Geometric Optimal Control Theory in spin systems

Dominique Sugny

Laboratoire Interdisciplinaire Carnot de Bourgogne, Dijon, France

Workshop quantum control IHP, Paris 2010

9/12/2010

A joint work between mathematicians, physicists and chemists.

- B. Bonnard, J.-B. Caillau, O. Cots, N. Scherbakova (IMB, Dijon)
- Group of S. J. Glaser, Y. Zhang, M. Braun (Chemistry department, Munich)
- M. Lapert (PhD, ICB, Dijon), E. Assémat (PhD, ICB, Dijon)

Rem.: Other results of our research project will be given in the conferences of B. Bonnard and S. J. Glaser

Application of tools of control theory to quantum dynamics.

- Photochemistry, femtosecond laser fields
- Condensed matter:
 - superconducting Josephson junction
 - cold atoms
- Nuclear Magnetic Resonance
 - liquid phase
 - solid phase

NMR in liquid phase

A promising field of applications.

- fundamental problems
- quantum computing
- NMR spectroscopy and imaging (increase of the sensitivity and resolution of standard NMR techniques)

Advantages of the NMR domain

- Accuracy of the models, even in presence of dissipation
- \blacktriangleright low and finite-dimensional problems \Longrightarrow geometry
- very good agreement between theory and experiment

Rem.: Such points are not true in Photochemistry

- Numerical approaches, e.g. the GRAPE and monotonic algorithms
- Geometric approach
 Ex.: Lie group methods for unbounded controls
 N. Khaneja, S. J. Glaser et al.

Our work: use of geometric optimal control theory to analyze NMR systems (Pontryagin Maximum Principle, indirect methods, analytic and numerical computations)

 \longrightarrow From mathematics (group of B. Bonnard) to experiments (group of S. J. Glaser)

$$\begin{pmatrix} \dot{M}_{x} \\ \dot{M}_{y} \\ \dot{M}_{z} \end{pmatrix} = \begin{pmatrix} -\omega M_{y} + \omega_{y} M_{z} \\ \omega M_{x} - \omega_{x} M_{z} \\ \omega_{x} M_{y} - \omega_{y} M_{x} \end{pmatrix} + \begin{pmatrix} -M_{x}/T_{2} \\ -M_{y}/T_{2} \\ (M_{0} - M_{z})/T_{1} \end{pmatrix} + RDE$$

with T_1 , T_2 dissipation terms, ω : offset.

$$RDE = \frac{1}{M_0 T_r} \left(\begin{array}{c} -M_x M_z \\ -M_y M_z \\ M_x^2 + M_y^2 \end{array} \right)$$

RDE: Radiation damping effect T_r : Radiation damping constant.

Saturation control problem in NMR:

North pole (equilibrium point) \longrightarrow center of the Bloch ball. Constraint: $|\omega| \le \omega_{max}$, $\omega = 0$

Rem.: standard problem in NMR (remove the corresponding spin contribution).

Geometric analysis: symmetry of revolution \implies use of one control:

$$\dot{y} = -uz - y/T_2 - yz/T_r$$

 $\dot{z} = uy + (1 - z)/T_1 + y^2/T_r$

(y, z): reduced coordinates and $|u| \le u_0$.

Optimal synthesis

PMP and geometric analysis of the extremals: $u = \pm u_0$ or singular. **Rem.**: structure depends on the dissipative parameters and on the bound of the control.

Figure: Schematic representation of the optimal synthesis

A concrete example

Ex.: The proton spins of H_2O in an organic solvent ($T_1 = 740$ ms, $T_2 = 60$ ms and $\omega_{max} = 32.3$ Hz)

Figure: Time-optimal saturation of a spin 1/2 particle

Rem.: Comparison with the inversion recovery sequence: gain of 60% in the control duration.

Analysis in the unbounded case

Rem.: In the limit $\omega_{max} \rightarrow +\infty$, the structure is B-S-S.

Dominique Sugny

Geometric Optimal Control Theory in spin systems

Analytic computation in the unbounded case

Neglecting the duration of the first bang pulse, we get:

$$T_{opt} \rightarrow \frac{T_2}{2} \ln[1 - \frac{2}{\alpha T_2}] + T_1 \ln[\frac{2T_1 - T_2}{2(T_1 - T_2)}]$$

 $T_{IR} \rightarrow T_1 \ln 2$

Rem.: The physical limit of the control process is due to the dissipative parameters: Use of the dissipation to reach the target.

Figure: Contour plot of $d\dot{r}/d\theta$.

The GRAPE algorithm

Iterative algorithm to solve the optimal equations:

Cost: $\Phi_t = \sqrt{y^2 + z^2}$.

Fixed control duration T and bound ω_{max} on the control field.

Comparison of the different optimal solutions

Figure: Smooth regularization of the geometric solution.

Results:

Geom.: $T_{geom.} = 6.58$, $\Phi_t = 5.34 \times 10^{-16}$ Grape: $T_{grape} = 6.60$, $\Phi_t = 2.25 \times 10^{-13}$. Grape: $T_{grape} = 6.58$, $\Phi_t = 4.78 \times 10^{-6}$

- Energy minimization problem (no singular extremal, a smooth solution)
- Radiation damping effect (smooth effect if $T_r > 0$).
- Optimal control of uncoupled spin systems
 - \longrightarrow Two spins with different offsets
 - \longrightarrow The contrast problem

The radiation damping effect

Experimental constraint: Inhomogeneous ensemble with different offsets.

Figure: Optimal trajectory computed with the GRAPE algorithm.

Rem. Example of coupling between geometric methods and the GRAPE algorithm.

Two spins with different offsets: the symmetric case

$$\begin{pmatrix} \dot{M}_{ax} \\ \dot{M}_{ay} \\ \dot{M}_{az} \end{pmatrix} = \begin{pmatrix} -\omega M_{ay} + \omega_y M_{az} \\ \omega M_{ax} - \omega_x M_{az} \\ \omega_x M_{ay} - \omega_y M_{ax} \end{pmatrix}$$

$$\begin{pmatrix} \dot{M}_{bx} \\ \dot{M}_{by} \\ \dot{M}_{bz} \end{pmatrix} = \begin{pmatrix} \omega M_{by} + \omega_y M_{bz} \\ -\omega M_{bx} - \omega_x M_{bz} \\ \omega_x M_{by} - \omega_y M_{bx} \end{pmatrix}$$

One spin, one control: P. Mason, U. Boscain, JMP (2006)
 Optimal solution: bang-bang controls

Inversion of two spins

two spins with two controls \iff two spins with one control Two proton spins of methyl acetate CH_3OOCCH_3 .

The contrast problem: the blood

Two uncoupled spins describing the oxygeneated/desoxygeneated blood

Structure of the optimal control: Bang-Singular

Dominique Sugny Geometric Optimal Control Theory in spin systems

Mathematical developments

- Global understanding of the contrast problem
- Classification of the different structure in the case of RDE
- Numerical applications
 - limit of indirect methods, continuation approach
 - coupling between GRAPE and geometric methods
- Experimental implementation of geometric solutions
 - Applications in NMR spectroscopy and NMR imaging.

- ▶ B. Bonnard et al., IEEE Trans. AC 54, 2598 (2009)
- B. Bonnard et al., J. Math. Phys. 51, 092705 (2010)
- M. Lapert et al., Phys. Rev. Lett. 104, 083001 (2010)
- ▶ E. Assémat et al., Phys. Rev. A 82, 013415 (2010)
- ▶ M. Lapert et al., to be published in Phys. Rev. A (2010)
- ▶ Y. Zhang et al., to be published in J. Chem. Phys. (2010)

page web:

http://icb.u-bourgogne.fr/OMR/DQNL/Sugny/professionel.html