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1. Semiclassics and the Egorov Theorem in quantum mechanics

Example: The Schrödinger operator

Ĥε = −ε
2

2 ∆x + V (x)

is the Weyl-quantization of the symbol

H(q, p) = 1
2 p

2 + V (q) .

In general: Consider an ε-pseudodifferential Operator

Ĥε = H(x,−iε∇x) .

We take Ĥ to be the ε-Weyl-quantization of a symbol

H : R2n → R

acting on functions ψ ∈ L2(Rn) as

(Ĥεψ)(x) :=
1

(2πε)n

∫
R2n

eip·(x−y)/ε H
(

1
2(x+ y), p

)
ψ(y) dpdy .
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1. Semiclassics and the Egorov Theorem in quantum mechanics

If Ĥε is self-adjoint, it generates a unitary group

Uε : R→ L(L2(Rn)) , t 7→ Uε(t) = e−iĤεt/ε

and the asymptotic limit ε→ 0 is the semiclassical limit.

One way to formulate the semiclassical limit is to look at the way other

ε-pseudos transform:

eiĤεt/ε Âε e−iĤεt/ε = ?

Egorov’s Theorem 1: Let

Φt
H0

: R2n → R2n

be the Hamiltonian flow associated to the principal symbol H0 of Ĥε, then

eiĤεt/ε Âε e−iĤεt/ε = ̂A ◦Φt
H0

ε
+O(ε) .
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1. Semiclassics and the Egorov Theorem in quantum mechanics

A less commonly known improved version is

Egorov’s Theorem 2: Let

Φt
Hε : R2n → R2n

be the Hamiltonian flow associated to the symbol Hε = H0 + εH1, then

eiĤεt/ε Âε e−iĤεt/ε = ̂A ◦Φt
Hε

ε
+O(ε2) .

Remarks:

• For H and A from suitable symbol classes, the approximation holds in

. norm uniformly on bounded time intervals.

• Theorem 1 holds also on T ∗M with M a Riemannian manifold.

• Theorem 2 only holds if M has vanishing curvature.
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2. Adiabatic slow-fast systems

Consider the Hilbert space

L2(Rn)⊗Hf
∼= L2(Rn,Hf) ,

where Hf is the Hilbert space of some quantum mechanical degrees of

freedom. For an operator-valued symbol

H : R2n → L(Hf)

we define Ĥε acting on functions ψ ∈ L2(Rn,Hf) again as

(Ĥεψ)(x) :=
1

(2πε)n

∫
R2n

eip·(x−y)/ε H
(

1
2(x+ y), p

)
ψ(y) dpdy .

Example: The molecular Hamiltonian

−ε
2

2 ∆x − 1
2∆y + V (x, y) = Ĥε on L2(Rnx × Rmy ) = L2(Rnx, L2(Rmy ))

is the Weyl-quantization of the operator-valued symbol

H(q, p) = 1
2 p

2 − 1
2∆y + V (q, y) .
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2. Adiabatic slow-fast systems

Since H(q, p) is operator-valued, it does not generate a Hamiltonian flow

on T ∗M . Can one still prove an Egorov Theorem?

H(q, p) is self-adjoint for each (q, p) ∈ R2n. Its eigenvalues E(q, p) are real-

valued and thus define Hamiltonian functions on phase space.

Example: The molecular Hamiltonian

−ε
2

2 ∆x − 1
2∆y + V (x, y) = Ĥε on L2(Rnx × Rmy ) = L2(Rnx, L2(Rmy ))

is the Weyl-quantization of the operator-valued symbol

H(q, p) = 1
2 p

2 − 1
2∆y + V (q, y) .
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2. Adiabatic slow-fast systems

Adiabatic perturbation theory:

(Littlejohn-Flynn, Emmrich-Weinstein, Brummelhuis-Nourrigat,

Martinez-Nenciu-Sordoni, Panati-Spohn-T.)

If H0(q, p) has an eigenvalue E(q, p) with spectral projection P (q, p) that is

separated by a gap from the remainder of the spectrum of H0(q, p), then

there exists a unique symbol

P ε(q, p) with P ε(q, p) = P (q, p) +O(ε)

such that P̂ ε is an orthogonal projection, i.e.

(P̂ ε)2 = P̂ ε and (P̂ ε)∗ = P̂ ε ,

that commutes with the Hamiltonian Ĥε up to small errors,

[Ĥε, P̂ ε] = O(ε∞) .
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2. Adiabatic slow-fast systems

Adiabatic perturbation theory:

If H0(q, p) has an eigenvalue E(q, p) with spectral projection P (q, p) that is

separated by a gap from the remainder of the spectrum of H0(q, p), then

there exists a unique symbol

P ε(q, p) with P ε(q, p) = P (q, p) +O(ε)

such that P̂ ε is an orthogonal projection, i.e.

(P̂ ε)2 = P̂ ε and (P̂ ε)∗ = P̂ ε ,

that commutes with the Hamiltonian Ĥε up to small errors,

[Ĥε, P̂ ε] = O(ε∞) .

Hence RanP̂ ε is almost invariant under the group e−iĤεt/ε,

[e−iĤεt/ε, P̂ ε] = O(ε∞|t|)

and
ĤεP̂ ε = ÊεP̂ ε +O(ε) .

Partial semiclassical limits December 2010



2. Adiabatic slow-fast systems

Egorov’s Theorem 3: Let

Φt
E : R2n → R2n

be the Hamiltonian flow associated to the eigenvalue E of H0, then

eiĤεt/ε P̂ ε Âε P̂ ε e−iĤεt/ε = P̂ ε â ◦Φt
E

ε
P̂ ε +O(ε)

for any observable Âε with principle symbol of the form

A0(q, p) = a(q, p)⊗ 1Hf
.

Idea of the proof (PST 2003): Construct a unitary mapping

Ûε : P̂ εL2(Rn,Hf)→ L2(Rn,C)

and apply the standard Egorov Theorem to the effective Hamiltonian

Ĥε
eff := Ûε P̂ ε Ĥε P̂ ε Ûε ∗ = Êε +O(ε) .
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2. Adiabatic slow-fast systems

Idea of the proof (PST 2003): Construct a unitary mapping

Ûε : P̂ εL2(Rn,Hf)→ L2(Rn,C)

and apply the standard Egorov Theorem to the effective Hamiltonian

Ĥε
eff := Ûε P̂ ε Ĥε P̂ ε Ûε ∗ = Êε +O(ε) .

Problem: The construction of this unitary requires the choice of a family

of normalized eigenvectors

ϕ(q, p) ∈ P (q, p)Hf

depending smoothly on (q, p) ∈ R2n.

Put differently, the line bundle over R2n defined by the eigenspaces P (q, p)Hf

needs to be trivializable!

In important applications, like periodic potentials in strong magnetic fields,

the corresponding bundle is not trivializable and this fact has important

physical consequences, like the integer quantum Hall effect.
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3. A general Egorov theorem for adiabatic slow-fast systems

Egorov’s Theorem 4: (Stiepan-T.)

There is a flow

Φt
ε : T ∗M → T ∗M

(M either Rn or Tn) such that

eiĤεt/ε P̂ ε Âε P̂ ε e−iĤεt/ε = P̂ ε â ◦Φt
ε

ε
P̂ ε +O(ε2)

for any observable Âε with principle symbol of the form

A0(q, p) = a(q, p)⊗ 1Hf
.

Here Φt
ε is the Hamiltonian flow of

Hε
eff := E + ε i

2 tr
(
P
{
P,H0 − E,P II

})
=: E + εM

with respect to the symplectic form

ω :=

(
0 1n
−1n 0

)
+ ε

(
Ωqq Ωpq

Ωqp Ωpp

)
.
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3. A general Egorov theorem for adiabatic slow-fast systems

Here (
Ωqq Ωpq

Ωqp Ωpp

)
=

(
i tr(P [∇qP, (∇qP )T]) i tr(P [∇qP, (∇pP )T])

i tr(P [∇pP, (∇qP )T]) i tr(P [∇pP, (∇pP )T])

)
or shorter

Ωij = i trP [∂iP, ∂jP ]

is the curvature 2-form of the Berry connection.

The Hamiltonian equations of motion have the form

q̇ = ∇p(E + εM) + ε(Ωqq∇qE + Ωpq∇pE)

ṗ = −∇q(E + εM) + ε(Ωqp∇qE + Ωpp∇pE)

or alternatively

q̇ = ∇p(E + εM)− ε(Ωqqṗ−Ωpqq̇) +O(ε2)

ṗ = −∇q(E + εM)− ε(Ωqpṗ−Ωppq̇) +O(ε2) .
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3. A general Egorov theorem for adiabatic slow-fast systems

As a Corollary we obtain the formula

Tr
(
ρ̂ P̂ ε Âε(t) P̂ ε

)
=
∫
T ∗M

ρ(q, p)
(
a ◦Φt

ε

)
(q, p) dω +O(ε2)

where dω denotes integration with respect to the volume measure induced

by the symplectic form ω,

dω =
(
1− iε tr (P{P, P})I I

)
dq dp .
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4. The semiclassical model for magnetic Bloch Hamiltonians

Consider the Hamiltonian

H = 1
2

(
−i∇x +A0(x) +A(εx)II

)2
+ VΓ(x)− φ(εx) on L2(R3)

with a Γ-periodic potential VΓ, smooth electromagnetic potentials A and φ

and the vector potential of a constant rational magnetic field B0,

A0(x) = 1
2B0 x

⊥ .

After a suitable Bloch-Floquet transformation this operator takes the form

Ĥε = 1
2

(
−i∇y + k +A0(y) +A(iε∇τk)II

)2
+ VΓ(y)− φ(iε∇τk)

acting on

L2(Mk, L
2(Ty)) =: L2(Mk,Hf) .

Ĥε is the Weyl-quantization of the operator-valued symbol

H(k, r) = 1
2

(
−i∇y + k +A0(y) +A(r)II

)2
+ VΓ(y)− φ(r)

with H : T ∗M → L(L2(Ty)).
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4. The semiclassical model for magnetic Bloch Hamiltonians

The eigenvalues En(k) of the periodic Hamiltonian

H0(k) = 1
2

(
−i∇y + k +A0(y)II

)2
+ VΓ(y)

are known as the magnetic Bloch bands and the corresponding spectral

projections Pn(k) define the magnetic Bloch bundle over the torus M . This

bundle has in general nonvanishing Chern number and is thus not trivializ-

able. Hence the standard techniques can not be applied.
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4. The semiclassical model for magnetic Bloch Hamiltonians

Our general Egorov Theorem applied to magnetic Bloch Hamiltonians yields

Mn(k, r) = B(r)Mn(k −A(r))

with

Mn(k) := i
2 tr

(
Pn(k)∇Pn(k) ·

(
H0(k)− En(k)II

)
∇Pn(k)⊥

)
and

Ωkk
n (k, r) = Ωn(k −A(r)) and Ωkr

n = Ωrr
n = 0 ,

with

Ωn(k) = i tr
(
Pn(k)∇Pn(k) · ∇Pn(k)⊥II

)
.

Introducing the kinetic momentum κ := k −A(r) we obtain

ṙ = ∇κ
(
En(κ) + εB(r)Mn(κ)II

)
− εΩ(κ) κ̇⊥

κ̇ = −∇r
(
φ(r) + εB(r)Mn(κ)II

)
−B(r) ṙ⊥ .
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4. The semiclassical model for magnetic Bloch Hamiltonians

Introducing the kinetic momentum κ := k −A(r) we obtain

ṙ = ∇κ
(
En(κ) + εB(r)Mn(κ)II

)
− εΩ(κ) κ̇⊥

κ̇ = −∇r
(
φ(r) + εB(r)Mn(κ)II

)
−B(r) ṙ⊥ .

Application: Integer quantum Hall effect

Let A = 1
2B r

⊥ and φ(r) = −E · r then κ̇ = E −B ṙ⊥ and

ṙ =
∇κ(En(κ) + εBMn(κ))− ε E⊥Ωn(κ)

1 + εBΩ
.

Averaging the velocity over M yields the equilibrium current density:

j =
1

ε(2π)2

∫
M
ṙ(κ) dω = −E⊥

1

(2π)2

∫
M

Ωn(κ) dκ︸ ︷︷ ︸
∈2πZ

= E⊥σH .

Thus the Hall conductivity σH of a filled band is quantized.
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4. The semiclassical model for magnetic Bloch Hamiltonians
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4. The semiclassical model for magnetic Bloch Hamiltonians
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Thank you!
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