Global exact controllability in infnite time of Schrödinger equation

Vahagn Nersesyan (Université de Versailles Saint-Quentin)

IHP, December 9, 2010

(D) (A) (A)

Introduction

V. N., H. Nersisyan, Global exact controllability in infinite time of Schrödinger equation, arXiv:1006.2602, 2010.

Introduction

Controlled Schrödinger equation:

$$egin{aligned} &i\dot{z}=-\Delta z+V(x)z+u(t)Q(x)z,\ x\in D,\ &z|_{\partial D}=0,\ &z(0,x)=z_0(x), \end{aligned}$$

where $D \Subset \mathbb{R}^d$, $\partial D \in C^{\infty}$, $d \ge 1$, $V, Q \in C^{\infty}(\overline{D}, \mathbb{R})$ are given functions, u is the control, z is the state.

Introduction

Controlled Schrödinger equation:

$$egin{aligned} &i\dot{z}=-\Delta z+V(x)z+u(t)Q(x)z,\ x\in D,\ &z|_{\partial D}=0,\ &z(0,x)=z_0(x), \end{aligned}$$

where $D \Subset \mathbb{R}^d$, $\partial D \in C^{\infty}$, $d \ge 1$, $V, Q \in C^{\infty}(\overline{D}, \mathbb{R})$ are given functions, u is the control, z is the state. Let $\mathcal{U}_t(\cdot, u) : L^2 \to L^2$, $u \in L^1_{loc}([0, \infty), \mathbb{R})$ be the resolving operator, i.e. $\mathcal{U}_t(z_0, u) = z(t)$.

Introduction

Controlled Schrödinger equation:

$$egin{aligned} &i\dot{z}=-\Delta z+V(x)z+u(t)Q(x)z,\ x\in D,\ &z|_{\partial D}=0,\ &z(0,x)=z_0(x), \end{aligned}$$

where $D \Subset \mathbb{R}^d$, $\partial D \in C^{\infty}$, $d \ge 1$, $V, Q \in C^{\infty}(\overline{D}, \mathbb{R})$ are given functions, u is the control, z is the state. Let $\mathcal{U}_t(\cdot, u) : L^2 \to L^2$, $u \in L^1_{loc}([0, \infty), \mathbb{R})$ be the resolving operator, i.e. $\mathcal{U}_t(z_0, u) = z(t)$.

$$\|\mathcal{U}_t(z_0, u)\|_{L^2} = \|z_0\|_{L^2}, \ t \ge 0.$$

Introduction

Controlled Schrödinger equation:

$$egin{aligned} &i\dot{z}=-\Delta z+V(x)z+u(t)Q(x)z,\ x\in D,\ &z|_{\partial D}=0,\ &z(0,x)=z_0(x), \end{aligned}$$

where $D \Subset \mathbb{R}^d$, $\partial D \in C^{\infty}$, $d \ge 1$, $V, Q \in C^{\infty}(\overline{D}, \mathbb{R})$ are given functions, u is the control, z is the state. Let $\mathcal{U}_t(\cdot, u) : L^2 \to L^2$, $u \in L^1_{loc}([0, \infty), \mathbb{R})$ be the resolving operator, i.e. $\mathcal{U}_t(z_0, u) = z(t)$.

$$\|\mathcal{U}_t(z_0, u)\|_{L^2} = \|z_0\|_{L^2}, t \ge 0.$$

Let $S := \{ z \in L^2 : \| z \|_{L^2} = 1 \}.$

Introduction

Main result

The system is globally exactly controllable in infinite time generically in V and Q.

・ロン ・四と ・ヨン ・ヨン

Introduction

Main result

The system is globally exactly controllable in infinite time generically in V and Q.

For any $z_0, z_1 \in S \cap H^k$ there is a control $u \in H^s(\mathbb{R}_+, \mathbb{R})$ and a sequence $T_n \to +\infty$ such $\mathcal{U}_{T_n}(z_0, u) \rightharpoonup z_1$ in H^k .

イロト 不得下 イヨト イヨト

Plan of the talk

Ontrollability of linearized system

Ontrollability of nonlinear system

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Previous results

Ramakrishna, Salapaka, Dahleh, Rabitz, Pierce, Turinici, Altafini, Albertini, D'Alessandro, ...

Beauchard, Coron, Laurent

Chambrion, Mason, Sigalotti, Boscain

Mirrahimi, Beauchard, V.N.

V.N.

・ロット (四) ・ (日) ・ (日)

Non-controllability result

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Non-controllability

Theorem (Ball, Marsden, Slemrod, 82)

The Schrödinger equation is not exactly controllable in finite time in Sobolev space H^2 with controls $L^p_{loc}([0, +\infty), \mathbb{R})$, i.e., for any $z_0 \in S$ the set

 $\{\mathcal{U}_t(z_0,u): t\in [0,+\infty), u\in L^p_{loc}([0,+\infty),\mathbb{R}) \text{ for some } p>1\}$

does not contain a ball of the space H^2 .

Non-controllability

Theorem

The Schrödinger equation is not exactly controllable in finite time in Sobolev spaces H^k , k < d with controls $H^1_{loc}([0, +\infty), \mathbb{R})$, i.e., for any $z_0 \in S$ the set

$$\{\mathcal{U}_t(z_0, u): t \in [0, +\infty), u \in H^1_{loc}([0, +\infty), \mathbb{R})\}$$

does not contain a ball of the space H^k .

Proof is based on the ideas of Shirikyan introduced to prove non-controllability of Euler equation.

Previous results Preliminaries Main result Proof

Controllability of linearized system

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Previous results

Previous results Preliminaries Main result Proof

Let us linearize the system around trajectory $U_t(\tilde{z}_0, 0)$:

$$\begin{split} & i\dot{z} = -\Delta z + V(x)z + u(t)Q(x)\mathcal{U}_t(\tilde{z}_0,0), \\ & z|_{\partial D} = 0, \\ & z(0) = z_0. \end{split}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Previous results

Previous results Preliminaries Main result Proof

Let us linearize the system around trajectory $U_t(\tilde{z}_0, 0)$:

$$\begin{split} & i\dot{z} = -\Delta z + V(x)z + u(t)Q(x)\mathcal{U}_t(\tilde{z}_0,0), \\ & z|_{\partial D} = 0, \\ & z(0) = z_0. \end{split}$$

Beauchard, Chitour, Kateb, Long

(日) (同) (三) (三)

system Previous result System Main result Preliminaries Main result Proof

Preliminaries

Let us linearize the system around trajectory $U_t(\tilde{z}_0, 0)$:

$$\begin{split} & i\dot{z} = -\Delta z + V(x)z + u(t)Q(x)\mathcal{U}_t(\tilde{z}_0,0), \\ & z|_{\partial D} = 0, \\ & z(0) = z_0. \end{split}$$

イロト イヨト イヨト イヨト

э

result Previous result Preliminaries Astem Main result Proof

Preliminaries

Let us linearize the system around trajectory $U_t(\tilde{z}_0, 0)$:

$$\begin{split} & i\dot{z} = -\Delta z + V(x)z + u(t)Q(x)\mathcal{U}_t(\tilde{z}_0,0), \\ & z|_{\partial D} = 0, \\ & z(0) = 0. \end{split}$$

イロト イヨト イヨト イヨト

э

Previous results Preliminaries Main result Proof

Preliminaries

Let us linearize the system around trajectory $U_t(\tilde{z}_0, 0)$:

$$egin{aligned} & i\dot{z} = -\Delta z + V(x)z + u(t)Q(x)\mathcal{U}_t(ilde{z}_0,0), \ & z|_{\partial D} = 0, \ & z(0) = 0. \end{aligned}$$

Let us rewrite this problem in the Duhamel form

$$z(t) = -i \int_0^t e^{i(t-s)(\Delta-V)} u(s) Q(x) \mathcal{U}_s(\tilde{z}_0, 0) \mathrm{d}s.$$

イロト イヨト イヨト イヨト

Previous results Preliminaries Main result Proof

Preliminaries

Let us linearize the system around trajectory $U_t(\tilde{z}_0, 0)$:

$$\begin{split} & i\dot{z} = -\Delta z + V(x)z + u(t)Q(x)\mathcal{U}_t(\tilde{z}_0,0), \\ & z|_{\partial D} = 0, \\ & z(0) = 0. \end{split}$$

Let us rewrite this problem in the Duhamel form

$$z(t) = -i \int_0^t e^{i(t-s)(\Delta-V)} u(s) Q(x) \mathcal{U}_s(\tilde{z}_0, 0) \mathrm{d}s.$$

Let \mathcal{R}_t be the resolving operator.

Previous results Preliminaries Main result Proof

Preliminaries

$$\langle \mathcal{R}_t(0,u), e_m \rangle = -i \sum_{k=1}^{+\infty} e^{-i\lambda_m t} \langle \tilde{z}_0, e_k \rangle Q_{mk} \int_0^t e^{i\omega_{mk}s} u(s) \mathrm{d}s, \ m \ge 1,$$

where
$$\omega_{mk} = \lambda_m - \lambda_k$$
 and $Q_{mk} := \langle Qe_m, e_k \rangle$.

イロン イヨン イヨン イヨン

æ

Previous results Preliminaries Main result Proof

Preliminaries

$$\langle \mathcal{R}_t(0,u), e_m \rangle = -i \sum_{k=1}^{+\infty} e^{-i\lambda_m t} \langle \tilde{z}_0, e_k \rangle Q_{mk} \int_0^t e^{i\omega_{mk}s} u(s) \mathrm{d}s, \ m \ge 1,$$

where $\omega_{mk} = \lambda_m - \lambda_k$ and $Q_{mk} := \langle Qe_m, e_k \rangle$. For any $u \in L^1(\mathbb{R}_+, \mathbb{R})$ the following limit exists

$$\mathcal{R}_{\infty}(0, u) := \lim_{n \to +\infty} \mathcal{R}_{T_n}(0, u).$$

Previous results Preliminaries Main result Proof

Preliminaries

$$\langle \mathcal{R}_t(0,u), e_m \rangle = -i \sum_{k=1}^{+\infty} e^{-i\lambda_m t} \langle \tilde{z}_0, e_k \rangle Q_{mk} \int_0^t e^{i\omega_{mk}s} u(s) \mathrm{d}s, \ m \ge 1,$$

where $\omega_{mk} = \lambda_m - \lambda_k$ and $Q_{mk} := \langle Qe_m, e_k \rangle$. For any $u \in L^1(\mathbb{R}_+, \mathbb{R})$ the following limit exists

$$\mathcal{R}_{\infty}(0, u) := \lim_{n \to +\infty} \mathcal{R}_{T_n}(0, u).$$

The choice of the sequence T_n implies that

$$\langle \mathcal{R}_{\infty}(0,u),e_m\rangle = -i\sum_{k=1}^{+\infty}\langle \tilde{z}_0,e_k\rangle Q_{mk}\int_0^{+\infty}e^{i\omega_{mk}s}u(s)\mathrm{d}s.$$

(日) (同) (三) (三)

Preliminaries

Previous results Preliminaries Main result Proof

Let

$$\check{u}(\omega) := \int_{0}^{+\infty} e^{i\omega s} u(s) \mathrm{d}s.$$

Vahagn Nersesyan Exact controllability in infinite time of Schrödinger equation

イロン イヨン イヨン イヨン

æ

ction Previous resu esult Preliminaries stem Main result stem Proof

Preliminaries

Let

$$\check{u}(\omega) := \int_0^{+\infty} e^{i\omega s} u(s) \mathrm{d}s.$$

The set of admissible controls is the Banach space

$$\Theta:=u\in L^1(\mathbb{R}_+,\mathbb{R})\cap H^s(\mathbb{R}_+,\mathbb{R})\cap \mathcal{C}$$

where $s \ge 1$ is any fixed constant and

$$\mathcal{C} := \{ u \in L^1(\mathbb{R}_+, \mathbb{R}) : \{ \check{u}(\omega_{mk}) \} \in \ell^2 \}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Previous resu Preliminaries Main result Proof

Preliminaries

Condition 1

Let
$$V(x_1, ..., x_d) = V_1(x_1) + ... + V_d(x_d)$$
 and $D \subset \mathbb{R}^d$ is a rectangle. The functions $V, Q \in C^{\infty}(\overline{D}, \mathbb{R})$ are such that
(i) $\inf_{p_1, j_1, ..., p_d, j_d \ge 1} |(p_1 j_1 \cdot ... \cdot p_d j_d)^3 Q_{pj}| > 0, Q_{pj} := \langle Qe_{p_1, ..., p_d}, e_{j_1, ..., j_d} \rangle$,
(ii) $\lambda_i - \lambda_j \ne \lambda_p - \lambda_q$ for all $i, j, p, q \ge 1$ such that $\{i, j\} \ne \{p, q\}$
and $i \ne j$.

イロン イヨン イヨン イヨン

臣

Preliminaries

Preliminaries

Condition 1

Let
$$V(x_1, ..., x_d) = V_1(x_1) + ... + V_d(x_d)$$
 and $D \subset \mathbb{R}^d$ is a rectangle. The functions $V, Q \in C^{\infty}(\overline{D}, \mathbb{R})$ are such that
(i) $\inf_{p_1, j_1, ..., p_d, j_d \ge 1} |(p_1 j_1 \cdot ... \cdot p_d j_d)^3 Q_{pj}| > 0, Q_{pj} := \langle Qe_{p_1, ..., p_d}, e_{j_1, ..., j_d} \rangle$,
(ii) $\lambda_i - \lambda_j \ne \lambda_p - \lambda_q$ for all $i, j, p, q \ge 1$ such that $\{i, j\} \ne \{p, q\}$
and $i \ne j$.

Privat and Sigalotti; Mason and Sigalotti; V.N.

イロト イポト イヨト イヨト

э

Main result

Previous results Preliminaries Main result Proof

Let us introduce the set

$$\begin{split} \mathcal{E} &:= \{ z \in S : \exists p, q \geq 1, p \neq q, z = c_p e_p + c_q e_q, \\ & |c_p|^2 \langle Q e_p, e_p \rangle - |c_q|^2 \langle Q e_q, e_q \rangle = 0 \}. \end{split}$$

Theorem

Under Condition 1, for any $\tilde{z}_0 \in S \cap H^3 \setminus \mathcal{E}$, the mapping $\mathcal{R}_{\infty}(0, \cdot) : \Theta \to H^3$ admits a continuous right inverse. If $\tilde{z}_0 \in S \cap H^3 \cap \mathcal{E}$, then $\mathcal{R}_{\infty}(0, \cdot)$ is not invertible.

(日) (同) (三) (三)

Previous results Preliminaries Main result Proof

Proof

Case 1. Let suppose that $\tilde{z}_0 \in \mathcal{E}$, i.e., $\tilde{z}_0 = c_p e_p + c_q e_q$ with $|c_p|^2 \langle Q e_p, e_p \rangle - |c_q|^2 \langle Q e_q, e_q \rangle = 0.$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Previous results Preliminaries Main result **Proof**

Proof

Case 1. Let suppose that $\tilde{z}_0 \in \mathcal{E}$, i.e., $\tilde{z}_0 = c_p e_p + c_q e_q$ with $|c_p|^2 \langle Q e_p, e_p \rangle - |c_q|^2 \langle Q e_q, e_q \rangle = 0$. By Beauchard and Coron

$$\operatorname{Im} \langle \mathcal{R}_t(0, u), c_{\rho} e^{-i\lambda_{\rho} t} e_{\rho} - c_{q} e^{-i\lambda_{q} t} e_{q} \rangle = const.$$

Previous results Preliminaries Main result **Proof**

Proof

Case 1. Let suppose that $\tilde{z}_0 \in \mathcal{E}$, i.e., $\tilde{z}_0 = c_p e_p + c_q e_q$ with $|c_p|^2 \langle Q e_p, e_p \rangle - |c_q|^2 \langle Q e_q, e_q \rangle = 0$. By Beauchard and Coron

$$\operatorname{Im} \langle \mathcal{R}_t(0, u), c_p e^{-i\lambda_p t} e_p - c_q e^{-i\lambda_q t} e_q \rangle = const.$$

Thus the system is not controllable.

Proof

Case 2. Let $\tilde{z}_0 \in S \cap H^3 \setminus \mathcal{E}$.

$$\langle \mathcal{R}_{\infty}(0,u), e_m \rangle = -i \sum_{k=1}^{+\infty} \langle \tilde{z}_0, e_k \rangle Q_{mk} \int_0^{+\infty} e^{i\omega_{mk}s} u(s) \mathrm{d}s.$$

イロト イヨト イヨト イヨト

Introduction Previous result Non-controllability result Preliminaries Controllability of linearized system Proof

Proof

Case 2. Let $\tilde{z}_0 \in S \cap H^3 \setminus \mathcal{E}$.

$$\langle \mathcal{R}_{\infty}(0,u),e_m\rangle = -i\sum_{k=1}^{+\infty} \langle \tilde{z}_0,e_k\rangle Q_{mk} \int_0^{+\infty} e^{i\omega_{mk}s} u(s) \mathrm{d}s.$$

This system is equivalent to the following moment problem

$$\int_0^{+\infty} e^{i\omega_{mk}s} u(s) \mathrm{d}s = d_{mk}, \qquad d_{mk} \in \ell^2.$$
 (1)

Introduction Previous results Non-controllability result Preliminaries Controllability of linearized system Main result Controllability of nonlinear system Proof

Proof

Case 2. Let $\tilde{z}_0 \in S \cap H^3 \setminus \mathcal{E}$.

$$\langle \mathcal{R}_{\infty}(0,u),e_m\rangle = -i\sum_{k=1}^{+\infty} \langle \tilde{z}_0,e_k\rangle Q_{mk} \int_0^{+\infty} e^{i\omega_{mk}s}u(s)\mathrm{d}s.$$

This system is equivalent to the following moment problem

$$\int_0^{+\infty} e^{i\omega_{mk}s} u(s) \mathrm{d}s = d_{mk}, \qquad d_{mk} \in \ell^2.$$
 (1)

Proposition

For any $d_{mk} \in \ell^2$ Problem (1) admits a solution $u \in \Theta$.

Main result Proof of main result Generalization

Controllability of nonlinear system

イロン イヨン イヨン イヨン

Main result Proof of main result Generalization

Main result

Controlled Schrödinger equation:

$$\begin{split} & i\dot{z}=-\Delta z+V(x)z+u(t)Q(x)z, \ x\in D, \ & z|_{\partial D}=0, \ & z(0,x)=z_0(x). \end{split}$$

 $\mathcal{U}_t(\cdot, u): L^2 \to L^2$, $u \in L^1_{loc}([0, \infty), \mathbb{R})$ is the resolving operator

Main result Proof of main result Generalization

Proof of main result

Main result

Under Condition 1, the system is globally exactly controllable in infinite time in $S \cap H^3$ with controls $u \in \Theta$.

<ロ> (四) (四) (三) (三) (三)

Main result Proof of main result Generalization

Proof

Let $\mathcal{U}_{\infty}(z_0, u)$ be the H^3 -weak ω -limit set of the trajectory corresponding to $u \in \Theta$ and $z_0 \in H^3$:

$$\mathcal{U}_{\infty}(z_0, u) := \{ z \in H^3 : \mathcal{U}_{T_{n_k}}(z_0, u) \rightharpoonup z \text{ in } H^3 \text{ for some } n_k \to +\infty \}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Main result Proof of main result Generalization

Proof

Let $\mathcal{U}_{\infty}(z_0, u)$ be the H^3 -weak ω -limit set of the trajectory corresponding to $u \in \Theta$ and $z_0 \in H^3$:

$$\mathcal{U}_{\infty}(z_0, u) := \{ z \in H^3 : \mathcal{U}_{T_{n_k}}(z_0, u) \rightharpoonup z \text{ in } H^3 \text{ for some } n_k \to +\infty \}.$$

Lemma

For any $u \in \Theta$ and $z_0 \in H^3$, the trajectory $\mathcal{U}_{T_n}(z_0, u)$ is bounded in H^3 .

・ロット (四) ・ (日) ・ (日)

Main result Proof of main result Generalization

Proof

Let $\mathcal{U}_{\infty}(z_0, u)$ be the H^3 -weak ω -limit set of the trajectory corresponding to $u \in \Theta$ and $z_0 \in H^3$:

$$\mathcal{U}_{\infty}(z_0, u) := \{ z \in H^3 : \mathcal{U}_{T_{n_k}}(z_0, u) \rightharpoonup z \text{ in } H^3 \text{ for some } n_k \to +\infty \}.$$

Lemma

For any $u \in \Theta$ and $z_0 \in H^3$, the trajectory $\mathcal{U}_{T_n}(z_0, u)$ is bounded in H^3 .

Thus $\mathcal{U}_{\infty}(z_0, u)$ is non-empty subset of H^3 .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Main result Proof of main result Generalization

Proof of main result

Consider the multivalued function

$$\mathcal{U}_{\infty}(\cdot, \cdot) : S \cap H^3 \times \Theta {
ightarrow} 2^{S \cap H^3}, \ (z_0, u) {
ightarrow} \mathcal{U}_{\infty}(z_0, u).$$

イロン イヨン イヨン イヨン

Main result Proof of main result Generalization

Proof of main result

Consider the multivalued function

$$\mathcal{U}_{\infty}(\cdot, \cdot) : S \cap H^3 \times \Theta \rightarrow 2^{S \cap H^3},$$

 $(z_0, u) \rightarrow \mathcal{U}_{\infty}(z_0, u)$

We apply the inverse function theorem for this mapping.

イロン イヨン イヨン イヨン

э

Main result Proof of main result Generalization

Inverse function theorem for multivalued functions

Let X and Y be Banach spaces. Define the Hausdorff distance

$$d(x, D) = \inf_{y \in D} ||x - y||_X,$$

$$e(C, D) = \max\{\sup_{x \in C} d(x, D), \sup_{y \in D} d(y, C)\}.$$

イロト 不得下 イヨト イヨト

Main result Proof of main result Generalization

Inverse function theorem for multivalued functions

Let X and Y be Banach spaces. Define the Hausdorff distance

$$d(x,D) = \inf_{y \in D} ||x - y||_X,$$

$$e(C,D) = \max\{\sup_{x \in C} d(x,D), \sup_{y \in D} d(y,C)\}.$$

Definition

A multifunction $F: X \to 2^Y$ is said to be strictly differentiable at (x_0, y_0) if there exists some continuous linear map $A: X \to Y$ such that for any $\varepsilon > 0$ there exist $\delta > 0$ for which

$$e(F(x) - A(x), F(x') - A(x')) \leq \varepsilon ||x - x'||_X,$$

whenever $x, x' \in B(x_0, \delta)$. A is called a derivative of F at (x_0, y_0) .

Main result Proof of main result Generalization

Inverse function theorem for multivalued functions

Theorem (Nachi and Penot)

Let F be a multifunction from an open set $X_0 \subset X$ to Y with non-empty closed non-empty values. Suppose F is strictly differentiable at $(x_0, y_0) \in Gr(F)$, and some derivative A of F at (x_0, y_0) has a right inverse. Then for any neighborhood U of x_0 there exists a neighborhood V of y_0 such that $V \subset F(U)$.

(D) (A) (A) (A)

Main result Proof of main result Generalization

Inverse function theorem for multivalued functions

Theorem (Nachi and Penot)

Let F be a multifunction from an open set $X_0 \subset X$ to Y with non-empty closed non-empty values. Suppose F is strictly differentiable at $(x_0, y_0) \in Gr(F)$, and some derivative A of F at (x_0, y_0) has a right inverse. Then for any neighborhood U of x_0 there exists a neighborhood V of y_0 such that $V \subset F(U)$.

 $\mathcal{U}_{\infty}(z_0, u)$ is a non-empty and closed.

イロト イポト イヨト イヨト

Main result Proof of main result Generalization

Inverse function theorem for multivalued functions

Theorem (Nachi and Penot)

Let F be a multifunction from an open set $X_0 \subset X$ to Y with non-empty closed non-empty values. Suppose F is strictly differentiable at $(x_0, y_0) \in Gr(F)$, and some derivative A of F at (x_0, y_0) has a right inverse. Then for any neighborhood U of x_0 there exists a neighborhood V of y_0 such that $V \subset F(U)$.

 $\mathcal{U}_{\infty}(z_0, u)$ is a non-empty and closed. The construction of the sequence \mathcal{T}_n implies that $\mathcal{U}_{\infty}(z_0, 0) = z_0$.

Main result Proof of main result Generalization

Inverse function theorem for multivalued functions

Theorem (Nachi and Penot)

Let F be a multifunction from an open set $X_0 \subset X$ to Y with non-empty closed non-empty values. Suppose F is strictly differentiable at $(x_0, y_0) \in Gr(F)$, and some derivative A of F at (x_0, y_0) has a right inverse. Then for any neighborhood U of x_0 there exists a neighborhood V of y_0 such that $V \subset F(U)$.

 $\mathcal{U}_{\infty}(z_0, u)$ is a non-empty and closed. The construction of the sequence \mathcal{T}_n implies that $\mathcal{U}_{\infty}(z_0, 0) = z_0$. $\mathcal{U}_{\infty}(z_0, u)$ is strictly differentiable at $(z_0, 0)$ with derivative \mathcal{R}_{∞} .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Main result Proof of main result Generalization

Inverse function theorem for multivalued functions

Theorem (Nachi and Penot)

Let F be a multifunction from an open set $X_0 \subset X$ to Y with non-empty closed non-empty values. Suppose F is strictly differentiable at $(x_0, y_0) \in Gr(F)$, and some derivative A of F at (x_0, y_0) has a right inverse. Then for any neighborhood U of x_0 there exists a neighborhood V of y_0 such that $V \subset F(U)$.

 $\mathcal{U}_{\infty}(z_0, u)$ is a non-empty and closed. The construction of the sequence T_n implies that $\mathcal{U}_{\infty}(z_0, 0) = z_0$. $\mathcal{U}_{\infty}(z_0, u)$ is strictly differentiable at $(z_0, 0)$ with derivative \mathcal{R}_{∞} . Since the linearized system is controllable for $z_0 \notin \mathcal{E}$, we get the controllability near z_0 .

Main result Proof of main result Generalization

Inverse function theorem for multivalued functions

Theorem (Nachi and Penot)

Let F be a multifunction from an open set $X_0 \subset X$ to Y with non-empty closed non-empty values. Suppose F is strictly differentiable at $(x_0, y_0) \in Gr(F)$, and some derivative A of F at (x_0, y_0) has a right inverse. Then for any neighborhood U of x_0 there exists a neighborhood V of y_0 such that $V \subset F(U)$.

 $\mathcal{U}_{\infty}(z_0, u)$ is a non-empty and closed. The construction of the sequence \mathcal{T}_n implies that $\mathcal{U}_{\infty}(z_0, 0) = z_0$. $\mathcal{U}_{\infty}(z_0, u)$ is strictly differentiable at $(z_0, 0)$ with derivative \mathcal{R}_{∞} . Since the linearized system is controllable for $z_0 \notin \mathcal{E}$, we get the controllability near z_0 . If $z_0 \in \mathcal{E}$, controllability is proved by the arguments of Beauchard and Coron.

(D) (A) (A) (A) (A)

Main result Proof of main result Generalization

Generalization

The proof works also for the defocusing nonlinear Schrödinger equation:

$$i\dot{z} = -\Delta z + V(x)z + |z|^{2p}z + u(t)Q(x)z, \qquad x \in \mathbb{T}^d$$

where $p \in \mathbb{N}^*$ and $d \ge 1$ are such that the equation is globally well posed in H^1 .

Main result Proof of main result Generalization

Generalization

The proof works also for the defocusing nonlinear Schrödinger equation:

$$i\dot{z} = -\Delta z + V(x)z + |z|^{2p}z + u(t)Q(x)z, \qquad x \in \mathbb{T}^d$$

where $p \in \mathbb{N}^*$ and $d \ge 1$ are such that the equation is globally well posed in H^1 .

Theorem

The nonlinear Schrödinger equation is exactly controllable in infinite time near the stationary solutions.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・