Global exact controllability in infnite time of
Schrodinger equation

Vahagn Nersesyan (Université de Versailles Saint-Quentin)

IHP, December 9, 2010

Vahagn Nersesyan Exact controllability in infinite time of Schrédinger equation



Introduction

Introduction

V. N., H. Nersisyan, Global exact controllability in infinite time of
Schrodinger equation, arXiv:1006.2602, 2010.

Vahagn Nersesyan Exact controllability in infinite time of Schrédinger equation



Introduction

Introduction

Controlled Schrodinger equation:

iz=—-Az+ V(x)z+ u(t)Q(x)z, x€ D,
zlop = 0,
z(0, x) = zo(x),

where DeR?, 9D e C>®, d>1,V,Q ¢ C>(D,R) are given
functions, u is the control, z is the state.
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Controlled Schrodinger equation:

iz=—-Az+ V(x)z+ u(t)Q(x)z, x€ D,
zlop = 0,
z(0, x) = zo(x),

where DeR?, 9D e C>®, d>1,V,Q ¢ C>(D,R) are given
functions, u is the control, z is the state.
Let Ue(-,u) : L2 — L2, u e L} _([0,00),R) be the resolving

operator, i.e. Us(zo, u) = z(t).
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Controlled Schrodinger equation:

iz=—-Az+ V(x)z+ u(t)Q(x)z, x€ D,
zlop = 0,
z(0, x) = zo(x),

where D e RY, 9D € C®, d > 1, V,Q € C®(D,R) are given
functions, u is the control, z is the state.

Let Ue(-,u) : L2 — L2, u e L} _([0,00),R) be the resolving
operator, i.e. Us(zo, u) = z(t).

[Ue(20, u)ll2 = [lz0ll 2, &= 0.
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Controlled Schrodinger equation:

iz=—-Az+ V(x)z+ u(t)Q(x)z, x€ D,
zlop = 0,
z(0, x) = zo(x),

where D e RY, 9D € C®, d > 1, V,Q € C®(D,R) are given
functions, u is the control, z is the state.

Let Ue(-,u) : L2 — L2, u e L} _([0,00),R) be the resolving
operator, i.e. Us(zo, u) = z(t).

[Ue(20, u)ll2 = [lz0ll 2, &= 0.

Let S:={z€ L%z, =1}.
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The system is globally exactly controllable in infinite time
generically in V and Q.
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Introduction

The system is globally exactly controllable in infinite time
generically in V and Q.

For any zp,z1 € SN HX there is a control u € H(R,,R) and a
sequence T, — 400 such U, (20, u) — 21 in Hk.
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Plan of the talk

@ Non-controllability results

@ Controllability of linearized system

© Controllability of nonlinear system
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Previous results

Ramakrishna, Salapaka, Dahleh, Rabitz, Pierce, Turinici, Altafini,
Albertini, D'Alessandro, ...

Beauchard, Coron, Laurent )
Chambrion, Mason, Sigalotti, Boscain J
Mirrahimi, Beauchard, V.N. J
V.N. J
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Non-controllability result

Non-controllability

Theorem (Ball, Marsden, Slemrod, 82)
The Schrédinger equation is not exactly controllable in finite time
in Sobolev space H? with controls L ([0,40c0),R), i.e., for any

29 € S the set

{Us(20,u) : t € ][0,+00),u € LY ([0,+0),R) for some p > 1}

loc

does not contain a ball of the space H?.
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Non-controllability result

Non-controllability

Theorem

The Schrédinger equation is not exactly controllable in finite time
in Sobolev spaces H*, k < d with controls HL _([0,+c0),R), i.e.,
for any zy € S the set

{Ur(20,u) : t € [0,400),u € H ([0, +00),R)}

does not contain a ball of the space HX.

Proof is based on the ideas of Shirikyan introduced to prove
non-controllability of Euler equation.
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Previous results
Preliminaries

Controllability of linearized system Main result
Proof

Controllability of linearized system
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Preliminaries

Controllability of linearized system Main result
Proof

Previous results

Let us linearize the system around trajectory U (Zp, 0):

iz=—-Az+ V(x)z + u(t)Q(x)Ut(Z,0),
zlpp =0,
z(0) = z.
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Previous results
Preliminaries

Controllability of linearized system Main result
Proof

Previous results

Let us linearize the system around trajectory U (Zp, 0):

iz=—-Az+ V(x)z + u(t)Q(x)Ut(Z,0),

z|lpp =0,
z(0) = z.
Beauchard, Chitour, Kateb, Long )
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Preliminaries

Controllability of linearized system Main result
Proof

Preliminaries

Let us linearize the system around trajectory Uy (Zp, 0):

iz=—-Az+ V(x)z + u(t)Q(x)Ut(Z,0),
z|lpp =0,
z(0) = z.
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Controllability of linearized system Main result
Proof

Preliminaries

Let us linearize the system around trajectory Uy (Zp, 0):

iz=—-Az+ V(x)z + u(t)Q(x)Ut(Z,0),
zlop =0,
z(0) = 0.
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Previous results
Preliminaries

Controllability of linearized system Main result
Proof

Preliminaries

Let us linearize the system around trajectory Uy (Zp, 0):

iz=—-Az+ V(x)z + u(t)Q(x)Ut(Z,0),
zlop =0,
z(0) = 0.

Let us rewrite this problem in the Duhamel form

t
z(t) = —f/ e =)A=V () Q(x)Us(Zo, 0)ds.
0
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Previous results
Preliminaries

Controllability of linearized system Main result
Proof

Preliminaries

Let us linearize the system around trajectory Uy (Zp, 0):

iz=—-Az+ V(x)z + u(t)Q(x)Ut(Z,0),
zlop =0,
z(0) = 0.

Let us rewrite this problem in the Duhamel form
t .
z(t) = —f/ e (=) A=V () Q(x)Us(Zo, 0)ds.
0

Let R; be the resolving operator.
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Previous results
Preliminaries

Controllability of linearized system Main result
Proof

Preliminaries

+m . t -
(Re(0,0), em) = 13" e (3, €4) Qo / eimis y(s)ds, m > 1,
k=1 0

where Wk = Am — ¢ and Qi 1= (Qem, ex).
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Previous results
Preliminaries

Controllability of linearized system Main result
Proof

Preliminaries

+m . t .

(Re(0,0), em) = 13" e (3, €4) Qo / eimis y(s)ds, m > 1,
k=1 0

where wmk = Am — Ak and Qi == (Qem, ex). For any

u € LY(Ry,R) the following limit exists

Ro(0,u) := lim R7,(0,u).

n—-+o0o
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Preliminaries

Controllability of linearized system Main result
Proof

Preliminaries

+m . t -
(Re(0,0), em) = 13" e (3, €4) Qo / eimis y(s)ds, m > 1,
k=1 0

where wmk = Am — Ak and Qi == (Qem, ex). For any
u € LY(Ry,R) the following limit exists

Ro(0,u) := lim R7,(0,u).

n—-+o0o

The choice of the sequence T, implies that

(Roo(0, 1), em) = —iz<207 ek>ka/ e'“mks y(s)ds.
k=1 0
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Controllability of linearized system Main result
Proof

Preliminaries

Let
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Preliminaries

Controllability of linearized system Main result
Proof

Preliminaries

Let
+oo
B(w) = / e y(5)ds.
0
The set of admissible controls is the Banach space
0 :=uec MR, R)NH(Ry,R)NC
where s > 1 is any fixed constant and

C:={ue *(Ry,R): {U(wmk)} € £}
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Preliminaries
Controllability of linearized system Main result

Proof

Preliminaries

Let V(Xl, e 7Xd) = V1(X1) + ...+ Vd(Xd) and D cR% is a
rectangle. The functions V,Q € C*°(D,R) are such that

(i) ian1J17~~7Pd,./'d21 ‘(pljl Tl ded)3QPj’ >07QPJ' =
<QeP17---7Pd7 eJ'17~~~aJ'd>'

(il) Xi—=Aj#Ap—Ag foralli,j,p,q>1 such that {i,j} # {p,q}
and i # j.

v
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Preliminaries

Controllability of linearized system Main result
Proof

Preliminaries

Condition 1

Let V(Xl, e 7Xd) = V1(X1) + ...+ Vd(Xd) and D cR% is a
rectangle. The functions V,Q € C*°(D,R) are such that

(i) ian1J17~~7Pd,jd21 ‘(pljl Tl ded)3QPj’ >07QPJ' =
<QeP17---7Pd7 eJ'17~~~aJ'd>'

(il) Xi—=Aj#Ap—Ag foralli,j,p,q>1 such that {i,j} # {p,q}
and i # j.

Privat and Sigalotti; Mason and Sigalotti; V.N.

Vahagn Nersesyan Exact controllability in infinite time of Schrédinger equation



Previous results
Preliminaries

Controllability of linearized system Main result
Proof

Main result

Let us introduce the set

E:={zeS5:3p,q>1,p# q,z = cpep + cqeq,
’Cp‘2<era ep)“cq’2<Qeqa eq) = 0}.

Under Condition 1, for any 2y € SN H3\ £, the mapping
Roo(0,-) : © — H® admits a continuous right inverse. If
%0 € SNH3NE, then Roo(0,-) is not invertible.
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Previous results
Preliminaries

Controllability of linearized system Main result
Proof

Case 1. Let suppose that Zg € £, i.e., Zg = cpe, + cgeq with
‘CP|2<QeP’ eP> - |CQ|2<Qeqa eq> =0.
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Preliminaries

Controllability of linearized system Main result
Proof

Case 1. Let suppose that Zg € £, i.e., Zg = cpe, + cgeq with
lcp|?(Qep, ep) — |cql?(Qeq, eg) = 0. By Beauchard and Coron

Im (R+(0, u), coe”te, — cue~ate,) = const.
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Previous results
Preliminaries

Controllability of linearized system Main result
Proof

Case 1. Let suppose that Zg € £, i.e., Zg = cpe, + cgeq with
lcp|?(Qep, ep) — |cql?(Qeq, eg) = 0. By Beauchard and Coron

Im (R+(0, u), coe”te, — cue~ate,) = const.

Thus the system is not controllable.
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Previous results
Preliminaries

Controllability of linearized system Main result
Proof

Case 2. Let 3y € SNH3\ €.

+00 400 )
(Roo(0, u), em) = —iz<207 ek>ka/ e'“mksy(s)ds.
k=1 0
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Previous results
Preliminaries

Controllability of linearized system Main result
Proof

Case 2. Let 3y € SNH3\ €.

+00 400 )
(Roo(0, u), em) = —iz<207 ek>ka/ e'“mksy(s)ds.
k=1 0

This system is equivalent to the following moment problem

‘oo
/ e'“mkSy(s)ds = dpk, Ak € 02 (1)
0

Vahagn Nersesyan Exact controllability in infinite time of Schrédinger equation



Previous results
Preliminaries
Controllability of linearized system Main result

Proof

Case 2. Let 3y € SNH3\ €.

+0o0

+oo
(Roo(0, 1), em) = —iz<207 ek>ka/ e'“mksy(s)ds.
0

k=1

This system is equivalent to the following moment problem

‘oo
/ e'“mkSy(s)ds = dpk, Ak € 02 (1)
0

Proposition

For any dx € ¢? Problem (1) admits a solution u € ©.
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Proof of main result
Generalization

Controllability of nonlinear system

Controllability of nonlinear system
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Main result
Proof of main result

o . lizati
Controllability of nonlinear system Ciamerel e

Main result

Controlled Schrodinger equation:

iz=—-Az+ V(x)z+ u(t)Q(x)z, x € D,
z|lop =0,
z(0, x) = zo(x).

Us(-,u) : L2 = 12, u e L} ([0,00),R) is the resolving operator

loc

Vahagn Nersesyan Exact controllability in infinite time of Schrédinger equation



Main result
Proof of main result

o . lizati
Controllability of nonlinear system Ciamerel e

Proof of main result

Under Condition 1, the system is globally exactly controllable in
infinite time in S N H3 with controls u € ©.
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Main result
Proof of main result
Generalization

Controllability of nonlinear system

Let Uso (20, u) be the H3-weak w-limit set of the trajectory
corresponding to u € © and z € H3:

Uso(zo,u) = {z € H® :Ur,, (20,u) = z in H3 for some nj — +00}.
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Main result
Proof of main result
Generalization

Controllability of nonlinear system

Let Uso (20, u) be the H3-weak w-limit set of the trajectory
corresponding to u € © and z € H3:

Uso(zo,u) = {z € H® :Ur,, (20,u) = z in H3 for some nj — +00}.

For any u € © and zy € H3, the trajectory U, (2o, u) is bounded
in H3.
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Main result
Proof of main result
Generalization

Controllability of nonlinear system

Let Uso (20, u) be the H3-weak w-limit set of the trajectory
corresponding to u € © and z € H3:

Uso(zo,u) = {z € H® :Ur,, (20,u) = z in H3 for some nj — +00}.

For any u € © and zy € H3, the trajectory U, (2o, u) is bounded
in H3.

Thus Uso (2o, u) is non-empty subset of H3.
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Proof of main result

o . lizati
Controllability of nonlinear system Ciamerel e

Proof of main result

Consider the multivalued function

Uso(:,) 1 SN H3 x ©250H
(20, u)—=Uoo(20, ).
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Main result
Proof of main result

o . lizati
Controllability of nonlinear system Ciamerel e

Proof of main result

Consider the multivalued function

Uso(:,) 1 SN H3 x ©250H
(20, u)—=Uoo(20, ).

We apply the inverse function theorem for this mapping.
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Proof of main result

o . lizati
Controllability of nonlinear system Ciamerel e

Inverse function theorem for multivalued functions

Let X and Y be Banach spaces. Define the Hausdorff distance
d(x,D) = inf ||x —
(x, D) ngDHX yllix;

e(C, D) = max{sup d(x, D), sup d(y, C)}.
xeC yeD
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Main result
Proof of main result
Generalization

Controllability of nonlinear system

Inverse function theorem for multivalued functions

Let X and Y be Banach spaces. Define the Hausdorff distance
d(x,D) = inf ||x —
(x, D) inf) Ix = yllx;
e(C, D) = max{sup d(x, D), sup d(y, C)}.
xeC yeD

Definition

A multifunction F : X—2Y is said to be strictly differentiable at
(x0, ¥0) if there exists some continuous linear map A : X—Y such
that for any € > 0 there exist § > 0 for which

e(F(x) = A(x), F(x) = A(x)) < ellx = XlIx,

whenever x, x" € B(xp,d). A is called a derivative of F at (xo, yo).
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Proof of main result
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Inverse function theorem for multivalued functions

Theorem (Nachi and Penot)

Let F be a multifunction from an open set Xo C X to Y with
non-empty closed non-empty values. Suppose F is strictly
differentiable at (xo, yo) € Gr(F), and some derivative A of F at
(x0,¥0) has a right inverse. Then for any neighborhood U of xg
there exists a neighborhood V' of yy such that V C F(U).
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Proof of main result
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Inverse function theorem for multivalued functions

Theorem (Nachi and Penot)

Let F be a multifunction from an open set Xo C X to Y with
non-empty closed non-empty values. Suppose F is strictly
differentiable at (xo, yo) € Gr(F), and some derivative A of F at
(x0,¥0) has a right inverse. Then for any neighborhood U of xg
there exists a neighborhood V' of yy such that V C F(U).

Uso(20, u) is a non-empty and closed.
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Main result
Proof of main result
Generalization

Controllability of nonlinear system

Inverse function theorem for multivalued functions

Theorem (Nachi and Penot)

Let F be a multifunction from an open set Xo C X to Y with
non-empty closed non-empty values. Suppose F is strictly
differentiable at (xo, yo) € Gr(F), and some derivative A of F at
(x0,¥0) has a right inverse. Then for any neighborhood U of xg
there exists a neighborhood V' of yy such that V C F(U).

Uso(20, u) is a non-empty and closed. The construction of the
sequence T, implies that Us.(29,0) = 2.
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Inverse function theorem for multivalued functions

Theorem (Nachi and Penot)

Let F be a multifunction from an open set Xo C X to Y with
non-empty closed non-empty values. Suppose F is strictly
differentiable at (xo, yo) € Gr(F), and some derivative A of F at
(x0,¥0) has a right inverse. Then for any neighborhood U of xg
there exists a neighborhood V' of yy such that V C F(U).

Uso(20, u) is a non-empty and closed. The construction of the
sequence T, implies that Us(20,0) = z9. Uso(20, U) is strictly
differentiable at (zp,0) with derivative Ro.
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Inverse function theorem for multivalued functions

Theorem (Nachi and Penot)

Let F be a multifunction from an open set Xo C X to Y with
non-empty closed non-empty values. Suppose F is strictly
differentiable at (xo, yo) € Gr(F), and some derivative A of F at
(x0,¥0) has a right inverse. Then for any neighborhood U of xg
there exists a neighborhood V' of yy such that V C F(U).

Uso(20, u) is a non-empty and closed. The construction of the
sequence T, implies that Us(20,0) = z9. Uso(20, U) is strictly
differentiable at (zp,0) with derivative R. Since the linearized
system is controllable for zy ¢ £, we get the controllability near z.
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Proof of main result
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Inverse function theorem for multivalued functions

Theorem (Nachi and Penot)

Let F be a multifunction from an open set Xo C X to Y with
non-empty closed non-empty values. Suppose F is strictly
differentiable at (xo, yo) € Gr(F), and some derivative A of F at
(x0,¥0) has a right inverse. Then for any neighborhood U of xg
there exists a neighborhood V' of yy such that V C F(U).

Uso(20, u) is a non-empty and closed. The construction of the
sequence T, implies that Us(20,0) = z9. Uso(20, U) is strictly
differentiable at (zp,0) with derivative R. Since the linearized
system is controllable for zy ¢ £, we get the controllability near z.
If zo € £, controllability is proved by the arguments of Beauchard
and Coron. O
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Proof of main result

Controllability of nonlinear system (Ciamerel i

Generalization

The proof works also for the defocusing nonlinear Schréodinger
equation:

iz =—Az+ V(x)z+ |2z + u(t)Q(x)z, x €T,

where p € N* and d > 1 are such that the equation is globally well
posed in HI.
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Main result
Proof of main result

Controllability of nonlinear system (Ciamerel i

Generalization

The proof works also for the defocusing nonlinear Schréodinger
equation:

iz =—Az+ V(x)z+ |2z + u(t)Q(x)z, x €T,

where p € N* and d > 1 are such that the equation is globally well
posed in HI.

The nonlinear Schrédinger equation is exactly controllable in
infinite time near the stationary solutions.
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