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Adiabatic control problem

Evolution:
p(t) = —i[H(u(t)), p(t)];  p(0) = P(0)
where
H(u) = Ze,-P,-, P(u) := Po(u) e < e
Control:

u:(0, T)—(0,1) u(0)=0,u(T)=1

Cost function:
J(u) =1-"Tr(P(1)p(T))

Adiabatic control: &4 — 0 T — oo (observe that fOT u=1)
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Adiabatic theorem

Consider
p=—ilH(u), p] = Lu(p); p(0) = P(0).

Theorem (Adiabatic evolution)

Let H(s) = Y ei(s)Pi(s) be smooth family of non-degenerate
Hamiltonians. Then the above time-dependent Liouville equation
has a solution

p(t) = P(u) + ul; P'(u) + O(i?).
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Solutions are
> non-unique
> step like (with J(u) = 0)

» Non-local, sensitive to details (like T etc.)

Our goal
> uniqueness
» "smooth” (H!) solutions
> local
The idea: Add feedback to the model
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Main results
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No optimal parameterization for unitary evolutions
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Unique optimizer for dephasing Lindblad evolution

v

The optimizer is "smooth”

v

The optimizer is local

v

Keep tunneling constant



Introduction to Lindblad

v

Evolution of continuously observed system

v

Observation is made at random times

Distribution of observations is Poisson

v

v

Entropy, purity, etc no more conserved
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Introduction in equations

> if o observed p — [ypl},
» The rate of observation 7,

> p= Lp with

L= —i[H,p] = 37a(FaFap + pTaTa) + valarls



Properties of Lindblad - Operational definition

Evolution generated by p = Lp
» Map states to states
> Preserve trace
» Is Markovian; semigroup; independent of history

» Completely positive



Properties of Lindblad - Operational definition

Evolution generated by p = Lp
» Map states to states
> Preserve trace
» Is Markovian; semigroup; independent of history
» Completely positive

Reverse holds true.
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Dephasing Lindblad

Dephasing Lindbladian measure energy.
» [ = I’(H), e.g. I’,- = P,'
» Ker(L) = Ker([H, ‘])

Lp = —ilH, pl+ 3(Pip+ pP) +1PipP,

Reminder H = )", e;P;

» Energy is conserved, Entropy increase without heat transfer,
Phase information is lost



Example of dephasing Lindbladian

For a qubit

H=g-c=e P +e P_
Lp = —i[H, p] + v(P+pP- + P_pPy)



Adiabatic theorem revisited

Consider equation p(t) = L(u)p, p(0) = P(0)
Lp=—ilH, p] + %(Pip + pPi) + yPipPi

Theorem (Adiabatic evolution for dephasing)

Let H(s) = Y ei(s)Pi(s) be smooth family of non-degenerate
Hamiltonians. Then the above time-dependent Lindblad equation
has a solution

p(t) =P(u) + ulyP'(u)

.
+ > (Pi(u) - P(U))/ Tr(Pj(u) L, P (u))i(T)dT + O(ir?).
j#0 0
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Cost function

The cost function J(u) ;=1 —Tr(p(T)P(1)) is

J(u) _272/ _60’2+i i(7)?dr + O(ir?)

i#0

Irreversible
Closed system v = 0, J(u) = O(i?)
J(u) is quadratic in derivative

v

v

v

v

Optimization is an Euler-Lagrange problem



Optimal speed

iy

. Kj
i#0
where
kP = Tr(PiP;), & = |e&i — e

1



Optimal speed

iy

i#0 Ki
where
KZ? = Tr(P,-Pg), gi=l|ei — e
» Local
» Gives algorithm for optimization

v

Move slowly when gap is small

» Move inversely propotional to length on control - Fubini-Study
metric



Conclusions

» Optimization of control is regularized by observing the system

» Framework for adiabatic control with feedback?



