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Some pictures of quantum pumps
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Charge quantum mechanically transferred between leads due
to parametric operations, e.g. changing gate voltages
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Quantum pumps: The setup
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◮ independent electrons (e = +1)
◮ no voltage applied; each channel filled up to Fermi energy
µ with incoming electrons (zero temperature).

◮ S = S(E ,X ) = (Sjk ) scattering n × n matrix at electron
energy E , given the pump configuration X (w.r.t. to
reference configuration X0)

◮ At fixed X : no net current on average.



Charge transport

(Büttiker, Thomas, Prêtre 1994) For slowly varying X transport
can be described in terms of static data S(µ,X ): Upon
X → X + dX , and hence S → S + dS, a net charge

d-nj =
i

2π
((dS)S∗)jj

leaves the pump through channel j .



Charge transport

(Büttiker, Thomas, Prêtre 1994) For slowly varying X transport
can be described in terms of static data S(µ,X ): Upon
X → X + dX , and hence S → S + dS, a net charge

d-nj =
i

2π
((dS)S∗)jj

leaves the pump through channel j .

Remarks
◮ Emitted charge d-nj expressed through static quantities

S(X ) (& their variation).

◮

∫ B
A d-nj depends on path X from A to B, but not on its time

parameterization.

◮ 〈nj〉 =
∫ B

A d-nj is expectation value.
◮

∮

d-nj 6= 0: it is a pump!



Charge transport (cont.)

d-nj =
i

2π
((dS)S∗)jj

More remarks
◮ Kirchhoff’s law does not hold:

n
∑

j=1

d-nj =
i

2π
tr((dS)S∗) =

i
2π

d log det S

= − dξ 6= 0

where “ξ(µ) = Tr(P(µ,X ) − P(µ,X0))” is the Krein spectral
shift and P(µ,X ) = θ(µ− H(X )) is the spectral projection
for the Hamiltonian H(X ).
= is Friedel sum rule/Birman-Krein formula det S = e2πiξ(µ)

◮ But
∮ n

∑

j=1

d-nj = 0



Heuristic derivation
S(E , t) = S(E ,X (t)): static scattering matrix S(E ,X ) at energy

E along slowly varying X = X (t).

T (E , t) = −i ∂S
∂E S∗: Eisenbud-Wigner time delay:

t time of passage at fiducial point of state ψ
(energy E , channel j) under X0

t − Tjj time of passage of in state under X matching out state ψ.

E(E , t) = i∂S
∂t S∗: Martin-Sassoli energy shift:

E energy of state ψ (time of passage t , channel j) under X0

E − Ejj energy of in state under X (t) matching out state ψ.

Claim restated: Charge delivered between t = 0 and t = T

〈nj〉 =
1

2π

∫ T

0
Ejj(µ, t)dt



Heuristic derivation (cont.)
Incoming charge during [0,T ] in lead j

1
2π

∫ T

0
dt

∫

∞

0
dEρ(E)

◮ 2π = size of phase space cell of a quantum state
◮ ρ(E) = θ(µ− E) occupation of incoming states at zero

temperature.
Outgoing charge

1
2π

∫ T

0
dt ′

∫

∞

0
dE ′ρ(E)

where
(E ′, t ′) 7→ (E , t) = (E ′ − Ejj(E ′, t ′), t ′ − Tjj(E ′, t ′))
maps outgoing to incoming data
Net charge (linearize in E)

nj = − 1
2π

∫ T

0
dt

∫

∞

0
dEρ′(E)Ejj(E , t) =

1
2π

∫ T

0
Ejj(µ, t)dt



Quantized transport
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1 2
X (t)

Cyclic process: X (0) = X (T )

Theorem. The charge transported in a cycle is quantized

nj = 〈nj〉 ∈ Z (j = 1,2)

iff scattering matrix S(t) is of the form

S(t) =

(

eiϕ1(t) 0
0 eiϕ2(t)

)

S0

Then nj is the winding number of ϕj(t), (j = 1,2)



Quantized transport (cont.)

Generalization to many channels:

k
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In a cycle, the charge delivered to the Left (resp. Right)
channels as a whole is quantized iff

S(t) =

(

U1(t) 0
0 U2(t)

)

S0

with Uj(t) unitary nj × nj -matrices (j = 1,2). The charge is the
winding number of det Uj(t).



Outline

Quantum pumps: The scattering approach

Quantum pumps: The topological approach

A comparison



Some examples



Quantum pumps: The setup

Infinitely extended 1-dimensional system

H(s) = − d2

dx2 + V (s, x) on L2(Rx)

depending on parameter s, real. Potential V doubly periodic

V (s, x + L) = V (s, x), V (s + 2π, x) = V (s, x)

Change s slowly with time t .



Quantum pumps: The setup

Infinitely extended 1-dimensional system

H(s) = − d2

dx2 + V (s, x) on L2(Rx)

depending on parameter s, real. Potential V doubly periodic

V (s, x + L) = V (s, x), V (s + 2π, x) = V (s, x)

Change s slowly with time t .

Hypothesis. The Fermi energy lies in a spectral gap for all s.

Theorem (Thouless 1983). The charge transported (as
determined by Kubo’s formula) during a period and across a
reference point is an integer, C.



The integer as a Chern number

ψnks(x): n-th Bloch solution of quasi-momentum k ∈ [0,2π/L]
(Brillouin zone), normalized over x ∈ [0,L] (unique up to
phase).

C =
∑

n

Cn ≡
∑

n

i
2π

∫

T

(

〈∂ψnks

∂s
|∂ψnks

∂k
〉 − 〈∂ψnks

∂k
|∂ψnks

∂s
〉
)

ds dk

◮ sum extends over filled bands n
◮ integral over torus T = [0,2π] × [0,2π/L]

◮ as a rule, phase can be chosen such that |ψnks〉 is smooth
only locally T

◮ integrand (curvature) is smooth globally
◮ Cn is Chern number, obstruction to global section |ψnks〉



Generalizations
1) n channels:

H(s) = − d2

dx2 + V (s, x) on L2(Rx ,C
n)

with V (s, x) = V ∗(s, x) ∈ Mn(C).



Generalizations
1) n channels:

H(s) = − d2

dx2 + V (s, x) on L2(Rx ,C
n)

with V (s, x) = V ∗(s, x) ∈ Mn(C).

2) Time, but not space periodicity is essential. Sufficient: Fermi
energy lies in a spectral gap for all s. What about C?
Let z /∈ σ(H(s)) and ψ(x), χ(x) ∈ Mn(C) with

(H(s) − z)ψ(x) = 0, ψ(x) → 0 (x → +∞)

χ(x)(H(s) − z) = 0, χ(x) → 0 (x → −∞)

with ψ(x), χ(x) regular for some x ∈ R. Wronskian

W (χ, ψ; x) = χ(x)ψ′(x) − χ′(x)ψ(x) ∈ Mn(C)

is independent of x for solutions ψ, χ. Normalize:
W (χ, ψ; x) = 1.



Theorem. The transported charge is

C =
i

2π

∫

T

tr
(

W (
∂χ

∂s
,
∂ψ

∂z
; x) − W (

∂χ

∂z
,
∂ψ

∂s
; x)

)

ds dz

(any x). This is the Chern number of the bundle of solutions ψ
on (s, z) ∈ T = [0,2π] × γ.

Re z
γ

s

Im z

0

2π

σ(H(s))
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A comparison
Are Thouless’ and Büttiker’s approaches incompatible?

◮ Topological approach: Fermi energy µ in gap: no states
there

µ

Charge transport attributed to energies way below µ

◮ Scattering approach: Depends on scattering at Fermi
energy

µ

Charge transport attributed to states at energy µ



A comparison
Are Thouless’ and Büttiker’s approaches incompatible?

◮ Topological approach: Fermi energy µ in gap: no states
there

µ

Charge transport attributed to energies way below µ

◮ Scattering approach: Depends on scattering at Fermi
energy

µ

Charge transport attributed to states at energy µ

Truncate potential V to interval [0,L]

H(s) = − d2

dx2 + V (s, x)χ[0,L](x) on L2(Rx)

Gap closes.



A comparison (cont.)

Scattering matrix

SL(s) =

(

RL T ′

L
TL R′

L

)

exists at Fermi energy.



A comparison (cont.)

Scattering matrix

SL(s) =

(

RL T ′

L
TL R′

L

)

exists at Fermi energy.

Theorem
◮ As L → ∞,

SL(s) →
(

R(s) 0
0 R′(s)

)

exponentially fast, with R, R′ unitary. Hence: conditions for
quantized transport attained in the limit.

◮ Charge transport in both descriptions agree: Winding
number of det R is Chern number C.



Sketch of proof

◮ Solution ψz,s(x) for (z, s) ∈ T

◮ ψz,s(x) or ψ′

z,s(x) regular at any x ∈ R

◮ ψz,s(x = 0) regular except for (z = µ, s) at discrete values
s∗ of s.

��
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Re z

s

Im z

0

2π

µ

s∗



Sketch of proof (cont.)

◮ Near a given discrete point (z = µ, s = s∗) let ψz,s be a
local section, analytic in z (e.g. ψ′

z,s(0) = 1)

L(z, s) := ψ′∗

z̄,s(0)ψz,s(0)

is analytic with L(z, s) = L(z̄, s)∗

◮ Generically, L(z, s) has a simple eigenvalue λ(z, s)
vanishing to first order at (µ, s∗); λ(z, s) ∈ R for z ∈ R

◮

C = −
∑

s∗
winding number of λ(z, s) around (µ, s∗)

=
∑

s∗
sgn

(∂λ

∂z
∂λ

∂s

)

∣

∣

∣

(z=µ,s=s∗)
= −

∑

s∗
sgn

(∂λ

∂s

)

∣

∣

∣

(z=µ,s=s∗)

◮ ∂λ/∂z < 0 for z ∈ R (Sturm oscillation)



Sketch of proof (cont.)
◮ Matching condition at x = 0 yields (L → ∞)

R(s) = (i
√
µψµ,s(0) − ψ′

µ,s(0))(i
√
µψµ,s(0) + ψ′

µ,s(0))−1

R(s) has eigenvalue −1 iff ψµ,s(0) is singular
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��−1 s = 0, 2π

s
s∗

σ(R(s))

◮ Eigenvalue crossing is counterclockwise iff
∂λ/∂s|(z=µ,s=s∗) < 0

◮ Together:

C = # eigenvalue crossings of R at z = −1

= winding number of det R

�



Summary

◮ Scattering approach: gapless systems, finite scatterer;
transport based on scattering matrix and attributed to
states, both at Fermi energy; quantized in special cases
only; generally dissipative

◮ Topological approach: gapped systems, infinite device;
transport attributed to states way below Fermi energy;
quantized and dissipationless

◮ A comparison has been obtained.
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