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Some pictures of quantum pumps
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Charge quantum mechanically transferred between leads due
to parametric operations, e.g. changing gate voltages
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Quantum pumps: The scattering approach



Quantum pumps: The setup

channels pump proper

» independent electrons (e = +1)

» no voltage applied; each channel filled up to Fermi energy
4 With incoming electrons (zero temperature).

» S = S(E,X) = (Sj) scattering n x n matrix at electron
energy E, given the pump configuration X (w.r.t. to
reference configuration Xg)

» At fixed X: no net current on average.



Charge transport

(Buttiker, Thomas, Prétre 1994) For slowly varying X transport
can be described in terms of static data S(x, X): Upon
X — X +dX,and hence S — S + dS, a net charge

an; =
" 2m

((dS)S™);

leaves the pump through channel j.



Charge transport

(Buttiker, Thomas, Prétre 1994) For slowly varying X transport
can be described in terms of static data S(x, X): Upon
X — X +dX, and hence S — S + dS, a net charge

an; =
" 27

((dS)S7);
leaves the pump through channel j.

Remarks
» Emitted charge d'n; expressed through static quantities
S(X) (& their variation).
> jf d'n; depends on path X from A to B, but not on its time
parameterization.
> (nj) = fAB d'n; is expectation value.
» ¢dn; # 0: itis a pump!



Charge transport (cont.)

d- H—
" 27

((dS)S™)j
More remarks

» Kirchhoff's law does not hold:
i

n .
i oo
jZ;ornj =5-tr((dS)S*) = 5_dlog det S

~de#0

where “¢(p) = Tr(P(u, X) — P(u, Xo))” is the Krein spectral
shift and P(u, X) = 6(u — H(X)) is the spectral projection
for the Hamiltonian H(X).

= is Friedel sum rule/Birman-Krein formula det S = e?mi¢(w)

» But .
J 4



Heuristic derivation
S(E,t) = S(E, X(t)): static scattering matrix S(E, X) at energy
E along slowly varying X = X(t).
T(E,t) = —ig—gs*: Eisenbud-Wigner time delay:

t time of passage at fiducial point of state ¢
(energy E, channel |) under Xq
t —7; time of passage of in state under X matching out state .

E(E, 1) = i%?S*: Martin-Sassoli energy shift:

E energy of state ¢ (time of passage t, channel |) under Xq
E —&; energy of in state under X(t) matching out state ).

Claim restated: Charge delivered betweent =0andt =T

1 T
M) = 5= [ &



Heuristic derivation (cont.)
Incoming charge during [0,T]inlead ]

— dt/ dEp(E

» 27 = size of phase space cell of a quantum state

» p(E) = 6(n — E) occupation of incoming states at zero
temperature.

Outgoing charge

— dt / dE'p(E)

where

(E'.t') = (E.t) = (E/ — &(E ),V — T(E', 1))
maps outgoing to incoming data

Net charge (linearize in &)

nj :—% dt/ dE/'(E)&;(E, 1) / &j(p,t)d



Quantized transport

Cyclic process: X (0) = X(T)

Theorem. The charge transported in a cycle is quantized
nj =(n) € Z (=12

iff scattering matrix S(t) is of the form

dea(t) 0
S(t):( 0 em(t)) So

Then n; is the winding number of ¢;(t), (j = 1,2)



Quantized transport (cont.)

Generalization to many channels:

= )

In a cycle, the charge delivered to the Left (resp. Right)
channels as a whole is quantized iff

_(Yu(t) O
S(t) = < 0 Uz(t)> >0

with U;(t) unitary n; x nj-matrices (j = 1,2). The charge is the
winding number of det Uj(t).

n+1

ni + N2
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Quantum pumps: The topological approach



Some examples
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Quantum pumps: The setup

Infinitely extended 1-dimensional system

2

H(s) = V(s,x) on L?(Ry)

a2 "
depending on parameter s, real. Potential V doubly periodic
V(s,x +L)=V(s,x), V(s +2m,x) =V(s,x)

Change s slowly with time t.



Quantum pumps: The setup

Infinitely extended 1-dimensional system
d2
H(s) = -7 +V(s.X) on L?(Ry)
depending on parameter s, real. Potential V doubly periodic

V(s,x +L)=V(s,x), V(s +2m,x) =V(s,x)

Change s slowly with time t.
Hypothesis. The Fermi energy lies in a spectral gap for all s.

Theorem (Thouless 1983). The charge transported (as
determined by Kubo’s formula) during a period and across a
reference point is an integer, C.



The integer as a Chern number

Ynks(X): n-th Bloch solution of quasi-momentum k € [0, 27 /L]
(Brillouin zone), normalized over x € [0, L] (unique up to
phase).

_ _ i Onks | Onks Onks | OPnks
C_;C“:znzzw/qr« 51~ G e sk

» sum extends over filled bands n
» integral over torus T = [0, 27| x [0, 27 /L]

» as a rule, phase can be chosen such that |inks) IS smooth
only locally T

» integrand (curvature) is smooth globally
» Cp is Chern number, obstruction to global section |inks)



Generalizations

1) n channels:
d2 2 n
H(S):—M—FV(S,X) onL (RX,C )

with V (s,x) = V*(s,x) € Mp(C).



Generalizations
1) n channels:

2

H(s) = +V(s,x) on L2(Ry,C")

dx?
with V (s,x) = V*(s,x) € Mp(C).
2) Time, but not space periodicity is essential. Sufficient: Fermi
energy lies in a spectral gap for all s. What about C?
Letz ¢ o(H(s)) and 1(x), x(x) € My(C) with
(H(s) —2)¥(x) =0,  ¥(x) =0 (x — +o0)
x(x)(H(s) —z) =0,  x(x)—0

with 1(x), x(x) regular for some x € R. Wronskian

(X = —o0)

W (x, 15 x) = x(x)¢'(x) = X' (x)¥(x) € Ma(C)

is independent of x for solutions ), x. Normalize:
W (x, ;%) = 1.



Theorem. The transported charge is

o ox oY Ox 8¢
C=5 Ttr(W(a i) —W(SE S x))dsdz

(any x). This is the Chern number of the bundle of solutions
on(s,z) e T =10,27] x .
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A comparison
Are Thouless’ and Blittiker's approaches incompatible?

» Topological approach: Fermi energy p in gap: no states
there

|
1

Charge transport attributed to energies way below g

» Scattering approach: Depends on scattering at Fermi
energy

7]
Charge transport attributed to states at energy u



A comparison
Are Thouless’ and Blittiker's approaches incompatible?

» Topological approach: Fermi energy p in gap: no states
there

|
1

Charge transport attributed to energies way below g

» Scattering approach: Depends on scattering at Fermi
energy

7]
Charge transport attributed to states at energy u
Truncate potential V to interval [0, L]
2

d
H(s) = a2 +V (s, X)x[0,4(X) on L%(Ry)

Gap closes.



A comparison (cont.)

Scattering matrix
_(RL T/
Su(s) = (TL R’L>

exists at Fermi energy.



A comparison (cont.)

Scattering matrix
_(RL T/
Su(s) = <TL R’L>

exists at Fermi energy.

Theorem
» ASL — oo,

55 (5 =is)

exponentially fast, with R, R’ unitary. Hence: conditions for
guantized transport attained in the limit.

» Charge transport in both descriptions agree: Winding
number of detR is Chern number C.



Sketch of proof

» Solution v, s(x) for (z,s) € T
> 75(X) or 97 o(x) regular at any x € R
» 1, s(x = 0) regular except for (z = p, s) at discrete values
s* of s.




Sketch of proof (cont.)

» Near a given discrete point (z = u, S let ¢, s be a

local section, analytic in z (e.g. v, S( )
L(z,s) := ¢7's(0)¢2,5(0)

is analytic with L(z,s) = L(Z,s)*
» Generically, L(z, s) has a simple eigenvalue \(z,s)
vanishing to first order at (u,s*); A(z,s) e Rforz ¢ R

s*)
=1)

>

— Zwinding number of A(z,s) around (u,s*)

o\
ey —gsgn(as)

» J\/0z < 0 for z € R (Sturm oscillation)

(z=p,5=s%)



Sketch of proof (cont.)
» Matching condition at x = 0 yields (L — o)
R(s) = (ivitus(0) — ¢},5(0))(ivith,s(0) + v}, 5(0))
R(s) has eigenvalue —1 iff v, s(0) is singular

S
SN

Q s=0,2n

a(R(s))
» Eigenvalue crossing is counterclockwise iff
O/ 0S| (z=ps=s+) <0
» Together:

C = # eigenvalue crossingsof R atz = -1
= winding number of detR



Summary

» Scattering approach: gapless systems, finite scatterer;
transport based on scattering matrix and attributed to
states, both at Fermi energy; quantized in special cases
only; generally dissipative

» Topological approach: gapped systems, infinite device;
transport attributed to states way below Fermi energy;
guantized and dissipationless

» A comparison has been obtained.
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