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Abstract controllability problem: reminder

dψ

dt
= A(ψ) + uB(ψ), u ∈ U,

with

H complex Hilbert space;

U ⊂ R;

A,B skew-adjoint operators on H possibly unbounded;

(φn)n∈N orthonormal basis of H made of eigenvectors of A;

φn ∈ D(B) for every n ∈ N.

With a piecewise constant u : [0,T ]→ U we associate the flow

t 7→ Υu
t = e(t−tk )(A+ukB) ◦ e(tk−tk−1)(A+uk−1B) ◦ · · · ◦ et1(A+u1B)

which is a unitary transformation of H.
We are interested to approximate controllability in the unit sphere
of H.
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Controllability result: reminder

(λn)n∈N eigenvalues of A corresponding to (φn)n∈N.

Theorem (Boscain, Caponigro, Chambrion, S.)

Assume that there exists S ⊂ N2 such that

S connects N

〈φj ,Bφk〉 6= 0 for every (j , k) ∈ S

each λj is simple

(j , k) ∈ S and (j , k) 6= (m, l) ∈ N2 =⇒ λj − λk 6= λm − λl or
〈φm,Bφl〉 = 0.

Then
dψ

dt
= A(ψ) + uB(ψ), u ∈ [0, δ],

is approximately controllable for every δ > 0.



Remarks on the approximate controllability result

the proof is based on control analysis of Galerkin
approximations with respect to the basis (φk)k∈N

upper and lower bound on the L1 norm of the control

lower bound on the controllability time

controllability extends to density matrices and simultaneous
control (or tracking: approximating any prescribed unfeasible
trajectory arbitrarily well up to the phases)
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Rotating bipolar molecule

i
∂ψ(θ, t)

∂t
=

(
− ∂2

∂θ2
+ u1(t) cos(θ) + u2(t) sin(θ)

)
ψ(θ, t), θ ∈ S1

θ rotational degree of freedom of a bipolar rigid molecule
confined to a plane

controlled fields pointing in the directions (0, 1) and (1, 0)

u1(t), u2(t) ∈ [0, δ]

if u2 ≡ 0 controllability between even wavefunctions and no
transfer of probability between odd and even ones

in [Boscain, Chambrion, Mason, Sigalotti, Sugny, 48th IEEE
CDC, 2009] we studied the problem of controlling
simultaneously the even and the odd part, with u2 ≡ 0



Rotating bipolar molecule: controllability with 1D controls

For every α ∈ S1, consider the splitting

H = Hα
e ⊕ Hα

o

with Hα
e and Hα

o the Hilbert spaces of, respectively, even and odd
functions with respect to α.
Our first result is the generalization of the partial controllability
with u2 ≡ 0.

Lemma

Let α ∈ [0, π/2]. Then the system restricted to Hα
e (or Hα

o ) with
controls in

Uα = {u : R→ [0, δ]2 ∩ R(cosα, sinα) | u piecewise constant}

is approximately controllable.



Rotating bipolar molecule: controllability with 1D controls

The control system with 1D controls can be rewritten as

i
∂ψ(θ, t)

∂t
=

(
− ∂2

∂θ2
+ v(t) cos(θ − α)

)
ψ(θ, t)

v ∈
(

0, δ
√

1 + min{tanα, cotanα}2

)
.

Complete orthonormal systems for Hα
e and Hα

o of eigenfuntions of
A are given by {cos(k(· − α))/

√
π}∞k=0 and

{sin(k(· − α))/
√
π}∞k=1, respectively.

The sufficient conditions for controllability are easily tested:
A = diag(k2/π)

B =




0 1√
2

0 · · ·
1√
2

0 1
2 0 · · ·

0 1
2 0 1

2 0 · · ·
...

. . .
. . .

. . .
. . .

. . .




S = {(j , k) | |j − k| = 1}



Rotating bipolar molecule: controllability between
eigenfunctions

Remark: Any eigenfunction is even with respect to some
α ∈ [0, π/2]

Controllability with 1D controls

⇓

Any eigenfunction can be approximately driven to the ground state
φ(x) ≡ 1/

√
2π

For the same reason, the ground state can be approximately driven
to any other eigenfunction.

Concatenating the two controls we get approximate controllability
between eigenfunctions.



Rotating bipolar molecule: controllability between
eigenfunctions

Remark: Any eigenfunction is even with respect to some
α ∈ [0, π/2]

Controllability with 1D controls

⇓

Any eigenfunction can be approximately driven to the ground state
φ(x) ≡ 1/

√
2π

For the same reason, the ground state can be approximately driven
to any other eigenfunction.

Concatenating the two controls we get approximate controllability
between eigenfunctions.



Rotating bipolar molecule: controllability between
eigenfunctions

Remark: Any eigenfunction is even with respect to some
α ∈ [0, π/2]

Controllability with 1D controls

⇓

Any eigenfunction can be approximately driven to the ground state
φ(x) ≡ 1/

√
2π

For the same reason, the ground state can be approximately driven
to any other eigenfunction.

Concatenating the two controls we get approximate controllability
between eigenfunctions.



Rotating bipolar molecule: approximate controllability

Let us prove approximate controllability with 2D controls.
It is enough to prove that every wavefunction ψ ∈ H of norm one
can be steered ε-close to the constant 1/

√
2π, for ε > 0 arbitrary

(time-reversibility).

Take α ∈ (0, π/2).
Using controls in Uα, we can steer the α-even part of ψ in a
ε-neighborhood of ‖ψαe ‖/

√
2π.

Then ψ goes to

ψ̃ ' ‖ψ
α
e ‖√
2π

+ φ1, with φ1 ∈ Hα
o .

If ‖φ1‖ is smaller than ε then we are done.
Assume then that ‖φ1‖ ≥ ε and consider, for every β ∈ S1,

τβ = ‖(φ1)βe ‖2.
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Rotating bipolar molecule: approximate controllability

ψ̃ ' ‖ψ
α
e ‖√
2π

+ φ1, φ1 ∈ Hα
o , ‖φ1‖ ≥ ε, τβ = ‖(φ1)βe ‖2.

A computation shows that there exists c > 0 independent on k
and α and there exists β ∈ (0, π/2) such that

τβ ≥ cε2.

We can repeat the step of controlling the even part towards a
constant using controls in Uβ.
At every step we end up with a wavefunction whose even part with
respect to some angle is approximately constant, and the constant
grows by some uniform amount.
Iterating the procedure finitely many times, the final wavefunction
is ε-close to the constant 1/

√
2π.
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Example: 1D potential well

i
∂ψ(x , t)

∂t
=

(
− ∂2

∂x2
+ u(t)x

)
ψ(x , t), x ∈ (0, 1),

with ψ(0, t) = ψ(1, t) = 0.
Exact controllability between regular enough wavefunctions:
Beauchard, Beauchard-Coron, Beauchard-Laurent

The spectrum of −∆ + V is

{
λk = ik2π2 | k ≥ 1

}

with φk(x) =
√

2 sin(nπx).∫ 1
0 xφj(x)φk(x)dx 6= 0 if and only if j − k is odd.

There is no non-resonant connectedness chain, since
λj − λk 6= λm − λl for all (m, l) 6= (j , k), (k, j) only if

(j , k) =
(
p±1

2 , p∓1
2

)
with p prime.

Solution: perturbation.
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Perturbation theory for the 1D potential well

Idea: Let Aη = A + ηB, η ∈ [0, δ]. System

ψ̇ = A + uB, u ∈ [0, δ]

can be rewritten as

ψ̇ = Aηψ + vBψ, v ∈ [−η, δ − η].

Since η 7→ Aη is analytic, there exist φk(·) and λk(·) analytic such
that (λk(η), φk(η))k∈N is a complete system of eigenpairs for Aη
(Rellich-Kato theorem).

Following the computations in [Beauchard & Mirrahimi,2009],

λk(η) = k2π2 +

(
1

12π2k2
− 5

4π4k4

)
η2 + o(η2).

We easily get that

λ′′j (0)− λ′′k(0) = λ′′m(0)− λ′′l (0) =⇒ (j , k) = (m, l).

For almost all η ∈ (0, δ), {(j , k) ∈ N2 | j − k odd} is a
non-resonant connectedness chain =⇒ approximate controllability
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Perturbation theory for the 1D potential well: more general
control potentials

i
∂ψ(x , t)

∂t
=

(
− ∂2

∂x2
+ u(t)W (x)

)
ψ(x , t), ψ(0, t) = ψ(1, t) = 0

The derivative of λk(u) with respect to u at u = 0 is

λ′k(0) =

∫

R
W (x)φk(x)2dx = 2

∫

R
W (x) sin(kπx)2dx .

We look for W such that the non-resonance properties are satisfied
by (λ′k(0))k∈N.

For instance, one easily check by direct computation that, for
almost every α ∈ R, W (x) = eαx allows to control.

Since φk(x)2 = 2 sin(kπx)2 are linearly independent functions, for
most W ∈ L∞(0, 1) the system is controllable.
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Generic: frequent and robust

Aim: prove genericity of the sufficient conditions for controllability
(related results in [Nersesyan, 2010])

Recall that a property is generic with respect to some parameter
belonging to a metric space, if it is true for a dense set of
parameters which is intersection of countably many open sets.

iψ̇ = −∆ψ + Vψ + uWψ

Ω bounded domain of Rd or Ω = Rd ; H = L2(Ω)

Parameters: V ,W : Ω→ R and also Ω in the bounded case

−∆ + V has discrete spectrum if limx→∞ V (x) = +∞
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Baire spaces and topologies

Ω → Σm = {Ω | Ω bounded domain with Cm boundary},m ∈ N

V → V(Ω) =

{
L∞(Ω) Ω bdd
{V ∈ L∞loc | limx→∞ V (x) = +∞} Ω = Rd

W → W(Ω) =

{
L∞(Ω) Ω bdd

{W ∈ L∞loc | lim supx→∞
log(|W (x)|+1)

‖x‖ <∞} Ω = Rd

(V ,W ) → Z(Ω) = {(V ,W ) ∈ V(Ω)×W(Ω) | V+uW ∈ V(Ω) ∀u ∈ [0, δ]}

We endow these spaces with the Cm, L∞ and L∞ × L∞ topology



Analytic dependence

Theorem (Rellich, Kato)

Let I be an interval of R and Ω be a bounded domain or Rd . Let
V ∈ V(Ω) and µ 7→Wµ an analytic function from I into L∞(Ω,R).
Then, there exist

(Λk : I → R)k∈N

(Φk : I → L2(Ω,R))k∈N

families of analytic functions such that for any µ ∈ I the sequence
(Λk(µ))k∈N is the family of eigenvalues of −∆ + V + Wµ counted
according to their multiplicities and (Φk(µ))k∈N is an orthonormal
basis of corresponding eigenfunctions.



Analytic propagation of non-vanishing conditions and the
role of the Laplace–Dirichelet operator when Ω is bounded

Let Ω be bounded.

Fix Ω and V satisfying:

(λk(V ,Ω))k∈N non-resonant (all gaps are different)

Then generically w.r.t. W the system is approximately
controllable, since every condition

∫

Ω
Wφk(V ,Ω)φk+1(V ,Ω)dx 6= 0

defines an open dense subset of W.

Now fix Ω such that the non-resonance condition is true for
(λk(0,Ω))k . Then, by analytic perturbation, (λk(µV ,Ω))k is
non-resonant for a generic µ ∈ R. In particular, generically w.r.t.
(V ,W ) the system is approximately controllable.
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Analytic propagation of non-vanishing conditions and the
role of the Laplace–Dirichelet operator when Ω is bounded

Similarly, fix Ω such that each λk(0,Ω) is simple and (φk(0,Ω)2)k
are linearly independent. Then, thanks to

d

dµ
|µ=0λk(µV ,Ω) =

∫

Ω
Vφk(0,Ω)2

generically with respect to V the sequence d
dµ |µ=0λk(µV ,Ω) is

non-resonant. This would imply that generically w.r.t. µ the same
is true for λk(µV ,Ω). Again, generically w.r.t. (V ,W ) the system
is approximately controllable.

Resuming: if Ω is such that either (λk(0,Ω))k is non-resonant or
(φk(0,Ω)2)k is a free family, then generically w.r.t. (V ,W ) the
system is approximately controllable.
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Generic approximate controllability

Theorem (Y. Privat, M. S.)

Generically with respect to Ω ∈ Σm, (φk(0,Ω)2)k is free and (for
d > 1) (λk(0,Ω))k is non-resonant.

Corollary

Generically with respect to
{(Ω,V ,W ) | Ω ∈ Σm, (V ,W ) ∈ Z(Ω)} the Schrödinger equation

iψ̇ = −∆ψ + Vψ + uWψ, ψ|∂Ω = 0, u ∈ [0, δ]

is approximately controllable for every δ > 0.



Techniques

The openness of the sets of parameters (here, domains Ω)
corresponding to each non-resonance condition follows from
standard continuity results. The hard point is their density.

Global perturbation
If one Ω satisfying the non-resonance can be found, consider any
analytic path starting from Ω in order to propagate the good
property. The property will be true for all but countably many
points of the path, hence, for almost every domain with the same
topology as Ω.

Local step
Use local perturbations to get a domain Ω with a prescribed
topology satisfying the desired non-resonance property



Tricky point of the global perturbation analysis:
intersection of eigenvalues

If λ2 crosses λ3 along the analytic perturbation, then the condition
λ4 − λ2 6= λ5 − λ4 becomes λ4 − λ3 6= λ5 − λ4.

Strategy to avoid the bad effect of eigenvalue rearrangement along
the path: elude intersections by small modifications of the analytic
path (Arnold, Colin de Verdière, Teytel [1999]).

This is possible because eigenvalue intersections is a somehow rare
phenomenon: the eigevalues of

(
a b
b c

)

are double if a = c and b = 0, two conditions on three parameters!
(Von Neumann-Wigner [1929], Lupo-Micheletti [1995],
Lamberti-Lanza de Cristoforis [2006]).
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If λ2 crosses λ3 along the analytic perturbation, then the condition
λ4 − λ2 6= λ5 − λ4 becomes λ4 − λ3 6= λ5 − λ4.

Strategy to avoid the bad effect of eigenvalue rearrangement along
the path: elude intersections by small modifications of the analytic
path (Arnold, Colin de Verdière, Teytel [1999]).

This is possible because eigenvalue intersections is a somehow rare
phenomenon: the eigevalues of

(
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are double if a = c and b = 0, two conditions on three parameters!
(Von Neumann-Wigner [1929], Lupo-Micheletti [1995],
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Back to the Schrödinger equation

It is possible to obtain stronger genericity results for the
Schrödinger equation for any fixed Ω bounded domain or Ω = Rd .

Proposition (P. Mason, M. S.)

Fix Ω. Then, generically with respect to V , (λk(V ,Ω))k is
non-resonant.

Corollary

Fix Ω. Generically with respect to (V ,W ) ∈ Z(Ω) the Schrödinger
equation is approximately controllable.



The potential well lemma

Lemma

Fix Ω (bdd or Rd). Let ω be a compactly contained subdomain of
Ω with Lipschitz boundary, v ∈ L∞(ω) and (Vk)k∈N ⊂ V(Ω) such
that

Vk |ω → v in L∞(ω)
limk→∞ infΩ\ω Vk = +∞

Theorem 5 Let Ω ∈ Ξ. Then, generically with respect to (V, W ) ∈
L∞(Ω) × L∞(Ω) the triple (Ω, V, W ) is fit for control and, in particular,
(Ω, V, W, U ) is approximately controllable for every U ⊂ R with nonempty
interior.

Proof. Recall that Rk, defined in (2), is open and dense in L∞(Ω). If V
belongs to Rk, then the eigenfunctions φ1(V,Ω), . . . , φk(V,Ω) are uniquely
defined in H1

0(Ω) up to sign. It makes sense, therefore, to define

Uk = {(V, W ) ∈ Rk × L∞(Ω) |∫

Ω

Wφj1(V,Ω)φj2(V,Ω) %= 0 for every 1 ≤ j1, j2 ≤ k}.

As it follows from the unique continuation theorem, for every 1 ≤ j1, j2 ≤ k
the product φj1(V,Ω)φj2(V,Ω) is a nonzero function on Ω. Therefore, Uk is
dense in L∞(Ω) × L∞(Ω). Its openness follows, moreover, from the continuity
of V '→ {φj(V,Ω),−φj(V,Ω)} on Rk for j = 1, . . . , k (see, for instance, [8]).

The proof is concluded by noticing that (Ω, V, W ) is fit for control if (V, W )
belongs to

(∩k∈NUk) ∩
(
∩q∈∪k∈NQk\{0}Oq × L∞(Ω)

)
,

a countable intersection of open and dense subsets of L∞(Ω) × L∞(Ω). !

Generic controllability with respect to
one single argument
The following result states that, for a fixed potential W ∈ L∞(Ω), the triple
(Ω, V, W ) is generically fit for control.

Theorem 6 Let Ω ∈ Ξ. Fix W non-constant and absolutely continuous
on Ω. Then, generically with respect to V ∈ L∞(Ω), (Ω, V, W ) is fit for
control.

We shall now show that, for a fixed potential V , generically with respect to
W ∈ L∞(Ω), (Ω, V, W, U ) is effective. Notice that (Ω, V, W ) cannot be fit for
control if the spectrum of V is resonant, independently of V . In this regard
the result is necessarily weaker than Proposition 3, where the genericity of the
fit for controlness was proved. The precise statement of our result is given by
the following proposition.

Theorem 7 Let Ω ∈ Ξ, V an absolutely continuous function on Ω and
U ⊂ R with nonempty interior. Then, generically with respect to W ,
(Ω, V, W, U ) is effective.

Conclusions
In this presentation we stated some results showing that, once (Ω, V ) or (Ω, W )
is fixed, the bilinear Schrödinger equation (1) on Ω having V as uncontrolled
and W as controlled potential is generically approximately controllable with
respect to the other element of the triple (Ω, V, W ).
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We say that (Ω, V, W ) is fit for control if −∆ + V is non-resonant and
B(n)(Ω, V, W ) is frequently connected.

We say that the quadruple (Ω, V, W, U ) is effective if (Ω, V + uW, W ) is fit
for control for some u such that [u, u + δ) ⊂ U .

Theorem 1 states that being effective is a sufficient condition for controllability.

Genericity: topologies and definitions
Let us recall that every complete metric space X is a Baire space, that is, any
intersection of countably many open and dense subsets of X is dense in X .
The intersection of countably many open and dense subsets of a Baire space is
called a residual subset of X . Given a Baire space X and a boolean function
P : X → {0, 1} we say that P is a generic property if there exists a residual
subset Y of X such that every x in Y satisfies property P , that is, P (x) = 1.

In the following the role of X will be played by L∞(Ω) × L∞(Ω) or L∞(Ω).

Genericity w.r.t. the pair (V, W )
Here below we prove that, given Ω ∈ Ξ, for a generic pair (V, W ) ∈ L∞(Ω) ×
L∞(Ω) the triple (Ω, V, W ) is fit for control.

Let us start by recalling a known result on the generic simplicity of eigenvalues
(see [1, 11]).

Proposition 2 (Albert) Let Ω ∈ Ξ. For every k ∈ N the set

Rk ={V ∈ L∞(Ω) | λ1(V,Ω), . . . , λk(V,Ω) simple} (2)

is open and dense in L∞(Ω). Hence, the spectrum σ(V,Ω) is, generically
with respect V , simple.

Genericity of (H1) is stated by the following generalization of Proposition 2.

Proposition 3 Let Ω ∈ Ξ. For every K ∈ N and q = (q1, . . . , qK) ∈
QK \ {0}, the set

Oq =



V ∈ L∞(Ω) |

K∑

j=1

qjλj(V,Ω) %= 0



 (3)

is open and dense in L∞(Ω). Hence, the spectrum σ(V,Ω) forms, generi-
cally with respect V , a non-resonant family.

The proof is based on the following result and on the analyticity of eigenval-
ues/eigenfunctions along analytic paths of potentials (see, for instance, [8]).

Lemma 4 Let Ω ∈ Ξ and ω be a nonempty, open subset compactly con-
tained in Ω and whose boundary is Lipschitz. Let v belong to L∞(ω) and
(Vk)k∈N be a sequence in L∞(Ω) such that Vk|ω → v in L∞(ω) as k → ∞
and limk→∞ infΩ\ω Vk = +∞. Then, for every j ∈ N, limk→+∞ λj(Vk,Ω) =
λj(v, ω). Moreover, if λj(v, ω) is simple then (up to a choice of sign)
limk→+∞ φj(Vk,Ω) = φj(v, ω) in L2(Ω), where φj(v, ω) is identified with its
extension by zero outside ω.

+∞

Vk(x)

k → +∞
k → +∞

ω
Ω

v(x)

Vk(x)

k → +∞

k → +∞

+∞ +∞

Figure 1: Lemma 4, graphs of suitable functions Vk(·) and v(·).

The following theorem extends the analysis from V to the pair (V, W ), com-
bining the generic non-resonance of the spectrum of −∆+ V with a genericity
connectedness condition on the matrices B(n)(Ω, V, W ) (condition (H2)).

Introduction
We consider controlled Schrödinger equations of the type

i
∂ψ

∂t
(t, x) = (−∆+ V (x) + u(t)W (x))ψ(t, x), u(t) ∈ U, (1)

where ψ : I × Ω → C for some Ω ⊂ Rd open and bounded, I is a subinterval
of R, ψ|I×∂Ω = 0. Here V, W are suitable real valued functions and U is a
nonempty subset of R.

As proved in [10], the control system (1) is never exactly controllable in L2(Ω).
Nevertheless, several positive controllability results have been proved in recent
years. Among them, let us mention the exact controllability among regular
enough wave functions for d = 1 and V = 0 [3, 5] and the recently obtained
L2-approximate controllability [9]. The result we will consider for the discussion
below is the L2-approximate controllability obtained by the authors in [6].

The scope of this presentation is to establish that the sufficient conditions for
controllability proposed in [6] are robust and frequent enough. The mathemati-
cal framework for this analysis is provided by the standard notion of genericity.

Let us mention that the genericity question for the Schrödinger equation is
already addressed in [9], where some partial results are given. In particular,
genericity for the case d = 1 is essentially proven in [9, Lemma 3.12]. Further
genericity results on the controllability of a linearized Schrödinger equation can
be found in [4].

Notations and definition of solutions
We denote by N the set of positive integers, by A∗ the adjoint of an operator
A. We fix d ∈ N to denote the dimension of the space in which the Schrödinger
equation is considered. We denote by Ξ the set of nonempty, open and bounded
subsets of Rd.

In the following we consider Equation (1) assuming that the potentials V, W
are taken in L∞(Ω,R). Then, for every u ∈ U , −∆ + V + uW : H2(Ω,R) ∩
H1

0(Ω,R) → L2(Ω,C) is a skew-adjoint operator on L2(Ω,C) with discrete
spectrum. (See [7].) In particular, −∆+V +uW generates a group of unitary
transformations eit(−∆+V +uW ) : L2(Ω) → L2(Ω). Therefore, eit(−∆+V +uW )(S) =
S where S denotes the unit sphere of L2(Ω).

For every u ∈ L∞([0, T ], U ) and every ψ0 ∈ L2(Ω) there exists a unique weak
(and mild) solution ψ(·; ψ0, u) ∈ C([0, T ], H). Moreover, if ψ0 ∈ D(A) and
u ∈ C1([0, T ], U ) then ψ(·; ψ0, u) is differentiable and it is a strong solution of
(1). (See [2] and references therein.)

Definition 1 We say that the quadruple (Ω, V, W, U ) is approximately
controllable if for every ψ0, ψ1 ∈ S and every ε > 0 there exist T > 0
and u ∈ L∞([0, T ], U ) such that ‖ψ1 − ψ(T ; ψ0, u)‖ < ε.

In order to state the approximate controllability result obtained in [6], we need
to recall the following two definitions.

Definition 2 The elements of a sequence (µn)n∈N ⊂ R are said to be Q-
linearly independent (equivalently, the sequence is said to be non-resonant)

if for every N ∈ N and (q1, . . . , qN) ∈ QN ! {0} one has
∑N

n=1 qnµn %= 0.

Definition 3 A n × n matrix C = (cjk)1≤j,k≤n is said to be connected if
for every pair of indices j, k ∈ {1, . . . , n} there exists a finite sequence
r1, . . . , rl ∈ {1, . . . , n} such that cjr1cr1r2 · · · crl−1rl

crlk %= 0.

In the following we denote by σ(V,Ω) = (λj(V,Ω))j∈N the non-decreasing se-
quence of eigenvalues of −∆+V (on H2(Ω,R)∩H1

0(Ω,R)), counted according
to their multiplicity and by (φj(V,Ω))j∈N the corresponding sequence of eigen-
functions (unique up to the sign if the corresponding eigenvalue is simple). In
particular (φj(V,Ω))j∈N forms an orthonormal basis of L2(Ω,C).

The theorem below recalls the controllability results obtained by the authors
in [6, Theorems 3.4, 5.2].

Theorem 1 Let Ω ∈ Ξ, V, W belong to L∞(Ω,R), and U contain the
interval [0, δ) for some δ > 0. Assume that

(H1) the sequence
(
λk+1(V,Ω) − λk(V,Ω)

)
k∈N

is non-resonant,

(H2) for infinitely many n ∈ N the matrix

B(n)(Ω, V, W ) :=

(∫

Ω

W (x)φj(V,Ω)φk(V,Ω) dx

)n

j,k=1

is connected (i.e., B(n)(Ω, V, W ) is frequently connected).

Then (Ω, V, W, U ) is approximately controllable.

Remark 1 In [6] we prove that the conditions of Theorem 1 are also suffi-
cient for the approximate controllability of (Ω, V, W, U ) in the more general
sense of density matrices. Moreover, in [6] the case Ω unbounded is also
considered. The potentials V and W are allowed to be unbounded as well,
and Theorem 1 still holds, though the notion of solution of (1) gets more
delicate. In this presentation we restrict our attention to the bounded
case, although the results presented below admit suitable counterparts in
the unbounded setting.

Abstract – In a recent paper we proposed a set of sufficient conditions for the approximate controllability
of a discrete-spectrum bilinear Schrödinger equation on a fixed domain. These conditions are expressed in
terms of the controlled potential and of the eigenpairs of the uncontrolled Schrödinger operator. The aim
of this presentation is to show that these conditions are generic with respect to the uncontrolled or the
controlled potential. The results are obtained by analytic perturbation arguments and through the study
of asymptotic properties of eigenfunctions.
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Generic Controllability Properties for the

Bilinear Schrödinger Equation

Then, for every j ∈ N,

λj(Ω,Vk)→ λj(ω, v) in R.

Moreover, if λj(ω, v) is simple then (up to the sign)

φj(Ω,Vk)→ φj(ω, v),
√
Vkφj(Ω,Vk)→

√
vφj(ω, v) in L2(Ω,C).



The potential well lemma

Lemma

Fix Ω (bdd or Rd). Let ω be a compactly contained subdomain of
Ω with Lipschitz boundary, v ∈ L∞(ω) and (Vk)k∈N ⊂ V(Ω) such
that

Vk |ω → v in L∞(ω)
limk→∞ infΩ\ω Vk = +∞

Theorem 5 Let Ω ∈ Ξ. Then, generically with respect to (V, W ) ∈
L∞(Ω) × L∞(Ω) the triple (Ω, V, W ) is fit for control and, in particular,
(Ω, V, W, U ) is approximately controllable for every U ⊂ R with nonempty
interior.

Proof. Recall that Rk, defined in (2), is open and dense in L∞(Ω). If V
belongs to Rk, then the eigenfunctions φ1(V,Ω), . . . , φk(V,Ω) are uniquely
defined in H1

0(Ω) up to sign. It makes sense, therefore, to define

Uk = {(V, W ) ∈ Rk × L∞(Ω) |∫

Ω

Wφj1(V,Ω)φj2(V,Ω) %= 0 for every 1 ≤ j1, j2 ≤ k}.

As it follows from the unique continuation theorem, for every 1 ≤ j1, j2 ≤ k
the product φj1(V,Ω)φj2(V,Ω) is a nonzero function on Ω. Therefore, Uk is
dense in L∞(Ω) × L∞(Ω). Its openness follows, moreover, from the continuity
of V '→ {φj(V,Ω),−φj(V,Ω)} on Rk for j = 1, . . . , k (see, for instance, [8]).

The proof is concluded by noticing that (Ω, V, W ) is fit for control if (V, W )
belongs to

(∩k∈NUk) ∩
(
∩q∈∪k∈NQk\{0}Oq × L∞(Ω)

)
,

a countable intersection of open and dense subsets of L∞(Ω) × L∞(Ω). !

Generic controllability with respect to
one single argument
The following result states that, for a fixed potential W ∈ L∞(Ω), the triple
(Ω, V, W ) is generically fit for control.

Theorem 6 Let Ω ∈ Ξ. Fix W non-constant and absolutely continuous
on Ω. Then, generically with respect to V ∈ L∞(Ω), (Ω, V, W ) is fit for
control.

We shall now show that, for a fixed potential V , generically with respect to
W ∈ L∞(Ω), (Ω, V, W, U ) is effective. Notice that (Ω, V, W ) cannot be fit for
control if the spectrum of V is resonant, independently of V . In this regard
the result is necessarily weaker than Proposition 3, where the genericity of the
fit for controlness was proved. The precise statement of our result is given by
the following proposition.

Theorem 7 Let Ω ∈ Ξ, V an absolutely continuous function on Ω and
U ⊂ R with nonempty interior. Then, generically with respect to W ,
(Ω, V, W, U ) is effective.

Conclusions
In this presentation we stated some results showing that, once (Ω, V ) or (Ω, W )
is fixed, the bilinear Schrödinger equation (1) on Ω having V as uncontrolled
and W as controlled potential is generically approximately controllable with
respect to the other element of the triple (Ω, V, W ).
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We say that (Ω, V, W ) is fit for control if −∆ + V is non-resonant and
B(n)(Ω, V, W ) is frequently connected.

We say that the quadruple (Ω, V, W, U ) is effective if (Ω, V + uW, W ) is fit
for control for some u such that [u, u + δ) ⊂ U .

Theorem 1 states that being effective is a sufficient condition for controllability.

Genericity: topologies and definitions
Let us recall that every complete metric space X is a Baire space, that is, any
intersection of countably many open and dense subsets of X is dense in X .
The intersection of countably many open and dense subsets of a Baire space is
called a residual subset of X . Given a Baire space X and a boolean function
P : X → {0, 1} we say that P is a generic property if there exists a residual
subset Y of X such that every x in Y satisfies property P , that is, P (x) = 1.

In the following the role of X will be played by L∞(Ω) × L∞(Ω) or L∞(Ω).

Genericity w.r.t. the pair (V, W )
Here below we prove that, given Ω ∈ Ξ, for a generic pair (V, W ) ∈ L∞(Ω) ×
L∞(Ω) the triple (Ω, V, W ) is fit for control.

Let us start by recalling a known result on the generic simplicity of eigenvalues
(see [1, 11]).

Proposition 2 (Albert) Let Ω ∈ Ξ. For every k ∈ N the set

Rk ={V ∈ L∞(Ω) | λ1(V,Ω), . . . , λk(V,Ω) simple} (2)

is open and dense in L∞(Ω). Hence, the spectrum σ(V,Ω) is, generically
with respect V , simple.

Genericity of (H1) is stated by the following generalization of Proposition 2.

Proposition 3 Let Ω ∈ Ξ. For every K ∈ N and q = (q1, . . . , qK) ∈
QK \ {0}, the set

Oq =



V ∈ L∞(Ω) |

K∑

j=1

qjλj(V,Ω) %= 0



 (3)

is open and dense in L∞(Ω). Hence, the spectrum σ(V,Ω) forms, generi-
cally with respect V , a non-resonant family.

The proof is based on the following result and on the analyticity of eigenval-
ues/eigenfunctions along analytic paths of potentials (see, for instance, [8]).

Lemma 4 Let Ω ∈ Ξ and ω be a nonempty, open subset compactly con-
tained in Ω and whose boundary is Lipschitz. Let v belong to L∞(ω) and
(Vk)k∈N be a sequence in L∞(Ω) such that Vk|ω → v in L∞(ω) as k → ∞
and limk→∞ infΩ\ω Vk = +∞. Then, for every j ∈ N, limk→+∞ λj(Vk,Ω) =
λj(v, ω). Moreover, if λj(v, ω) is simple then (up to a choice of sign)
limk→+∞ φj(Vk,Ω) = φj(v, ω) in L2(Ω), where φj(v, ω) is identified with its
extension by zero outside ω.
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Figure 1: Lemma 4, graphs of suitable functions Vk(·) and v(·).

The following theorem extends the analysis from V to the pair (V, W ), com-
bining the generic non-resonance of the spectrum of −∆+ V with a genericity
connectedness condition on the matrices B(n)(Ω, V, W ) (condition (H2)).

Introduction
We consider controlled Schrödinger equations of the type

i
∂ψ

∂t
(t, x) = (−∆+ V (x) + u(t)W (x))ψ(t, x), u(t) ∈ U, (1)

where ψ : I × Ω → C for some Ω ⊂ Rd open and bounded, I is a subinterval
of R, ψ|I×∂Ω = 0. Here V, W are suitable real valued functions and U is a
nonempty subset of R.

As proved in [10], the control system (1) is never exactly controllable in L2(Ω).
Nevertheless, several positive controllability results have been proved in recent
years. Among them, let us mention the exact controllability among regular
enough wave functions for d = 1 and V = 0 [3, 5] and the recently obtained
L2-approximate controllability [9]. The result we will consider for the discussion
below is the L2-approximate controllability obtained by the authors in [6].

The scope of this presentation is to establish that the sufficient conditions for
controllability proposed in [6] are robust and frequent enough. The mathemati-
cal framework for this analysis is provided by the standard notion of genericity.

Let us mention that the genericity question for the Schrödinger equation is
already addressed in [9], where some partial results are given. In particular,
genericity for the case d = 1 is essentially proven in [9, Lemma 3.12]. Further
genericity results on the controllability of a linearized Schrödinger equation can
be found in [4].

Notations and definition of solutions
We denote by N the set of positive integers, by A∗ the adjoint of an operator
A. We fix d ∈ N to denote the dimension of the space in which the Schrödinger
equation is considered. We denote by Ξ the set of nonempty, open and bounded
subsets of Rd.

In the following we consider Equation (1) assuming that the potentials V, W
are taken in L∞(Ω,R). Then, for every u ∈ U , −∆ + V + uW : H2(Ω,R) ∩
H1

0(Ω,R) → L2(Ω,C) is a skew-adjoint operator on L2(Ω,C) with discrete
spectrum. (See [7].) In particular, −∆+V +uW generates a group of unitary
transformations eit(−∆+V +uW ) : L2(Ω) → L2(Ω). Therefore, eit(−∆+V +uW )(S) =
S where S denotes the unit sphere of L2(Ω).

For every u ∈ L∞([0, T ], U ) and every ψ0 ∈ L2(Ω) there exists a unique weak
(and mild) solution ψ(·; ψ0, u) ∈ C([0, T ], H). Moreover, if ψ0 ∈ D(A) and
u ∈ C1([0, T ], U ) then ψ(·; ψ0, u) is differentiable and it is a strong solution of
(1). (See [2] and references therein.)

Definition 1 We say that the quadruple (Ω, V, W, U ) is approximately
controllable if for every ψ0, ψ1 ∈ S and every ε > 0 there exist T > 0
and u ∈ L∞([0, T ], U ) such that ‖ψ1 − ψ(T ; ψ0, u)‖ < ε.

In order to state the approximate controllability result obtained in [6], we need
to recall the following two definitions.

Definition 2 The elements of a sequence (µn)n∈N ⊂ R are said to be Q-
linearly independent (equivalently, the sequence is said to be non-resonant)

if for every N ∈ N and (q1, . . . , qN) ∈ QN ! {0} one has
∑N

n=1 qnµn %= 0.

Definition 3 A n × n matrix C = (cjk)1≤j,k≤n is said to be connected if
for every pair of indices j, k ∈ {1, . . . , n} there exists a finite sequence
r1, . . . , rl ∈ {1, . . . , n} such that cjr1cr1r2 · · · crl−1rl

crlk %= 0.

In the following we denote by σ(V,Ω) = (λj(V,Ω))j∈N the non-decreasing se-
quence of eigenvalues of −∆+V (on H2(Ω,R)∩H1

0(Ω,R)), counted according
to their multiplicity and by (φj(V,Ω))j∈N the corresponding sequence of eigen-
functions (unique up to the sign if the corresponding eigenvalue is simple). In
particular (φj(V,Ω))j∈N forms an orthonormal basis of L2(Ω,C).

The theorem below recalls the controllability results obtained by the authors
in [6, Theorems 3.4, 5.2].

Theorem 1 Let Ω ∈ Ξ, V, W belong to L∞(Ω,R), and U contain the
interval [0, δ) for some δ > 0. Assume that

(H1) the sequence
(
λk+1(V,Ω) − λk(V,Ω)

)
k∈N

is non-resonant,

(H2) for infinitely many n ∈ N the matrix

B(n)(Ω, V, W ) :=

(∫

Ω

W (x)φj(V,Ω)φk(V,Ω) dx

)n

j,k=1

is connected (i.e., B(n)(Ω, V, W ) is frequently connected).

Then (Ω, V, W, U ) is approximately controllable.

Remark 1 In [6] we prove that the conditions of Theorem 1 are also suffi-
cient for the approximate controllability of (Ω, V, W, U ) in the more general
sense of density matrices. Moreover, in [6] the case Ω unbounded is also
considered. The potentials V and W are allowed to be unbounded as well,
and Theorem 1 still holds, though the notion of solution of (1) gets more
delicate. In this presentation we restrict our attention to the bounded
case, although the results presented below admit suitable counterparts in
the unbounded setting.

Abstract – In a recent paper we proposed a set of sufficient conditions for the approximate controllability
of a discrete-spectrum bilinear Schrödinger equation on a fixed domain. These conditions are expressed in
terms of the controlled potential and of the eigenpairs of the uncontrolled Schrödinger operator. The aim
of this presentation is to show that these conditions are generic with respect to the uncontrolled or the
controlled potential. The results are obtained by analytic perturbation arguments and through the study
of asymptotic properties of eigenfunctions.
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Then, for every j ∈ N,

λj(Ω,Vk)→ λj(ω, v) in R.

Moreover, if λj(ω, v) is simple then (up to the sign)

φj(Ω,Vk)→ φj(ω, v),
√
Vkφj(Ω,Vk)→

√
vφj(ω, v) in L2(Ω,C).



Genericity with respect to one single argument

Theorem (P. Mason, M. S.)

Fix Ω bdd or Rd and W ∈ W(Ω) absolutely continuous and
non-constant. Generically with respect to V in
{Z ∈ V(Ω) | (Z ,W ) ∈ Z(Ω)} the Schrödinger equation is
approximately controllable.
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with respect to W∈ {Z ∈ V(Ω) | (V ,Z ) ∈ Z(Ω)} the Schrödinger
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