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Abstract controllability problem: reminder

dy _
Pl A(W) + uB(v), ue U,

with
m H complex Hilbert space;
m UCR;
m A, B skew-adjoint operators on H possibly unbounded;
® (¢n)nen orthonormal basis of H made of eigenvectors of A;
B ¢, € D(B) for every n € N.

With a piecewise constant u : [0, T] — U we associate the flow
ts TV = e(t=t)(AtuB) o o(t—ti-1)(Atu—1B) o . .| o ot1(A+u1B)
which is a unitary transformation of H.

We are interested to approximate controllability in the unit sphere
of H.



Controllability result: reminder

(An)nen eigenvalues of A corresponding to (¢n)nen-

Theorem (Boscain, Caponigro, Chambrion, S.)

Assume that there exists S C N? such that
m S connects N
m (¢j, Bok) # 0 for every (j, k) € S
m each )\ is simple
m (j,k) € S and (j, k) # (m,]) € N2 = AN — M FEAm— A or

<¢m) B¢/> = 0
Then d
d_‘f = A(W) + uB(¥),  uel0,d],

is approximately controllable for every § > 0.
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Remarks on the approximate controllability result

m the proof is based on control analysis of Galerkin
approximations with respect to the basis (¢x)ken

m upper and lower bound on the L! norm of the control
m lower bound on the controllability time

m controllability extends to density matrices and simultaneous
control (or tracking: approximating any prescribed unfeasible
trajectory arbitrarily well up to the phases)



Rotating bipolar molecule

i8¢(9,t)_ s
ot \ 082

+ uy(t) cos(8) + ua(t) sin(Q)) P(0,t), 0ecSt

m 6 rotational degree of freedom of a bipolar rigid molecule
confined to a plane

m controlled fields pointing in the directions (0,1) and (1,0)

[ ] ul(t), Ug(t) S [0,(5]

m if up = 0 controllability between even wavefunctions and no
transfer of probability between odd and even ones

m in [Boscain, Chambrion, Mason, Sigalotti, Sugny, 48th IEEE
CDC, 2009] we studied the problem of controlling
simultaneously the even and the odd part, with u, =0



Rotating bipolar molecule: controllability with 1D controls

For every o € S!, consider the splitting
H=HZ o HY

with H and HS the Hilbert spaces of, respectively, even and odd
functions with respect to a.

Our first result is the generalization of the partial controllability
with u, = 0.

Lemma

Let o € [0,7/2]. Then the system restricted to HS (or HS ) with
controls in

Uy ={u: R —[0,0> N R(cos i, sina) | u piecewise constant}

is approximately controllable.



Rotating bipolar molecule: controllability with 1D controls

The control system with 1D controls can be rewritten as

2
/‘wéi’ ) _ (—% +v(t) cos(6 — a)) (0, 1)

v E (0, 6\/1 + min{tan a,cotana}z) .

Complete orthonormal systems for HS and HS of eigenfuntions of
A are given by {cos(k(- — «))/\/7}32, and

{sin(k(- — @))//T}32 ;. respectively.

The sufficient conditions for controllability are easily tested:

A = diag(k?/7)

O NIk O

B =

ogko
' N~ O%ln—-
BN

o

S={Uk) |-kl =1}
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Rotating bipolar molecule: controllability between

eigenfunctions

REMARK: Any eigenfunction is even with respect to some
a € [0,7/2]

Controllability with 1D controls

Y

Any eigenfunction can be approximately driven to the ground state

$(x) =1/v2r

For the same reason, the ground state can be approximately driven
to any other eigenfunction.

Concatenating the two controls we get approximate controllability
between eigenfunctions.
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It is enough to prove that every wavefunction v € H of norm one
can be steered e-close to the constant 1/v/27, for € > 0 arbitrary
(time-reversibility).
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Rotating bipolar molecule: approximate controllability

Let us prove approximate controllability with 2D controls.

It is enough to prove that every wavefunction ¢y € H of norm one
can be steered e-close to the constant 1/v/27, for € > 0 arbitrary
(time-reversibility).

Take a € (0,7/2).

Using controls in U, we can steer the a-even part of ¢ in a
e-neighborhood of [|4¢]|/v/27.

Then v goes to

=+ Ivell :
~ + ¢1, with ¢1 € HY.
1/} \/ﬂ d)l d)l o

If [|¢1]| is smaller than € then we are done.
Assume then that ||¢1]| > ¢ and consider, for every 3 € S1,

75 = ll(d1)e]1%



Rotating bipolar molecule: approximate controllability

7 o el
o, =R S CU R GV

A computation shows that there exists ¢ > 0 independent on k
and « and there exists § € (0,7/2) such that

T8 > ce?.



Rotating bipolar molecule: approximate controllability

er—” +é1. g1 €HS, el e 7= [I(en)]I

A computation shows that there exists ¢ > 0 independent on k
and « and there exists § € (0,7/2) such that

T8 > ce?.

We can repeat the step of controlling the even part towards a
constant using controls in Ug.

At every step we end up with a wavefunction whose even part with
respect to some angle is approximately constant, and the constant
grows by some uniform amount.

Iterating the procedure finitely many times, the final wavefunction
is e-close to the constant 1/v/27.



Example: 1D potential well
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Example: 1D potential well

x 2
i&/’ét’ 2 (—% + u(t)x) Wix, 1), x€(0,1),

with 9(0,t) = ¢(1,t) = 0.
Exact controllability between regular enough wavefunctions:

Beauchard, Beauchard-Coron, Beauchard-Laurent
The spectrum of —A + V' is

{M = ik*m? | k> 1}

with ¢y (x) = v/2sin(nmx).
fo x¢j(x)pi(x)dx # 0 if and only if j — k is odd.

There is no non-resonant connectedness chain, since
Aj = A # Am — A for all (m, 1) # (j, k), (k,j) only if
(U, k)= (pﬂ,ijFl> with p prime.

SOLUTION: perturbation.



Perturbation theory for the 1D potential well

IpEA: Let Ay = A+nB, n €[0,0]. System
Y =A+uB, uel0,0]
can be rewritten as
= Ay + vBY, v € [-n,0 — ).
Since 1 — A, is analytic, there exist ¢,(-) and Ax(-) analytic such

that (Ac(n), ¢x(1))ken is a complete system of eigenpairs for A,
(Rellich-Kato theorem).



Perturbation theory for the 1D potential well

IpEA: Let Ay = A+nB, n €[0,0]. System
Y =A+uB, uel0,d]
can be rewritten as
= App+ vBy, v € [-n,6 —1).
Since 1 — A, is analytic, there exist ¢,(-) and Ax(-) analytic such
that (Ac(n), ¢x(1))ken is a complete system of eigenpairs for A,

(Rellich-Kato theorem).
Following the computations in [Beauchard & Mirrahimi,2009],

1 5
Ae(n) = K*m® + (127T2k2 - 47r4k4) n? + o(n?).

We easily get that
A7 (0) = XK(0) = Ap(0) = A/(0) = (j, k) = (m, ).

For almost all n € (0,9), {(j, k) € N> | j — k odd} is a
non-resonant connectedness chain = approximate controllability




Perturbation theory for the 1D potential well: more general

control potentials

x 2
) (< W) vt 00,0 = (1,1 =0

The derivative of Ax(u) with respect to u at u =0 is
N (0) = / W(x)pi(x)?dx = 2 / W (x) sin(kmx)?dx.
R R

We look for W such that the non-resonance properties are satisfied
by (AZ(O))keN-

For instance, one easily check by direct computation that, for
almost every o € R, W(x) = e® allows to control.



Perturbation theory for the 1D potential well: more general

control potentials

x 2
) (< W) vt 00,0 = (1,1 =0

The derivative of Ax(u) with respect to u at u =0 is
N (0) = / W(x)pi(x)?dx = 2 / W (x) sin(kmx)?dx.
R R

We look for W such that the non-resonance properties are satisfied
by (AZ(O))keN-

For instance, one easily check by direct computation that, for
almost every o € R, W(x) = e® allows to control.

Since ¢x(x)? = 2sin(kmx)? are linearly independent functions, for
most W € L*°(0,1) the system is controllable.



Generic: frequent and robust

A1M: prove genericity of the sufficient conditions for controllability
(related results in [Nersesyan, 2010])

Recall that a property is generic with respect to some parameter
belonging to a metric space, if it is true for a dense set of
parameters which is intersection of countably many open sets.



Generic: frequent and robust

A1M: prove genericity of the sufficient conditions for controllability
(related results in [Nersesyan, 2010])

Recall that a property is generic with respect to some parameter
belonging to a metric space, if it is true for a dense set of
parameters which is intersection of countably many open sets.

ity = =AY 4+ Vip + uWep
Q bounded domain of R? or Q = RY; H = [%(Q)
PARAMETERS: V, W : Q — R and also Q in the bounded case

—A + V has discrete spectrum if limy_,o V(x) = +00



Baire spaces and topologies

Q — ¥, ={Q|Q bounded domain with C™ boundary},m € N

L(Q) Q bdd

Vo= V)= { (Ve L | lim o V(x) = +o0} Q=R

L(Q) Q bdd

W= W) = {{WG ,OC|I|msupX_>ooW<oo} Q =R¢

(V. W) — 2(Q) = {(V, W) € VQ)xW(Q) | V+uW € V(Q) VYu € [0,5]}

We endow these spaces with the C, L*° and L*° x L*° topology



Analytic dependence

Theorem (Rellich, Kato)

Let | be an interval of R and Q be a bounded domain or RY. Let
V € V(Q) and p— W, an analytic function from | into L>(Q, R).
Then, there exist

(Ak = R)keN

(D) - | — L%(Q,R))ken

families of analytic functions such that for any u € | the sequence
(Ak(r))ken is the family of eigenvalues of —A + V + W,, counted
according to their multiplicities and (®x(1))ken is an orthonormal
basis of corresponding eigenfunctions.



Analytic propagation of non-vanishing conditions and the

role of the Laplace—Dirichelet operator when €2 is bounded
Let ©2 be bounded.
Fix Q and V satisfying:
(Ak(V.Q))ken non-resonant (all gaps are different)

Then generically w.r.t. W the system is approximately
controllable, since every condition

/Q Wok(V, Q)xs1(V, Q)d £ 0

defines an open dense subset of W.



Analytic propagation of non-vanishing conditions and the

role of the Laplace—Dirichelet operator when €2 is bounded

Let Q be bounded.

Fix Q and V satisfying:
(Ak(V.Q))ken non-resonant (all gaps are different)

Then generically w.r.t. W the system is approximately
controllable, since every condition

/Q Wor(V,Q)pk+1(V,Q)dx #0
defines an open dense subset of W.

Now fix Q such that the non-resonance condition is true for
(Ak(0,€2))k. Then, by analytic perturbation, (Ac(uV,Q))x is
non-resonant for a generic ;1 € R. In particular, generically w.r.t.
(V, W) the system is approximately controllable.



Analytic propagation of non-vanishing conditions and the

role of the Laplace—Dirichelet operator when €2 is bounded

Similarly, fix Q such that each \4(0,Q) is simple and (¢x(0,2)?)x
are linearly independent. Then, thanks to

d
d—|M:0Ak(uv,Q):/ Vér(0,Q)?
% Q

generically with respect to V the sequence d%]#:o)\k(,uv, Q) is
non-resonant. This would imply that generically w.r.t. p the same
is true for A\g(pV, Q). Again, generically w.r.t. (V, W) the system
is approximately controllable.



Analytic propagation of non-vanishing conditions and the

role of the Laplace—Dirichelet operator when €2 is bounded

Similarly, fix Q such that each \4(0,Q) is simple and (¢x(0,2)?)x
are linearly independent. Then, thanks to

d
d—|M:0Ak(uv,Q):/ Vér(0,Q)?
% Q

generically with respect to V the sequence d%]#:o)\k(,uv, Q) is
non-resonant. This would imply that generically w.r.t. p the same
is true for A\g(pV, Q). Again, generically w.r.t. (V, W) the system
is approximately controllable.

Resuming: if Q is such that either (Ax(0,2))x is non-resonant or
(6x(0,9Q)?)x is a free family, then generically w.r.t. (V, W) the
system is approximately controllable.



Generic approximate controllability

Theorem (Y. Privat, M. S.)

Generically with respect to Q € ¥, (¢x(0,Q)?)x is free and (for
d > 1) (A«(0,9))k is non-resonant.

Corollary

Generically with respect to
{(QV,W)|QeXn,, (V,W)e Z(Q)} the Schrédinger equation

i) = =D+ Vi) + uWeh, lag =0, uel0,d]

is approximately controllable for every § > 0.



Techniques

The openness of the sets of parameters (here, domains Q)
corresponding to each non-resonance condition follows from
standard continuity results. The hard point is their density.

GLOBAL PERTURBATION

If one Q) satisfying the non-resonance can be found, consider any
analytic path starting from Q in order to propagate the good
property. The property will be true for all but countably many
points of the path, hence, for almost every domain with the same
topology as €.

LOCAL STEP
Use local perturbations to get a domain € with a prescribed
topology satisfying the desired non-resonance property
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If A2 crosses Az along the analytic perturbation, then the condition
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Tricky point of the global perturbation analysis:

intersection of eigenvalues

If Ao crosses Az along the analytic perturbation, then the condition
)\4 — )\2 7& )\5 — )\4 becomes )\4 — )\3 75 )\5 — )\4.

Strategy to avoid the bad effect of eigenvalue rearrangement along
the path: elude intersections by small modifications of the analytic
path (Arnold, Colin de Verdiere, Teytel [1999]).

This is possible because eigenvalue intersections is a somehow rare
phenomenon: the eigevalues of

a b
b ¢
are double if a = c and b =0, two conditions on three parameters!

(Von Neumann-Wigner [1929], Lupo-Micheletti [1995],
Lamberti-Lanza de Cristoforis [2006]).



Back to the Schrodinger equation

It is possible to obtain stronger genericity results for the
Schrédinger equation for any fixed Q bounded domain or Q = R,

Proposition (P. Mason, M. S.)

Fix Q. Then, generically with respect to V, (A(V,Q)) is
non-resonant.

Corollary

Fix Q. Generically with respect to (V, W) € Z(Q) the Schrédinger
equation is approximately controllable.



The potential well lemma

Fix Q (bdd or R9). Let w be a compactly contained subdomain of
Q with Lipschitz boundary, v € L*°(w) and (Vik)ken C V(2) such
that
Vilw = v in L®(w)
limg_ o0 ian\w Vi = 40




The potential well lemma

Lemma

Fix Q (bdd or R9). Let w be a compactly contained subdomain of
Q with Lipschitz boundary, v € L*°(w) and (Vik)ken C V(2) such
that

Vilw = v in L®(w)

limg_ o0 ian\w Vi = 40

Then, for every j € N,
)\j(Q, Vk) — )\j(w, V) in R.
Moreover, if \j(w, v) is simple then (up to the sign)

61 (Q, Vi) = 0j(w, v), vV Vidj(2, Vi) = Vvgj(w,v) in L3(Q,C).



Genericity with respect to one single argument

Theorem (P. Mason, M. S.)

Fix Q bdd or RY and W € W(Q) absolutely continuous and
non-constant. Generically with respect to V' in
{Z2eV(Q)|(Z,W)e Z(Q)} the Schrédinger equation is
approximately controllable.
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Theorem (P. Mason, M. S.)

Fix Q bdd or RY and W € W(Q) absolutely continuous and
non-constant. Generically with respect to V' in
{ZeV(Q)|(Z,W) e Z(Q)} the Schrodinger equation is
approximately controllable.

Theorem (P. Mason, M. S.)

Fix Q bdd or RY and V € V() absolutely continuous. Generically
with respect to We {Z e V(Q) | (V,Z) € Z(2)} the Schrédinger
equation is approximately controllable.



