Non-local, sensitive to details (like *T* etc.)

Our goal

- uniqueness
- ightharpoonup "smooth" (H^1) solutions
- local

Solutions are

- non-unique
- step like (with J(u) = 0)
- ▶ Non-local, sensitive to details (like *T* etc.)

Our goal

- uniqueness
- ▶ "smooth" (H¹) solutions
- local

The idea: Add feedback to the model

Main results

▶ No optimal parameterization for unitary evolutions

Main results

- No optimal parameterization for unitary evolutions
- Unique optimizer for dephasing Lindblad evolution

Main results

- No optimal parameterization for unitary evolutions
- Unique optimizer for dephasing Lindblad evolution
- ▶ The optimizer is "smooth"
- ► The optimizer is local
- Keep tunneling constant

Introduction to Lindblad

- Evolution of continuously observed system
- Observation is made at random times
- Distribution of observations is Poisson
- Entropy, purity, etc no more conserved

Introduction in equations

- if α observed $\rho \to \Gamma_{\alpha} \rho \Gamma_{\alpha}^*$
- ▶ The rate of observation γ_{α}

Introduction in equations

- if α observed $\rho \to \Gamma_{\alpha} \rho \Gamma_{\alpha}^*$
- ▶ The rate of observation γ_{α}
- $\dot{\rho} = L\rho$ with

$$L = -i[H, \rho] - \frac{1}{2}\gamma_{\alpha}(\Gamma_{\alpha}^*\Gamma_{\alpha}\rho + \rho\Gamma_{\alpha}^*\Gamma_{\alpha}) + \gamma_{\alpha}\Gamma_{\alpha}\rho\Gamma_{\alpha}^*$$

Properties of Lindblad - Operational definition

Evolution generated by $\dot{\rho}=L\rho$

- Map states to states
- Preserve trace
- ▶ Is Markovian; semigroup; independent of history
- Completely positive

Properties of Lindblad - Operational definition

Evolution generated by $\dot{\rho}=L\rho$

- Map states to states
- Preserve trace
- ▶ Is Markovian; semigroup; independent of history
- Completely positive

Reverse holds true.

Dephasing Lindblad

Dephasing Lindbladian measure energy.

Dephasing Lindblad

Dephasing Lindbladian measure energy.

$$ightharpoonup \Gamma = \Gamma(H)$$
, e.g. $\Gamma_i = P_i$

$$\blacktriangleright \operatorname{Ker}(L) = \operatorname{Ker}([H,\,\cdot])$$

$$L\rho = -i[H, \rho] + \frac{\gamma}{2}(P_i\rho + \rho P_i) + \gamma P_i\rho P_i$$

Reminder
$$H = \sum_{i} e_{i} P_{i}$$

Dephasing Lindblad

Dephasing Lindbladian measure energy.

- ightharpoonup Γ = Γ(H), e.g. Γ $_i = P_i$
- $\blacktriangleright \operatorname{Ker}(L) = \operatorname{Ker}([H,\,\cdot])$

$$L\rho = -i[H, \rho] + \frac{\gamma}{2}(P_i\rho + \rho P_i) + \gamma P_i\rho P_i$$

Reminder $H = \sum_{i} e_{i} P_{i}$

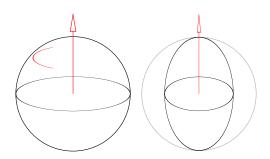
Energy is conserved, Entropy increase without heat transfer,
 Phase information is lost

Example of dephasing Lindbladian

For a qubit

$$H = g \cdot \sigma = e_{+}P_{+} + e_{-}P_{-}$$

$$L\rho = -i[H, \rho] + \gamma(P_{+}\rho P_{-} + P_{-}\rho P_{+})$$



Adiabatic theorem revisited

Consider equation
$$\dot{\rho}(t)=\mathcal{L}(u)\rho,\, \rho(0)=P(0)$$

$$\mathcal{L}\rho=-i[H,\,\rho]+\frac{\gamma}{2}(P_i\rho+\rho P_i)+\gamma P_i\rho P_i$$

Theorem (Adiabatic evolution for dephasing)

Let $H(s) = \sum e_i(s)P_i(s)$ be smooth family of non-degenerate Hamiltonians. Then the above time-dependent Lindblad equation has a solution

$$\rho(t) = P(u) + \dot{u}\mathcal{L}_{u}^{-1}P'(u)
+ \sum_{j\neq 0} (P_{j}(u) - P(u)) \int_{0}^{T} \text{Tr}(P'_{j}(u)\mathcal{L}_{u}^{-1}P'(u))\dot{u}^{2}(\tau)d\tau + O(\dot{u}^{2}).$$

Cost function

The cost function
$$J(u) := 1 - \operatorname{Tr}(\rho(T)P(1))$$
 is

$$J(u) = 2\gamma \sum_{i \neq 0} \int_0^T \frac{\text{Tr}(P_i(P_0')^2)}{|e_i - e_0|^2 + \gamma^2} \dot{u}(\tau)^2 d\tau + O(\dot{u}^2)$$

Cost function

The cost function $J(u) := 1 - \operatorname{Tr}(\rho(T)P(1))$ is

$$J(u) = 2\gamma \sum_{i \neq 0} \int_0^T \frac{\text{Tr}(P_i(P_0')^2)}{|e_i - e_0|^2 + \gamma^2} \dot{u}(\tau)^2 d\tau + O(\dot{u}^2)$$

- ▶ Irreversible
- ▶ Closed system $\gamma = 0$, $J(u) = O(\dot{u}^2)$
- J(u) is quadratic in derivative
- Optimization is an Euler-Lagrange problem

Optimal speed

$$\dot{u} \sim \sum_{i \neq 0} \frac{\sqrt{g_i^2 + \gamma^2}}{\kappa_i}$$

where

$$\kappa_i^2 := \operatorname{Tr}(P_i \dot{P}_0^2), \, g_i := |e_i - e_0|$$

Optimal speed

$$\dot{u} \sim \sum_{i \neq 0} \frac{\sqrt{g_i^2 + \gamma^2}}{\kappa_i}$$

where

$$\kappa_i^2 := \operatorname{Tr}(P_i \dot{P}_0^2), \, g_i := |e_i - e_0|$$

- Local
- Gives algorithm for optimization
- Move slowly when gap is small
- Move inversely propotional to length on control Fubini-Study metric

Conclusions

- ▶ Optimization of control is regularized by observing the system
- Framework for adiabatic control with feedback?