Global exact controllability in infinite time of Schrödinger equation

Vahagn Nersesyan (Université de Versailles Saint-Quentin)

IHP, December 9, 2010
Introduction

Controlled Schrödinger equation:

\[i \dot{z} = -\Delta z + V(x)z + u(t)Q(x)z, \quad x \in D, \]
\[z|_{\partial D} = 0, \]
\[z(0, x) = z_0(x), \]

where \(D \subseteq \mathbb{R}^d, \partial D \in C^\infty, \ d \geq 1, \ V, \ Q \in C^\infty(\overline{D}, \mathbb{R}) \) are given functions, \(u \) is the control, \(z \) is the state.
Controlled Schrödinger equation:

\[i\dot{z} = -\Delta z + V(x)z + u(t)Q(x)z, \quad x \in D, \]
\[z|_{\partial D} = 0, \]
\[z(0, x) = z_0(x), \]

where \(D \subseteq \mathbb{R}^d \), \(\partial D \in C^\infty \), \(d \geq 1 \), \(V, Q \in C^\infty(\overline{D}, \mathbb{R}) \) are given functions, \(u \) is the control, \(z \) is the state.

Let \(\mathcal{U}_t(\cdot, u) : L^2 \to L^2 \), \(u \in L^1_{loc}([0, \infty), \mathbb{R}) \) be the resolving operator, i.e. \(\mathcal{U}_t(z_0, u) = z(t) \).
Controlled Schrödinger equation:

\[i\dot{z} = -\Delta z + V(x)z + u(t)Q(x)z, \quad x \in D, \]
\[z|_{\partial D} = 0, \]
\[z(0, x) = z_0(x), \]

where \(D \subseteq \mathbb{R}^d, \partial D \subseteq C^\infty, \ d \geq 1, \ V, Q \in C^\infty(\overline{D}, \mathbb{R}) \) are given functions, \(u \) is the control, \(z \) is the state.

Let \(\mathcal{U}_t(\cdot, u) : L^2 \to L^2, \ u \in L^1_{loc}([0, \infty), \mathbb{R}) \) be the resolving operator, i.e. \(\mathcal{U}_t(z_0, u) = z(t) \).

\[\|\mathcal{U}_t(z_0, u)\|_{L^2} = \|z_0\|_{L^2}, \quad t \geq 0. \]
Introduction

Controlled Schrödinger equation:

\[i\dot{z} = -\Delta z + V(x)z + u(t)Q(x)z, \quad x \in D, \]

\[z|_{\partial D} = 0, \]

\[z(0, x) = z_0(x), \]

where \(D \subseteq \mathbb{R}^d, \partial D \subseteq C^\infty, d \geq 1, V, Q \in C^\infty(\overline{D}, \mathbb{R}) \) are given functions, \(u \) is the control, \(z \) is the state.

Let \(\mathcal{U}_t(\cdot, u) : L^2 \rightarrow L^2, u \in L^1_{loc}([0, \infty), \mathbb{R}) \) be the resolving operator, i.e. \(\mathcal{U}_t(z_0, u) = z(t) \).

\[\|\mathcal{U}_t(z_0, u)\|_{L^2} = \|z_0\|_{L^2}, \quad t \geq 0. \]

Let \(S := \{ z \in L^2 : \|z\|_{L^2} = 1 \} \).
Main result

The system is globally exactly controllable in infinite time generically in V and Q.
Introduction

Non-controllability result
Controllability of linearized system
Controllability of nonlinear system

Main result

The system is globally exactly controllable in infinite time generically in V and Q.

For any $z_0, z_1 \in S \cap H^k$ there is a control $u \in H^s(\mathbb{R}_+, \mathbb{R})$ and a sequence $T_n \rightarrow +\infty$ such $\mathcal{U}_{T_n}(z_0, u) \rightarrow z_1$ in H^k.
Plan of the talk

1. Non-controllability results
2. Controllability of linearized system
3. Controllability of nonlinear system
Previous results

Ramakrishna, Salapaka, Dahleh, Rabitz, Pierce, Turinici, Altafini, Albertini, D’Alessandro, …

Beauchard, Coron, Laurent

Chambrion, Mason, Sigalotti, Boscain

Mirrahimi, Beauchard, V.N.

V.N.
Non-controllability result
The Schrödinger equation is not exactly controllable in finite time in Sobolev space H^2 with controls $L_{loc}^p([0, +\infty), \mathbb{R})$, i.e., for any $z_0 \in S$ the set

$$\{ \mathcal{U}_t(z_0, u) : t \in [0, +\infty), u \in L_{loc}^p([0, +\infty), \mathbb{R}) \text{ for some } p > 1 \}$$

does not contain a ball of the space H^2.
The Schrödinger equation is not exactly controllable in finite time in Sobolev spaces H^k, $k < d$ with controls $H^1_{loc}([0, +\infty), \mathbb{R})$, i.e., for any $z_0 \in S$ the set
\[
\{U_t(z_0, u) : t \in [0, +\infty), u \in H^1_{loc}([0, +\infty), \mathbb{R})\}
\]
does not contain a ball of the space H^k.

Proof is based on the ideas of Shirikyan introduced to prove non-controllability of Euler equation.
Controllability of linearized system
Let us linearize the system around trajectory $U_t(\tilde{z}_0, 0)$:

$$i\dot{z} = -\Delta z + V(x)z + u(t)Q(x)U_t(\tilde{z}_0, 0),$$

$$z|_{\partial D} = 0,$$

$$z(0) = z_0.$$
Let us linearize the system around trajectory $\mathcal{U}_t(\tilde{z}_0, 0)$:

$$i\dot{z} = -\Delta z + V(x)z + u(t)Q(x)\mathcal{U}_t(\tilde{z}_0, 0),$$

$$z|_{\partial D} = 0,$$

$$z(0) = z_0.$$
Let us linearize the system around trajectory $U_t(\tilde{z}_0, 0)$:

$$i\dot{z} = -\Delta z + V(x) z + u(t) Q(x) U_t(\tilde{z}_0, 0),$$

$$z|_{\partial D} = 0,$$

$$z(0) = z_0.$$
Preliminaries

Let us linearize the system around trajectory $\mathcal{U}_t(\tilde{z}_0, 0)$:

\[
i \dot{z} = -\Delta z + V(x)z + u(t)Q(x)\mathcal{U}_t(\tilde{z}_0, 0),
\]

\[z|_{\partial D} = 0,
\]

\[z(0) = 0.
\]
Let us linearize the system around trajectory \(U_t(\tilde{z}_0, 0) \):

\[
i\dot{z} = -\Delta z + V(x)z + u(t)Q(x)U_t(\tilde{z}_0, 0),
\]

\[
z|_{\partial D} = 0,
\]

\[
z(0) = 0.
\]

Let us rewrite this problem in the Duhamel form

\[
z(t) = -i \int_0^t e^{i(t-s)(\Delta-V)} u(s)Q(x)U_s(\tilde{z}_0, 0)ds.
\]
Let us linearize the system around trajectory $\mathcal{U}_t(\tilde{z}_0, 0)$:

$$i\dot{z} = -\Delta z + V(x)z + u(t)Q(x)\mathcal{U}_t(\tilde{z}_0, 0),$$

$$z|_{\partial D} = 0,$$

$$z(0) = 0.$$

Let us rewrite this problem in the Duhamel form

$$z(t) = -i \int_0^t e^{i(t-s)(\Delta-V)}u(s)Q(x)\mathcal{U}_s(\tilde{z}_0, 0)ds.$$

Let \mathcal{R}_t be the resolving operator.
Preliminaries

\[\langle \mathcal{R}_t(0, u), e_m \rangle = -i \sum_{k=1}^{+\infty} e^{-i\lambda_m t} \langle \tilde{z}_0, e_k \rangle Q_{mk} \int_0^t e^{i\omega_{mk}s} u(s) ds, \quad m \geq 1, \]

where \(\omega_{mk} = \lambda_m - \lambda_k \) and \(Q_{mk} := \langle Q e_m, e_k \rangle \).
Preliminaries

\[
\langle \mathcal{R}_t(0, u), e_m \rangle = -i \sum_{k=1}^{+\infty} e^{-i\lambda_m t} \langle \tilde{z}_0, e_k \rangle Q_{mk} \int_{0}^{t} e^{i\omega_{mk}s} u(s) ds, \ m \geq 1,
\]

where \(\omega_{mk} = \lambda_m - \lambda_k \) and \(Q_{mk} := \langle Qe_m, e_k \rangle \). For any \(u \in L^1(\mathbb{R}_+, \mathbb{R}) \) the following limit exists

\[
\mathcal{R}_\infty(0, u) := \lim_{n \to +\infty} \mathcal{R}_{T_n}(0, u).
\]

Vahagn Nersesyan

Exact controllability in infinite time of Schrödinger equation
\[\langle R_t(0, u), e_m \rangle = -i \sum_{k=1}^{+\infty} e^{-i\lambda_m t} \langle \tilde{z}_0, e_k \rangle Q_{mk} \int_0^t e^{i\omega_{mk} s} u(s) ds, \ m \geq 1, \]

where \(\omega_{mk} = \lambda_m - \lambda_k \) and \(Q_{mk} := \langle Q e_m, e_k \rangle \). For any \(u \in L^1(\mathbb{R}_+, \mathbb{R}) \) the following limit exists

\[R_\infty(0, u) := \lim_{n \to +\infty} R_{T_n}(0, u). \]

The choice of the sequence \(T_n \) implies that

\[\langle R_\infty(0, u), e_m \rangle = -i \sum_{k=1}^{+\infty} \langle \tilde{z}_0, e_k \rangle Q_{mk} \int_0^{+\infty} e^{i\omega_{mk} s} u(s) ds. \]
Preliminaries

Let

$$\tilde{u}(\omega) := \int_{0}^{+\infty} e^{i\omega s} u(s) ds.$$
Preliminaries

Let

\[\tilde{u}(\omega) := \int_{0}^{+\infty} e^{i\omega s} u(s) ds. \]

The set of admissible controls is the Banach space

\[\Theta := u \in L^1(\mathbb{R}_+, \mathbb{R}) \cap H^s(\mathbb{R}_+, \mathbb{R}) \cap C \]

where \(s \geq 1 \) is any fixed constant and

\[C := \{ u \in L^1(\mathbb{R}_+, \mathbb{R}) : \{ \tilde{u}(\omega_{mk}) \} \in \ell^2 \}. \]
Condition 1

Let $V(x_1, \ldots, x_d) = V_1(x_1) + \ldots + V_d(x_d)$ and $D \subset \mathbb{R}^d$ is a rectangle. The functions $V, Q \in C^\infty(D, \mathbb{R})$ are such that

(i) $\inf_{p_1, j_1, \ldots, p_d, j_d \geq 1} |(p_1 j_1 \cdot \ldots \cdot p_d j_d)^3 Q_{pj}| > 0$, $Q_{pj} := \langle Q e_{p_1}, \ldots, p_d, e_{j_1}, \ldots, j_d \rangle$,

(ii) $\lambda_i - \lambda_j \neq \lambda_p - \lambda_q$ for all $i, j, p, q \geq 1$ such that $\{i, j\} \neq \{p, q\}$ and $i \neq j$.

Vahagn Nersesyan

Exact controllability in infinite time of Schrödinger equation
Condition 1

Let $V(x_1, \ldots, x_d) = V_1(x_1) + \ldots + V_d(x_d)$ and $D \subset \mathbb{R}^d$ is a rectangle. The functions $V, Q \in C^\infty(D, \mathbb{R})$ are such that

(i) $\inf_{p_1, j_1, \ldots, p_d, j_d \geq 1} |(p_1 j_1 \cdot \ldots \cdot p_d j_d)^3 Q_{pj}| > 0, Q_{pj} := \langle Q e_{p_1}, \ldots, p_d, e_{j_1}, \ldots, j_d \rangle$,

(ii) $\lambda_i - \lambda_j \neq \lambda_p - \lambda_q$ for all $i, j, p, q \geq 1$ such that $\{i, j\} \neq \{p, q\}$ and $i \neq j$.

Privat and Sigalotti; Mason and Sigalotti; V.N.
Let us introduce the set

\[\mathcal{E} := \{ z \in S : \exists p, q \geq 1, p \neq q, z = c_p e_p + c_q e_q, \]
\[|c_p|^2 \langle Q e_p, e_p \rangle - |c_q|^2 \langle Q e_q, e_q \rangle = 0 \}. \]

Theorem

Under Condition 1, for any $\tilde{z}_0 \in S \cap H^3 \setminus \mathcal{E}$, the mapping $\mathcal{R}_\infty(0, \cdot) : \Theta \to H^3$ admits a continuous right inverse. If $\tilde{z}_0 \in S \cap H^3 \cap \mathcal{E}$, then $\mathcal{R}_\infty(0, \cdot)$ is not invertible.
Case 1. Let suppose that $\tilde{z}_0 \in \mathcal{E}$, i.e., $\tilde{z}_0 = c_p e_p + c_q e_q$ with $|c_p|^2 \langle Q e_p, e_p \rangle - |c_q|^2 \langle Q e_q, e_q \rangle = 0$.
Case 1. Let suppose that $\tilde{z}_0 \in \mathcal{E}$, i.e., $\tilde{z}_0 = c_p e_p + c_q e_q$ with $|c_p|^2 \langle Q e_p, e_p \rangle - |c_q|^2 \langle Q e_q, e_q \rangle = 0$. By Beauchard and Coron

$$\text{Im} \langle \mathcal{R}_t(0, u), c_p e^{-i\lambda_p t} e_p - c_q e^{-i\lambda_q t} e_q \rangle = \text{const}.$$
Case 1. Let suppose that $\tilde{z}_0 \in \mathcal{E}$, i.e., $\tilde{z}_0 = c_p e_p + c_q e_q$ with $|c_p|^2 \langle Q e_p, e_p \rangle - |c_q|^2 \langle Q e_q, e_q \rangle = 0$. By Beauchard and Coron

$$\text{Im} \langle \mathcal{R}_t(0, u), c_p e^{-i\lambda_p t} e_p - c_q e^{-i\lambda_q t} e_q \rangle = \text{const}.$$

Thus the system is not controllable.
Case 2. Let $\tilde{z}_0 \in S \cap H^3 \setminus \mathcal{E}$.

$$\langle \mathcal{R}_\infty(0, u), e_m \rangle = -i \sum_{k=1}^{+\infty} \langle \tilde{z}_0, e_k \rangle Q_{mk} \int_0^{+\infty} e^{i\omega_{mk}s} u(s) ds.$$
Proof

Case 2. Let $\tilde{z}_0 \in S \cap H^3 \setminus \mathcal{E}$.

$$\langle R_\infty(0, u), e_m \rangle = -i \sum_{k=1}^{+\infty} \langle \tilde{z}_0, e_k \rangle Q_{mk} \int_0^{+\infty} e^{i\omega_{mk}s} u(s)ds.$$

This system is equivalent to the following moment problem

$$\int_0^{+\infty} e^{i\omega_{mk}s} u(s)ds = d_{mk}, \quad d_{mk} \in \ell^2. \quad (1)$$
Case 2. Let $\tilde{z}_0 \in S \cap H^3 \setminus \mathcal{E}$.

$$\langle R_\infty(0, u), e_m \rangle = -i \sum_{k=1}^{+\infty} \langle \tilde{z}_0, e_k \rangle Q_{mk} \int_0^{+\infty} e^{i\omega_{mk}s} u(s)ds.$$

This system is equivalent to the following moment problem

$$\int_0^{+\infty} e^{i\omega_{mk}s} u(s)ds = d_{mk}, \quad d_{mk} \in \ell^2. \quad (1)$$

Proposition

For any $d_{mk} \in \ell^2$ Problem (1) admits a solution $u \in \Theta$.

Vahagn Nersesyan

Exact controllability in infinite time of Schrödinger equation
Controllability of nonlinear system
Main result

Controlled Schrödinger equation:

\[i\dot{z} = -\Delta z + V(x)z + u(t)Q(x)z, \quad x \in D, \]
\[z|_{\partial D} = 0, \]
\[z(0, x) = z_0(x). \]

\[\mathcal{U}_t(\cdot, u) : L^2 \to L^2, \quad u \in L^1_{loc}([0, \infty), \mathbb{R}) \] is the resolving operator.
Under Condition 1, the system is globally exactly controllable in infinite time in $S \cap H^3$ with controls $u \in \Theta$.
Proof

Let $\mathcal{U}_\infty(z_0, u)$ be the H^3-weak ω-limit set of the trajectory corresponding to $u \in \Theta$ and $z_0 \in H^3$:

$$\mathcal{U}_\infty(z_0, u) := \{ z \in H^3 : \mathcal{U}_{T_{n_k}}(z_0, u) \rightharpoonup z \text{ in } H^3 \text{ for some } n_k \to +\infty \}.$$
Proof

Let $U_\infty(z_0, u)$ be the H^3-weak ω-limit set of the trajectory corresponding to $u \in \Theta$ and $z_0 \in H^3$:

$$U_\infty(z_0, u) := \{ z \in H^3 : U_{T_{n_k}}(z_0, u) \rightarrow z \text{ in } H^3 \text{ for some } n_k \rightarrow +\infty \}.$$

Lemma

*For any $u \in \Theta$ and $z_0 \in H^3$, the trajectory $U_{T_n}(z_0, u)$ is bounded in H^3.***
Proof

Let $\mathcal{U}_\infty(z_0, u)$ be the H^3-weak ω-limit set of the trajectory corresponding to $u \in \Theta$ and $z_0 \in H^3$:

$$\mathcal{U}_\infty(z_0, u) := \{ z \in H^3 : \mathcal{U}_{T_{n_k}}(z_0, u) \rightharpoonup z \text{ in } H^3 \text{ for some } n_k \to +\infty \}.$$

Lemma

For any $u \in \Theta$ and $z_0 \in H^3$, the trajectory $\mathcal{U}_{T_n}(z_0, u)$ is bounded in H^3.

Thus $\mathcal{U}_\infty(z_0, u)$ is non-empty subset of H^3.
Consider the multivalued function

$$U_\infty(\cdot, \cdot) : S \cap H^3 \times \Theta \to 2^{S \cap H^3},$$

$$(z_0, u) \mapsto U_\infty(z_0, u).$$
Consider the multivalued function

\[\mathcal{U}_\infty(\cdot, \cdot) : S \cap H^3 \times \Theta \to 2^{S \cap H^3}, \]

\[(z_0, u) \mapsto \mathcal{U}_\infty(z_0, u). \]

We apply the inverse function theorem for this mapping.
Inverse function theorem for multivalued functions

Let X and Y be Banach spaces. Define the Hausdorff distance

$$d(x, D) = \inf_{y \in D} \|x - y\|_X,$$

$$e(C, D) = \max\{\sup_{x \in C} d(x, D), \sup_{y \in D} d(y, C)\}.$$
Inverse function theorem for multivalued functions

Let X and Y be Banach spaces. Define the Hausdorff distance

\[d(x, D) = \inf_{y \in D} \|x - y\|_X, \]

\[e(C, D) = \max\{\sup_{x \in C} d(x, D), \sup_{y \in D} d(y, C)\}. \]

Definition

A multifunction $F : X \to 2^Y$ is said to be strictly differentiable at (x_0, y_0) if there exists some continuous linear map $A : X \to Y$ such that for any $\varepsilon > 0$ there exist $\delta > 0$ for which

\[e(F(x) - A(x), F(x') - A(x')) \leq \varepsilon \|x - x'|_X, \]

whenever $x, x' \in B(x_0, \delta)$. A is called a derivative of F at (x_0, y_0).
Inverse function theorem for multivalued functions

Theorem (Nachi and Penot)

Let F be a multifunction from an open set $X_0 \subset X$ to Y with non-empty closed non-empty values. Suppose F is strictly differentiable at $(x_0, y_0) \in \text{Gr}(F)$, and some derivative A of F at (x_0, y_0) has a right inverse. Then for any neighborhood U of x_0 there exists a neighborhood V of y_0 such that $V \subset F(U)$.
Inverse function theorem for multivalued functions

Theorem (Nachi and Penot)

Let F be a multifunction from an open set $X_0 \subset X$ to Y with non-empty closed non-empty values. Suppose F is strictly differentiable at $(x_0, y_0) \in \text{Gr}(F)$, and some derivative A of F at (x_0, y_0) has a right inverse. Then for any neighborhood U of x_0 there exists a neighborhood V of y_0 such that $V \subset F(U)$.

$U_\infty(z_0, u)$ is a non-empty and closed.
Inverse function theorem for multivalued functions

Theorem (Nachi and Penot)

Let F be a multifunction from an open set $X_0 \subset X$ to Y with non-empty closed non-empty values. Suppose F is strictly differentiable at $(x_0, y_0) \in Gr(F)$, and some derivative A of F at (x_0, y_0) has a right inverse. Then for any neighborhood U of x_0 there exists a neighborhood V of y_0 such that $V \subset F(U)$.

$U_\infty(z_0, u)$ is a non-empty and closed. The construction of the sequence T_n implies that $U_\infty(z_0, 0) = z_0$.

Vahagn Nersesyan

Exact controllability in infinite time of Schrödinger equation
Inverse function theorem for multivalued functions

Theorem (Nachi and Penot)

Let F be a multifunction from an open set $X_0 \subset X$ to Y with non-empty closed non-empty values. Suppose F is strictly differentiable at $(x_0, y_0) \in \text{Gr}(F)$, and some derivative A of F at (x_0, y_0) has a right inverse. Then for any neighborhood U of x_0 there exists a neighborhood V of y_0 such that $V \subset F(U)$.

$U_\infty(z_0, u)$ is a non-empty and closed. The construction of the sequence T_n implies that $U_\infty(z_0, 0) = z_0$. $U_\infty(z_0, u)$ is strictly differentiable at $(z_0, 0)$ with derivative R_∞.
Inverse function theorem for multivalued functions

Theorem (Nachi and Penot)

Let F be a multifunction from an open set $X_0 \subset X$ to Y with non-empty closed non-empty values. Suppose F is strictly differentiable at $(x_0, y_0) \in \text{Gr}(F)$, and some derivative A of F at (x_0, y_0) has a right inverse. Then for any neighborhood U of x_0 there exists a neighborhood V of y_0 such that $V \subset F(U)$.

$U_\infty(z_0, u)$ is a non-empty and closed. The construction of the sequence T_n implies that $U_\infty(z_0, 0) = z_0$. $U_\infty(z_0, u)$ is strictly differentiable at $(z_0, 0)$ with derivative R_∞. Since the linearized system is controllable for $z_0 \notin E$, we get the controllability near z_0.

□
Theorem (Nachi and Penot)

Let F be a multifunction from an open set $X_0 \subset X$ to Y with non-empty closed non-empty values. Suppose F is strictly differentiable at $(x_0, y_0) \in Gr(F)$, and some derivative A of F at (x_0, y_0) has a right inverse. Then for any neighborhood U of x_0 there exists a neighborhood V of y_0 such that $V \subset F(U)$.

$U_\infty(z_0, u)$ is a non-empty and closed. The construction of the sequence T_n implies that $U_\infty(z_0, 0) = z_0$. $U_\infty(z_0, u)$ is strictly differentiable at $(z_0, 0)$ with derivative R_∞. Since the linearized system is controllable for $z_0 \notin \mathcal{E}$, we get the controllability near z_0. If $z_0 \in \mathcal{E}$, controllability is proved by the arguments of Beauchard and Coron. □
Generalization

The proof works also for the defocusing nonlinear Schrödinger equation:

$$i \dot{z} = -\Delta z + V(x)z + |z|^{2p}z + u(t)Q(x)z, \quad x \in \mathbb{T}^d,$$

where $p \in \mathbb{N}^*$ and $d \geq 1$ are such that the equation is globally well posed in H^1.
The proof works also for the defocusing nonlinear Schrödinger equation:

\[i\dot{z} = -\Delta z + V(x)z + |z|^{2p}z + u(t)Q(x)z, \quad x \in \mathbb{T}^d, \]

where \(p \in \mathbb{N}^* \) and \(d \geq 1 \) are such that the equation is globally well posed in \(H^1 \).

Theorem

The nonlinear Schrödinger equation is exactly controllable in infinite time near the stationary solutions.