Workshop 'Quantum Control'

Paris, IHP, December 2010

Controllability of Cubic Schroedinger Equation via Low-Dimensional Source Term

Andrey Sarychev Dipartimento di Matematica per le Decisioni, Università di Firenze, Italia

Introduction

Main theme: Lie algebraic approach to *controllability of distributed parameter systems*.

Example of such approach - approximate controllability and controllability in finite-dimensional projections criteria* for 2D and 3D Navier-Stokes/Euler equation of fluid motion controlled by *low-dimensional forcing*.

Goal: develop similar technique for *cubic defocusing Schroedinger equation*

 $i\partial_t u(t,x) + \Delta u(t,x) = |u(t,x)|^2 u(t,x) + F(t,x) \quad (\mathsf{NLS})$

*A.Agrachev, A.Sarychev, S.Rodrigues, A.Shirikyan, H.Nersisyan

controlled via low-dimensional source term F. We consider dimension 2 and periodic boundary conditions; $x \in \mathbb{T}^2$.

Problem setting is distinguished by the *type of control*; it is applied via source term, which is 'linear combination of few functions':

$$F(t,x) = \sum_{k \in \mathcal{K}^1} v_k(t) F^k(x), \ \mathcal{K}^1$$
 is finite.

In the periodic case we take $F^k(x) = e^{ik \cdot x}$, $k \in \mathbb{Z}^2$, F being *trigonometric polynomial in x*.

The control functions $v_k(t)$, $t \in [0,T]$, $k \in \mathcal{K}^1$ are chosen freely from $L_{\infty}[0,T]$.

Preliminaries on existence and uniqueness of trajectories

For our goals it suffices to deal with NLS equation evolving in Sobolev space $H = H^2(\mathbb{T}^2)$. Our source term F is trigonometric polynomial in x and $t \mapsto F(t,x) = \sum_k v_k(t)e^{ik\cdot x}$ is measurable essentially bounded map in t.

Local existence of solutions in this setting is standard and is proved by fixed point argument for contracting map in $C([0,T]; H^2(\mathbb{T}^2))$. The same argument remains valid for equation with more general nonlinearity.

Preliminaries ctd.

Proposition 1. Given equation

$$i\partial_t u(t,x) + \Delta u(t,x) = |u(t,x)|^2 u(t,x) + P_2(u,\bar{u},t,x),$$

where $P_2(u, \bar{u}, t)$ is second degree polynomial in u, \bar{u} with coefficients f(t, x) from $L_{\infty}([0, T], H^2(\mathbb{T}^2))$.

Then for each B > 0 and each \tilde{u} with $||u||_{H^2} \leq B$ there exists $T_B > 0$ such that there \exists unique strong solution $u(\cdot) \in C([0, T_B], H^2(\mathbb{T}^2))$ of the Cauchy problem for (NLS) with the initial condition $u(0) = \tilde{u}$. \Box

Preliminaries-3

Global existence/uniqueness result for cubic NLS with source term:

$$i\partial_t u(t,x) + \Delta u(t,x) = |u(t,x)|^2 u(t,x) + F(t,x),$$

Proposition 2. For the source term F(t, x) from $L_{\infty}([0, T], H^2(\mathbb{T}^2))$. for each $\tilde{u} \in H^2$ the Cauchy problem with the initial condition $u(0) = \tilde{u}$ possesses unique strong solution $u(\cdot) \in C([0, T], H^2(\mathbb{T}^2))$. \Box

(A stronger version of) results on continuous dependence of trajectories on the r.-h. side will appear later.

Controlled NLS equation: controllability problem settings

We will study controllability in finite-dimensional projections meaning that proper control $v_k(t)$, $k \in \mathcal{K}^1$ may steer

$$i\partial_t u(t,x) + \Delta u(t,x) = |u(t,x)|^2 u(t,x) + \sum_{k \in \mathcal{K}^1} v_k(t) e^{ik \cdot x}$$

in time T > 0 from $u_0 \in H^2(\mathbb{T}^2)$ to a point with preassigned orthogonal projection on a given finite-dimensional subspace $\mathcal{L} \subset H^2$;

and

approximate controllability, meaning that set of 'points' attainable from each $u_0 \in H^2(\mathbb{T}^2)$ is dense in L_2 .

Controllability of NLS equation: main result

Theorem. There exists set $\mathcal{K} = \{m^1, m^2, m^3, m^4\}$, consisting of 4 modes such that cubic defocusing Schroedinger equation

$$i\partial_t u(t,x) + \Delta u(t,x) = |u(t,x)|^2 u(t,x) + \sum_{\alpha=1}^4 v_\alpha(t) e^{im^\alpha \cdot x}$$

is controllable in each finite-dimensional projection and approximately controllable. \Box

Outline of approach from geometric control viewpoint

Our study of controllability of NLS equation is based (as well as previous work on Navier-Stokes/Euler equation) on method of *iterated Lie extensions*.

Lie extension of a control system $\dot{x} = f(x, u)$, $u \in U$ allows us to join ('almost maintaining' controllability properties) to the r.-h. side additional vector fields, which are expressed via Lie brackets of $f(\cdot, u)$ for various $u \in U$. If after a series of extensions one arrives to a system, which is then the original system also would be.

Controlled NLS equation is a particular type of infinite-dimensional control-affine system

$$\dot{u} = f^{0}(u) + \sum_{k \in \mathcal{K}} f^{k}(u)v_{k}(t).$$

7

We proceed with Lie extensions, at each step of which following Lie brackets appear:

 $[f^m, [f^m, f^0]], [f^n, [f^m, [f^m, f^0]]], m, n \in \mathcal{K}.$

The 3rd-order Lie brackets $[f^m, [f^m, f^0]]$ are obstructions to controllability; they have to be 'compensated'. The 4th-order Lie bracket $[f^n, [f^m, [f^m, f^0]]]$ are directions along which the extended control acts.

Geometric control in infinite-dimension

Obstacles:

- r.-h. sides of equations ('vector fields') include unbounded operators
- instead of flows one often has to deal with semigroups of nonlinear operators;
- lack of adequate infinite-dimensional differential geometry: manifolds, distributions, integrability etc.

'In practice'

we use fast-oscillating controls, which underly Lie extensions method. Specially designed resonances between such controls result in a motion which provides (*approximates*) motion in *extending* direction, along a Lie bracket.

Choosing special coordinates (Fourier Ansatz) on torus we will feed fast-oscillating controls into the r.-h. sides of equations for the components $q_m, q_n, m, n \in \mathcal{K}^1 \subset \mathbb{Z}^2$ in such a way that it will produce effect of control for the dynamics of certain component q_ℓ with $\ell \notin \mathcal{K}^1$ and (asymptotically) will not affect the dynamics of other components.

This is called extension of control. Final result is obtained by (finite) iteration of such steps.

Cubic Schroedinger equation on \mathbb{T}^2 as infinite-dimensional system of ODE

Invoking Fourier Ansatz we seek for solution of the NLS equation

$$i\partial_t u(t,x) + \Delta u(t,x) = |u(t,x)|^2 u(t,x) + F(t,x)$$
 (NLS)

in the form of a series expansion

$$u(t,x) = \sum_{k \in \mathbb{Z}^2} q_k(t) e^{i(kx+|k|^2t)}.$$

with respect to modes $\mathbf{e}_k = e^{i(kx+|k|^2t)}$.

The source term can be represented as

$$F(t,x) = \sum_{k \in \mathcal{K}^1 \subset \mathbb{Z}^2} e^{i(kx+|k|^2t)} v_k(t),$$

notation $v_k(t)$ is kept for controls. The set of *controlled modes* \mathcal{K}^1 is finite.

Substituting the expansions of u and F into NLS equation we get infinite system of ODE's for the coefficients q(t):

$$i\partial_t q_k(t) = S_k(q,t) = -q_k |q_k|^2 + 2q_k \sum_{j \in \mathbb{Z}^2} |q_j|^2 + \sum_{k_1 - k_2 + k_3 = k; k \neq k_1, k_3} q_{k_1} \bar{q}_{k_2} q_{k_3} e^{i\omega(K)t}, \ k \in \mathbb{Z}^2. \text{ (NLSODE)}$$
$$\omega(K) = |k_1|^2 - |k_2|^2 + |k_3|^2 - |k|^2.$$

If we add controlling source term $\sum_{k \in \mathcal{K}^1} v_k(t) e^{ik^2 t} e^{ikx}$, then controls $v_k(t)$ appear in the equations, indexed by $k \in \mathcal{K}^1$.

We proceed with extension.

Sketch of the extension step

Assume that the set of controlled modes is $\{m, n\} \subset \mathbb{Z}^2$. We will show how choosing in clever way controls in these modes, one gets an extended control for the mode $(2m - n) \in \mathbb{Z}^2$.

Feed into the r.-h. side of the ODEs for q_m, q_n control functions $\dot{v}_m(t) + \tilde{v}_n, \dot{v}_m(t) + \tilde{v}_n$ respectively, where $v_m(t), v_n(t)$ are Lipschitzian functions. We get

$$i\partial_t q_m(t) = S_m(q,t) + \dot{v}_m(t) + \tilde{v}_m,$$

$$i\partial_t q_n(t) = S_n(q,t) + \dot{v}_n(t) + \tilde{v}_n.$$

Introduce new variables q_{ℓ}^* by relations

$$q_m = q_m^* - iv_r(t), q_n = q_n^* - iv_n(t), \ q_k^* = q_k, \text{ for } k \neq m, n,$$

or

.

 $q = q^* + V(t) = q^* + v_m(t)e_m + v_n(t)e_n$. (SUB1) The equations for components of q^* are:

$$i\partial_t q_j^*(t) = \begin{cases} S_j(q + V(t), t) + \tilde{v}_j, & j \in \{m, n\}; \\ S_j(q + V(t), t), & j \notin \{m, n\}. \end{cases}$$

Impose isoperimetric constraints

$$v_m(0) = v_n(0) = 0, v_m(T) = v_n(T) = 0,$$

in order to preserve the end-points of the trajectory:

$$q(0) = q^*(0), \ q(T) = q^*(T)$$

Controllability of equations for $q^* \Rightarrow$ controllability of the original system.

Calculating $S_j(q + V(t), t)$ at the r-h. side we get

$$i\partial_t q_k^*(t) = -(q_k^* + \delta_{k,mn} v_k) |q_k^* + \delta_{k,mn} v_k|^2 + \\ + 2(q_k^* + \delta_{k,mn} v_k) \left(||V||^2 + \sum_{s \in \mathbb{Z}^2} |q_s^*|^2 \right) + \\ + \sum (q_{k_1}^* + \delta_{k_1,mn} v_{k_1}) (\bar{q}_{k_2}^* + \delta_{k_2,mn} \bar{v}_{k_2}) (q_{k_3}^* + \delta_{k_3,mn} v_{k_3}) e^{i\omega(K)t},$$

,

 $\delta_{k,mn} = 1$, whenever $k \in \{m, n\}$, otherwise $\delta_{k,mn} = 0$.

The result is cubic polynomial with respect to $v_m, v_n, \overline{v}_m, \overline{v}_n$.

Fast oscillations

Now we introduce fast-oscillations, choosing the controls $v_m(t), v_n(t)$ of the form

 $v_m(t) = e^{i(1+\varepsilon\rho)t/\varepsilon} \hat{v}_m(t), v_n(t) = e^{i(2+\varepsilon\sigma)t/\varepsilon} \hat{v}_n(t),$ (SUB2)

where $\hat{v}_m(t), \hat{v}_n(t)$ are functions of bounded variation, ρ, σ will be specified later and $\varepsilon > 0$ is small parameter.

Taking all the monomials of degree ≤ 3 in $v_m, v_n, \bar{v}_m, \bar{v}_n$ we classify them into *resonant* and *non-resonant*. We call a monomial *non-resonant* if, after substitution of **(SUB2)** into it, we get a fast-oscillating factor $e^{i\beta t/\epsilon}$, $\beta > 0$. All other monomials are *resonant*; they are classified as *bad resonances (obstructions)* and *good resonances – extending controls.*

Fast oscillations - ctd.

We get equation

 $i\partial_t u(t,x) + \Delta u(t,x) = |u(t,x)|^2 u(t,x) + \tilde{v}_m(t)\mathbf{e_m} + \tilde{v}_n(t)\mathbf{e_n} + obstructions + extending \ control + non-resonant \ terms$

We have to show how obstructions can be compensated; then we demonstrate how extending control can be designed and finally we prove that contribution of non-resonant terms can be neglected, whenever $\varepsilon > 0$ is small. Obstructions Since the nonlinearity is cubic we study only monomials of degree \leq 3. Direct computation shows that among these monomials the resonant ones are:

$$v_m \bar{v}_m = |v_m|^2, \ v_n \bar{v}_n = |v_n|^2, \ v_m^2 \bar{v}_n.$$

The first two quadratic terms correspond to the quadruples

$$(m, m, k, k), (k, m, m, k), (n, n, k, k), (k, n, n, k)$$

in the set of indices for the sum representing cubic term. They are examples of *obstructions to controllability* in terminology of geometric control and appear at the r.-h. side of ODE for *each* q_k as:

$$2q_k^* ||V||^2 = q_k^* \left(2|v_m|^2 + 2|v_n|^2 \right), \text{ for } k \neq m, n,$$
$$q_m^* \left(|v_m|^2 + 2|v_n|^2 \right), \ q_n^* \left(2|v_m|^2 + |v_n|^2 \right), \text{ for } k \in \{m, n\}.$$

appear .

We can 'compensate' the obstructing quadratic terms by time-variant substitution for the variables q_k^* :

$$q_m^{\star} = q_m^{\star} e^{-i \int_0^t (|v_m|^2 + 2|v_n|^2)(\tau) d\tau}, \quad q_n^{\star} = q_n^{\star} e^{-i \int_0^t (2|v_m|^2 + |v_n|^2)(\tau) d\tau},$$
$$q_k^{\star} = q_k^{\star} e^{-i \int_0^t (2|v_m|^2 + 2|v_n|^2)(\tau) d\tau}, \quad k \neq r, s.$$

In order to guarantee $q^*(T) = q^*(T) = q(T)$ we have to impose additional *(isoperimetric)* conditions on v_m, v_n :

$$\int_0^T |v_m(t)|^2 dt = \int_0^T |\hat{v}_m(t)|^2 dt = 2\pi N_m,$$
$$\int_0^T |v_n(t)|^2 dt = \int_0^T |\hat{v}_n(t)|^2 dt = 2\pi N_n, \ N_m, N_n \in \mathbb{Z}.$$

Extending control via resonance

Now we study resonance cubic term $v_m^2 v_n$ which corresponds to the quadruple

 $k_1 = k_3 = m, \ k_2 = n, \ k = k_1 + k_3 - k_2 = 2m - n.$ with $\omega(K) = 2m^2 - n^2 - (2m - n)^2 = -(m - n)^2$ in the equation for q_{2m-n}^{\star} of the system **(NLSODE)**: Then we get

$$e^{i(2\rho-\sigma+\omega(K))t}\hat{v}_m^2(t)\bar{\hat{v}}_n(t)$$

at the right-hand side of this equation.

We choose ρ, σ such that

$$2\rho - \sigma = -\omega(K) = (m - n)^2.$$

Then the resonant term $\hat{v}_m^2(t)\overline{\hat{v}}_n(t)$, appears as an *extending control* in the ODE for q_{2m-n}^{\star} .

Effect of non-resonant terms

Non resonant terms $\phi(t, x, u)$ at the r.-h. side of the modified NLS

$$i\partial_t u(t,x) + \Delta u(t,x) = |u(t,x)|^2 u(t,x) + \\ + \tilde{v}_m(t)\mathbf{e_m} + \tilde{v}_n(t)\mathbf{e_n} + v_{2m-n}(t)\mathbf{e_{2m-n}} + \underline{\phi(t,x,u)}$$

can be represented as

$$\phi(t, x, u) = W^{0}(t, x) + uW^{11}(t, x) + \bar{u}W^{12}(t, x) + u^{2}W^{21}(t, x) + |u|^{2}W^{22}(t, x).$$

For our choice of controls each $W^{ij}(t,x)$ is trigonometric polynomial in t:

$$W^{ij}(t,x) = \sum_{r} e^{i\beta_r t/\varepsilon} W^{ij}_r(x).$$

17

Global existence of solution of the equation

 $i\partial_t u(t,x) + \Delta u(t,x) = |u(t,x)|^2 u(t,x) + F(t,x) + \phi(t,x,u,\varepsilon).$ (PERTURB

This can be done though if ϕ is fast oscillating ($\varepsilon > 0$ is small). Moreover solutions of this equation converge to the respective solutions of the 'limit equation'

$$i\partial_t u(t,x) + \Delta u(t,x) = |u(t,x)|^2 u(t,x) + F(t,x), (LIMIT)$$

as $\varepsilon \to 0$.

This fact is part of relaxation result for NLS equation*

*adaptation of results by H.Frankowska (1990), H.Fattorini (1994), N.Ahmed (1987), on relaxation of evolution equations.

Relaxation

Relaxation seminorm $\|\cdot\|_{b}^{rx}$ is defined by formula:

$$\|\phi\|_{b}^{\mathsf{rx}} = \max_{t,t' \in [0,T], x, \|u\| \le b} \left\| \int_{t}^{t'} \phi(\tau, x, u) d\tau \right\|.$$
(1)

The following theorem affirms continuous dependence of trajectories with respect to the r.-h. side in relaxation seminorm.

Continuous dependence of trajectories

Theorem. Let solution $\tilde{u}(t)$ of the (LIMIT) equation exist on [0,T], belongs to C([0,T],H) and $\sup_{t\in[0,T]} ||u(t)|| < b$. Then $\forall \varepsilon > 0 \exists \delta > 0$ such that whenever $||\phi||_b^{\mathsf{rx}} < \delta$, then the solution u(t) of the perturbed equation exists on the interval [0,T], is unique and satisfies the bound

$$\sup_{t\in[0,T]} \|u(t)-\tilde{u}(t)\| < \varepsilon. \ \Box$$

As a corollary we conclude that time-T attainable set of NLS equation, controlled by 2 controls, approximates similar attainable set for NLS equation controlled by 3 controls.

Solid controllability in projections

The latter equation is globally controllable in projection onto 3-dimensional linear subspace $\mathcal{L} = \text{Span}\{e_m, e_n, e_{2m-n}\}$ and this property is stable **(solid controllability)**, then NLS equation, controlled by 2 controls is also controllable in projection onto \mathcal{L} .

Iterating the control extension procedure we are able to extend $\ensuremath{\mathcal{L}}.$

Extensions modeled in the space of modes \mathbb{Z}^2

We have established that having controls applied to the modes e_m, e_n we can 'get' an extending control applied to the mode $e_{2m-n}, m, n \in \mathbb{Z}^2$.

A nonvoid set $\mathcal{K}^1 \subset \mathbb{Z}^2$ is called saturating, if the only set $\mathcal{K} \supset \mathcal{K}^1$, invariant with respect to the operation $(m, n) \mapsto 2m - n$, is \mathbb{Z}^2 itself.

Then NLS equation with controls, applied to the modes from a saturating set \mathcal{K}^1 , provide global controllability in each finite dimensional projection and approximate controllability.

Controllability via controls applied to 4 modes

The following result provides an example of saturating set \mathcal{K}^1 .

Proposition. Let $m, n \in \mathbb{Z}^2$ be such that $m \wedge n = \pm 1$. Then the set $\{0, m, n, m + n\}$ is saturating. NLS equation with controls applied to these modes is controllable in each finite-dimensional projection and approximately controllable. \Box