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Optimal control theory

A joint work between mathematicians, physicists and chemists.

I B. Bonnard, J.-B. Caillau, O. Cots, N. Scherbakova (IMB,
Dijon)

I Group of S. J. Glaser, Y. Zhang, M. Braun (Chemistry
department, Munich)

I M. Lapert (PhD, ICB, Dijon), E. Assémat (PhD, ICB, Dijon)

Rem.: Other results of our research project will be given in the
conferences of B. Bonnard and S. J. Glaser
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Quantum control

Application of tools of control theory to quantum dynamics.

I Photochemistry, femtosecond laser fields
I Condensed matter:

I superconducting Josephson junction
I cold atoms

I Nuclear Magnetic Resonance
I liquid phase
I solid phase
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NMR in liquid phase

A promising field of applications.

I fundamental problems

I quantum computing

I NMR spectroscopy and imaging
(increase of the sensitivity and resolution of standard NMR
techniques)

Advantages of the NMR domain

I Accuracy of the models, even in presence of dissipation

I low and finite-dimensional problems =⇒ geometry

I very good agreement between theory and experiment

Rem.: Such points are not true in Photochemistry
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Optimal control in NMR

I Numerical approaches, e.g. the GRAPE and monotonic
algorithms

I Geometric approach
Ex.: Lie group methods for unbounded controls
N. Khaneja, S. J. Glaser et al.

Our work: use of geometric optimal control theory to analyze
NMR systems (Pontryagin Maximum Principle, indirect methods,
analytic and numerical computations)

−→ From mathematics (group of B. Bonnard) to experiments
(group of S. J. Glaser)
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The Bloch equations




Ṁx

Ṁy

Ṁz


 =



−ωMy + ωyMz

ωMx − ωxMz

ωxMy − ωyMx


 +



−Mx/T2

−My/T2

(M0 −Mz)/T1


 + RDE

with T1, T2 dissipation terms, ω: offset.

RDE =
1

M0Tr



−MxMz

−MyMz

M2
x + M2

y




RDE : Radiation damping effect
Tr : Radiation damping constant.
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Time-optimal control of a spin 1/2 particle

Saturation control problem in NMR:

North pole (equilibrium point) −→ center of the Bloch ball.
Constraint: |ω| ≤ ωmax , ω = 0

Rem.: standard problem in NMR (remove the corresponding spin
contribution).

Geometric analysis: symmetry of revolution =⇒ use of one
control:

ẏ = −uz − y/T2 − yz/Tr

ż = uy + (1− z)/T1 + y2/Tr

(y , z): reduced coordinates and |u| ≤ u0.
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Optimal synthesis

PMP and geometric analysis of the extremals: u = ±u0 or singular.
Rem.: structure depends on the dissipative parameters and on the
bound of the control.

Figure: Schematic representation of the optimal synthesis
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A concrete example

Ex.: The proton spins of H2O in an organic solvent (T1 = 740 ms,
T2 = 60 ms and ωmax = 32.3 Hz)
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Figure: Time-optimal saturation of a spin 1/2 particle

Rem.: Comparison with the inversion recovery sequence: gain of
60% in the control duration.
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Analysis in the unbounded case

Rem.: In the limit ωmax → +∞, the structure is B-S-S.
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Figure: Ratio Topt/TIR as a function of ωmax
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Analytic computation in the unbounded case

Neglecting the duration of the first bang pulse, we get:

Topt → T2

2
ln[1− 2

αT2
] + T1 ln[

2T1 − T2

2(T1 − T2)
]

TIR → T1 ln 2

Rem.: The physical limit of the control process is due to the
dissipative parameters: Use of the dissipation to reach the target.
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Figure: Contour plot of dṙ/dθ.
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The GRAPE algorithm

Iterative algorithm to solve the optimal equations:

Cost: Φt =
√

y2 + z2.

Fixed control duration T and bound ωmax on the control field.
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Figure: Φt → 0 when T → Tgeom.
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Comparison of the different optimal solutions
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Figure: Smooth regularization of the geometric solution.

Results:
Geom.: Tgeom. = 6.58, Φt = 5.34× 10−16

Grape: Tgrape = 6.60, Φt = 2.25× 10−13.
Grape: Tgrape = 6.58, Φt = 4.78× 10−6
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Generalization to other systems

I Energy minimization problem (no singular extremal, a smooth
solution)

I Radiation damping effect (smooth effect if Tr > 0).

I Optimal control of uncoupled spin systems
−→ Two spins with different offsets
−→ The contrast problem
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The radiation damping effect

Experimental constraint: Inhomogeneous ensemble with different
offsets.
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Figure: Optimal trajectory computed with the GRAPE algorithm.

Rem. Example of coupling between geometric methods and the
GRAPE algorithm.
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Two spins with different offsets: the symmetric case




Ṁax

Ṁay

Ṁaz


 =



−ωMay + ωyMaz

ωMax − ωxMaz

ωxMay − ωyMax







Ṁbx

Ṁby

Ṁbz


 =




ωMby + ωyMbz

−ωMbx − ωxMbz

ωxMby − ωyMbx




I One spin, one control: P. Mason, U. Boscain, JMP (2006)
Optimal solution: bang-bang controls
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Inversion of two spins

two spins with two controls ⇐⇒ two spins with one control
Two proton spins of methyl acetate CH3OOCCH3.
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The contrast problem: the blood

Two uncoupled spins describing the oxygeneated/desoxygeneated
blood
Structure of the optimal control: Bang-Singular
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Figure: Optimization of the distance between the two spins
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Conclusion

I Mathematical developments
I Global understanding of the contrast problem
I Classification of the different structure in the case of RDE

I Numerical applications
I limit of indirect methods, continuation approach
I coupling between GRAPE and geometric methods

I Experimental implementation of geometric solutions
I Applications in NMR spectroscopy and NMR imaging.
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