
Introduction
Non-controllability result

Controllability of linearized system
Controllability of nonlinear system

Global exact controllability in infnite time of
Schrödinger equation

Vahagn Nersesyan (Université de Versailles Saint-Quentin)

IHP, December 9, 2010

Vahagn Nersesyan Exact controllability in infinite time of Schrödinger equation



Introduction
Non-controllability result

Controllability of linearized system
Controllability of nonlinear system

Introduction

V. N., H. Nersisyan, Global exact controllability in infinite time of
Schrödinger equation, arXiv:1006.2602, 2010.

Vahagn Nersesyan Exact controllability in infinite time of Schrödinger equation



Introduction
Non-controllability result

Controllability of linearized system
Controllability of nonlinear system

Introduction

Controlled Schrödinger equation:

i ż = −∆z + V (x)z + u(t)Q(x)z , x ∈ D,
z |∂D = 0,

z(0, x) = z0(x),

where D b Rd , ∂D ∈ C∞, d ≥ 1, V ,Q ∈ C∞(D,R) are given
functions, u is the control, z is the state.

Let Ut(·, u) : L2 → L2, u ∈ L1
loc([0,∞),R) be the resolving

operator, i.e. Ut(z0, u) = z(t).

‖Ut(z0, u)‖L2 = ‖z0‖L2 , t ≥ 0.

Let S := {z ∈ L2 : ‖z‖L2 = 1}.
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Main result
The system is globally exactly controllable in infinite time
generically in V and Q.

For any z0, z1 ∈ S ∩ Hk there is a control u ∈ Hs(R+,R) and a
sequence Tn → +∞ such UTn(z0, u) ⇀ z1 in Hk .
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1 Non-controllability results

2 Controllability of linearized system

3 Controllability of nonlinear system
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Previous results

Ramakrishna, Salapaka, Dahleh, Rabitz, Pierce, Turinici, Altafini,
Albertini, D’Alessandro, . . .

Beauchard, Coron, Laurent

Chambrion, Mason, Sigalotti, Boscain
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Non-controllability

Theorem (Ball, Marsden, Slemrod, 82)

The Schrödinger equation is not exactly controllable in finite time
in Sobolev space H2 with controls Lp

loc([0,+∞),R), i.e., for any
z0 ∈ S the set

{Ut(z0, u) : t ∈ [0,+∞), u ∈ Lp
loc([0,+∞),R) for some p > 1}

does not contain a ball of the space H2.
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Non-controllability

Theorem
The Schrödinger equation is not exactly controllable in finite time
in Sobolev spaces Hk , k < d with controls H1

loc([0,+∞),R), i.e.,
for any z0 ∈ S the set

{Ut(z0, u) : t ∈ [0,+∞), u ∈ H1
loc([0,+∞),R)}

does not contain a ball of the space Hk .

Proof is based on the ideas of Shirikyan introduced to prove
non-controllability of Euler equation.
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Previous results

Let us linearize the system around trajectory Ut(z̃0, 0):

i ż = −∆z + V (x)z + u(t)Q(x)Ut(z̃0, 0),

z |∂D = 0,
z(0) = z0.

Beauchard, Chitour, Kateb, Long
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Preliminaries

Let us linearize the system around trajectory Ut(z̃0, 0):

i ż = −∆z + V (x)z + u(t)Q(x)Ut(z̃0, 0),

z |∂D = 0,
z(0) = z0.

Let us rewrite this problem in the Duhamel form

z(t) = −i
∫ t

0
e i(t−s)(∆−V )u(s)Q(x)Us(z̃0, 0)ds.

Let Rt be the resolving operator.
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Preliminaries

〈Rt(0, u), em〉 = −i
+∞∑
k=1

e−iλmt〈z̃0, ek〉Qmk

∫ t

0
e iωmk su(s)ds, m ≥ 1,

where ωmk = λm − λk and Qmk := 〈Qem, ek〉.

For any
u ∈ L1(R+,R) the following limit exists

R∞(0, u) := lim
n→+∞

RTn(0, u).

The choice of the sequence Tn implies that

〈R∞(0, u), em〉 = −i
+∞∑
k=1

〈z̃0, ek〉Qmk

∫ +∞

0
e iωmk su(s)ds.
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Preliminaries

Let

ǔ(ω) :=

∫ +∞

0
e iωsu(s)ds.

The set of admissible controls is the Banach space

Θ := u ∈ L1(R+,R) ∩ Hs(R+,R) ∩ C

where s ≥ 1 is any fixed constant and

C := {u ∈ L1(R+,R) : {ǔ(ωmk)} ∈ `2}.
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Preliminaries

Condition 1

Let V (x1, . . . , xd ) = V1(x1) + . . .+ Vd (xd ) and D ⊂ Rd is a
rectangle. The functions V ,Q ∈ C∞(D,R) are such that
(i) infp1,j1,...,pd ,jd≥1 |(p1j1 · . . . · pd jd )3Qpj |>0,Qpj :=
〈Qep1,...,pd , ej1,...,jd 〉,

(ii) λi − λj 6= λp − λq for all i , j , p, q ≥ 1 such that {i , j} 6= {p, q}
and i 6= j .

Privat and Sigalotti; Mason and Sigalotti; V.N.
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Main result

Let us introduce the set

E :={z ∈ S :∃p, q ≥ 1, p 6= q,z = cpep + cqeq,

|cp|2〈Qep, ep〉−|cq|2〈Qeq, eq〉 = 0}.

Theorem

Under Condition 1, for any z̃0 ∈ S ∩ H3 \ E , the mapping
R∞(0, ·) : Θ→ H3 admits a continuous right inverse. If
z̃0 ∈ S ∩ H3 ∩ E , then R∞(0, ·) is not invertible.
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Proof

Case 1. Let suppose that z̃0 ∈ E , i.e., z̃0 = cpep + cqeq with
|cp|2〈Qep, ep〉 − |cq|2〈Qeq, eq〉 = 0.

By Beauchard and Coron

Im 〈Rt(0, u), cpe−iλptep − cqe−iλqteq〉 = const.

Thus the system is not controllable.
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Case 2. Let z̃0 ∈ S ∩ H3 \ E .

〈R∞(0, u), em〉 = −i
+∞∑
k=1

〈z̃0, ek〉Qmk

∫ +∞

0
e iωmk su(s)ds.

This system is equivalent to the following moment problem∫ +∞

0
e iωmk su(s)ds = dmk , dmk ∈ `2. (1)

Proposition

For any dmk ∈ `2 Problem (1) admits a solution u ∈ Θ.
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Main result

Controlled Schrödinger equation:

i ż = −∆z + V (x)z + u(t)Q(x)z , x ∈ D,
z |∂D = 0,

z(0, x) = z0(x).

Ut(·, u) : L2 → L2, u ∈ L1
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Main result
Under Condition 1, the system is globally exactly controllable in
infinite time in S ∩ H3 with controls u ∈ Θ.
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Proof

Let U∞(z0, u) be the H3-weak ω-limit set of the trajectory
corresponding to u ∈ Θ and z0 ∈ H3:

U∞(z0, u) := {z ∈ H3 : UTnk
(z0, u) ⇀ z in H3 for some nk → +∞}.

Lemma

For any u ∈ Θ and z0 ∈ H3, the trajectory UTn(z0, u) is bounded
in H3.

Thus U∞(z0, u) is non-empty subset of H3.
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Proof of main result

Consider the multivalued function

U∞(·, ·) : S ∩ H3 ×Θ→2S∩H3
,

(z0, u)→U∞(z0, u).

We apply the inverse function theorem for this mapping.
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Inverse function theorem for multivalued functions

Let X and Y be Banach spaces. Define the Hausdorff distance

d(x ,D) = inf
y∈D
‖x − y‖X ,

e(C ,D) = max{sup
x∈C

d(x ,D), sup
y∈D

d(y ,C )}.

Definition

A multifunction F : X→2Y is said to be strictly differentiable at
(x0, y0) if there exists some continuous linear map A : X→Y such
that for any ε > 0 there exist δ > 0 for which

e(F (x)− A(x),F (x ′)− A(x ′)) ≤ ε‖x − x ′‖X ,

whenever x , x ′ ∈ B(x0, δ). A is called a derivative of F at (x0, y0).
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Let F be a multifunction from an open set X0 ⊂ X to Y with
non-empty closed non-empty values. Suppose F is strictly
differentiable at (x0, y0) ∈ Gr(F ), and some derivative A of F at
(x0, y0) has a right inverse. Then for any neighborhood U of x0
there exists a neighborhood V of y0 such that V ⊂ F (U).

U∞(z0, u) is a non-empty and closed. The construction of the
sequence Tn implies that U∞(z0, 0) = z0. U∞(z0, u) is strictly
differentiable at (z0, 0) with derivative R∞. Since the linearized
system is controllable for z0 /∈ E , we get the controllability near z0.
If z0 ∈ E , controllability is proved by the arguments of Beauchard
and Coron. �
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Generalization

The proof works also for the defocusing nonlinear Schrödinger
equation:

i ż = −∆z + V (x)z + |z |2pz + u(t)Q(x)z , x ∈ Td ,

where p ∈ N∗ and d ≥ 1 are such that the equation is globally well
posed in H1.

Theorem
The nonlinear Schrödinger equation is exactly controllable in
infinite time near the stationary solutions.
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