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Waveguide problem
I Scattering in time-harmonic regime of a plane wave in the acoustic
waveguide Ω coinciding with {(x, y) ∈ R× (0; 1)} outside a compact region.

Ω

+L−L

w+

Find v = vi + vs s. t.
−∆v = k2v in Ω,
∂nv = 0 on ∂Ω,

vs is outgoing.

I For k∈ (0;π), only 2 propagating modes w± = e±ikx/
√

2k. Set vi = w+

.

I vs is outgoing ⇔ vs = s±w± + ṽs for ±x ≥ L,

with s± ∈ C, ṽs exponentially decaying at ±∞.

Definition: vi = incident field
v = total field
vs = scattered field.
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with s± ∈ C, ṽs exponentially decaying at ±∞.

Definition: vi = incident field
v = total field
vs = scattered field.

2 / 45



Waveguide problem
I Scattering in time-harmonic regime of a plane wave in the acoustic
waveguide Ω coinciding with {(x, y) ∈ R× (0; 1)} outside a compact region.

Ω
+L−L

w+

Find v = vi + vs s. t.
−∆v = k2v in Ω,
∂nv = 0 on ∂Ω,

vs is outgoing.

I For k∈ (0;π), only 2 propagating modes w± = e±ikx/
√

2k. Set vi = w+

.

I vs is outgoing ⇔ vs = s±w± + ṽs for ±x ≥ L,
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Invisibility and complete reflectivity

I At infinity, one measures the reflection coefficient R = s− and/or the
transmission coefficient T = 1 + s+ (other terms are too small).

I From conservation of energy, one has

|R|2 + |T |2 = 1.

Definition: Defect is said non reflecting if R = 0 (|T | = 1)
perfectly invisible if T = 1 (R = 0)

completely reflecting if T = 0 (|R| = 1).

For T = 1, defect cannot be detected from far field measurements.

For T = 0, defect is like a mirror.

GOAL
We explain how to find waveguides such that

R = 0 (|T | = 1), T = 1 (R = 0) or T = 0 (|R| = 1).
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Outline of the talk

1 First constructive method

k is given, we use perturbative techniques to construct geometries such
that R = 0 or T = 1.

2 Second constructive method

k is given, we use an approach based on symmetries to construct geome-
tries such that R = 0, T = 1 or T = 0 and even a bit more...

3 A spectral approach to determine non reflecting wavenumbers

For a given geometry, we explain how to find non reflecting k solving a
spectral problem.
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General picture

I Perturbative technique: we construct small non reflecting defects using
variants of the implicit functions theorem.

R = 0

1 + h(x)

R = 0

I The idea was used in Nazarov 11 to construct waveguides for which
there are embedded eigenvalues in the continuous spectrum.
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Sketch of the method
1 + h(x)I For h ∈ C∞0 (R), set R = R(h) ∈ C.

Note that R(0) = 0
(no obstacle leads to null measurements).

Our goal: to find h ∈ C∞0 (R) such that R(h) = 0 (with h 6≡ 0).

I We look for small perturbations of the reference medium: h = εµ where
ε > 0 is a small parameter and where µ has be to determined.
Assume that dR(0) : C∞0 (R)→ C is onto.

∃µ0, µ1, µ2 ∈ C∞0 (R) s.t. dR(0)(µ0) = 0, dR(0)(µ1) = 1 and dR(0)(µ2) = i.

I Take µ = µ0 + τ1µ1 + τ2µ2 where the τn are real parameters to set:

0 = R(εµ) ⇔

If Gε is a contraction, the fixed-point equation has a unique solution ~τ sol.

Set hsol := εµsol. We have R(hsol) = 0 (non reflecting perturbation).
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Calculus of the differential
1 + εµ(x)

Ωε

I Using classical results of asymptotic analysis, we obtain

R(εµ) = 0 + ε

(
−1

2

∫ `

−`
∂xµ(x)(w+(x, 1))2 dx

)
+O(ε2).

dR(0)(µ)

dR(0) : C∞0 (R)→ C is onto ⇒ we can get non trivial Ω s.t. R = 0.

I Can we use the technique to construct Ω such that T = 1? We obtain

T (εµ) = 1 + ε 0 +O(ε2).

dT (0) is not onto ⇒ the approach fails to impose T = 1.
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A perturbative method to get T = 1
I We study the same problem in the geometry Ωε

ε

ε
ε

h1
h2 h3

Ωε

M1 M2 M3

I We obtain R = 0 + ε
(
ik
∑3
n=1(w+(Mn))2 tan(khn)

)
+O(ε2)

T = 1 + ε
(
i/2
∑3
n=1 tan(khn)

)
+O(ε2)

1) We can find Mn, hn such that R = O(ε2) and T = 1 +O(ε2) .
2) Then changing hn into hn + τn, and choosing a good τ = (τ1, τ2, τ3) ∈ R3
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Numerical results
I Perturbed waveguide (<e (v(x, y)e−iωt) )

I Reference waveguide (<e (vi(x, y)e−iωt) )

10 / 45



Remark
I We could also have worked with gardens of flowers!
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Outline of the talk

1 First constructive method

k is given, we use perturbative techniques to construct geometries such
that R = 0 or T = 1.

2 Second constructive method

k is given, we use an approach based on symmetries to construct geome-
tries such that R = 0, T = 1 or T = 0 and even a bit more...

3 A spectral approach to determine non reflecting wavenumbers

For a given geometry, we explain how to find non reflecting k solving a
spectral problem.

First approach was perturbative.
How to get large invisible defects
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Geometrical setting
I We work in waveguides which are symmetric with respect to (Oy) and
which contain a branch of finite height .

`

h− 1

→ We will study the behaviour of the coefficients R, T ∈ C as h→ +∞.
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1 First constructive method

2 Second constructive method

Main analysis

Numerical results

Variants and extensions

3 A spectral approach to determine non reflecting wavenumbers
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Half-waveguide problems
I Consider a waveguide which is symmetric with respect (Oy) and which
contains a branch of finite height.

`

h− 1

Ωh
−∆v = k2v in Ωh
∂nv = 0 on ∂Ωh

I Introduce the two half-waveguide problems

`/2

ωh

Neumann/
Dirichlet

Σh

−∆u = k2u in ωh
∂nu = 0 on ∂ωh

Neumann B.C.

−∆U = k2U in ωh
∂nU = 0 on ∂ωh \ Σh
U = 0 on Σh.

Mixed B.C.
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Relations for the scattering coefficients
I Half-waveguide problems admit the solutions

u = w+ +RN w− + ũ, with ũ ∈ H1(ωh)
U = w+ +RD w− + Ũ , with Ũ ∈ H1(ωh).

I Due to conservation of energy, one has
|RN | = |RD| = 1.

ωh

h

RDRN
RD

RN

I Using that v =
u+ U

2 in ωh, v(x, y) =
u(−x, y)− U(−x, y)

2 in Ωh \ ωh,

we deduce that R =
RN +RD

2 and T =
RN −RD

2 .
Non reflectivity
⇔ RN = −RD

→ Now, we study the behaviour of RN = RN (h), RD = RD(h) as h→ +∞.
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Asymptotics of RN , RD 1/2
Depend on the nb. of propagating modes in the vertical branch of ω∞

`/2
ω∞

Σ∞

(PN ) −∆ϕ = k2ϕ in ω∞
∂nϕ = 0 on ∂ω∞

(PD)
−∆ϕ = k2ϕ in ω∞
∂nϕ = 0 on ∂ω∞ \ Σ∞
ϕ = 0 on Σ∞.

I Analysis for RD

• For ` ∈ (0;π/k), no prop. modes in the vertical branch of ω∞ for (PD).

• (PD) admits the solution

U∞ = w−1 +RD∞ w+
1 + Ũ∞, with Ũ∞ ∈ H1(ω∞), |RD∞| = 1.

• As h→ +∞, we have U = U∞ + . . . which implies |RD −RD∞| ≤ C e−βh.

For ` ∈ (0;π/k), h 7→ RD(h) tends to a constant on C := {z ∈ C, |z| = 1}.
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Asymptotic of RN , RD 2/2

1

2
ω∞

h

I Analysis for RN

• For ` ∈ (0; 2π/k), 2 prop. modes in the vertical branch of ω∞ for (PN )

w±2 = χt e
±iky/

√
k`

• (PN ) admits the solutions
u1
∞ = w−1 + s11 w

+
1 + s12 w

+
2 + ũ1

∞, with ũ1
∞ ∈ H1(ω∞)

u2
∞ = w−2 + s21 w

+
1 + s22 w

+
2 + ũ2

∞, with ũ2
∞ ∈ H1(ω∞).

• If s12 6= 0, we make the ansatz u = u1
∞ + a(h)u2

∞ + . . . .
On Γh 0 = ∂nu = C (s12e

ikh + a(h) (−e−ikh + s22e
ikh)) + . . . .

• This gives a(h) and implies, as h→ +∞,

|RN −RNasy(h)| ≤ C e−βh with RNasy(h) = s11 +
s12 s21

e−2ikh − s22
.

• Unitarity of
(
s11 s12
s21 s22

)
⇒ h 7→ RNasy(h) runs periodically on C .

For ` ∈ (0; 2π/k), h 7→ RN (h) runs continuously and almost period. on C .
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∞, with ũ1
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∞, with ũ2
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• If s12 6= 0, we make the ansatz u = u1
∞ + a(h)u2

∞ + . . . .

On Γh 0 = ∂nu = C (s12e
ikh + a(h) (−e−ikh + s22e

ikh)) + . . . .

• This gives a(h) and implies, as h→ +∞,

|RN −RNasy(h)| ≤ C e−βh with RNasy(h) = s11 +
s12 s21

e−2ikh − s22
.
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s21 s22

)
⇒ h 7→ RNasy(h) runs periodically on C .
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∞ ∈ H1(ω∞).

• If s12 6= 0, we make the ansatz u = u1
∞ + a(h)u2

∞ + . . . .
On Γh 0 = ∂nu = C (s12e

ikh + a(h) (−e−ikh + s22e
ikh)) + . . . .

• This gives a(h) and implies, as h→ +∞,

|RN −RNasy(h)| ≤ C e−βh with RNasy(h) = s11 +
s12 s21

e−2ikh − s22
.

• Unitarity of
(
s11 s12
s21 s22

)
⇒ h 7→ RNasy(h) runs periodically on C .

For ` ∈ (0; 2π/k), h 7→ RN (h) runs continuously and almost period. on C .

18 / 45



Asymptotic of RN , RD 2/2

1

2

h

I Analysis for RN

• For ` ∈ (0; 2π/k), 2 prop. modes in the vertical branch of ω∞ for (PN )

w±2 = χt e
±iky/

√
k`

• (PN ) admits the solutions
u1
∞ = w−1 + s11 w

+
1 + s12 w

+
2 + ũ1
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Conclusions for ` ∈ (0; π/k), s12 6= 0

I Reminder: R =
RN +RD

2 and T =
RN −RD

2 .

Proposition: Asympt. as h→ +∞, R and T run on circles of radius 1/2.

Proposition: There is an unbounded sequence (hn) such that for h = hn,
RN = −RD and so R = 0 (non reflectivity).

Proposition: There is an unbounded sequence (Hn) such that for h = Hn,
RN = RD and so T = 0 (complete reflectivity).

I Sequences (hn) and (Hn) are almost periodic. As n→ +∞, we have

hn+1 − hn = π/k + . . . and Hn+1 −Hn = π/k + . . . .
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1 First constructive method

2 Second constructive method

Main analysis

Numerical results

Variants and extensions

3 A spectral approach to determine non reflecting wavenumbers
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Setting

I We compute numerically R, T for h ∈ (2; 10) in the geometry Ωh

`

h− 1
Ωh

I We use a P2 finite element method with Dirichlet-to-Neumann maps.

I We set k = 0.8π and ` = 1 ∈ (0;π/k).
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Numerical results
I Reflection coefficient R and transmission coefficient T for h ∈ (2; 10).
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0
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Non reflectivity
I Curve h 7→ − ln |R|. Peaks correspond to non reflectivity.
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Non reflectivity

I Total field v for h such that R = 0.

I Scattered field vs.
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Other non reflecting geometry

I Scattered field vs.
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Complete reflectivity
I Curve h 7→ − ln |T |. Peaks correspond to complete reflectivity.
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Complete reflectivity

I Total field v for h such that T = 0.
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Main analysis
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3 A spectral approach to determine non reflecting wavenumbers
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Analysis for ` ∈ (π/k; 2π/k)

` `

We did ` ∈ (0;π/k) Now ` ∈ (π/k; 2π/k)

I We still have R =
RN +RD

2 and T =
RN −RD

2 .

I Now 2 prop. modes exist in the vertical branch of ω∞ for (PD).

I As before, we can show, with α =
√
k2 − (π/`)2,

|RD −RDasy(h)| ≤ C e−βh with RDasy(h) = S11 +
S12 S21

e−2iαh − S22
.

h 7→ RNasy(h), h 7→ RDasy(h) run period. on C with periods π/k, π/α.

? The curves h 7→ R(h), T (h) still pass through zero an infinite nb. of times.

? Behaviours of h 7→ R(h), T (h) can be much more complex than before...
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The special case ` = 2π/k
I Now set ` = 2π/k in the geometry

` = 2π/k

h− 1
Ωh

I We still have R =
RN +RD

2 and T =
RN −RD

2 .

RN

RD

RD

? u = w+ +w− = C cos(kx) solves the Neum. pb. in ωh ⇒ RN = 1, ∀h > 1.

? h 7→ RD(h) still runs on the unit circle and goes through −1.

There is a sequence (hn) such that T = 1 (perfect invisibility)
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The special case ` = 2π/k - perfect invisibility

I Works also in the geometry below (h is the height of the central branch).

I Perfectly invisible defect ( t 7→ <e (v(x, y)e−iωt) ).

I Reference waveguide ( t 7→ <e (v(x, y)e−iωt) ).
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The special case ` = 2π/k - trapped modes

I Set γ =
√
π2 − k2, w±1 =

e∓ikx
√

2k
and w±2 =

e−γx ∓ ieγx
√

2γ
cos(πy) .

I The Neumann problem in ωh admits the solutions
u1 = w−1 + s11 w

+
1 + s12 w

+
2 + ũ1, with ũ1 fastly expo. decaying

u2 = w−2 + s21 w
+
1 + s22 w

+
2 + ũ2, with ũ2 fastly expo. decaying.

I The augmented scattering matrix S =
(

s11 s12
s21 s22

)
is unitary.

Lemma: If s22 = −1 , the Neumann problems in ωh admits trapped modes.
Proof: s22 = −1⇒ s21 = 0 (S is unitary) and u2 ∈ H1(ωh) is a trapped mode.

? u = w−1 + w+
1 solves the Neum. pb. in ωh as in the previous slide
⇒ s11 = 1 ⇒ |s22| = 1, ∀h > 1.

? As previously, h 7→ s22(h) runs on the unit circle and goes through −1.

There is a sequence (hn) such that trapped modes exist in ωh.

I Symmetry argument w.r.t. (Oy) ⇒ existence of trapped modes in Ωh. It
works also in the geometry below (h is the height of the central branch).

Non zero v ∈ H1(Ωh) satisfying ∆v + k2v = 0 in Ωh, ∂nv = 0 on ∂Ωh.
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works also in the geometry below (h is the height of the central branch).

Non zero v ∈ H1(Ωh) satisfying ∆v + k2v = 0 in Ωh, ∂nv = 0 on ∂Ωh.
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The special case ` = 2π/k - trapped modes

I Set γ =
√
π2 − k2, w±1 =

e∓ikx
√

2k
and w±2 =

e−γx ∓ ieγx
√

2γ
cos(πy) .

I The Neumann problem in ωh admits the solutions
u1 = w−1 + s11 w

+
1 + s12 w

+
2 + ũ1, with ũ1 fastly expo. decaying

u2 = w−2 + s21 w
+
1 + s22 w

+
2 + ũ2, with ũ2 fastly expo. decaying.

I The augmented scattering matrix S =
(

s11 s12
s21 s22

)
is unitary.

Lemma: If s22 = −1 , the Neumann problems in ωh admits trapped modes.
Proof: s22 = −1⇒ s21 = 0 (S is unitary) and u2 ∈ H1(ωh) is a trapped mode.
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Outline of the talk

1 First constructive method

k is given, we use perturbative techniques to construct geometries such
that R = 0 or T = 1.

2 Second constructive method

k is given, we use an approach based on symmetries to construct geome-
tries such that R = 0, T = 1 or T = 0 and even a bit more...

3 A spectral approach to determine non reflecting wavenumbers

For a given geometry, we explain how to find non reflecting k solving a
spectral problem.
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Scattering problem
I Consider the scattering problem with k ∈ ((N − 1)π;Nπ), N ∈ N∗

Ω

+L−L

vi

Find v = vi + vs s. t.
−∆v = k2v in Ω,
∂nv = 0 on ∂Ω,

vs is outgoing.

I For this problem, the modes are

Propagating
Evanescent

w±n (x, y) = e±iβnx cos(nπy), βn =
√
k2 − n2π2, n ∈ J0, N − 1K

w±n (x, y) = e∓βnx cos(nπy), βn =
√
n2π2 − k2, n ≥ N.

I Set vi =
N−1∑
n=0

αnw
+
n for some given (αn)N−1

n=0 ∈ CN .

I vs is outgoing ⇔ vs =
+∞∑
n=0

γ±n w
±
n for ±x ≥ L, with (γ±n ) ∈ CN.
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Analytic dilation to compute vs
I Consider the complex change of variables Iθ : Ω→ C× (0; 1) such that

Iθ(x, y) =
(−L+ (x+ L) eiθ, y) for x ≤ −L

(x, y) for |x| < L
(+L+ (x− L) eiθ, y) for x ≥ L.

with θ ∈ (0;π/2).

I Since <e (ieiθ) < 0 and <e (−eiθ) < 0, the functions w±n ◦ Iθ are
exponentially decaying at ±∞.

Set vθ := vs ◦ Iθ .

1) vθ = vs for |x| < L.
2) vθ is exp. decaying at infinity.

I vθ solves (∗) αθ
∂

∂x

(
αθ
∂vθ
∂x

)
+ ∂2vθ

∂y2 + k2vθ = 0 in Ω
∂nvθ = −∂nvi on ∂Ω.

αθ(x) = 1 for |x| < L αθ(x) = e−iθ for |x| ≥ L

• Numerically we solve (∗) in the truncated domain

αθ = e−iθ αθ = e−iθαθ = 1

+L−L +R−R

Dirichlet/
Neumann

Dirichlet/
Neumann

⇒ We obtain a good approximation of vs for |x| < L.

• This is the method of Perfectly Matched Layers (PMLs).
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Spectral analysis
I Define the operators A, Aθ of L2(Ω) such that

Av = −∆v, Aθv = −
(
αθ

∂

∂x

(
αθ
∂v

∂x

)
+ ∂2v

∂y2

)
+ ∂nv = 0 on ∂Ω.

� A is selfadjoint and positive.
� σ(A) = σess(A) = [0; +∞).
� σ(A) may contain embedded eigenvalues in the essential spectrum.

0 <e λ
=mλess. spectrum

trapped modes

� Aθ is not selfadjoint. σ(Aθ) ⊂ {ρ eiγ , ρ ≥ 0, γ ∈ [−2θ; 0]}.
� σess(Aθ) = ∪n∈N{n2π2 + t e−2iθ, t ≥ 0}.
� real eigenvalues of Aθ = real eigenvalues of A.

2θ0 <e λ
=mλ

ess. spectrum
trapped modes
leaky modes
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Numerical results

I We work in the geometry
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Numerical results

I Discretized spectrum of Aθ in k (not in k2). We take θ = π/4.
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A new complex spectrum for non reflecting k

I Usual complex stretching selects solutions which are

outgoing at −∞ and outgoing at +∞.

Important remark: for general k, the total field has the form

v = vi +
N−1∑
n=0

γ−n w
−
n +

+∞∑
n=N

γ−n w
−
n x ≤ −L, v =

+∞∑
n=0

γ+
n w

+
n x ≥ L.

I In other words, v is

ingoing at −∞ and outgoing at +∞.

Let us change the sign of the complex stretching at −∞!
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A new complex spectrum for non reflecting k

I Consider the complex change of variables Jθ : Ω→ C× (0; 1) such that

Jθ(x, y) =
(−L+ (x+ L) e−iθ , y) for x ≤ −L

(x, y) for |x| < L
(+L+ (x− L) eiθ, y) for x ≥ L.

with θ ∈ (0;π/2).

I One can check that the functions w+
n ◦ Jθ, n ∈ J0, N − 1K and w±n ◦ Jθ,

n ≥ N , are exponentially decaying at ±∞.

Set uθ := v ◦ Jθ .

1) uθ = v for |x| < L.
2) uθ is exp. decaying at infinity.

I uθ solves (∗) βθ
∂

∂x

(
βθ
∂uθ
∂x

)
+ ∂2uθ

∂y2 + k2uθ = 0 in Ω
∂nuθ = 0 on ∂Ω.

βθ(x) = 1 for |x| < L, βθ(x) = eiθ for x ≤ −L, βθ(x) = e−iθ for x ≥ L,
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Spectral analysis
I Define the operators Bθ of L2(Ω) such that

Bθv = −
(
βθ

∂

∂x

(
βθ
∂v

∂x

)
+ ∂2v

∂y2

)
+ ∂nv = 0 on ∂Ω.

� Bθ is not selfadjoint. σ(Bθ) ⊂ {ρ eiγ , ρ ≥ 0, γ ∈ [−2θ; 2θ]}.
� σess(Bθ) = ∪n∈N{n2π2 + t e−2iθ, t ≥ 0} ∪ {n2π2 + t e2iθ, t ≥ 0}.
� real eigenvalues of Bθ = real eigenvalues of A+non reflecting k2.

2θ
2θ

0 <e λ

=mλ
essential spectrum
trapped modes
non reflecting modes
??? modes

Remark: Not simple to prove
that σ(Bθ) \ σess(Bθ) is discrete.

→ Not true in general. w+
0 ◦ Jθ is an eigenfunction for all k ∈ R.
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??? modes

Remark: Not simple to prove
that σ(Bθ) \ σess(Bθ) is discrete.
→ Not true in general. w+

0 ◦ Jθ is an eigenfunction for all k ∈ R.
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Spectral analysis
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Numerical results

I Again we work in the geometry

I Define the operators P (Parity), T (Time reversal) such that

Pv(x, y) = v(−x, y) and T v(x, y) = v(x, y).

Prop.: For symmetric Ω = {(−x, y) | (x, y) ∈ Ω}, Bθ is PT symmetric:

PT BθPT = Bθ.

As a consequence, σ(Bθ) = σ(Bθ).
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Numerical results
I Discretized spectrum in k (not in k2). We take θ = π/4.
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−8

−6

−4

−2

0

2

4

6

8

• The spectrum is indeed stable by conjugation.
• Much more eigenvalues on the real axis than before.

++ PMLs with different signs + Classical PMLs
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Numerical results

I We display the eigenmodes for the ten first real eigenvalues in the whole
computational domain (including PMLs).
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Numerical results

I Let us focus on the eigenmodes such that 0 < k < π.

First trapped mode Second trapped mode
k = 1.2355... k = 2.3897...

First non reflecting mode Second non reflecting mode
k = 1.4513... k = 2.8896...
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Numerical results
I To check our results, we compute k 7→ |R(k)| for 0 < k < π.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Coefficient |R|

ω

First non reflecting mode Second non reflecting mode
k = 1.4513... k = 2.8896...

There is perfect agreement!
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Numerical results

I Now the geometry is not symmetric in x nor in y:

I The operator Bθ is no longer PT -symmetric and we expect:

� No trapped modes
� No invariance of the spectrum by complex conjugation.
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Numerical results

I Discretized spectrum of Bθ in k (not in k2). We take θ = π/4.
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• Indeed, the spectrum is not symmetric w.r.t. the real axis.
40 / 45



Numerical results
I We compute k 7→ |R(k)| for 0 < k < π.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k = 1.28 + 0.0003i k = 2.3866 + 0.0005i k = 2.8647 + 0.0243i

Complex eigenvalues also contain information on almost no reflection.
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Spectra for a changing geometry

I Two series of computations: one with PMLs with different sign, one
with classical PMLs. We compute the spectra for h ∈ (1.3; 8) .

` = 2.5

hΩh

I The magenta marks on the real axis correspond to the particular
frequencies k = π/` and k = 2π/`.
I For k = 2π/`, trapped modes and T = 1 should occur for certain h.
I We zoom at the region 0 < <e k < π.
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++ PMLs with different signs + Classical PMLs



Outline of the talk

1 First constructive method

k is given, we use perturbative techniques to construct geometries such
that R = 0 or T = 1.

2 Second constructive method

k is given, we use an approach based on symmetries to construct geome-
tries such that R = 0, T = 1 or T = 0 and even a bit more...

3 A spectral approach to determine non reflecting wavenumbers

For a given geometry, we explain how to find non reflecting k solving a
spectral problem.
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Conclusion

What we did

♠ We presented two methods to construct geometries such that R = 0,
T = 0, T = 1 at a given frequency k ∈ (0;π).

♠ We proposed a spectral approach to compute non reflecting k
(R = 0) for a given geometry.

Future work

1) How to construct invisible or completely reflecting defects for a given
k > π (several propagating modes)?

2) Can we find a spectral approach to compute completely reflecting or
completely invisible k for a given geometry?

3) Can we prove existence of non reflecting k for the PT -symmetric pb?

4) Can we work in free space with a finite number of directions? on
other equations (electromagnetism, elasticity,. . . )?

44 / 45



Thank you for your attention!
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Can we get T = 1?

I More generally, for any Neumann wave-
guide, one can show that T = 1 implies∫

Ω
|∇vs|2 − k2|vs|2 dx = 0.

Ω

Ωc` Ω`

−` `

• Decomposing in Fourier series, one finds∫
Ωc

`

|∇vs|2 − k2|vs|2 dx ≥ 0.

• Note that T = 1⇒ vs ∈ Y := {ϕ ∈ H1(Ω`) |
∫
x=±` ϕdσ = 0}. Define

λ† := infϕ∈Y\{0}

(∫
Ω`

|∇ϕ|2 dx
)/(∫

Ω`

|ϕ|2 dx
)
> 0.

Proposition: For a given shape, T = 1 cannot hold for k2 ∈ (0;λ†).

→ To impose invisibility at low frequency, we need to work with special shapes.
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• Note that T = 1⇒ vs ∈ Y := {ϕ ∈ H1(Ω`) |
∫
x=±` ϕdσ = 0}. Define

λ† := infϕ∈Y\{0}

(∫
Ω`

|∇ϕ|2 dx
)/(∫

Ω`

|ϕ|2 dx
)
> 0.

Proposition: For a given shape, T = 1 cannot hold for k2 ∈ (0;λ†).

→ For a small smooth perturbation of amplitude εh, one finds |λ† − π2| ≤ C ε.

→ To impose invisibility at low frequency, we need to work with special shapes.
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Small Dirichlet obstacle

Can one hide a small Dirichlet obstacle centered at M1

Oε1

Find v = vi + vs s. t.
−∆v = k2v in Ωε := Ω \ Oε1,

v = 0 on ∂Ωε,
vs is outgoing.

I With Dirichlet B.C., the modes are not the same as previously but this
not important.

I In 3D, we obtain

R = 0 + ε (4iπ cap(O)w+(M1)2) +O(ε2)

T = 1 + ε (4iπ cap(O)|w+(M1)|2) +O(ε2).

Non zero terms!
(cap(O) > 0)

⇒ One single small obstacle cannot even be non reflecting.
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Small Dirichlet obstacles

I Let us try with TWO small Dirichlet
obstacles at M1, M2.

Oε1
Oε2

I We obtain R = 0 + ε (4iπ cap(O)
2∑

n=1
w+(Mn)2) +O(ε2)

T = 1 + ε (4iπ cap(O)
2∑

n=1
|w+(Mn)|2) +O(ε2).

We can find M1, M2 such that R = O(ε2). Then moving Oε1 from M1 to
M1 + ετ , and choosing a good τ ∈ R3 (fixed point), we can get R = 0 .

Comments:
→ Hard part is to justify the asymptotics for the fixed point problem.
→ We cannot impose T = 1 with this strategy.
→ When there are more propagative waves, we need more obstacles.

Acting as a team, flies can become invisible!
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Numerical results for ` ∈ (π/k; 2π/k)

I Asympt. curves of h 7→ R(h), T (h) for h ∈ (0; +∞) and ` such that

π/α

π/k
=

k√
k2 − (π/`)2

= 2.

−1 0 1
−1

0

1

−1 0 1
−1

0

1
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Numerical results for ` ∈ (π/k; 2π/k)

I Asympt. curves of h 7→ R(h), T (h) for h ∈ (0; 100) and ` such that

π/α

π/k
=

k√
k2 − (π/`)2

/∈ Q .
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Numerical results for ` ∈ (π/k; 2π/k)
I Non reflecting geometry ( t 7→ <e (v(x, y)e−iωt) ).

I Completely reflecting geometry ( t 7→ <e (v(x, y)e−iωt) ).
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