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Introduction
I Consider the eigenvalue problem

∆v + λv = 0 in Ω,
∂nv = 0 on ∂Ω.

I In bounded domains, small smooth perturbations of the geometry
slightly shift the spectrum in R (eigenvalues remain eigenvalues).

Ω

O

Ωε

O

I In unbounded waveguides, small perturbations of the geom. transform
eigenvalues embedded in the continuous spectrum into complex resonances.

Ω
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O

→ See Aslanyan, Parnovski, Vassiliev, Q. J. Mech. Appl. Math., 00.What is the influence of these resonances on the scattering properties
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A 1D toy problem
I First, we consider a simple 1D problem.

x
y

Ω1

Ω2

Ω3O 1

1
Ω = Ω1 ∪ Ω2 ∪ Ω3

I Consider the scattering problem

ϕ′′+k2ϕ = 0 in Ω,
ϕ1 = ϕ2 = ϕ3 at O
ϕ′1 = ϕ′2 + ϕ′3 at O
ϕ′2 = ϕ′3 = 0 on ∂Ω

with ϕ1 = eikx +Re−ikx︸ ︷︷ ︸
radiation condition

, R ∈ C.

I Well-posedness ⇔ invertibility of a 3× 3 system MΦ = F .

I Uniqueness ⇔ k 6∈ (2N+ 1)π/2. Existence for all k ∈ R (F ∈ kerM⊥).

R =
cos(k) + 2i sin(k)
cos(k)− 2i sin(k)
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A 1D toy problem
I We perturb the geometry: Ωε = Ω1 ∪ Ω2 ∪ Ωε3 with Ωε3 = (0; 1 + ε).

Well-posedness in Ωε ⇔ invertibility of a 3× 3 system MεΦε = F .

Rε =
cos(k) cos(k(1 + ε)) + i sin(k(2 + ε))
cos(k) cos(k(1 + ε))− i sin(k(2 + ε)).

I Since |Rε| = 1 (conservation of energy), ∃θε ∈ [0; 2π) s.t. Rε = eiθ
ε.
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Figure: k 7→ θε(k) for several ε (non uniqueness for ε = 0, k = π/2).
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A 1D toy problem
I Set R(ε, k) = eiθ(ε,k) (functions of two variables).

(ε, k) 7→ θ(ε, k)

ε

k

π/2

ε0

θ(·, ·) and R(·, ·) are not continuous at (0, π/2)!

Goals of the talk

1) Prove a similar Fano resonance phenomenon in waveguides.
2) Show that zero transmission always occurs during the phenomenon.
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Outline of the talk

1 The Fano resonance in waveguides

2 Zero transmission

3 Numerical experiments
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Setting
I Let Ω be a waveguide which coincides with {(x, y) ∈ R× (0; 1)} outside
a compact region. We consider the problem

Ω
(∗) ∆v + λv = 0 in Ω,

∂nv = 0 on ∂Ω.

I We assume that λ0 ∈ (0;π2) is an eigenvalue for (∗) (non uniqueness).

I The scattering problem associated with (∗) writes

(P)
Find v s.t. v − vi is outgoing and
∆v + λv = 0 in Ω,

∂nv = 0 on ∂Ω.

I For this problem with k :=
√
λ ∈ (0;π), the modes are

Propagating
Evanescent

w±(x, y) = e±ikx,

w±n (x, y) = e∓βnx cos(nπy), βn =
√
n2π2 − λ, n ≥ 1.

8 / 23
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Scattering problem

(P)
Find v s.t. v − vi is outgoing and
∆v + λv = 0 in Ω,

∂nv = 0 on ∂Ω.

I For vi = w±, (P) admits the scattering solutions (existence)

v+ = w+ +R+w− + . . .
T w+ + . . .

v− = T w− + . . . for x < 0
w− +R−w+ + . . . for x > 0

where R±, T ∈ C and . . . are exponentially decaying terms.

I The scattering matrix

S =
(
R+ T
T R−

)

is uniquely defined (even for λ = λ0), unitary (SS> = Id) and symmetric.

9 / 23
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Small perturbation of the geometry 1/2
I We perturb slightly (ε ≥ 0 is small) the geometry

Ω Ωε

1 + εH(x)

Locally ∂Ωε coincides with the graph of x 7→ 1 + εH(x),
where H ∈ C∞0 (R) is a given profile function.

I For a given H, the scattering matrix S is a function of ε and λ.

The following theorem describes the behaviour of (ε, λ) 7→ S(ε, λ) in a
neighbourhood of (0, λ0) where trapped modes exist.

(H ) We assume that λ0 is a simple eigenvalue for (∗) and that the eigen-
functions do not decay faster than C e−β1|x| as |x| → +∞.
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Small perturbation of the geometry 2/2

Theorem: Set S0 = S(0, λ0). There is λ′p ∈ R such that when ε→ 0,

S(ε, λ0 + ελ′) = S0 +O(ε) for λ′ 6= λ′p,

and, for any µ ∈ R,

S(ε, λ0 + ελ′p + ε2µ) = S0 +
τ>τ

iµ̃− |τ |2/2
+O(ε).

Here τ = (a, b) ∈ C × C depends only on Ω and µ̃ = Aµ + B for some
unessential real constants A, B with A 6= 0.

I Similar to the 1D picture:

λ

ε

λ

λ0

ε0

Comments:

- S(·, ·) is not continuous at (0, λ0).

- For a small given ε0, the map λ 7→ S(ε0, λ) varies quickly at λ0 + ε0λ′p.

- Under certain conditions on H, the variation can be even quicker...

Ingredients of the proof:

- Use weighted Sobolev spaces with detached asymptotics to define scatter-
ing solutions with non standard radiation conditions.

- Define an augmented scattering matrix S (Nazarov, Plamenevsky, 94).

- Compute an asymptotic expansion of S which is smooth at (0, λ0) because
uniqueness holds for the problem with non standard radiation conditions.

- Use the connection existing between S and S to get an expansion for S.

11 / 23
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Symmetric waveguide 1/2
I We assume that Ω is symmetric with respect to the (Oy) axis.

Ω

∆v + λv = 0 in Ω,
∂nv = 0 on ∂Ω.

I Introduce the two half-waveguide problems

ω
vi

∆u+ λu = 0 in ω
∂nu = 0 on ∂ω

∆U + λU = 0 in ω
∂nU = 0 on ∂ω \ ∂Ω
U = 0 on ∂ω ∩ ∂Ω.

I They admit the solutions
u = eikx +RN e

−ikx + . . .
U = eikx +RD e

−ikx + . . .

with |RN | = |RD| = 1 (conservation of energy).

RDRN

I One can prove that R± =
RN +RD

2 and T =
RN −RD

2 .
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Symmetric waveguide 2/2

R± =
RN +RD

2 T =
RN −RD

2

I To set ideas, we assume that eigenfunctions are symmetric w.r.t. (Oy).
⇒ They are eigenfunctions for the pb with Neumann B.Cs.

i) λ0 is not an eigenvalue for the pb with Dirichlet condition. This implies

|RD(ε, λ0 + ελ′p + ε2µ)−RD(0, λ0)| ≤ C ε, ∀ε ∈ (0; ε0], µ ∈ [−cε−1; cε].

ii) µ 7→ RN (ε, λ0 + ελ′p + ε2µ) rushes on the unit circle for µ ∈ [−cε−1; cε].

Proposition:
∃λε, with λε − λ0 = O(ε), s.t. for ε small, R±(ε, λε) = 0 ( zero reflection ).

∃λ̃ε, with λ̃ε − λ0 = O(ε), s.t. for ε small, T (ε, λ̃ε) = 0 ( zero transmission ).

→ Similar results in Shipman and Tu, SIAM Appl. Math, 2012. We use a different
approach and consider a perturbation of the geometry.
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Non symmetric waveguide 1/2

Ω

I We can not work as before but we can still prove the following result.

Proposition:
∃λε, with λε−λ0 = O(ε), s.t. for ε small, T (ε, λε) = 0 ( zero transmission ).

Proof. 1) Set T ε(µ) = T (ε, λ0 + ελ′p + ε2µ). The expansion of S yields

|T ε(µ)−T asy(µ)| ≤ C ε with T asy(µ) = T 0+
ab

iµ̃− (|a|2 + |b|2)/2,

where a, b are some constants.

2) Properties of the Möbius transform and the unitarity of S0 guarantee
that {T asy(µ) |µ ∈ R} is a circle passing through zero .
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Non symmetric waveguide 2/2

µ 7→ T asy(µ)

µ 7→ T ε(µ)

3) If µ 7→ T ε(µ) does not pass through zero, µ 7→ 2 phase(T ε(µ)) varies
quickly. One can show that this contradicts the identity

T ε(µ)/T ε(µ) = −Rε+(µ)/Rε−(µ)

which is a consequence of the unitarity of Sε(µ). �

The unitarity structure of S is the key to conclude.

→ Similar idea in Lee, Phys. Rev. Lett., 99 using a perturbation argument.
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Symmetric waveguide
I Numerics using FE methods (Freefem++) with DtN maps or PMLs.
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Symmetric waveguide
I Left: waveguide. Right: eigenfunction for ε = 0 and k0 :=

√
λ0 ≈ 2.42.

0.5 + ε

I Scattering coefficients for k ∈ (2.2; 2.7).

No shift (ε = 0)

Small shift (ε > 0)

-1 -0.5 0 0.5 1
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-0.5

0

0.5

1

-1 -0.5 0 0.5 1
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1

k 7→ R±(0, k) k 7→ T (0, k)

k 7→ R±(0.02, k) k 7→ T (0.02, k)

18 / 23



Symmetric waveguide
I Left: waveguide. Right: eigenfunction for ε = 0 and k0 :=

√
λ0 ≈ 2.42.

0.5 + ε

I Scattering coefficients for k ∈ (2.2; 2.7).

No shift (ε = 0)

Small shift (ε > 0)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

k 7→ R±(0, k) k 7→ T (0, k)

k 7→ R±(0.02, k) k 7→ T (0.02, k)

18 / 23



Symmetric waveguide
I Left: waveguide. Right: eigenfunction for ε = 0 and k0 :=

√
λ0 ≈ 2.42.

0.5 + ε

I Scattering coefficients for k ∈ (2.2; 2.7).

No shift (ε = 0) Small shift (ε > 0)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

k 7→ R±(0, k) k 7→ T (0, k) k 7→ R±(0.02, k) k 7→ T (0.02, k)
18 / 23



Symmetric waveguide
I Example of setting where R±(ε, λε) = 0 (zero reflection).

<e v+

<e (v+ − w+)

I Example of setting where T (ε, λ̃ε) = 0 (zero transmission).

<e v+
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Non symmetric waveguide
I Left: waveguide. Right: eigenfunction for ε = 0 and k0 :=

√
λ0 ≈ 2.03.

0.5 + ε

I Scattering coefficients for k ∈ (1.8; 2.2).

No shift (ε = 0) Small shift (ε > 0)
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k 7→ R+(0, k) k 7→ T (0, k) k 7→ R+(0.1, k) k 7→ T (0.1, k)
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Non symmetric waveguide
I Example of setting where T (ε, λε) = 0 (zero transmission).

<e v+
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Frequency behaviour

No shift (ε = 0) | Small shift (ε > 0)

I k 7→ <e v+(k)

I Complex spectrum computed with PMLs (we zoom at the real axis).
• Trapped mode • Complex resonance
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Conclusion

What we did

♠ We proved the Fano resonance phenomenon in a 2D waveguide.
If trapped modes exist for (ε, λ) = (0, λ0), then for ε > 0 small,
λ 7→ S(ε, λ) has a quick variation at λ0. Symmetry is not needed.

♠ If Ω symmetric w.r.t. (Oy), zero reflection, zero transmission occur.
If Ω not symmetric, zero transmission occurs.

♠ The technique works with other B.C. (Dirichlet, ...), other kinds of
perturbation (penetrable obstacles, ...), in any dimension.

Future work

1) Is there zero reflection/zero transmission for k > π (monomode
regime was essential in the mechanism)?

2) What happens if λ0 is not a simple eigenvalue?
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