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Bilinear control

Model system

i∂tψ(t,x) + ∂
2
xψ(t,x) =−u(t)µ(x)ψ(t,x). (1)

u (the control) and µ the real valued potential .
So, at each time t , the available control u(t) is only the amplitude and
not a distributed fonction.

Aim : local control by perturbation

Other results : nonlinear Schrödinger and nonlinear wave equation
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Bibliography
Exact controllability

• Negative result : Ball-Marsden-Slemrod (82)

• Positive result : Local exact controllability in 1D : in H7, in large
time Beauchard (05), Coron(06) : Tmin > 0,
controllability in 1D between eigenstates : Beauchard and Coron
(06)
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Approximate controllability

• By Gallerkin approximation and finite dimensional methods
Chambrion-Mason-Sigalotti-Boscain(09)

• By stabilization Nersesyan (09)

• Exact controllability "at T = ∞" Nersesyan-Nersisyan (10)
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First obstruction Ball-Marsden-Slemrod

Theorem (Ball-Marsden-Slemrod 82)
If the multiplication by µ is bounded on the functional space X, then
the set of reachable states is a countable union of compact sets of X
⇒ no controllability in X.

Once the functional space X is chosen, we must chose a potentiel µ
enough regular to be able to do a perturbation theory, but not too much
otherwise Ball-Marsden-Slemrod applies.

First solution given by K. Beauchard : use of Nash-Moser theorem.
Improved method (with K. Beauchard) : prove directly that the system
can be well posed even if the potential is "bad"⇒ optimal with respect
to regularity and time of control ; easier proof that can be extended to
other cases.
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Main results
Denote ϕk the eigenfunctions of the Dirichlet Laplacian operator.
We control near the ground eigenstate ϕ1 with solution
ψ1(t) = e−iλ1tϕ1.
S is the unit sphere of L2(]0,1[x ).

Theorem (with K. Beauchard)
Let T > 0 and µ ∈ H3(]0,1[,R) be such that

∃c > 0 such that
c
k3 6 |〈µϕ1,ϕk〉|,∀k ∈ N∗. (2)

There exists δ > 0 such that for any ψf ∈ S ∩H3
(0)(]0,1[,C) with

‖ψf −ψ1(T )‖H3 < δ there exists a control u ∈ L2(]0,T [,R) s.t. the
solution of (1) with initial condition

ψ(0) = ϕ1

and control u satisfies ψ(T ) = ψf .
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Remarks about assumption (2)

〈µϕ1,ϕk〉L2
x

=
4[(−1)k+1µ′(1)−µ′(0)]

k3π2 −
√

2
(kπ)3

∫ 1

0
(µϕ1)′′′(x)cos(kπx)

=
4[(−1)k+1µ′(1)−µ′(0)]

k3π2 +
`2sequence

k3 .

and we can prove that assumption (2) is generic in H3(]0,1[).

Such assumption implies that multiplication by µ does not map H3
(0)

into itself.

Rk : there are some cases where assumption (2) is not fufilled but
Beauchard and Coron manage to prove the controllability with
additional techniques : return method or power series expansions.
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"Regularizing" effect

H3
(0) = D

(
(−∆Dirichlet)

3/2
)

=
{

u ∈ H3
∣∣u(0) = u(1) = 0 = u′′(0) = u′′(1)

}
Proposition (with K. Beauchard)
Let f ∈ L2((0,T ),H3∩H1

0 ) (not necessarily H3
(0)). Then, the solution ψ

of {
i∂tψ(t,x) + ∂2

xψ(t,x) = f
Ψ(0) = 0

belongs to C0([0,T ],H3
(0))



9/20

Introduction Main results Idea of proof Other results

Method of proof

• Prove that the linearized problem is controlable by Ingham
Theorem.

• Use classical inverse mapping theorem thanks to our "regularity
result".

Rk : In certain cases treated by Beauchard and Coron, we can get
controllability even if the linearized system is not controllable (use
return method and quasi-static transformation or expansion to higher
order). Our result should improve the regularity in these results.
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Controllability of the linearized system

We linearize around the trajectory ψ1(t,x) = e−iλ1tϕ1.{
i∂tΨ(t,x) + ∂2

x Ψ(t,x) = −v(t)µ(x)ψ1(t,x)
ψ(0,x) = 0.

Ψ(T ) =
∞

∑
k=1

i〈µϕ1,ϕk〉
(∫ T

0
v(t)ei(λk−λ1)tdt

)
e−iλk T

ϕk .

Ψ(T ) = Ψf is equivalent to the trigonometric moment problem

∫ T

0
v(t)ei(λk−λ1)tdt = dk−1(Ψf ) :=

〈Ψf ,ϕk〉eiλk T

i〈µϕ1,ϕk〉
,∀k ∈ N∗. (3)

By Ingham theorem : ∀T > 0;Ψf ∈ H3
(0)(]0,1[ there exists one

v ∈ L2(]0,T [) solution. (if T = 2/π, it is only Fourier series in time)
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Ingham Theorem

Theorem (Ingham, Haraux)
Let N ∈ N, (ωk )k∈Z be an increasing sequence of real numbers such
that

ωk+1−ωk > γ > 0,∀k ∈ Z, |k |> N,

ωk+1−ωk > ρ > 0,∀k ∈ Z,

and T > 2π/γ. The map

J : F := ClosL2(]0,T [)(Span{eiωk t ;k ∈ Z}) → l2(Z,C)

v 7→
(∫ T

0 v(t)eiωk tdt
)

k∈Z

is an isomorphism.

This is a kind of Fourier decomposition for "not exactly orthogonal
basis" (Riesz basis).
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Proof of the "regularizing" effect

∫ t

0
e−i∂2

x sf (s)ds =
∞

∑
k=1

(∫ t

0
〈f (s),ϕk〉L2

x
eiλk sds

)
ϕk =

∞

∑
k=1

xk (t)ϕk .

We need to estimate ‖xk (t)‖2
h3 =

∞

∑
k=1
|k3xk (t)|2

〈f (s),ϕk〉L2
x

=
∫ 1

0
f (s,x)sin(kπx)dx

= − 1
(kπ)2

∫ 1

0
f ′′(s,x)sin(kπx)dx

=
1

(kπ)3

(
(−1)k f ′′(s,1)− f ′′(s,0)

)
− 1

(kπ)3

∫ 1

0
f ′′′(s,x)cos(kπx)dx .
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Proof of the "regularizing" effect

‖xk (t)‖2
h3 . C

∞

∑
k=1
|
∫ t

0
f ′′(s,1)eiλk sds|2 + idem

+
∞

∑
k=1
|
∫ t

0

∫ 1

0
f ′′′(s,x)cos(kπx)eiλk sdxds|2

. C
∥∥f ′′(.,1)

∥∥
L2(]0,2/π[)

+ idem + t
∥∥f ′′′
∥∥

L2([0,T ],L2)

from Plancherel (in time) formula on ]0,2/π[ (first estimate) and
Cauchy Schwartz (second estimate).
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Other results

The method is quite robust and can be applied to other problems :

• Nonlinear Schödinger equation near constant in space solution

• Linear and nonlinear wave equation near constant solution
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Control smoother data with smoother control

Theorem (with K. Beauchard)
Let T > 0 and µ ∈ H5(]0,1[,R) satisfying (2) There exists δ > 0 such
that for any ψf ∈ S ∩H5

(0)(]0,1[,C) with ‖ψf −ψ1(T )‖H5 < δ there

exists a control u ∈ H1
0(]0,T [,R) s.t. the solution of (1) with initial

condition

ψ(0) = ϕ1

and control u satisfies ψ(T ) = ψf .

Rq : Actually, we prove that the solution fulfills
∂2

xψ + u(t)µψ ∈ C0([0,T ],H3
(0)). Therefore, ψ(t) does not, in general,

belong to H5
(0)(]0,1[) for t ∈ (0,T ) (OK if u(t) = 0).
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3D ball with radial data

We prove similar results for the linear Schrödinger equation on the 3D
ball with radial data : same eigenvalues and behavior is "one
dimensional".
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Control of nonlinear Schrödinger equation
Nonlinear Schrödinger equation on ]0,1[ with Neumann boundary
conditions{

i ∂ψ

∂t (t,x) =− ∂2ψ

∂x2 (t,x) + |ψ|2ψ(t,x)−u(t)µ(x)ψ(t,x)
∂ψ

∂x (t,0) = ∂ψ

∂x (t,1) = 0.
(4)

We control around the trajectory ψ(t) = e−it

Theorem (with K. Beauchard)
Let T > 0 and µ ∈ H2(0,1) be such that

∃c > 0 such that
∣∣∣∫ 1

0
µ(x)cos(kπx)dx

∣∣∣> c
max{1,k}2 ,∀k ∈ N. (5)

There exists δ > 0 such that for any ψf ∈ S ∩H2
(0,N)(]0,1[,C) with

‖ψf −e−iT‖H2 < δ there exists a control u ∈ L2(]0,T [,R) s.t. the
solution of (4) with initial condition ψ(0) = ϕ1 and control u satisfies
ψ(T ) = ψf .
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Nonlinear wave equations

Nonlinear wave equation on ]0,1[ with Neumann boundary conditions{
wtt = wxx + f (w ,wt) + u(t)µ(x)(w + wt)
wx (t,0) = wx (t,1) = 0,

(6)

We assume f ∈ C3(R2,R) such that f (1,0) = 0 (the constant w ≡ 1 is
solution) and ∇f (1,0) = 0 (the linearized around 1 is the linear wave
equation).

Theorem
Let T > 2, µ ∈ H2((0,1),R) be such that (5) holds There exists δ > 0
such that for any (wf , ẇf ) ∈ H3

(0,N)×H2
(0,N)(]0,1[,R) with

‖wf −1‖H3 +‖ẇf‖H2 < η there exists a control u ∈ L2(]0,T [,R) s.t.
the solution of (6) with initial data (w ,wt)(0,x) = (1,0) and control u
satisfies (w ,wt)(T ) = (wf , ẇf ).
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Further problems

• Higher dimensions : but the spectral gap used to apply Ingham
theorem is no more guarranted.

• May be some negative results more precise than
Ball-Marsden-Slemrod using microlocal analysis
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