Transport in quantum devices and its geometry

Gian Michele Graf
ETH Zürich

December 9, 2010
Workshop on Quantum Control
Institut Henri Poincaré
Some pictures of quantum pumps

Charge quantum mechanically transferred between leads due to parametric operations, e.g. changing gate voltages
Outline

Quantum pumps: The scattering approach

Quantum pumps: The topological approach

A comparison

Collaborators: Y. Avron, A. Elgart, L. Sadun; G. Ortelli, G. Bräunlich
Outline

Quantum pumps: The scattering approach

Quantum pumps: The topological approach

A comparison
Quantum pumps: The setup

- independent electrons \((e = +1)\)
- no voltage applied; each channel filled up to Fermi energy \(\mu\) with incoming electrons (zero temperature).
- \(S = S(E, X) = (S_{jk})\) scattering \(n \times n\) matrix at electron energy \(E\), given the pump configuration \(X\) (w.r.t. to reference configuration \(X_0\))
- At fixed \(X\): no net current on average.
Charge transport

(Büttiker, Thomas, Prêtre 1994) For slowly varying X transport can be described in terms of static data $S(\mu, X)$: Upon $X \rightarrow X + dX$, and hence $S \rightarrow S + dS$, a net charge

$$\delta n_j = \frac{i}{2\pi}((dS)S^*)_{jj}$$

leaves the pump through channel j.
Charge transport

(Büttiker, Thomas, Prêtre 1994) For slowly varying X transport can be described in terms of static data $S(\mu, X)$: Upon $X \rightarrow X + dX$, and hence $S \rightarrow S + dS$, a net charge

$$d n_j = \frac{i}{2\pi}((dS)S^*)_{jj}$$

leaves the pump through channel j.

Remarks

▶ Emitted charge $d n_j$ expressed through static quantities $S(X)$ (& their variation).
▶ $\int_A^B d n_j$ depends on path X from A to B, but not on its time parameterization.
▶ $\langle n_j \rangle = \int_A^B d n_j$ is expectation value.
▶ $\oint d n_j \neq 0$: it is a pump!
Charge transport (cont.)

\[\dot{n}_j = \frac{i}{2\pi} ((dS)S^*)_{jj} \]

More remarks

- Kirchhoff’s law does not hold:

\[\sum_{j=1}^{n} \dot{n}_j = \frac{i}{2\pi} \text{tr}((dS)S^*) = \frac{i}{2\pi} d \log \det S \]

\[= - d\xi \neq 0 \]

where “\(\xi(\mu) = \text{Tr}(P(\mu, X) - P(\mu, X_0))\)” is the Krein spectral shift and \(P(\mu, X) = \theta(\mu - H(X))\) is the spectral projection for the Hamiltonian \(H(X)\).

- is Friedel sum rule/Birman-Krein formula \(\det S = e^{2\pi i \xi(\mu)}\)

- But

\[\oint \sum_{j=1}^{n} \dot{n}_j = 0 \]
Heuristic derivation

\[S(E, t) = S(E, X(t)) : \text{static scattering matrix } S(E, X) \text{ at energy } E \text{ along slowly varying } X = X(t). \]

\[T(E, t) = -i \frac{\partial S}{\partial E} S^* : \text{Eisenbud-Wigner time delay:} \]

- \(t \): time of passage at fiducial point of state \(\psi \) (energy \(E \), channel \(j \)) under \(X_0 \)
- \(t - T_{jj} \): time of passage of in state under \(X \) matching out state \(\psi \).

\[E(E, t) = i \frac{\partial S}{\partial t} S^* : \text{Martin-Sassoli energy shift:} \]

- \(E \): energy of state \(\psi \) (time of passage \(t \), channel \(j \)) under \(X_0 \)
- \(E - E_{jj} \): energy of in state under \(X(t) \) matching out state \(\psi \).

Claim restated: Charge delivered between \(t = 0 \) and \(t = T \)

\[\langle n_j \rangle = \frac{1}{2\pi} \int_0^T E_{jj}(\mu, t) dt \]
Heuristic derivation (cont.)

Incoming charge during $[0, T]$ in lead j

\[
\frac{1}{2\pi} \int_0^T dt \int_0^{\infty} dE \rho(E)
\]

- $2\pi = \text{size of phase space cell of a quantum state}$
- $\rho(E) = \theta(\mu - E)$ occupation of incoming states at zero temperature.

Outgoing charge

\[
\frac{1}{2\pi} \int_0^T dt' \int_0^{\infty} dE' \rho(E)
\]

where

\((E', t') \mapsto (E, t) = (E' - E_{jj}(E', t'), t' - T_{jj}(E', t'))\)

maps outgoing to incoming data

Net charge (linearize in \mathcal{E})

\[
n_j = -\frac{1}{2\pi} \int_0^T dt \int_0^{\infty} dE' \rho'(E) E_{jj}(E, t) = \frac{1}{2\pi} \int_0^T E_{jj}(\mu, t) dt
\]
Quantized transport

Cyclic process: $X(0) = X(T)$

Theorem. The charge transported in a cycle is quantized

$$n_j = \langle n_j \rangle \in \mathbb{Z} \quad (j = 1, 2)$$

iff scattering matrix $S(t)$ is of the form

$$S(t) = \begin{pmatrix} e^{i\varphi_1(t)} & 0 \\ 0 & e^{i\varphi_2(t)} \end{pmatrix} S_0$$

Then n_j is the winding number of $\varphi_j(t)$, $(j = 1, 2)$
Quantized transport (cont.)

Generalization to many channels:

In a cycle, the charge delivered to the Left (resp. Right) channels as a whole is quantized iff

\[S(t) = \begin{pmatrix} U_1(t) & 0 \\ 0 & U_2(t) \end{pmatrix} S_0 \]

with \(U_j(t) \) unitary \(n_j \times n_j \)-matrices \((j = 1, 2)\). The charge is the winding number of \(\det U_j(t) \).
Outline

Quantum pumps: The scattering approach

Quantum pumps: The topological approach

A comparison
Some examples
Quantum pumps: The setup

Infinitely extended 1-dimensional system

\[
H(s) = -\frac{d^2}{dx^2} + V(s, x) \quad \text{on } L^2(\mathbb{R}_x)
\]

depending on parameter \(s \), real. Potential \(V \) doubly periodic

\[
V(s, x + L) = V(s, x), \quad V(s + 2\pi, x) = V(s, x)
\]

Change \(s \) slowly with time \(t \).
Quantum pumps: The setup

Ininitely extended 1-dimensional system

\[H(s) = -\frac{d^2}{dx^2} + V(s, x) \quad \text{on } L^2(\mathbb{R}_x) \]

depending on parameter \(s \), real. Potential \(V \) doubly periodic

\[V(s, x + L) = V(s, x), \quad V(s + 2\pi, x) = V(s, x) \]

Change \(s \) slowly with time \(t \).

Hypothesis. The Fermi energy lies in a spectral gap for all \(s \).

Theorem (Thouless 1983). The charge transported (as determined by Kubo’s formula) during a period and across a reference point is an integer, \(C \).
The integer as a Chern number

$\psi_{nks}(x)$: n-th Bloch solution of quasi-momentum $k \in [0, 2\pi/L]$ (Brillouin zone), normalized over $x \in [0, L]$ (unique up to phase).

$$C = \sum_n C_n \equiv \sum_n \frac{i}{2\pi} \int_{\mathbb{T}} \left(\langle \frac{\partial \psi_{nks}}{\partial s} | \frac{\partial \psi_{nks}}{\partial k} \rangle - \langle \frac{\partial \psi_{nks}}{\partial k} | \frac{\partial \psi_{nks}}{\partial s} \rangle \right) ds \, dk$$

- sum extends over filled bands n
- integral over torus $\mathbb{T} = [0, 2\pi] \times [0, 2\pi/L]$
- as a rule, phase can be chosen such that $|\psi_{nks}\rangle$ is smooth only locally \mathbb{T}
- integrand (curvature) is smooth globally
- C_n is Chern number, obstruction to global section $|\psi_{nks}\rangle$
Generalizations

1) n channels:

$$H(s) = -\frac{d^2}{dx^2} + V(s, x) \quad \text{on } L^2(\mathbb{R}_x, \mathbb{C}^n)$$

with $V(s, x) = V^*(s, x) \in M_n(\mathbb{C})$.
Generalizations

1) \(n \) channels:

\[
H(s) = -\frac{d^2}{dx^2} + V(s, x) \quad \text{on } L^2(\mathbb{R}_x, \mathbb{C}^n)
\]

with \(V(s, x) = V^*(s, x) \in M_n(\mathbb{C}) \).

2) Time, but not space periodicity is essential. Sufficient: Fermi energy lies in a spectral gap for all \(s \). What about \(C \)?

Let \(z \notin \sigma(H(s)) \) and \(\psi(x), \chi(x) \in M_n(\mathbb{C}) \) with

\[
(H(s) - z)\psi(x) = 0, \quad \psi(x) \to 0 \ (x \to +\infty)
\]

\[
\chi(x)(H(s) - z) = 0, \quad \chi(x) \to 0 \ (x \to -\infty)
\]

with \(\psi(x), \chi(x) \) regular for some \(x \in \mathbb{R} \). Wronskian

\[
W(\chi, \psi; x) = \chi(x)\psi'(x) - \chi'(x)\psi(x) \in M_n(\mathbb{C})
\]

is independent of \(x \) for solutions \(\psi, \chi \). Normalize:

\[
W(\chi, \psi; x) = 1.
\]
Theorem. The transported charge is

\[C = \frac{i}{2\pi} \int_{\mathbb{T}} \text{tr} \left(W \left(\frac{\partial \chi}{\partial s}, \frac{\partial \psi}{\partial z}; x \right) - W \left(\frac{\partial \chi}{\partial z}, \frac{\partial \psi}{\partial s}; x \right) \right) ds \, dz \]

(any \(x \)). This is the Chern number of the bundle of solutions \(\psi \) on \((s, z) \in \mathbb{T} = [0, 2\pi] \times \gamma\).
Outline

Quantum pumps: The scattering approach

Quantum pumps: The topological approach

A comparison
A comparison
Are Thouless’ and Böttiker’s approaches incompatible?

➤ Topological approach: Fermi energy μ in gap: no states there

Charge transport attributed to energies way below μ

➤ Scattering approach: Depends on scattering at Fermi energy

Charge transport attributed to states at energy μ
A comparison
Are Thouless’ and Büttiker’s approaches incompatible?

- Topological approach: Fermi energy μ in gap: no states there

\[
\begin{array}{c}
\mu \\
\end{array}
\]

Charge transport attributed to energies way below μ

- Scattering approach: Depends on scattering at Fermi energy

\[
\begin{array}{c}
\mu \\
\end{array}
\]

Charge transport attributed to states at energy μ

Truncate potential V to interval $[0, L]$

\[
H(s) = -\frac{d^2}{dx^2} + V(s, x)\chi_{[0,L]}(x) \quad \text{on } L^2(\mathbb{R}_x)
\]

Gap closes.
A comparison (cont.)

Scattering matrix

\[S_L(s) = \begin{pmatrix} R_L & T'_L \\ T_L & R'_L \end{pmatrix} \]

exists at Fermi energy.
Scattering matrix

$$S_L(s) = \begin{pmatrix} R_L & T_L' \\ T_L & R_L' \end{pmatrix}$$

exists at Fermi energy.

Theorem

- As $L \to \infty$,

$$S_L(s) \to \begin{pmatrix} R(s) & 0 \\ 0 & R'(s) \end{pmatrix}$$

exponentially fast, with R, R' unitary. Hence: conditions for quantized transport attained in the limit.

- Charge transport in both descriptions agree: Winding number of $\det R$ is Chern number C.
Sketch of proof

- Solution $\psi_{z,s}(x)$ for $(z, s) \in \mathbb{T}$
 - $\psi_{z,s}(x)$ or $\psi'_{z,s}(x)$ regular at any $x \in \mathbb{R}$
 - $\psi_{z,s}(x = 0)$ regular except for $(z = \mu, s)$ at discrete values s^* of s.

\[\begin{align*}
\text{Im } z & \quad \text{Re } z \\
0 & \quad 2\pi
\end{align*} \]
Sketch of proof (cont.)

- Near a given discrete point \((z = \mu, s = s^*)\) let \(\psi_{z,s}\) be a local section, analytic in \(z\) (e.g. \(\psi'_{z,s}(0) = 1\))

\[
L(z, s) := \psi'_{\bar{z},s}(0)\psi_{z,s}(0)
\]

is analytic with \(L(z, s) = L(\bar{z}, s)^*\)

- Generically, \(L(z, s)\) has a simple eigenvalue \(\lambda(z, s)\) vanishing to first order at \((\mu, s^*)\); \(\lambda(z, s) \in \mathbb{R}\) for \(z \in \mathbb{R}\)

\[
C = - \sum_{s^*} \text{winding number of } \lambda(z, s) \text{ around } (\mu, s^*)
= \sum_{s^*} \text{sgn} \left(\frac{\partial \lambda}{\partial z} \frac{\partial \lambda}{\partial s} \right) \bigg|_{(z=\mu, s=s^*)} = - \sum_{s^*} \text{sgn} \left(\frac{\partial \lambda}{\partial s} \right) \bigg|_{(z=\mu, s=s^*)}
\]

- \(\partial \lambda / \partial z < 0\) for \(z \in \mathbb{R}\) (Sturm oscillation)
Sketch of proof (cont.)

- Matching condition at $x = 0$ yields ($L \rightarrow \infty$)

$$R(s) = (i\sqrt{\mu}\psi_{\mu,s}(0) - \psi'_{\mu,s}(0))(i\sqrt{\mu}\psi_{\mu,s}(0) + \psi'_{\mu,s}(0))^{-1}$$

$R(s)$ has eigenvalue -1 iff $\psi_{\mu,s}(0)$ is singular

- Eigenvalue crossing is counterclockwise iff

$$\frac{\partial \lambda}{\partial s}|_{(z=\mu, s=s^*)} < 0$$

- Together:

$$C = \# \text{ eigenvalue crossings of } R \text{ at } z = -1$$

= winding number of det R
Summary

- **Scattering approach:** gapless systems, finite scatterer; transport based on scattering matrix and attributed to states, both at Fermi energy; quantized in special cases only; generally dissipative
- **Topological approach:** gapped systems, infinite device; transport attributed to states way below Fermi energy; quantized and dissipationless
- A comparison has been obtained.