Séminaire EDP/Physique mathématique

Invisibility and complete reflectivity in acoustic waveguides

Lucas Chesnel¹

Coll. with A. Bera², A.-S. Bonnet-Ben Dhia², S.A. Nazarov³ and V. Pagneux⁴.

¹Defi team, CMAP, École Polytechnique, France
²Poems team, Ensta, France
³FMM, St. Petersburg State University, Russia
⁴LAUM, Université du Maine, France

Institut de Mathématiques de Bordeaux, 19/09/2017

Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.

 $\left| \begin{array}{l} \text{Find } v = v_i + v_s \text{ s. t.} \\ -\Delta v = k^2 v \quad \text{in } \Omega, \\ \partial_n v = 0 \quad \text{on } \partial\Omega, \\ v_s \text{ is outgoing.} \end{array} \right|$

Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.

 $\left| \begin{array}{l} \text{Find } v = v_i + v_s \text{ s. t.} \\ -\Delta v = k^2 v \quad \text{in } \Omega, \\ \partial_n v = 0 \quad \text{on } \partial\Omega, \\ v_s \text{ is outgoing.} \end{array} \right|$

For $k \in (0; \pi)$, only 2 propagating modes $w^{\pm} = e^{\pm ikx} / \sqrt{2k}$.

Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.

 $\left| \begin{array}{l} \text{Find } v = v_i + v_s \text{ s. t.} \\ -\Delta v = k^2 v \quad \text{in } \Omega, \\ \partial_n v = 0 \quad \text{on } \partial\Omega, \\ v_s \text{ is outgoing.} \end{array} \right|$

For $k \in (0; \pi)$, only 2 propagating modes $w^{\pm} = e^{\pm ikx} / \sqrt{2k}$. Set $v_i = w^+$

Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.

Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.

•
$$v_s$$
 is outgoing \Leftrightarrow $v_s = s^{\pm} w^{\pm} + \tilde{v}_s$ for $\pm x \ge L$,

with $s^{\pm} \in \mathbb{C}$, \tilde{v}_s exponentially decaying at $\pm \infty$.

DEFINITION:	$v_i = $ incident field
	v = total field
	$v_s = $ scattered field.

- ▶ At infinity, one measures the reflection coefficient $R = s^-$ and/or the transmission coefficient $T = 1 + s^+$ (other terms are too small).
- From conservation of energy, one has

 $|R|^2 + |T|^2 = 1.$

At infinity, one measures the reflection coefficient $R = s^-$ and/or the transmission coefficient $T = 1 + s^+$ (other terms are too small).

From conservation of energy, one has

 $|R|^2 + |T|^2 = 1.$

DEFINITION: Defect is said	non reflecting if $R = 0$ ($ T = 1$) perfectly invisible if $T = 1$ ($R = 0$)
----------------------------	---

• For T = 1, defect cannot be detected from far field measurements.

At infinity, one measures the reflection coefficient $R = s^-$ and/or the transmission coefficient $T = 1 + s^+$ (other terms are too small).

From conservation of energy, one has

$$|R|^2 + |T|^2 = 1.$$

DEFINITION: Defect is said	on reflecting if $R = 0$ $(T = 1)$
p	erfectly invisible if $T = 1$ $(R = 0)$
c	ompletely reflecting if $T = 0$ $(R = 1)$.

- For T = 1, defect cannot be detected from far field measurements.
- For T = 0, defect is like a mirror.

At infinity, one measures the reflection coefficient $R = s^-$ and/or the transmission coefficient $T = 1 + s^+$ (other terms are too small).

From conservation of energy, one has

$$|R|^2 + |T|^2 = 1.$$

DEFINITION: Defect is said	non reflecting if $R = 0$ ($ T = 1$) perfectly invisible if $T = 1$ ($R = 0$) completely reflecting if $T = 0$ ($ R = 1$).
----------------------------	--

- For T = 1, defect cannot be detected from far field measurements.
- For T = 0, defect is like a mirror.

We explain how to find waveguides such that R = 0 (|T| = 1), T = 1 (R = 0) or T = 0 (|R| = 1).

Outline of the talk

First constructive method

k is given, we use perturbative techniques to construct geometries such that R = 0 or T = 1.

Second constructive method

k is given, we use an approach based on symmetries to construct geometries such that R = 0, T = 1 or T = 0 and even a bit more...

A spectral approach to determine non reflecting wavenumbers

For a given geometry, we explain how to find non reflecting k solving a spectral problem.

Outline of the talk

First constructive method

k is given, we use perturbative techniques to construct geometries such that R = 0 or T = 1.

2 Second constructive method

k is given, we use an approach based on symmetries to construct geometries such that R = 0, T = 1 or T = 0 and even a bit more...

A spectral approach to determine non reflecting wavenumbers

For a given geometry, we explain how to find non reflecting k solving a spectral problem.

► The idea was used in Nazarov 11 to construct waveguides for which there are embedded eigenvalues in the continuous spectrum.

• For $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$, set $R = R(h) \in \mathbb{C}$.

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$

Note that R(0) = 0(no obstacle leads to null measurements).

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• We look for small perturbations of the reference medium: $h = \varepsilon \mu$ where $\varepsilon > 0$ is a small parameter and where μ has be to determined.

1

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that $\underline{R}(h) = 0$ (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = R(0) + \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$$

For
$$h \in \mathscr{C}_0^\infty(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that $\underline{R}(h) = 0$ (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu).$$

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu).$$

Assume that $dR(0) : \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto.

• For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu).$$

Assume that $dR(0) : \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto.

 $\exists \mu_0, \mu_1, \mu_2 \in \mathscr{C}^\infty_0(\mathbb{R}) \text{ s.t. } dR(0)(\mu_0) = 0, \, dR(0)(\mu_1) = 1 \text{ and } dR(0)(\mu_2) = i.$

• For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu).$$

Assume that $dR(0) : \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto.

 $\exists \mu_0, \mu_1, \mu_2 \in \mathscr{C}^\infty_0(\mathbb{R}) \text{ s.t. } dR(0)(\mu_0) = 0, \, dR(0)(\mu_1) = 1 \text{ and } dR(0)(\mu_2) = i.$

Take $\mu = \mu_0 + \tau_1 \mu_1 + \tau_2 \mu_2$ where the τ_n are real parameters to set:

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu).$$

Assume that $dR(0) : \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto.

 $\exists \mu_0, \mu_1, \mu_2 \in \mathscr{C}^\infty_0(\mathbb{R}) \text{ s.t. } dR(0)(\mu_0) = 0, \, dR(0)(\mu_1) = 1 \text{ and } dR(0)(\mu_2) = i.$

• Take $\mu = \mu_0 + \tau_1 \mu_1 + \tau_2 \mu_2$ where the τ_n are real parameters to set:

 $0 = R(\varepsilon \mu) \quad \Leftrightarrow \quad$

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu).$$

Assume that $dR(0) : \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto.

 $\exists \mu_0, \mu_1, \mu_2 \in \mathscr{C}_0^{\infty}(\mathbb{R}) \text{ s.t. } dR(0)(\mu_0) = 0, \, dR(0)(\mu_1) = 1 \text{ and } dR(0)(\mu_2) = i.$

• Take $\mu = \mu_0 + \tau_1 \mu_1 + \tau_2 \mu_2$ where the τ_n are real parameters to set:

$$0 = R(\varepsilon\mu) \quad \Leftrightarrow \quad 0 = \varepsilon(\tau_1 dR(0)(\mu_1) + \tau_2 dR(0)(\mu_2)) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$$

For
$$h \in \mathscr{C}_0^\infty(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu).$$

Assume that $dR(0) : \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto.

 $\exists \mu_0, \mu_1, \mu_2 \in \mathscr{C}^\infty_0(\mathbb{R}) \text{ s.t. } dR(0)(\mu_0) = 0, \, dR(0)(\mu_1) = 1 \text{ and } dR(0)(\mu_2) = i.$

• Take $\mu = \mu_0 + \tau_1 \mu_1 + \tau_2 \mu_2$ where the τ_n are real parameters to set:

$$0 = R(\varepsilon\mu) \quad \Leftrightarrow \quad 0 = \varepsilon(\tau_1 + i\tau_2) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$$

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$$
.

Assume that $dR(0) : \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto.

 $\exists \mu_0, \mu_1, \mu_2 \in \mathscr{C}^\infty_0(\mathbb{R}) \text{ s.t. } dR(0)(\mu_0) = 0, \, dR(0)(\mu_1) = 1 \text{ and } dR(0)(\mu_2) = i.$

• Take $\mu = \mu_0 + \tau_1 \mu_1 + \tau_2 \mu_2$ where the τ_n are real parameters to set:

$$0 = R(\varepsilon\mu) \quad \Leftrightarrow \quad \boxed{\vec{\tau} = G^{\varepsilon}(\vec{\tau})} \quad \text{where} \quad \begin{vmatrix} \vec{\tau} = (\tau_1, \tau_2)^{\top} \\ G^{\varepsilon}(\vec{\tau}) = -\varepsilon(\Re e \, \tilde{R}^{\varepsilon}(\mu), \Im m \, \tilde{R}^{\varepsilon}(\mu))^{\top} \end{vmatrix}$$

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu).$$

Assume that $dR(0) : \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto.

 $\exists \mu_0, \mu_1, \mu_2 \in \mathscr{C}^\infty_0(\mathbb{R}) \text{ s.t. } dR(0)(\mu_0) = 0, \, dR(0)(\mu_1) = 1 \text{ and } dR(0)(\mu_2) = i.$

• Take $\mu = \mu_0 + \tau_1 \mu_1 + \tau_2 \mu_2$ where the τ_n are real parameters to set:

$$0 = R(\varepsilon\mu) \quad \Leftrightarrow \quad \boxed{\vec{\tau} = G^{\varepsilon}(\vec{\tau})} \quad \text{where} \quad \begin{vmatrix} \vec{\tau} = (\tau_1, \tau_2)^{\top} \\ G^{\varepsilon}(\vec{\tau}) = -\varepsilon(\Re e \, \tilde{R}^{\varepsilon}(\mu), \Im m \, \tilde{R}^{\varepsilon}(\mu))^{\top} \end{vmatrix}$$

If G^{ε} is a contraction, the fixed-point equation has a unique solution $\vec{\tau}^{\text{sol}}$.

7745

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu).$$

Assume that $dR(0) : \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto.

 $\exists \mu_0, \mu_1, \mu_2 \in \mathscr{C}^\infty_0(\mathbb{R}) \text{ s.t. } dR(0)(\mu_0) = 0, \, dR(0)(\mu_1) = 1 \text{ and } dR(0)(\mu_2) = i.$

Take $\mu = \mu_0 + \tau_1 \mu_1 + \tau_2 \mu_2$ where the τ_n are real parameters to set:

$$0 = R(\varepsilon\mu) \quad \Leftrightarrow \quad \vec{\tau} = G^{\varepsilon}(\vec{\tau}) \quad \text{where} \quad \begin{vmatrix} \vec{\tau} = (\tau_1, \tau_2)^{\top} \\ G^{\varepsilon}(\vec{\tau}) = -\varepsilon(\Re e \, \tilde{R}^{\varepsilon}(\mu), \Im m \, \tilde{R}^{\varepsilon}(\mu))^{\top} \end{vmatrix}$$

If G^{ε} is a contraction, the fixed-point equation has a unique solution $\vec{\tau}^{\text{sol}}$. Set $h^{\text{sol}} := \varepsilon \mu^{\text{sol}}$. We have $R(h^{\text{sol}}) = 0$ (non reflecting perturbation).

7745

• Using classical results of asymptotic analysis, we obtain

$$R(\varepsilon\mu) = 0 + \varepsilon \left(-\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) (w^+(x,1))^2 \, dx \right) + O(\varepsilon^2).$$

• Using classical results of asymptotic analysis, we obtain

$$R(\varepsilon\mu) = 0 + \varepsilon \left(-\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) (w^+(x,1))^2 \, dx \right) + O(\varepsilon^2).$$
$$dR(0)(\mu)$$

 $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto \Rightarrow we can get non trivial Ω s.t. R = 0.

· Using classical results of asymptotic analysis, we obtain

$$R(\varepsilon\mu) = 0 + \varepsilon \left(-\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) (w^+(x,1))^2 \, dx \right) + O(\varepsilon^2).$$
$$dR(0)(\mu)$$

 $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto \Rightarrow we can get non trivial Ω s.t. R = 0.

• Can we use the technique to construct Ω such that T = 1?

· Using classical results of asymptotic analysis, we obtain

$$R(\varepsilon\mu) = 0 + \varepsilon \left(-\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) (w^+(x,1))^2 \, dx \right) + O(\varepsilon^2).$$
$$dR(0)(\mu)$$

 $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto \Rightarrow we can get non trivial Ω s.t. R = 0.

• Can we use the technique to construct Ω such that T = 1? We obtain

$$T(\varepsilon\mu) = 1 + \varepsilon \ \mathbf{0} + O(\varepsilon^2).$$

Using classical results of asymptotic analysis, we obtain

$$R(\varepsilon\mu) = 0 + \varepsilon \left(-\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) (w^+(x,1))^2 \, dx \right) + O(\varepsilon^2).$$
$$dR(0)(\mu)$$

 $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto \Rightarrow we can get non trivial Ω s.t. R = 0.

• Can we use the technique to construct Ω such that T = 1? We obtain

$$T(\varepsilon\mu) = 1 + \varepsilon \mathbf{0} + O(\varepsilon^2).$$

A perturbative method to get T = 1

• We study the same problem in the geometry Ω^{ε}

• We obtain $R = 0 + \varepsilon \left(ik \sum_{n=1}^{3} (w^+(M_n))^2 \tan(kh_n) \right) + O(\varepsilon^2)$ $T = 1 + \varepsilon \left(i/2 \sum_{n=1}^{3} \tan(kh_n) \right) + O(\varepsilon^2)$

A perturbative method to get T = 1

• We study the same problem in the geometry Ω^{ε}

• We obtain $R = 0 + \varepsilon \left(ik \sum_{n=1}^{3} (w^+(M_n))^2 \tan(kh_n) \right) + O(\varepsilon^2)$ $T = 1 + \varepsilon \left(i/2 \sum_{n=1}^{3} \tan(kh_n) \right) + O(\varepsilon^2)$

1) We can find M_n , h_n such that $R = O(\varepsilon^2)$ and $T = 1 + O(\varepsilon^2)$.

A perturbative method to get T = 1

• We study the same problem in the geometry Ω^{ε}

• We obtain $R = 0 + \varepsilon \left(ik \sum_{n=1}^{3} (w^+(M_n))^2 \tan(kh_n) \right) + O(\varepsilon^2)$ $T = 1 + \varepsilon \left(i/2 \sum_{n=1}^{3} \tan(kh_n) \right) + O(\varepsilon^2)$

1) We can find M_n , h_n such that $R = O(\varepsilon^2)$ and $T = 1 + O(\varepsilon^2)$.

2) Then changing h_n into $h_n + \tau_n$, and choosing a good $\tau = (\tau_1, \tau_2, \tau_3) \in \mathbb{R}^3$ (fixed point), we can get R = 0 and $\Im m T = 0$.
A perturbative method to get T = 1

• We study the same problem in the geometry Ω^{ε}

• We obtain $R = 0 + \varepsilon \left(ik \sum_{n=1}^{3} (w^+(M_n))^2 \tan(kh_n) \right) + O(\varepsilon^2)$ $T = 1 + \varepsilon \left(i/2 \sum_{n=1}^{3} \tan(kh_n) \right) + O(\varepsilon^2)$

1) We can find M_n , h_n such that $R = O(\varepsilon^2)$ and $T = 1 + O(\varepsilon^2)$.

2) Then changing h_n into $h_n + \tau_n$, and choosing a good $\tau = (\tau_1, \tau_2, \tau_3) \in \mathbb{R}^3$ (fixed point), we can get R = 0 and $\Im m T = 0$.

3) Energy conservation $+ [T = 1 + O(\varepsilon)] \Rightarrow T = 1$.

Numerical results

▶ Perturbed waveguide ($\Re e(v(x, y)e^{-i\omega t})$)

• Reference waveguide ($\Re e(v_i(x, y)e^{-i\omega t})$)

Remark

▶ We could also have worked with gardens of flowers!

Outline of the talk

First constructive method

k is given, we use perturbative techniques to construct geometries such that R = 0 or T = 1.

2 Second constructive method

k is given, we use an approach based on symmetries to construct geometries such that R = 0, T = 1 or T = 0 and even a bit more...

• We work in waveguides which are symmetric with respect to (Oy) and which contain a branch of finite height.

• We work in waveguides which are symmetric with respect to (Oy) and which contain a branch of finite height.

• We work in waveguides which are symmetric with respect to (Oy) and which contain a branch of finite height.

• We work in waveguides which are symmetric with respect to (Oy) and which contain a branch of finite height.

First constructive method

- 2 Second constructive method
 - Main analysis
 - Numerical results
 - Variants and extensions

3 A spectral approach to determine non reflecting wavenumbers

• Consider a waveguide which is symmetric with respect (Oy) and which contains a branch of finite height.

• Consider a waveguide which is symmetric with respect (Oy) and which contains a branch of finite height.

$$\begin{array}{rcl} -\Delta v &=& k^2 v & \mbox{in } \Omega_h \\ \partial_n v &=& 0 & \mbox{on } \partial \Omega_h \end{array}$$

• Consider a waveguide which is symmetric with respect (Oy) and which contains a branch of finite height.

• Consider a waveguide which is symmetric with respect (Oy) and which contains a branch of finite height.

► Introduce the two half-waveguide problems

• Consider a waveguide which is symmetric with respect (Oy) and which contains a branch of finite height.

► Introduce the two half-waveguide problems

▶ Half-waveguide problems admit the solutions

 $u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{h})$ $U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{h}).$

▶ Half-waveguide problems admit the solutions

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{h})$$
$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{h}).$$

• Due to conservation of energy, one has

 $|\mathbf{R}^N| = |\mathbf{R}^D| = 1.$

▶ Half-waveguide problems admit the solutions

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{h})$$
$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{h}).$$

• Due to conservation of energy, one has $|D^N| = |D^D| = 1$

 $|\mathbb{R}^N| = |\mathbb{R}^D| = 1.$

 $|\mathbf{R}^{N}| = |\mathbf{R}^{D}| = 1.$

▶ Half-waveguide problems admit the solutions

Due to conservation of energy, one has

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{h})$$
$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{h}).$$

• Using that
$$v = \frac{u+U}{2}$$
 in ω_h , $v(x,y) = \frac{u(-x,y) - U(-x,y)}{2}$ in $\Omega_h \setminus \overline{\omega_h}$,
we deduce that $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N - R^D}{2}$.

 $|\mathbf{R}^{N}| = |\mathbf{R}^{D}| = 1.$

▶ Half-waveguide problems admit the solutions

Due to conservation of energy, one has

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{h})$$
$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{h}).$$

• Using that
$$v = \frac{u+U}{2}$$
 in ω_h , $v(x,y) = \frac{u(-x,y) - U(-x,y)}{2}$ in $\Omega_h \setminus \overline{\omega_h}$,
we deduce that $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N - R^D}{2}$. Non reflectivity
 $\Leftrightarrow R^N = -R^D$

▶ Half-waveguide problems admit the solutions

Due to conservation of energy, one has

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{h})$$
$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{h}).$$

 $|\mathbf{R}^{N}| = |\mathbf{R}^{D}| = 1.$

• Using that
$$v = \frac{u+U}{2}$$
 in ω_h , $v(x,y) = \frac{u(-x,y) - U(-x,y)}{2}$ in $\Omega_h \setminus \overline{\omega_h}$,
we deduce that $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N - R^D}{2}$. Non reflectivity
 $\Leftrightarrow R^N = -R^D$

 $|\mathbf{R}^{N}| = |\mathbf{R}^{D}| = 1.$

▶ Half-waveguide problems admit the solutions

Due to conservation of energy, one has

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{h})$$
$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{h}).$$

• Using that
$$v = \frac{u+U}{2}$$
 in ω_h , $v(x,y) = \frac{u(-x,y) - U(-x,y)}{2}$ in $\Omega_h \setminus \overline{\omega_h}$,
we deduce that $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N - R^D}{2}$. Non reflectivity
 $\Leftrightarrow R^N = -R^D$

 \rightarrow Now, we study the behaviour of $\mathbb{R}^N = \mathbb{R}^N(h), \ \mathbb{R}^D = \mathbb{R}^D(h)$ as $h \rightarrow +\infty$.

Depend on the nb. of propagating modes in the vertical branch of ω_{∞} $(\mathscr{P}^{N}) \begin{vmatrix} -\Delta \varphi &= k^{2} \varphi & \text{in } \omega_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \end{vmatrix}$ $(\mathscr{P}^{D}) \begin{vmatrix} -\Delta \varphi &= k^{2} \varphi & \text{in } \omega_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \setminus \Sigma_{\infty} \\ \varphi &= 0 & \text{on } \Sigma_{\infty}. \end{cases}$ $(\mathscr{P}^{D}) \begin{vmatrix} \Delta \varphi &= k^{2} \varphi & \text{in } \omega_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \setminus \Sigma_{\infty} \\ \varphi &= 0 & \text{on } \Sigma_{\infty}. \end{cases}$

• For $\ell \in (0; \pi/k)$, no prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^D) .

Depend on the nb. of propagating modes in the vertical branch of ω_{∞} $(\mathscr{P}^{N}) \begin{vmatrix} -\Delta \varphi &= k^{2} \varphi & \text{in } \omega_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \end{vmatrix}$ $(\mathscr{P}^{D}) \begin{vmatrix} -\Delta \varphi &= k^{2} \varphi & \text{in } \omega_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \setminus \Sigma_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \setminus \Sigma_{\infty} \\ \varphi &= 0 & \text{on } \Sigma_{\infty}. \end{cases}$ Analysis for R^{D}

- For $\ell \in (0; \pi/k)$, no prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^D) .
- (\mathcal{P}^D) admits the solution

 $U_{\infty} = w_1^- + R_{\infty}^D w_1^+ + \tilde{U}_{\infty}, \qquad \text{with } \tilde{U}_{\infty} \in \mathrm{H}^1(\omega_{\infty}), \ |R_{\infty}^D| = 1.$

1/2

Depend on the nb. of propagating modes in the vertical branch of ω_{∞} $(\mathscr{P}^{N}) \begin{vmatrix} -\Delta\varphi &= k^{2}\varphi & \text{in } \omega_{\infty} \\ \partial_{n}\varphi &= 0 & \text{on } \partial\omega_{\infty} \end{vmatrix}$ $(\mathscr{P}^{D}) \begin{vmatrix} -\Delta\varphi &= k^{2}\varphi & \text{in } \omega_{\infty} \\ \partial_{n}\varphi &= 0 & \text{on } \partial\omega_{\infty} \\ \partial_{n}\varphi &= 0 & \text{on } \partial\omega_{\infty} \setminus \Sigma_{\infty} \\ \varphi &= 0 & \text{on } \Sigma_{\infty}. \end{cases}$ Analysis for R^{D}

- For $\ell \in (0; \pi/k)$, no prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^D) .
- (\mathcal{P}^D) admits the solution

 $U_{\infty} = w_1^- + R_{\infty}^D w_1^+ + \tilde{U}_{\infty}, \qquad \text{with } \tilde{U}_{\infty} \in \mathrm{H}^1(\omega_{\infty}), \ |R_{\infty}^D| = 1.$

 $(w_1^{\pm} = \chi_l w^{\mp} \text{ where } \chi_l \text{ is a cut-off function s.t. } \chi_l = 1 \text{ for } x \leq -2\ell, \ \chi_l = 0 \text{ for } x \geq -\ell)$

Depend on the nb. of propagating modes in the vertical branch of ω_{∞} $(\mathscr{P}^{N}) \begin{vmatrix} -\Delta \varphi &= k^{2} \varphi & \text{in } \omega_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \end{vmatrix}$ $(\mathscr{P}^{D}) \begin{vmatrix} -\Delta \varphi &= k^{2} \varphi & \text{in } \omega_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \setminus \Sigma_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \setminus \Sigma_{\infty} \\ \varphi &= 0 & \text{on } \Sigma_{\infty}. \end{cases}$ Analysis for R^{D}

- For $\ell \in (0; \pi/k)$, no prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^D) .
- (\mathcal{P}^D) admits the solution

 $U_{\infty} = w_1^- + R_{\infty}^D w_1^+ + \tilde{U}_{\infty}, \qquad \text{with } \tilde{U}_{\infty} \in \mathrm{H}^1(\omega_{\infty}), \ |R_{\infty}^D| = 1.$

1/2

Depend on the nb. of propagating modes in the vertical branch of ω_{∞} $(\mathscr{P}^{N}) \begin{vmatrix} -\Delta \varphi &= k^{2} \varphi & \text{in } \omega_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \end{vmatrix}$ $(\mathscr{P}^{D}) \begin{vmatrix} -\Delta \varphi &= k^{2} \varphi & \text{in } \omega_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \setminus \Sigma_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \setminus \Sigma_{\infty} \\ \varphi &= 0 & \text{on } \Sigma_{\infty}. \end{cases}$ Analysis for R^{D}

- For $\ell \in (0; \pi/k)$, no prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^D) .
- (\mathcal{P}^D) admits the solution

 $U_{\infty} = w_1^- + \mathbb{R}_{\infty}^D w_1^+ + \tilde{U}_{\infty}, \qquad \text{with } \tilde{U}_{\infty} \in \mathrm{H}^1(\omega_{\infty}), \ |\mathbb{R}_{\infty}^D| = 1.$

• As $h \to +\infty$, we have $U = U_{\infty} + \ldots$ which implies $|R^D - R^D_{\infty}| \le C e^{-\beta h}$.

1/2

Depend on the nb. of propagating modes in the vertical branch of ω_{∞} $(\mathscr{P}^{N}) \begin{vmatrix} -\Delta \varphi &= k^{2} \varphi & \text{in } \omega_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \end{vmatrix}$ $(\mathscr{P}^{D}) \begin{vmatrix} -\Delta \varphi &= k^{2} \varphi & \text{in } \omega_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \setminus \Sigma_{\infty} \\ \varphi &= 0 & \text{on } \Sigma_{\infty}. \end{cases}$ \land Analysis for R^{D}

For $\ell \in (0; \pi/k)$, $h \mapsto R^D(h)$ tends to a constant on $\mathscr{C} := \{z \in \mathbb{C}, |z| = 1\}$.

• For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

• For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

 $(\chi_t \text{ is a cut-off function such that } \chi_t = 1 \text{ for } y \ge 2, \ \chi_t = 0 \text{ for } y \le 1)$

• For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

• For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

• (\mathscr{P}^N) admits the solutions

$$\begin{aligned} u_{\infty}^{1} &= w_{1}^{-} + s_{11} w_{1}^{+} + s_{12} w_{2}^{+} + \tilde{u}_{\infty}^{1}, & \text{with } \tilde{u}_{\infty}^{1} \in \mathrm{H}^{1}(\omega_{\infty}) \\ u_{\infty}^{2} &= w_{2}^{-} + s_{21} w_{1}^{+} + s_{22} w_{2}^{+} + \tilde{u}_{\infty}^{2}, & \text{with } \tilde{u}_{\infty}^{2} \in \mathrm{H}^{1}(\omega_{\infty}). \end{aligned}$$

The scattering matrix

$$\left(\begin{array}{cc}s_{11}&s_{12}\\s_{21}&s_{22}\end{array}\right) \text{ is unitary.}$$

• For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

• (\mathscr{P}^N) admits the solutions

$$\begin{aligned} u_{\infty}^{1} &= w_{1}^{-} + s_{11} \, w_{1}^{+} + s_{12} \, w_{2}^{+} + \tilde{u}_{\infty}^{1}, & \text{with } \tilde{u}_{\infty}^{1} \in \mathrm{H}^{1}(\omega_{\infty}) \\ u_{\infty}^{2} &= w_{2}^{-} + s_{21} \, w_{1}^{+} + s_{22} \, w_{2}^{+} + \tilde{u}_{\infty}^{2}, & \text{with } \tilde{u}_{\infty}^{2} \in \mathrm{H}^{1}(\omega_{\infty}). \end{aligned}$$

• If $s_{12} \neq 0$, we make the ansatz $u = u_{\infty}^1 + a(h) u_{\infty}^2 + \dots$

• For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

 $\bullet \ (\mathcal{P}^N)$ admits the solutions

$$\begin{split} u_{\infty}^{1} &= w_{1}^{-} + s_{11} \, w_{1}^{+} + s_{12} \, w_{2}^{+} + \tilde{u}_{\infty}^{1}, \qquad \text{with } \tilde{u}_{\infty}^{1} \in \mathrm{H}^{1}(\omega_{\infty}) \\ u_{\infty}^{2} &= w_{2}^{-} + s_{21} \, w_{1}^{+} + s_{22} \, w_{2}^{+} + \tilde{u}_{\infty}^{2}, \qquad \text{with } \tilde{u}_{\infty}^{2} \in \mathrm{H}^{1}(\omega_{\infty}). \end{split}$$

• If $s_{12} \neq 0$, we make the ansatz $u = u_{\infty}^{1} + a(h) u_{\infty}^{2} + \dots$ On Γ_{h} $0 = \partial_{n} u = C \left(s_{12} e^{ikh} + a(h) \left(-e^{-ikh} + s_{22} e^{ikh} \right) \right) + \dots$
• For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

• (\mathscr{P}^N) admits the solutions

$$\begin{split} u_{\infty}^{1} &= w_{1}^{-} + s_{11} \, w_{1}^{+} + s_{12} \, w_{2}^{+} + \tilde{u}_{\infty}^{1}, \qquad \text{with } \tilde{u}_{\infty}^{1} \in \mathrm{H}^{1}(\omega_{\infty}) \\ u_{\infty}^{2} &= w_{2}^{-} + s_{21} \, w_{1}^{+} + s_{22} \, w_{2}^{+} + \tilde{u}_{\infty}^{2}, \qquad \text{with } \tilde{u}_{\infty}^{2} \in \mathrm{H}^{1}(\omega_{\infty}). \end{split}$$

• If $s_{12} \neq 0$, we make the ansatz $u = u_{\infty}^1 + a(h) u_{\infty}^2 + \dots$

On Γ_h $0 = \partial_n u = C (s_{12}e^{ikh} + a(h) (-e^{-ikh} + s_{22}e^{ikh})) + \dots$

• For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

 $\bullet \ (\mathcal{P}^N)$ admits the solutions

$$\begin{split} u_{\infty}^{1} &= w_{1}^{-} + s_{11} \, w_{1}^{+} + s_{12} \, w_{2}^{+} + \tilde{u}_{\infty}^{1}, \qquad \text{with } \tilde{u}_{\infty}^{1} \in \mathrm{H}^{1}(\omega_{\infty}) \\ u_{\infty}^{2} &= w_{2}^{-} + s_{21} \, w_{1}^{+} + s_{22} \, w_{2}^{+} + \tilde{u}_{\infty}^{2}, \qquad \text{with } \tilde{u}_{\infty}^{2} \in \mathrm{H}^{1}(\omega_{\infty}). \end{split}$$

• If $s_{12} \neq 0$, we make the ansatz $u = u_{\infty}^1 + a(h) u_{\infty}^2 + \dots$ On Γ_h $0 = \partial_n u = C \left(s_{12} e^{ikh} + a(h) \left(-e^{-ikh} + s_{22} e^{ikh} \right) \right) + \dots$

• This gives a(h) and implies, as $h \to +\infty$,

$$|R^N - R^N_{asy}(h)| \le C e^{-\beta h}$$
 with $R^N_{asy}(h) = s_{11} + \frac{s_{12} s_{21}}{e^{-2ikh} - s_{22}}.$

• For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

 $\bullet \ (\mathcal{P}^N)$ admits the solutions

$$\begin{split} u_{\infty}^{1} &= w_{1}^{-} + s_{11} \, w_{1}^{+} + s_{12} \, w_{2}^{+} + \tilde{u}_{\infty}^{1}, \qquad \text{with } \tilde{u}_{\infty}^{1} \in \mathrm{H}^{1}(\omega_{\infty}) \\ u_{\infty}^{2} &= w_{2}^{-} + s_{21} \, w_{1}^{+} + s_{22} \, w_{2}^{+} + \tilde{u}_{\infty}^{2}, \qquad \text{with } \tilde{u}_{\infty}^{2} \in \mathrm{H}^{1}(\omega_{\infty}). \end{split}$$

• If $s_{12} \neq 0$, we make the ansatz $u = u_{\infty}^1 + a(h) u_{\infty}^2 + \dots$ On Γ_h $0 = \partial_n u = C \left(s_{12} e^{ikh} + a(h) \left(-e^{-ikh} + s_{22} e^{ikh} \right) \right) + \dots$

• This gives a(h) and implies, as $h \to +\infty$,

$$|R^N - R^N_{asy}(h)| \le C e^{-\beta h}$$
 with $R^N_{asy}(h) = s_{11} + \frac{s_{12} s_{21}}{e^{-2ikh} - s_{22}}.$

• Unitarity of
$$\begin{pmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{pmatrix} \Rightarrow \frac{h \mapsto R^N_{asy}(h)}{R^N_{asy}(h)}$$
 runs periodically on \mathscr{C} .

Asymptotic of R^N , R^D

For $\ell \in (0; 2\pi/k)$, $h \mapsto R^N(h)$ runs continuously and almost period. on \mathscr{C} .

Conclusions for $\ell \in (0; \pi/k), s_{12} \neq 0$

• Reminder:
$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$

PROPOSITION: Asympt. as $h \to +\infty$, R and T run on circles of radius 1/2.

Conclusions for $\ell \in (0; \pi/k), s_{12} \neq 0$

• Reminder:
$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$

PROPOSITION: Asympt. as $h \to +\infty$, R and T run on circles of radius 1/2.

PROPOSITION: There is an unbounded sequence (h_n) such that for $h = h_n$, $\mathbb{R}^N = -\mathbb{R}^D$ and so $\mathbb{R} = 0$ (non reflectivity).

Conclusions for $\ell \in (0; \pi/k), s_{12} \neq 0$

• Reminder:
$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$

PROPOSITION: Asympt. as $h \to +\infty$, R and T run on circles of radius 1/2.

PROPOSITION: There is an unbounded sequence (h_n) such that for $h = h_n$, $\mathbb{R}^N = -\mathbb{R}^D$ and so $\mathbb{R} = 0$ (non reflectivity).

PROPOSITION: There is an unbounded sequence (\mathcal{H}_n) such that for $h = \mathcal{H}_n$, $\mathbb{R}^N = \mathbb{R}^D$ and so T = 0 (complete reflectivity).

► Sequences (h_n) and (\mathcal{H}_n) are almost periodic. As $n \to +\infty$, we have $h_{n+1} - h_n = \pi/k + \dots$ and $\mathcal{H}_{n+1} - \mathcal{H}_n = \pi/k + \dots$ First constructive method

- 2 Second constructive method
 - Main analysis
 - Numerical results
 - Variants and extensions

3 A spectral approach to determine non reflecting wavenumbers

Setting

• We compute numerically R, T for $h \in (2; 10)$ in the geometry Ω_h

• We use a P2 finite element method with Dirichlet-to-Neumann maps.

• We set $k = 0.8\pi$ and $\ell = 1 \in (0; \pi/k)$.

Numerical results

• Reflection coefficient R and transmission coefficient T for $h \in (2; 10)$.

• Curve $h \mapsto -\ln |R|$. Peaks correspond to non reflectivity.

• Total field v for h such that R = 0.

• Total field v for h such that $\mathbf{R} = 0$.

Other non reflecting geometry

Complete reflectivity

• Curve $h \mapsto -\ln |T|$. Peaks correspond to complete reflectivity.

25 / 45

Total field v for h such that T = 0.

Complete reflectivity

Total field v for h such that T = 0.

Complete reflectivity

Total field v for h such that T = 0.

First constructive method

- 2 Second constructive method
 - Main analysis
 - Numerical results
 - Variants and extensions

3 A spectral approach to determine non reflecting wavenumbers

We did $\ell \in (0; \pi/k)$

- We still have $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N R^D}{2}$.
- Now 2 prop. modes exist in the vertical branch of ω_{∞} for (\mathscr{P}^D) .

- We still have $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N R^D}{2}$.
- Now 2 prop. modes exist in the vertical branch of ω_{∞} for (\mathscr{P}^D) .
- As before, we can show, with $\alpha = \sqrt{k^2 (\pi/\ell)^2}$,

$$|R^D - R^D_{\mathrm{asy}}(h)| \le C \, e^{-eta h} \quad ext{with} \quad R^D_{\mathrm{asy}}(h) = S_{11} + rac{S_{12} \, S_{21}}{e^{-2ilpha h} - S_{22}}.$$

- We still have $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N R^D}{2}$.
- Now 2 prop. modes exist in the vertical branch of ω_{∞} for (\mathscr{P}^D) .
- As before, we can show, with $\alpha = \sqrt{k^2 (\pi/\ell)^2}$,

$$|R^D - R^D_{asy}(h)| \le C e^{-\beta h}$$
 with $R^D_{asy}(h) = S_{11} + \frac{S_{12} S_{21}}{e^{-2i\alpha h} - S_{22}}.$

$$h \mapsto R^N_{asy}(h), h \mapsto R^D_{asy}(h)$$
 run period. on \mathscr{C} with periods $\pi/k, \pi/\alpha$.

 \geq

- We still have $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N R^D}{2}$.
- Now 2 prop. modes exist in the vertical branch of ω_{∞} for (\mathscr{P}^D) .
- As before, we can show, with $\alpha = \sqrt{k^2 (\pi/\ell)^2}$,

$$|R^D - R^D_{asy}(h)| \le C e^{-\beta h}$$
 with $R^D_{asy}(h) = S_{11} + \frac{S_{12} S_{21}}{e^{-2i\alpha h} - S_{22}}.$

$$\checkmark h \mapsto R^N_{asy}(h), h \mapsto R^D_{asy}(h) \text{ run period. on } \mathscr{C} \text{ with periods } \pi/k, \pi/\alpha.$$

* The curves $h \mapsto R(h)$, T(h) still pass through zero an infinite nb. of times. * Behaviours of $h \mapsto R(h)$, T(h) can be much more complex than before...

• Now set $\ell = 2\pi/k$ in the geometry

• Now set $\ell = 2\pi/k$ in the geometry

• Now set $\ell = 2\pi/k$ in the geometry

 $\star \, u = w^+ + w^- = C \, \cos(kx)$ solves the Neum. pb. in ω_h

• Now set $\ell = 2\pi/k$ in the geometry

 $\star u = w^+ + w^- = C \cos(kx)$ solves the Neum. pb. in $\omega_h \Rightarrow \mathbb{R}^N = 1, \forall h > 1$.

• Now set $\ell = 2\pi/k$ in the geometry

 $\star u = w^+ + w^- = C \cos(kx)$ solves the Neum. pb. in $\omega_h \Rightarrow \mathbb{R}^N = 1, \forall h > 1.$ $\star h \mapsto \mathbb{R}^D(h)$ still runs on the unit circle and goes through −1.

• Now set $\ell = 2\pi/k$ in the geometry

* $u = w^+ + w^- = C \cos(kx)$ solves the Neum. pb. in $\omega_h \Rightarrow \mathbb{R}^N = 1, \forall h > 1$. * $h \mapsto \mathbb{R}^D(h)$ still runs on the unit circle and goes through -1.

There is a sequence (h_n) such that T = 1 (perfect invisibility)

The special case $\ell = 2\pi/k$ - perfect invisibility

- Works also in the geometry below (h is the height of the central branch).
- Perfectly invisible defect $(t \mapsto \Re e(v(x, y)e^{-i\omega t}))$.

• Reference waveguide
$$(t \mapsto \Re e(v(x, y)e^{-i\omega t})).$$

• Set
$$\gamma = \sqrt{\pi^2 - k^2}$$
, $w_1^{\pm} = \frac{e^{\pm ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \pm ie^{\gamma x}}{\sqrt{2\gamma}}\cos(\pi y)$.

▶ The Neumann problem in ω_h admits the solutions

$$\begin{aligned} & u_1 = w_1^- + \mathfrak{s}_{11} \, w_1^+ + \mathfrak{s}_{12} \, w_2^+ + \tilde{u}_1, & \text{with } \tilde{u}_1 \text{ fastly expo. decaying} \\ & u_2 = w_2^- + \mathfrak{s}_{21} \, w_1^+ + \, \mathfrak{s}_{22} \, \, w_2^+ + \tilde{u}_2, & \text{with } \tilde{u}_2 \text{ fastly expo. decaying.} \end{aligned}$$

• Set
$$\gamma = \sqrt{\pi^2 - k^2}$$
, $w_1^{\pm} = \frac{e^{\pm ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \pm ie^{\gamma x}}{\sqrt{2\gamma}}\cos(\pi y)$.

• The Neumann problem in ω_h admits the solutions

 $\begin{aligned} u_1 &= w_1^- + \mathfrak{s}_{11} \, w_1^+ + \mathfrak{s}_{12} \, w_2^+ + \tilde{u}_1, & \text{with } \tilde{u}_1 \text{ fastly expo. decaying} \\ u_2 &= w_2^- + \mathfrak{s}_{21} \, w_1^+ + \, \mathfrak{s}_{22} \, w_2^+ + \tilde{u}_2, & \text{with } \tilde{u}_2 \text{ fastly expo. decaying.} \end{aligned}$

• The augmented scattering matrix
$$\mathbb{S} = \begin{pmatrix} \mathfrak{s}_{11} & \mathfrak{s}_{12} \\ \mathfrak{s}_{21} & \mathfrak{s}_{22} \end{pmatrix}$$
 is unitary.

• Set
$$\gamma = \sqrt{\pi^2 - k^2}$$
, $w_1^{\pm} = \frac{e^{\pm ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \pm ie^{\gamma x}}{\sqrt{2\gamma}} \cos(\pi y)$.

• The Neumann problem in ω_h admits the solutions

 $\begin{aligned} u_1 &= w_1^- + \mathfrak{s}_{11} \, w_1^+ + \mathfrak{s}_{12} \, w_2^+ + \tilde{u}_1, & \text{with } \tilde{u}_1 \text{ fastly expo. decaying} \\ u_2 &= w_2^- + \mathfrak{s}_{21} \, w_1^+ + \mathfrak{s}_{22} \, w_2^+ + \tilde{u}_2, & \text{with } \tilde{u}_2 \text{ fastly expo. decaying.} \end{aligned}$

• The augmented scattering matrix
$$\mathbb{S} = \begin{pmatrix} \mathfrak{s}_{11} & \mathfrak{s}_{12} \\ \mathfrak{s}_{21} & \mathfrak{s}_{22} \end{pmatrix}$$
 is unitary.

LEMMA: If $\mathfrak{s}_{22} = -1$, the Neumann problems in ω_h admits trapped modes. *Proof:* $\mathfrak{s}_{22} = -1 \Rightarrow \mathfrak{s}_{21} = 0$ (S is unitary) and $u_2 \in \mathrm{H}^1(\omega_h)$ is a trapped mode.

• Set
$$\gamma = \sqrt{\pi^2 - k^2}$$
, $w_1^{\pm} = \frac{e^{\pm ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \pm ie^{\gamma x}}{\sqrt{2\gamma}}\cos(\pi y)$.

• The Neumann problem in ω_h admits the solutions

 $\begin{aligned} u_1 &= w_1^- + \mathfrak{s}_{11} \, w_1^+ + \mathfrak{s}_{12} \, w_2^+ + \tilde{u}_1, & \text{with } \tilde{u}_1 \text{ fastly expo. decaying} \\ u_2 &= w_2^- + \mathfrak{s}_{21} \, w_1^+ + \mathfrak{s}_{22} \, w_2^+ + \tilde{u}_2, & \text{with } \tilde{u}_2 \text{ fastly expo. decaying.} \end{aligned}$

• The augmented scattering matrix
$$\mathbb{S} = \begin{pmatrix} \mathfrak{s}_{11} & \mathfrak{s}_{12} \\ \mathfrak{s}_{21} & \mathfrak{s}_{22} \end{pmatrix}$$
 is unitary.

LEMMA: If $\mathbf{s}_{22} = -1$, the Neumann problems in ω_h admits trapped modes. *Proof:* $\mathbf{s}_{22} = -1 \Rightarrow \mathbf{s}_{21} = 0$ (S is unitary) and $u_2 \in \mathrm{H}^1(\omega_h)$ is a trapped mode.

 $\star u = w_1^- + w_1^+$ solves the Neum. pb. in ω_h as in the previous slide
• Set
$$\gamma = \sqrt{\pi^2 - k^2}$$
, $w_1^{\pm} = \frac{e^{\pm ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \pm ie^{\gamma x}}{\sqrt{2\gamma}}\cos(\pi y)$

• The Neumann problem in ω_h admits the solutions

 $\begin{aligned} & u_1 = w_1^- + \mathfrak{s}_{11} \, w_1^+ + \mathfrak{s}_{12} \, w_2^+ + \tilde{u}_1, & \text{with } \tilde{u}_1 \text{ fastly expo. decaying} \\ & u_2 = w_2^- + \mathfrak{s}_{21} \, w_1^+ + \mathfrak{s}_{22} \, w_2^+ + \tilde{u}_2, & \text{with } \tilde{u}_2 \text{ fastly expo. decaying.} \end{aligned}$

• The augmented scattering matrix
$$\mathbb{S} = \begin{pmatrix} \mathfrak{s}_{11} & \mathfrak{s}_{12} \\ \mathfrak{s}_{21} & \mathfrak{s}_{22} \end{pmatrix}$$
 is unitary.

LEMMA: If $\mathbf{s}_{22} = -1$, the Neumann problems in ω_h admits trapped modes. *Proof:* $\mathbf{s}_{22} = -1 \Rightarrow \mathbf{s}_{21} = 0$ (S is unitary) and $u_2 \in \mathrm{H}^1(\omega_h)$ is a trapped mode.

$$\begin{array}{l} \star \; u = w_1^- + w_1^+ \; \text{solves the Neum. pb. in } \omega_h \; \text{as in the previous slide} \\ \\ \Rightarrow \; \mathfrak{s}_{11} = 1 \qquad \Rightarrow \; |\mathfrak{s}_{22}| = 1, \qquad \forall h > 1. \end{array}$$

• Set
$$\gamma = \sqrt{\pi^2 - k^2}$$
, $w_1^{\pm} = \frac{e^{\pm ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \pm ie^{\gamma x}}{\sqrt{2\gamma}} \cos(\pi y)$.

• The Neumann problem in ω_h admits the solutions

 $\begin{aligned} u_1 &= w_1^- + \mathfrak{s}_{11} \, w_1^+ + \mathfrak{s}_{12} \, w_2^+ + \tilde{u}_1, & \text{with } \tilde{u}_1 \text{ fastly expo. decaying} \\ u_2 &= w_2^- + \mathfrak{s}_{21} \, w_1^+ + \mathfrak{s}_{22} \, w_2^+ + \tilde{u}_2, & \text{with } \tilde{u}_2 \text{ fastly expo. decaying.} \end{aligned}$

• The augmented scattering matrix
$$\mathbb{S} = \begin{pmatrix} \mathfrak{s}_{11} & \mathfrak{s}_{12} \\ \mathfrak{s}_{21} & \mathfrak{s}_{22} \end{pmatrix}$$
 is unitary.

LEMMA: If $\mathfrak{s}_{22} = -1$, the Neumann problems in ω_h admits trapped modes. *Proof:* $\mathfrak{s}_{22} = -1 \Rightarrow \mathfrak{s}_{21} = 0$ (S is unitary) and $u_2 \in \mathrm{H}^1(\omega_h)$ is a trapped mode.

$$★ u = w_1^- + w_1^+$$
solves the Neum. pb. in $ω_h$ as in the previous slide

$$⇒ \mathfrak{s}_{11} = 1 \qquad \Rightarrow |\mathfrak{s}_{22}| = 1, \qquad \forall h > 1.$$

$$★$$
As previously, $h \mapsto \mathfrak{s}_{22}(h)$ runs on the unit circle and goes through -1.

• Set
$$\gamma = \sqrt{\pi^2 - k^2}$$
, $w_1^{\pm} = \frac{e^{\pm ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \pm ie^{\gamma x}}{\sqrt{2\gamma}} \cos(\pi y)$.

• The Neumann problem in ω_h admits the solutions

 $\begin{aligned} u_1 &= w_1^- + \mathfrak{s}_{11} \, w_1^+ + \mathfrak{s}_{12} \, w_2^+ + \tilde{u}_1, & \text{with } \tilde{u}_1 \text{ fastly expo. decaying} \\ u_2 &= w_2^- + \mathfrak{s}_{21} \, w_1^+ + \mathfrak{s}_{22} \, w_2^+ + \tilde{u}_2, & \text{with } \tilde{u}_2 \text{ fastly expo. decaying.} \end{aligned}$

• The augmented scattering matrix
$$\mathbb{S} = \begin{pmatrix} \mathfrak{s}_{11} & \mathfrak{s}_{12} \\ \mathfrak{s}_{21} & \mathfrak{s}_{22} \end{pmatrix}$$
 is unitary.

LEMMA: If $\mathbf{s}_{22} = -1$, the Neumann problems in ω_h admits trapped modes. *Proof:* $\mathbf{s}_{22} = -1 \Rightarrow \mathbf{s}_{21} = 0$ (S is unitary) and $u_2 \in \mathrm{H}^1(\omega_h)$ is a trapped mode.

$$\begin{array}{l} \star \; u = w_1^- + w_1^+ \; \text{solves the Neum. pb. in } \omega_h \; \text{as in the previous slide} \\ \\ \Rightarrow \; \mathfrak{s}_{11} = 1 \quad \Rightarrow |\mathfrak{s}_{22}| = 1, \quad \forall h > 1. \end{array}$$

* As previously, $h \mapsto \mathfrak{s}_{22}(h)$ runs on the unit circle and goes through -1.

There is a sequence (h_n) such that trapped modes exist in ω_h .

/ 45

Symmetry argument w.r.t. $(Oy) \Rightarrow$ existence of trapped modes in Ω_h . It works also in the geometry below (*h* is the height of the central branch).

There is a sequence (h_n) such that trapped modes exist in

Outline of the talk

First constructive method

k is given, we use perturbative techniques to construct geometries such that R = 0 or T = 1.

2 Second constructive method

k is given, we use an approach based on symmetries to construct geometries such that R = 0, T = 1 or T = 0 and even a bit more...

A spectral approach to determine non reflecting wavenumbers

For a given geometry, we explain how to find non reflecting k solving a spectral problem.

• Consider the scattering problem with $k \in ((N-1)\pi; N\pi), N \in \mathbb{N}^*$

Find
$$v = v_i + v_s$$
 s. t.
 $-\Delta v = k^2 v \text{ in } \Omega,$
 $\partial_n v = 0 \text{ on } \partial\Omega,$
 v_s is outgoing.

Consider the scattering problem with $k \in ((N-1)\pi; N\pi), N \in \mathbb{N}^*$

Find
$$v = v_i + v_s$$
 s. t.
 $-\Delta v = k^2 v \text{ in } \Omega,$
 $\partial_n v = 0 \text{ on } \partial\Omega,$
 v_s is outgoing.

• For this problem, the modes are

 $\begin{array}{l} \mbox{Propagating} \\ \mbox{Evanescent} \\ \end{array} \left| \begin{array}{l} w_n^{\pm}(x,y) = e^{\pm i\beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{k^2 - n^2 \pi^2}, \ n \in \llbracket 0, N-1 \rrbracket \\ w_n^{\pm}(x,y) = e^{\mp \beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{n^2 \pi^2 - k^2}, \ n \geq N. \end{array} \right.$

Consider the scattering problem with $k \in ((N-1)\pi; N\pi), N \in \mathbb{N}^*$

Find
$$v = v_i + v_s$$
 s. t.
 $-\Delta v = k^2 v \text{ in } \Omega,$
 $\partial_n v = 0 \text{ on } \partial\Omega,$
 v_s is outgoing.

• For this problem, the modes are

 $\begin{array}{l} \mbox{Propagating} & \left| \begin{array}{l} w_n^{\pm}(x,y) = e^{\pm i\beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{k^2 - n^2 \pi^2}, \ n \in \llbracket 0, N-1 \rrbracket \\ \mbox{Evanescent} & \left| \begin{array}{l} w_n^{\pm}(x,y) = e^{\mp \beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{n^2 \pi^2 - k^2}, \ n \ge N. \end{array} \right. \end{array}$

• Set
$$v_i = \sum_{n=0}^{N-1} \alpha_n w_n^+$$
 for some given $(\alpha_n)_{n=0}^{N-1} \in \mathbb{C}^N$.

Consider the scattering problem with $k \in ((N-1)\pi; N\pi), N \in \mathbb{N}^*$

Find $v = v_i + v_s$ s. t. $-\Delta v = k^2 v \text{ in } \Omega,$ $\partial_n v = 0 \text{ on } \partial\Omega,$ v_s is outgoing.

• For this problem, the modes are

 $\begin{array}{l} \mbox{Propagating} & \left| \begin{array}{l} w_n^{\pm}(x,y) = e^{\pm i\beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{k^2 - n^2 \pi^2}, \ n \in \llbracket 0, N-1 \rrbracket \\ \mbox{Evanescent} & \left| \begin{array}{l} w_n^{\pm}(x,y) = e^{\mp \beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{n^2 \pi^2 - k^2}, \ n \ge N. \end{array} \right. \end{array}$

• Set
$$v_i = \sum_{n=0}^{N-1} \alpha_n w_n^+$$
 for some given $(\alpha_n)_{n=0}^{N-1} \in \mathbb{C}^N$.

• v_s is outgoing \Leftrightarrow $v_s = \sum_{n=0}^{+\infty} \gamma_n^{\pm} w_n^{\pm}$ for $\pm x \ge L$, with $(\gamma_n^{\pm}) \in \mathbb{C}^{\mathbb{N}}$.

• Consider the complex change of variables $\mathcal{I}_{\theta} : \Omega \to \mathbb{C} \times (0; 1)$ such that

$$\mathcal{I}_{\theta}(x,y) = \begin{vmatrix} (-L + (x+L) e^{i\theta}, y) & \text{for } x \leq -L \\ (x,y) & \text{for } |x| < L \\ (+L + (x-L) e^{i\theta}, y) & \text{for } x \geq L. \end{vmatrix} \text{ with } \theta \in (0; \pi/2).$$

► Since $\Re e(ie^{i\theta}) < 0$ and $\Re e(-e^{i\theta}) < 0$, the functions $w_n^{\pm} \circ \mathcal{I}_{\theta}$ are exponentially decaying at $\pm \infty$.

• Consider the complex change of variables $\mathcal{I}_{\theta} : \Omega \to \mathbb{C} \times (0; 1)$ such that

$$\mathcal{I}_{\theta}(x,y) = \begin{vmatrix} (-L + (x+L) e^{i\theta}, y) & \text{for } x \leq -L \\ (x,y) & \text{for } |x| < L \\ (+L + (x-L) e^{i\theta}, y) & \text{for } x \geq L. \end{vmatrix} \text{ with } \theta \in (0; \pi/2).$$

► Since $\Re e(ie^{i\theta}) < 0$ and $\Re e(-e^{i\theta}) < 0$, the functions $w_n^{\pm} \circ \mathcal{I}_{\theta}$ are exponentially decaying at $\pm \infty$. Set $v_{\theta} := v_s \circ \mathcal{I}_{\theta}$.

1)
$$\boldsymbol{v}_{\boldsymbol{\theta}} = \boldsymbol{v}_{\boldsymbol{s}}$$
 for $|\boldsymbol{x}| < L$.

2) v_{θ} is exp. decaying at infinity.

• Consider the complex change of variables $\mathcal{I}_{\theta} : \Omega \to \mathbb{C} \times (0; 1)$ such that

$$\mathcal{I}_{\theta}(x,y) = \begin{vmatrix} (-L + (x+L) e^{i\theta}, y) & \text{for } x \leq -L \\ (x,y) & \text{for } |x| < L \\ (+L + (x-L) e^{i\theta}, y) & \text{for } x \geq L. \end{vmatrix} \text{ with } \theta \in (0; \pi/2).$$

► Since $\Re e(ie^{i\theta}) < 0$ and $\Re e(-e^{i\theta}) < 0$, the functions $w_n^{\pm} \circ \mathcal{I}_{\theta}$ are exponentially decaying at $\pm \infty$. Set $v_{\theta} := v_s \circ \mathcal{I}_{\theta}$.

v_θ = v_s for |x| < L.
 v_θ is exp. decaying at infinity.

$$v_{\theta} \text{ solves } \left(\ast \right) \left| \begin{array}{c} \alpha_{\theta} \frac{\partial}{\partial x} \left(\alpha_{\theta} \frac{\partial v_{\theta}}{\partial x} \right) + \frac{\partial^2 v_{\theta}}{\partial y^2} + k^2 v_{\theta} = 0 \quad \text{in } \Omega \\ \partial_n v_{\theta} = -\partial_n v_i \quad \text{on } \partial\Omega. \end{array} \right.$$

• Consider the complex change of variables $\mathcal{I}_{\theta} : \Omega \to \mathbb{C} \times (0; 1)$ such that

$$\mathcal{I}_{\theta}(x,y) = \begin{vmatrix} (-L + (x+L) e^{i\theta}, y) & \text{for } x \leq -L \\ (x,y) & \text{for } |x| < L \\ (+L + (x-L) e^{i\theta}, y) & \text{for } x \geq L. \end{vmatrix} \text{ with } \theta \in (0; \pi/2).$$

► Since $\Re e(ie^{i\theta}) < 0$ and $\Re e(-e^{i\theta}) < 0$, the functions $w_n^{\pm} \circ \mathcal{I}_{\theta}$ are exponentially decaying at $\pm \infty$. Set $v_{\theta} := v_s \circ \mathcal{I}_{\theta}$.

1) $v_{\theta} = v_s$ for |x| < L. 2) v_{θ} is exp. decaying at infinity.

•
$$v_{\theta}$$
 solves $\left| \begin{array}{c} (*) \\ \end{array} \right| \left| \begin{array}{c} \alpha_{\theta} \frac{\partial}{\partial x} \left(\alpha_{\theta} \frac{\partial v_{\theta}}{\partial x} \right) + \frac{\partial^2 v_{\theta}}{\partial y^2} + k^2 v_{\theta} = 0 \quad \text{in } \Omega \\ \partial_n v_{\theta} = -\partial_n v_i \quad \text{on } \partial\Omega. \end{array} \right|$
 $\alpha_{\theta}(x) = 1 \text{ for } |x| < L \qquad \alpha_{\theta}(x) = e^{-i\theta} \text{ for } |x| \ge L$

33 / 45

• Numerically we solve (*) in the truncated domain $\alpha_{\theta} = e^{-i\theta}$ $\alpha_{\theta} = e^{-i\theta}$ $\alpha_{\theta} = 1$ Dirichlet/ Dirichlet/ Neumann Neumann -R-L+L+R \Rightarrow We obtain a good approximation of v_s for |x| < L. This is the method of Perfectly Matched Layers (PMLs). •

$$\begin{aligned}
\varphi_{\theta} \text{ solves} \left| \begin{pmatrix} * \end{pmatrix} \right| & \alpha_{\theta} \frac{\partial}{\partial x} \left(\alpha_{\theta} \frac{\partial v_{\theta}}{\partial x} \right) + \frac{\partial^2 v_{\theta}}{\partial y^2} + k^2 v_{\theta} = 0 & \text{in } \Omega \\
& \partial_n v_{\theta} = -\partial_n v_i & \text{on } \partial\Omega. \\
& \alpha_{\theta}(x) = 1 \text{ for } |x| < L & \alpha_{\theta}(x) = e^{-i\theta} \text{ for } |x| \ge L
\end{aligned}$$

33 / 45

• Define the operators A, A_{θ} of $L^{2}(\Omega)$ such that

$$Av = -\Delta v, \qquad A_{\theta}v = -\left(\alpha_{\theta}\frac{\partial}{\partial x}\left(\alpha_{\theta}\frac{\partial v}{\partial x}\right) + \frac{\partial^2 v}{\partial y^2}\right) \qquad + \partial_n v = 0 \text{ on } \partial\Omega.$$

$$A_{\theta} \text{ is not selfadjoint. } \sigma(A_{\theta}) \subset \{\rho e^{i\gamma}, \ \rho \ge 0, \ \gamma \in [-2\theta; 0]\}.$$

$$\sigma_{\text{ors}}(A_{\theta}) = \bigcup_{n \in \mathbb{N}} \{n^2 \pi^2 + t e^{-2i\theta}, \ t \ge 0\}.$$

• real eigenvalues of A_{θ} = real eigenvalues of A.

• Discretized spectrum of A_{θ} in k (not in k^2). We take $\theta = \pi/4$.

35 / 45

• Discretized spectrum of A_{θ} in k (not in k^2). We take $\theta = \pi/4$.

35 / 45

• Usual complex stretching selects solutions which are

outgoing at $-\infty$ and outgoing at $+\infty$.

IMPORTANT REMARK: for general k, the total field has the form

$$v = v_i + \sum_{n=0}^{N-1} \gamma_n^- w_n^- + \sum_{n=N}^{+\infty} \gamma_n^- w_n^- \quad x \le -L, \quad v = \sum_{n=0}^{+\infty} \gamma_n^+ w_n^+ \quad x \ge L.$$

• Usual complex stretching selects solutions which are

outgoing at $-\infty$ and outgoing at $+\infty$.

IMPORTANT REMARK: for **non reflecting** k, the total field has the form

$$v = v_i + \sum_{n=0}^{N-1} w_n^- + \sum_{n=N}^{+\infty} \gamma_n^- w_n^- \quad x \le -L, \quad v = \sum_{n=0}^{+\infty} \gamma_n^+ w_n^+ \quad x \ge L.$$

• Usual complex stretching selects solutions which are

outgoing at $-\infty$ and outgoing at $+\infty$.

IMPORTANT REMARK: for k, the total field has the form

$$v = \sum_{n=0}^{N-1} \alpha_n w_n^+ + \sum_{n=N}^{+\infty} \gamma_n^- w_n^- \quad x \le -L, \quad v = \sum_{n=0}^{+\infty} \gamma_n^+ w_n^+ \quad x \ge L.$$

In other words, v is

ingoing at $-\infty$ and outgoing at $+\infty$.

• Usual complex stretching selects solutions which are

outgoing at $-\infty$ and outgoing at $+\infty$.

IMPORTANT REMARK: for k, the total field has the form

$$v = \sum_{n=0}^{N-1} \alpha_n w_n^+ + \sum_{n=N}^{+\infty} \gamma_n^- w_n^- \quad x \le -L, \quad v = \sum_{n=0}^{+\infty} \gamma_n^+ w_n^+ \quad x \ge L.$$

 \blacktriangleright In other words, v is

ingoing at $-\infty$ and outgoing at $+\infty$.

Let us change the sign of the complex stretching at $-\infty$!

• Consider the complex change of variables $\mathcal{J}_{\theta} : \Omega \to \mathbb{C} \times (0; 1)$ such that $\mathcal{J}_{\theta}(x, y) = \begin{vmatrix} (-L + (x + L) e^{-i\theta}, y) & \text{for } x \leq -L \\ (x, y) & \text{for } |x| < L \\ (+L + (x - L) e^{i\theta}, y) & \text{for } x \geq L. \end{vmatrix}$ with $\theta \in (0; \pi/2)$.

• One can check that the functions $w_n^+ \circ \mathcal{J}_{\theta}$, $n \in [[0, N-1]]$ and $w_n^{\pm} \circ \mathcal{J}_{\theta}$, $n \geq N$, are exponentially decaying at $\pm \infty$.

• Consider the complex change of variables $\mathcal{J}_{\theta} : \Omega \to \mathbb{C} \times (0; 1)$ such that $\mathcal{J}_{\theta}(x, y) = \begin{vmatrix} (-L + (x + L)) e^{-i\theta}, y \rangle & \text{for } x \leq -L \\ (x, y) & \text{for } |x| < L \\ (+L + (x - L)) e^{i\theta}, y \rangle & \text{for } x \geq L. \end{vmatrix}$ with $\theta \in (0; \pi/2)$.

• One can check that the functions $w_n^+ \circ \mathcal{J}_{\theta}$, $n \in [[0, N-1]]$ and $w_n^{\pm} \circ \mathcal{J}_{\theta}$, $n \geq N$, are exponentially decaying at $\pm \infty$. Set $u_{\theta} := v \circ \mathcal{J}_{\theta}$.

1) $u_{\theta} = v$ for |x| < L. 2) u_{θ} is exp. decaying at infinity.

• Consider the complex change of variables $\mathcal{J}_{\theta} : \Omega \to \mathbb{C} \times (0; 1)$ such that $\mathcal{J}_{\theta}(x, y) = \begin{vmatrix} (-L + (x + L)) e^{-i\theta}, y \rangle & \text{for } x \leq -L \\ (x, y) & \text{for } |x| < L \\ (+L + (x - L)) e^{i\theta}, y \rangle & \text{for } x \geq L. \end{vmatrix}$ with $\theta \in (0; \pi/2)$.

• One can check that the functions $w_n^+ \circ \mathcal{J}_{\theta}$, $n \in [[0, N-1]]$ and $w_n^{\pm} \circ \mathcal{J}_{\theta}$, $n \geq N$, are exponentially decaying at $\pm \infty$. Set $u_{\theta} := v \circ \mathcal{J}_{\theta}$.

u_θ = v for |x| < L.
 u_θ is exp. decaying at infinity.

 u_{θ} solves

$$(*) \begin{vmatrix} \beta_{\theta} \frac{\partial}{\partial x} \left(\beta_{\theta} \frac{\partial u_{\theta}}{\partial x} \right) + \frac{\partial^2 u_{\theta}}{\partial y^2} + k^2 u_{\theta} = 0 & \text{in } \Omega \\ \partial_n u_{\theta} = 0 & \text{on } \partial \Omega. \end{vmatrix}$$

• Consider the complex change of variables $\mathcal{J}_{\theta} : \Omega \to \mathbb{C} \times (0; 1)$ such that $\mathcal{J}_{\theta}(x, y) = \begin{vmatrix} (-L + (x + L)) e^{-i\theta}, y & \text{for } x \leq -L \\ (x, y) & \text{for } |x| < L \\ (+L + (x - L)) e^{i\theta}, y & \text{for } x \geq L. \end{vmatrix}$ with $\theta \in (0; \pi/2)$.

• One can check that the functions $w_n^+ \circ \mathcal{J}_{\theta}$, $n \in [[0, N-1]]$ and $w_n^{\pm} \circ \mathcal{J}_{\theta}$, $n \geq N$, are exponentially decaying at $\pm \infty$. Set $u_{\theta} := v \circ \mathcal{J}_{\theta}$.

u_θ = v for |x| < L.
 u_θ is exp. decaying at infinity.

~?

0

~

 u_{θ} solves

$$\begin{cases} (*) & \beta_{\theta} \frac{\partial}{\partial x} \left(\beta_{\theta} \frac{\partial u_{\theta}}{\partial x} \right) + \frac{\partial^{2} u_{\theta}}{\partial y^{2}} + k^{2} u_{\theta} = 0 \quad \text{in } \Omega \\ & \partial_{n} u_{\theta} = 0 \quad \text{on } \partial \Omega. \end{cases}$$

$$\beta_{\theta}(x) = 1 \text{ for } |x| < L, \quad \beta_{\theta}(x) = e^{i\theta} \text{ for } x \leq -L, \quad \beta_{\theta}(x) = e^{-i\theta} \text{ for } x \geq L,$$

$$36 \neq 45$$

• Define the operators B_{θ} of $L^2(\Omega)$ such that

$$B_{\theta}v = -\left(\beta_{\theta}\frac{\partial}{\partial x}\left(\beta_{\theta}\frac{\partial v}{\partial x}\right) + \frac{\partial^2 v}{\partial y^2}\right) \qquad + \partial_n v = 0 \text{ on } \partial\Omega.$$

■ B_{θ} is not selfadjoint. $\sigma(B_{\theta}) \subset \{\rho e^{i\gamma}, \rho \ge 0, \gamma \in [-2\theta; 2\theta]\}.$ ■ $\sigma_{\text{ess}}(B_{\theta}) = \bigcup_{n \in \mathbb{N}} \{n^2 \pi^2 + t e^{-2i\theta}, t \ge 0\} \cup \{n^2 \pi^2 + t e^{2i\theta}, t \ge 0\}.$ ■ real eigenvalues of B_{θ} = real eigenvalues of A+non reflecting k^2 .

• Define the operators B_{θ} of $L^2(\Omega)$ such that

$$B_{\theta}v = -\left(\beta_{\theta}\frac{\partial}{\partial x}\left(\beta_{\theta}\frac{\partial v}{\partial x}\right) + \frac{\partial^2 v}{\partial y^2}\right) \qquad + \partial_n v = 0 \text{ on } \partial\Omega.$$

B_θ is not selfadjoint. σ(B_θ) ⊂ {ρe^{iγ}, ρ≥0, γ∈ [-2θ; 2θ]}.
σ_{ess}(B_θ) = ∪_{n∈ℕ}{n²π² + t e^{-2iθ}, t≥0} ∪ {n²π² + t e^{2iθ}, t≥0}.
real eigenvalues of B_θ = real eigenvalues of A+non reflecting k².

REMARK: Not simple to prove that $\sigma(B_{\theta}) \setminus \sigma_{\text{ess}}(B_{\theta})$ is discrete.

• Define the operators B_{θ} of $L^2(\Omega)$ such that

$$B_{\theta}v = -\left(\beta_{\theta}\frac{\partial}{\partial x}\left(\beta_{\theta}\frac{\partial v}{\partial x}\right) + \frac{\partial^2 v}{\partial y^2}\right) \qquad + \partial_n v = 0 \text{ on } \partial\Omega.$$

B_θ is not selfadjoint. σ(B_θ) ⊂ {ρe^{iγ}, ρ≥0, γ∈ [-2θ; 2θ]}.
σ_{ess}(B_θ) = ∪_{n∈ℕ}{n²π² + te^{-2iθ}, t≥0} ∪ {n²π² + te^{2iθ}, t≥0}.
real eigenvalues of B_θ = real eigenvalues of A+non reflecting k².

• Define the operators B_{θ} of $L^2(\Omega)$ such that

$$B_{\theta}v = -\left(\beta_{\theta}\frac{\partial}{\partial x}\left(\beta_{\theta}\frac{\partial v}{\partial x}\right) + \frac{\partial^2 v}{\partial y^2}\right) \qquad + \partial_n v = 0 \text{ on } \partial\Omega.$$

B_θ is not selfadjoint. σ(B_θ) ⊂ {ρe^{iγ}, ρ≥0, γ∈ [-2θ; 2θ]}.
σ_{ess}(B_θ) = ∪_{n∈ℕ}{n²π² + t e^{-2iθ}, t≥0} ∪ {n²π² + t e^{2iθ}, t≥0}.
real eigenvalues of B_θ = real eigenvalues of A+non reflecting k².

Define the operators \mathcal{P} (Parity), \mathcal{T} (Time reversal) such that

$$\mathcal{P}v(x,y) = v(-x,y)$$
 and $\mathcal{T}v(x,y) = \overline{v(x,y)}$.

PROP.: For symmetric $\Omega = \{(-x, y) | (x, y) \in \Omega\}, B_{\theta} \text{ is } \mathcal{PT} \text{ symmetric:}$

$$\mathcal{PT}B_{\theta}\mathcal{PT} = B_{\theta}.$$

As a consequence, $\sigma(B_{\theta}) = \overline{\sigma(B_{\theta})}$.

• Discretized spectrum in k (not in k^2). We take $\theta = \pi/4$.

• **Discretized** spectrum in k (not in k^2). We take $\theta = \pi/4$.

38 / 45

• We display the eigenmodes for the ten first real eigenvalues in the whole computational domain (including PMLs).

• Let us focus on the eigenmodes such that $0 < k < \pi$.

First trapped mode k = 1.2355...

Second trapped mode k=2.3897...

First non reflecting mode k = 1.4513...

Second non reflecting mode k = 2.8896...

• To check our results, we compute $k \mapsto |R(k)|$ for $0 < k < \pi$.

First non reflecting mode k = 1.4513...

Second non reflecting mode k = 2.8896...
• To check our results, we compute $k \mapsto |R(k)|$ for $0 < k < \pi$.

• Now the geometry is not symmetric in x nor in y:

• The operator B_{θ} is no longer \mathcal{PT} -symmetric and we expect:

- No trapped modes
- No invariance of the spectrum by complex conjugation.

• Discretized spectrum of B_{θ} in k (not in k^2). We take $\theta = \pi/4$.

40 / 45

• We compute $k \mapsto |R(k)|$ for $0 < k < \pi$.

• We compute $k \mapsto |R(k)|$ for $0 < k < \pi$.

Complex eigenvalues also contain information on almost no reflection.

Spectra for a changing geometry

▶ Two series of computations: one with PMLs with different sign, one with classical PMLs. We compute the spectra for $h \in (1.3; 8)$.

• The magenta marks on the real axis correspond to the particular frequencies $k = \pi/\ell$ and $k = 2\pi/\ell$.

For $k = 2\pi/\ell$, trapped modes and T = 1 should occur for certain h.

• We zoom at the region
$$0 < \Re e k < \pi$$
.

* PMLs with different signs

+ Classical PMLs

Outline of the talk

First constructive method

k is given, we use perturbative techniques to construct geometries such that R = 0 or T = 1.

2 Second constructive method

k is given, we use an approach based on symmetries to construct geometries such that R = 0, T = 1 or T = 0 and even a bit more...

A spectral approach to determine non reflecting wavenumbers

For a given geometry, we explain how to find non reflecting k solving a spectral problem.

Future work

- 1) How to construct invisible or completely reflecting defects for a given $k > \pi$ (several propagating modes)?
- 2) Can we find a spectral approach to compute completely reflecting or completely invisible k for a given geometry?
- 3) Can we prove existence of non reflecting k for the \mathcal{PT} -symmetric pb?
- 4) Can we work in free space with a finite number of directions? on other equations (electromagnetism, elasticity,...)?

Thank you for your attention!

• More generally, for any Neumann waveguide, one can show that T = 1 implies

$$\int_{\Omega} |\nabla v_s|^2 - k^2 |v_s|^2 \, d\boldsymbol{x} = 0.$$

• More generally, for any Neumann waveguide, one can show that T = 1 implies

$$\int_{\Omega} |\nabla v_s|^2 - k^2 |v_s|^2 \, d\boldsymbol{x} = 0.$$

• Decomposing in Fourier series, one finds

$$\int_{\Omega_{\ell}^{c}} |\nabla v_{s}|^{2} - k^{2} |v_{s}|^{2} \, d\boldsymbol{x} \ge 0.$$

• Note that $T = 1 \Rightarrow v_s \in \mathbf{Y} := \{\varphi \in \mathrm{H}^1(\Omega_\ell) \mid \int_{x=\pm\ell} \varphi \, d\sigma = 0\}$. Define

$$\lambda_{\dagger}:= \inf_{\varphi \in \mathbf{Y} \setminus \{0\}} \left(\int_{\Omega_{\ell}} |\nabla \varphi|^2 \, d\mathbf{x} \right) \Big/ \left(\int_{\Omega_{\ell}} |\varphi|^2 \, d\mathbf{x} \right) > 0.$$

• More generally, for any Neumann waveguide, one can show that T = 1 implies

$$\int_{\Omega} |\nabla v_s|^2 - k^2 |v_s|^2 \, d\boldsymbol{x} = 0.$$

• Decomposing in Fourier series, one finds

$$\int_{\Omega_{\ell}^{c}} |\nabla v_{s}|^{2} - k^{2} |v_{s}|^{2} d\boldsymbol{x} \geq 0.$$

• Note that $T = 1 \Rightarrow v_s \in \mathbf{Y} := \{\varphi \in \mathrm{H}^1(\Omega_\ell) \mid \int_{x=\pm\ell} \varphi \, d\sigma = 0\}$. Define

$$\lambda_{\dagger} := \inf_{\varphi \in \mathbf{Y} \setminus \{0\}} \left(\int_{\Omega_{\ell}} |\nabla \varphi|^2 \, d\boldsymbol{x} \right) \Big/ \left(\int_{\Omega_{\ell}} |\varphi|^2 \, d\boldsymbol{x} \right) > 0.$$

PROPOSITION: For a given shape, T = 1 cannot hold for $k^2 \in (0; \lambda_{\dagger})$.

• More generally, for any Neumann waveguide, one can show that T = 1 implies

$$\int_{\Omega} |\nabla v_s|^2 - k^2 |v_s|^2 \, d\boldsymbol{x} = 0.$$

• Decomposing in Fourier series, one finds

$$\int_{\Omega_{\ell}^{c}} |\nabla v_{s}|^{2} - k^{2} |v_{s}|^{2} \, d\boldsymbol{x} \ge 0.$$

• Note that $T = 1 \Rightarrow v_s \in \mathbf{Y} := \{\varphi \in \mathrm{H}^1(\Omega_\ell) \mid \int_{x=\pm\ell} \varphi \, d\sigma = 0\}$. Define

$$\lambda_{\dagger} := \inf_{\varphi \in \mathbf{Y} \setminus \{0\}} \left(\int_{\Omega_{\ell}} |\nabla \varphi|^2 \, d\boldsymbol{x} \right) \Big/ \left(\int_{\Omega_{\ell}} |\varphi|^2 \, d\boldsymbol{x} \right) > 0.$$

PROPOSITION: For a given shape, T = 1 cannot hold for $k^2 \in (0; \lambda_{\dagger})$.

 \rightarrow For a small smooth perturbation of amplitude εh , one finds $|\lambda_{\dagger} - \pi^2| \leq C \varepsilon$.

• More generally, for any Neumann waveguide, one can show that T = 1 implies

$$\int_{\Omega} |\nabla v_s|^2 - k^2 |v_s|^2 \, d\boldsymbol{x} = 0.$$

• Decomposing in Fourier series, one finds

$$\int_{\Omega_{\ell}^{c}} |\nabla v_{s}|^{2} - k^{2} |v_{s}|^{2} d\boldsymbol{x} \geq 0.$$

• Note that $T = 1 \Rightarrow v_s \in \mathbf{Y} := \{\varphi \in \mathrm{H}^1(\Omega_\ell) \mid \int_{x=\pm\ell} \varphi \, d\sigma = 0\}$. Define

$$\lambda_{\dagger} := \inf_{\varphi \in \mathbf{Y} \setminus \{0\}} \left(\int_{\Omega_{\ell}} |\nabla \varphi|^2 \, d\boldsymbol{x} \right) \Big/ \left(\int_{\Omega_{\ell}} |\varphi|^2 \, d\boldsymbol{x} \right) > 0.$$

PROPOSITION: For a given shape, T = 1 cannot hold for $k^2 \in (0; \lambda_{\dagger})$.

 \rightarrow To impose invisibility at low frequency, we need to work with special shapes.

• With Dirichlet B.C., the modes are not the same as previously but this not important.

▶ With Dirichlet B.C., the modes are not the same as previously but this not important.

• In 3D, we obtain

 $R = 0 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O})w^+(M_1)^2\right) + O(\varepsilon^2)$

 $T = 1 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O}) |w^+(M_1)|^2 \right) + O(\varepsilon^2).$

▶ With Dirichlet B.C., the modes are not the same as previously but this not important.

• In 3D, we obtain

$$R = 0 + \varepsilon \frac{(4i\pi \operatorname{cap}(\mathcal{O})w^+(M_1)^2)}{(4i\pi \operatorname{cap}(\mathcal{O})|w^+(M_1)|^2)} + O(\varepsilon^2) \operatorname{Non \ zero \ terms!}_{(\operatorname{cap}(\mathcal{O}) > 0)}$$

▶ With Dirichlet B.C., the modes are not the same as previously but this not important.

• In 3D, we obtain

$$R = 0 + \varepsilon \frac{(4i\pi \operatorname{cap}(\mathcal{O})w^+(M_1)^2)}{(4i\pi \operatorname{cap}(\mathcal{O})|w^+(M_1)|^2)} + O(\varepsilon^2) \operatorname{Non \ zero \ terms}_{(\operatorname{cap}(\mathcal{O}) > 0)}$$

 \Rightarrow One single small obstacle cannot even be non reflecting.

Let us try with **TWO** small Dirichlet obstacles at M_1 , M_2 .

We obtain $R = 0 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O})\sum_{n=1}^{2} w^{+}(M_{n})^{2}\right) + O(\varepsilon^{2})$ $T = 1 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O})\sum_{n=1}^{2} |w^{+}(M_{n})|^{2}\right) + O(\varepsilon^{2}).$

• Let us try with **TWO** small Dirichlet obstacles at M_1 , M_2 .

• We obtain $R = 0 + \varepsilon \left[(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} w^{+} (M_{n})^{2}) + O(\varepsilon^{2}) \right]$ $T = 1 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} |w^{+} (M_{n})|^{2} \right) + O(\varepsilon^{2}).$

• Let us try with **TWO** small Dirichlet obstacles at M_1 , M_2 .

• We obtain
$$R = 0 + \varepsilon \left[(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} w^{+} (M_{n})^{2}) \right] + O(\varepsilon^{2})$$

 $T = 1 + \varepsilon (4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} |w^{+} (M_{n})|^{2}) + O(\varepsilon^{2}).$

We can find M_1 , M_2 such that $R = O(\varepsilon^2)$.

• Let us try with **TWO** small Dirichlet obstacles at M_1 , M_2 .

• We obtain
$$R = 0 + \varepsilon \left[(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} w^{+} (M_{n})^{2}) \right] + O(\varepsilon^{2})$$

 $T = 1 + \varepsilon (4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} |w^{+} (M_{n})|^{2}) + O(\varepsilon^{2}).$

We can find M_1 , M_2 such that $R = O(\varepsilon^2)$. Then moving $\mathcal{O}_1^{\varepsilon}$ from M_1 to $M_1 + \varepsilon \tau$, and choosing a good $\tau \in \mathbb{R}^3$ (fixed point), we can get R = 0.

• Let us try with **TWO** small Dirichlet obstacles at M_1, M_2 .

We obtain
$$R = 0 + \varepsilon \left[(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} w^{+} (M_{n})^{2}) + O(\varepsilon^{2}) \right]$$

$$T = 1 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} |w^{+} (M_{n})|^{2} \right) + O(\varepsilon^{2}).$$

We can find M_1 , M_2 such that $R = O(\varepsilon^2)$. Then moving $\mathcal{O}_1^{\varepsilon}$ from M_1 to $M_1 + \varepsilon \tau$, and choosing a good $\tau \in \mathbb{R}^3$ (fixed point), we can get R = 0.

Comments:

- \rightarrow Hard part is to justify the asymptotics for the fixed point problem.
- \rightarrow We cannot impose T=1 with this strategy.
- \rightarrow When there are more propagative waves, we need more obstacles.

• Let us try with **TWO** small Dirichlet obstacles at M_1, M_2 .

We obtain
$$R = 0 + \varepsilon \left[(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} w^{+} (M_{n})^{2}) \right] + O(\varepsilon^{2})$$

 $T = 1 + \varepsilon (4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} |w^{+} (M_{n})|^{2}) + O(\varepsilon^{2}).$

We can find M_1 , M_2 such that $R = O(\varepsilon^2)$. Then moving $\mathcal{O}_1^{\varepsilon}$ from M_1 to $M_1 + \varepsilon \tau$, and choosing a good $\tau \in \mathbb{R}^3$ (fixed point), we can get R = 0.

Comments:

- \rightarrow Hard part is to justify the asymptotics for the fixed point problem.
- \rightarrow We cannot impose T=1 with this strategy.
- \rightarrow When there are more propagative waves, we need more obstacles.

Acting as a team, flies can become invisible!

▶ Asympt. curves of $h \mapsto R(h)$, T(h) for $h \in (0; +\infty)$ and ℓ such that

$$\frac{\pi/\alpha}{\pi/k} = \frac{k}{\sqrt{k^2 - (\pi/\ell)^2}} = 2.$$

• Asympt. curves of $h \mapsto R(h)$, T(h) for $h \in (0; +\infty)$ and ℓ such that

$$\frac{\pi/\alpha}{\pi/k} = \frac{k}{\sqrt{k^2 - (\pi/\ell)^2}} = 3$$

• Asympt. curves of $h \mapsto R(h)$, T(h) for $h \in (0; +\infty)$ and ℓ such that

$$\frac{\pi/\alpha}{\pi/k} = \frac{k}{\sqrt{k^2 - (\pi/\ell)^2}} = 4.$$

• Asympt. curves of $h \mapsto R(h)$, T(h) for $h \in (0; +\infty)$ and ℓ such that

$$\frac{\pi/\alpha}{\pi/k} = \frac{k}{\sqrt{k^2 - (\pi/\ell)^2}} = 5$$

• Asympt. curves of $h \mapsto R(h)$, T(h) for $h \in (0; 100)$ and ℓ such that

$$\frac{\pi/\alpha}{\pi/k} = \frac{k}{\sqrt{k^2 - (\pi/\ell)^2}} \notin \mathbb{Q}$$

▶ Non reflecting geometry $(t \mapsto \Re e(v(x, y)e^{-i\omega t})).$

• Completely reflecting geometry $(t \mapsto \Re e(v(x, y)e^{-i\omega t})).$