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Experience scheme
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Using Itô’s rule and the usual properties of conditional

expectations we easily obtain

dE[eg
t jt(f)]
dt

= E[eg
tπt(L f) + g(t)eg

tπt(hf)] (27)

dE[eg
tπt(f)]
dt

= E[eg
t (Ct + πt(h)Dt)

+ g(t)eg
t (κ

2Dt + πt(h)πt(f))].
(28)

Requiring these expressions to be identical for any g gives

dπt(f) = πt(L f) dt+κ−1(πt(hf)−πt(h)πt(f)) dW t (29)

where the innovations process dW t = κ−1(dyt − πt(h) dt)
is a Wiener process. Eq. (29) is the well-known Kushner-

Stratonovich equation of nonlinear filtering [30], [31].

2) Quantum filtering: The classical approach generalizes

directly to the quantum case. The main difficulty here is how

to define in a sensible way the observation equation (23)?

We approach the problem from a physical perspective [32].

The quantum noise represents an electromagnetic field coupled

to the system (e.g. an atom.) Unlike classically, where any

observation is in principle admissible, a physical measurement

is performed by placing a detector in the field. Hence the same

noise that drives the system is used for detection, placing a

physical restriction on the form of the observation.

We will consider the observation Y ′t = U∗0,t(A∗t +At)U0,t +
κ(B∗t +Bt). Here Bt is a noise uncorrelated from At that does

not interact with the system (the Hilbert space is H⊗ Γ⊗ Γ,

etc.) Physically we are measuring the field observable A∗t +At

after interaction with the system, corrupted by uncorrelated

noise of strength κ > 0. Using the Itô rule and (20) we get

dY ′t = jt(L∗ + L) dt+ dA∗t + dAt + κ(dB∗t + dBt). (30)

It is customary in physics to use a normalized observation Yt

such that dY 2
t = dt. We will use the standard notation

dYt =
√
η (jt(L∗ +L) dt+ dA∗t + dAt) +

√
1− η dVt (31)

where Vt = B∗t +Bt and η = (1 + κ2)−1 ∈ (0, 1].
Y ′t and Yt satisfy the following two crucial properties:

1) Y ′t is self-nondemolition, i.e. [Y ′t , Y
′
s ] = 0 ∀s < t. To see

this, note that [Y ′t , Y ′s ] = [U∗0,tQtU0,t, U
∗
0,sQsU0,s] with

Qt = A∗t + At. But Us,t is a unitary transformation of

H⊗Γs,t and Qs = Id⊗Qs]⊗Id on H⊗Γs]⊗Γ[s; thus we

get U∗s,tQsUs,t = QsU
∗
s,tUs,t = Qs, so U∗0,sQsU0,s =

U∗0,tQsU0,t. But then [Y ′t , Y
′
s ] = U∗0,t[Qt, Qs]U0,t = 0

as we have already seen that Qt is self-nondemolition.

2) Y ′t is nondemolition, i.e. [jt(X), Y ′s ] = 0 ∀s < t for all

system observables X on H. The proof is identical to

the proof of the self-nondemolition property.

These properties are essential in any sensible quantum filtering

theory: self-nondemolition implies that the observation is a

classical stochastic process, whereas nondemolition is required

for the conditional expectations to exist. A general filtering

theory can be developed that allows any such observation [11],

[12]; we will restrict ourselves to our physically motivated Yt.

We wish to calculate πt(X) = E [jt(X)|Bt] where Bt is the

algebra generated by Ys≤t. Introduce the ansatz

dπt(X) = Ct dt+Dt dYt (32)
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Fig. 1. Schematic of an experiment for continuous quantum measurement
and control. The spin interacts with an optical mode, which is measured
continuously by homodyne detection. A magnetic field is used for feedback.

where Ct, Dt are affiliated to Bt. Define

eg
t = e

∫
t
0 g(s)dYs− 1

2

∫
t
0 g(s)2ds, deg

t = g(t)eg
t dYt. (33)

Using the quantum Itô rule and Def. 1 we get

d〈eg
t jt(X)〉
dt

= 〈eg
tπt(LX)+

g(t)eg
tπt(XL+ L∗X)

√
η〉

(34)

d〈eg
tπt(X)〉
dt

= 〈eg
t (Ct + πt(L∗ + L)Dt

√
η)+

g(t)eg
t (Dt + πt(L∗ + L)πt(X)

√
η)〉.

(35)

Requiring these expressions to be identical for any g gives

dπt(X) = πt(LX) dt+
√
η(πt(XL+ L∗X)

− πt(L∗ + L)πt(X))(dYt −
√
η πt(L∗ + L) dt) (36)

which is the quantum analog of (29). It can be shown that

the innovations process dWt = dYt − √
η πt(L∗ + L) dt is

a martingale (e.g. [14]), and hence it is a Wiener process by

Lévy’s classical theorem.

E. The physical model

Quantum (or classical) probability does not by itself de-

scribe any particular physical system; it only provides the

mathematical framework in which physical systems can be

modeled. The modeling of particular systems is largely the

physicist’s task and a detailed discussion of the issues involved

is beyond the scope of this article; we limit ourselves to

a few general remarks. The main goal of this section is to

introduce a prototypical quantum system which we will use

in the remainder of this article.

The emergence of quantum models can be justified in differ-

ent ways. The traditional approach involves “quantization” of

classical mechanical theories using an empirical quantization

rule. A more fundamental theory builds quantum models as

“statistical” representations of mechanical symmetry groups

[33], [34]. Both approaches generally lead to the same theory.

Figure: R. van Handel, J.K. Stockton, H. Mabuchi, IEEE Trans-AC, 2005
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Quantum filter equation

State space: {ρ ∈ C2×2 | ρ ≥ 0, Hermitian ,Tr (ρ) = 1}.

dρt = −iut [σy , ρt ]dt+
1
2

(2σzρtσz − σ2
zρt − ρtσ

2
z )dt

+(σzρt + ρtσz − 2Tr (σzρt ) ρt )dWt ,

dWt = dyt − 2 Tr (σzρt ) dt

where

σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
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Stabilization problem

dρt =
1
2

(2σzρtσz − σ2
zρt − ρtσ

2
z )dt

+ (σzρt + ρtσz − 2Tr (σzρt ) ρt )dWt ,

Equilibrium states

ρ↑ := Π|↑〉 =

(
1 0
0 0

)
, ρ↓ := Π|↓〉 =

(
0 0
0 1

)
.

Problem
To stabilize deterministically one of these states.

Mazyar Mirrahimi (INRIA) Feedback generation of quantum entangled states December 9, 2010 5 / 22



Stochastic Lyapunov theory

Stochastic system:

dxt = f (xt )dt + σ(xt )dwt , x(t = 0) = x0,

Lyapunov funciton:

d
dt

EV (xt ) = LV (xt ) =
∂V
∂x

(xt )f (xt ) +
1
2
∂2V
∂x2 (xt )σ(xt )

2 ≤ 0.

1 Doob’s inequality: P
(
sup0≤t<∞ V (xt ) ≥ α

)
≤ V (x0)

α .
2 Convergence in probability towards the invariant set included in
LV = 0 (Kushner’s theorem).

Mazyar Mirrahimi (INRIA) Feedback generation of quantum entangled states December 9, 2010 6 / 22



Spin-1/2 case

dρt = −iut [σy , ρt ]dt +
1
2

(2σzρtσz − σ2
zρt − ρtσ

2
z )dt

+ (σzρt + ρtσz − 2Tr (σzρt ) ρt )dWt .

Lyapunov function:

V (ρt ) = 1− Tr (ρtρ↑)
2

LV (ρt ) = 2utTr
(
i[σy , ρt ]ρ↑

)
} − 4Tr (ρtρ↑)

2 (1− Tr (σzρt ))2.

A possible approach:

ut = −Tr
(
i[σy , ρt ]ρ↑

)
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Spin-1/2 case (continued)
Invariant set
ρt converges in probability towards the set {ρ↑, ρ↓}. The Lyapunov
function V takes it maximal value on ρ↓: V (ρ↓) = 1− Tr (ρ↑ρ↓)

2 = 1.

Contrarily to the deterministic case, we do not have semi-global
stabilization.

Change of strategy
1 ut = −Tr

(
i[σy , ρt ]ρ↑

)
if Tr (ρtρ↑) ≥ γ;

2 ut = 1 if Tr (ρtρ↑) ≤ γ/2;
3 if ρt ∈ B = {ρ : γ/2 < Tr (ρρ↑) < γ}, then ut = −Tr

(
i[σy , ρt ]ρ↑

)
if

the last entry of ρt into B has been via the boundary Tr (ρρ↑) = γ,
and ut = 1 if not.

M. Mirrahimi and R. van Handel, SIAM J. Cont. Optimization, 2007.
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Entangled states: experience schemeFeedback control designs for the preparation of multi-qubit quantum states 3

Figure 1. Schematic of the quantum feedback control setup. Two qubits interact with an optical probe, which is then
detected through homodyne detection. A digital controller processes the photocurrent in two steps: first the filter
computes the information state ρt, after which the control law turns this into a feedback signal. The signal is fed
back to the qubits through local magnetic fields.

convert to a state feedback problem, i.e. one in which the controller has access to the complete

system state at every time as opposed to just a partial observation process. Clearly we cannot

gain access to the ‘true’ system state through quantum measurement; instead, we follow a

common technique in stochastic control and introduce a ‘virtual’ information state ρt which

represents only the information gathered by the controller from the observations Y0≤s≤t. The

control problem then reduces to finding controls u
(1,2)
t as a function of ρt, as opposed to

functions of the entire observation history.

An information state for our setup is found as follows. The conditional expectation
πt(X) is, for any observable X on H, a function of the observations Y0≤s≤t that minimizes

the mean square error 〈(U †t XUt − πt(X))2〉 [11, 12]. It is well defined§ for any X and

satisfies the following property: 〈πt(X)〉 = 〈U †tXUt〉. Hence we have satisfied our control

goal if we can make πt(X) converge to Tr[Xρc] with probability 1 for anyX . Now introduce

a density matrix ρt such that Tr[Xρt] = πt(X) for any X . Clearly ρt is only determined by

the observation history and our control goal is satisfied if ρt converges to ρc. Hence ρt is a

suitable information state for our problem.

The information state ρt obeys the equation [9, 12, 13]

dρt = −i[u(1)
t σ(1)

y + u
(2)
t σ(2)

y , ρt] dt+ γD[Fz ]ρt dt+
√
γηH[Fz ]ρt dWt (3)

which is known as the quantum filtering equation‖, the quantum analog of the nonlinear

filtering equation in classical stochastic control [15]. Here we have used the notation

D[c]ρ = cρc† − 1
2
(c†cρ+ ρc†c), (4)

H[c]ρ = cρ+ ρc† − Tr[(c+ c†)ρ], (5)

§ The well-posedness of the conditional expectation is a somewhat delicate issue; it hinges crucially on the fact that
in models of the form used in this paper, any Ys (0 ≤ s ≤ t) commutes with U†

t XUt for any observable X on H.
This is known as the nondemolition property. We refer to [12] for a detailed treatment (see also [9]).
‖ The same equation appears under various different interpretations in the physics literature [14], and is sometimes
called a stochastic master equation or quantum trajectory equation. We emphasize that it is not neccessary to use the
projection postulate to obtain the equation; in particular, the nondemolition property guarantees that measuring Yt

has no backaction on the system. As an information state, ρt coexists peacefully with the system dynamics Eq. (1).

Example: two qubits

The Hilbert state space for two qubits is given by C2 ⊗ C2. One can
think of an entangled state of the form

Π 1√
2
(|↑〉⊗|↓〉+|↓〉⊗|↑〉).
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Quantum filter equation

dρt = −iu1
t [F (1)

y , ρt ]dt − iu2
t [F (2)

y , ρt ]dt+
1
2

(2FzρtFz − F 2
z ρt − ρtF 2

z )dt

+(Fzρt + ρtFz − 2Tr (Fzρt ) ρt )dWt ,

dWt = dyt − 2Tr (Fzρt ) dt

2-qubit system:
The Hilbert space C2 ⊗ C2 of dimension 4,
Angular momentum operators

F (1)
y =σy ⊗ Id,

F (2)
y =Id⊗ σy ,

Fz =σz ⊗ Id + Id⊗ σz .
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Stabilization problem

dρt =
1
2

(2FzρtFz−F 2
z ρt−ρtF 2

z )dt +(Fzρt +ρtFz−2Tr (Fzρt ) ρt )dWt ,

Equilibrium states

Π|↑↑〉, Π|↓↓〉, Πα|↑↓〉+β|↓↑〉 (|α|2 + |β2| = 1).

Main obstacle
Degeneracy of the measurement operator at the target state: taking
the Lyapunov strategy as in the previous case, ρt can converge
towards a state in the set {Π|↑↑〉,Π|↓↓〉,Πα|↑↓〉+β|↓↑〉}.
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Symmetric and anti-symmetric entangled states

Symmetric entangled state:

ρS = Π 1√
2
(|↑↓〉+|↓↑〉)

Idea
We consider a dynamic stabilization by considering: u1

t = 1 + v1
t and

u2
t = −1 + v2

t . Therefore, the uncontrolled system writes:

dρt = −i[F (1)
y − F (2)

y , ρt ]dt

+
1
2

(2FzρtFz − F 2
z ρt − ρtF 2

z )dt + (Fzρt + ρtFz − 2Tr (Fzρt ) ρt )dWt ,

The only equilibrium state: Π 1√
2
(|↑↓〉+|↓↑〉).
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Symmetric and anti-symmetric entangled states

Symmetric case
The feedback law

1 u1
t = 1− Tr

(
i[F (1)

y , ρt ]ρS

)
, u2

t = −1− Tr
(

i[F (2)
y , ρt ]ρS

)
if Tr (ρρS) ≥ γ;

2 u1
t = 1, u2

t = 0 if Tr (ρρS) ≤ γ;

stabilize the symmetric entangled state ρS = Π 1√
2
(|↑↓〉+|↓↑〉).

Anti-symmetric case
The feedback law

1 u1
t = 1− Tr

(
i[F (1)

y , ρt ]ρAS

)
, u2

t = 1− Tr
(

i[F (2)
y , ρt ]ρAS

)
if Tr (ρρAS) ≥ γ;

2 u1
t = 1, u2

t = 0 if Tr (ρρAS) ≤ γ;

stabilize the anti-symmetric entangled state ρAS = Π 1√
2
(|↑↓〉−|↓↑〉).
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General entangled states

dρt = −iu1
t [F (1)

y , ρt ]dt − iu2
t [F (2)

y , ρt ]dt+
1
2

(2FzρtFz − F 2
z ρt − ρtF 2

z )dt

+(Fzρt + ρtFz − 2Tr (Fzρt ) ρt )dWt ,

dWt = dyt − 2Tr (Fzρt ) dt

Target state: Πα|↑↓〉+β|↓↑〉.

Obstacle
We can not remove the degeneracy exactly at our target.

Here we propose a controllability-type result.
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General entangled states

A simplification

If the system starts at ρ0 of the form Πψ0 = ψ0ψ
∗
0 with ψ0 ∈ C2, the

above dynamics become equivalent to:

dψt = −i(u1
t F (1)

y + u2
t F (2)

y )ψtdt − 1
2

F 2
z ψtdt + FzψtdWt ,

ρt =
ψtψ

∗
t

‖ψt‖2
.

Idea
By considering exciting control fields, we remove all equilibriums
except a small neighborhood of the target state and we prove that, the
trajectories, almost surely, hit this small neighborhood in finite time.
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Support theorem
Strook-Varadhan support theorem
Consider the Ito SDE,

dxt = f (xt )dt + σ(xt )dWt ,

and the associated deterministic controlled equation

d
dt

xu
t = f (xu

t )− 1
2
∇σ(xu

t )xu
t + u(t)σ(xu

t ).

Consider U the set of all piecewise constant functions from R+ to R,
and define

Sx = {xu
. : u ∈ U}

the set of all controlled trajectories starting at x . The set Sx is the
smallest set of the continuous trajectories starting at x such that

P({ω ∈ Ω | x.(ω) ∈ Sx}) = 1.
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Support theorem: application

dψt = −i(u1
t F (1)

y + u2
t F (2)

y )ψtdt − 1
2

F 2
z ψtdt + FzψtdWt ,

ρt =
ψtψ

∗
t

‖ψt‖2 .

We consider the controlled deterministic equation:

dψt = −i(u1
t F (1)

y + u2
t F (2)

y )ψtdt − F 2
z ψtdt + UtFzψt ,

ρt =
ψtψ

∗
t

‖ψt‖2 .

We show that by taking (|β1| 6= |β2|,
∣∣∣ β1β2(α

2
1−α2

2)

α1α2(β2
1−β2

2)

∣∣∣ ≤ 1
2 , α1α2β1β2 < 0)

u1
t = εβ1, u2

t = εβ2, Ut = 2
β1β2(α2

1 − α2
2)

α1α2(β2
1 − β2

2)
,

the controlled system converges towards a state in an ε-neighborhood of the
target state Πα1|↑↓〉+α2|↓↑〉.
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Stabilization

Theorem
The following feedback laws ensure the stabilization in an
ε-neighborhood of the target state Πα|↑↓〉+β|↓↑〉:

u(k)
t =




−ck Tr[i[F (k)

y , ρt ]ρf ] for V (ρt ) ≤ ε
εβk for ε < V (ρt ) ≤ 1− δ
γk for V (ρt ) > 1− δ

k = 1,2.

Where ε, c1, c2, β1, β2, γ1, γ2 ∈ R, ck > 0, ε > 0 sufficiently small and

|β1| 6= |β2|,
∣∣∣∣
β1β2(α2

1 − α2
2)

α1α2(β2
1 − β2

2)

∣∣∣∣ ≤ 1/2, α1α2β1β2 < 0, (γ1, γ2) 6= (εβ1, εβ2).
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10 Random simulations of the 2-qubit system
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Figure: Approximate stabilization of the .03-neighborhood of 1√
5
|↑↓〉+ 2√

5
|↓↑〉

.
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