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Introduction: physical context

I Electromagnetism in presence of metamaterials.

Zoom on a metamaterial (NASA)

“Metamaterials are artificial materials engineered to have properties that
may not be found in nature. [...] Metamaterials gain their properties not
from their composition, but from their exactingly-designed structures.”
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One example in nature

I For certain butterflies, bright colors are not due chemical pigments but
rather to a geometric arrangement of tissues.
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Some applications of metamaterials 1/2


 The general idea is to design structures to control light.

I Realization of cloaking devices (capes d’invisibilité).

Remark: a priori, one could use the same idea to bend tsunami and
seismic waves.
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Some applications of metamaterials 2/2

I Realization of negative refractive index materials (n < 0).

S

e 2en = −1

n = 1
S

⇒ The negative refraction at the interface metamaterial/dielectric could
allow the realization of perfect lenses, photonic traps...
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Negative metamaterials
I To design a material with a negative refractive index (n < 0), it is
necessary to have both ε < 0 and µ < 0.
I Here, ε and µ denote the permittivity and the permeability appearing in
the Maxwell’s equations:

divE = ρ/ε

divB = 0

curlE + ∂B
∂t = 0

µ−1curlB − ε∂E
∂t = J ,

I In the applications, presence of interfaces neg. material/pos. material.

Metamaterial
ε< 0
µ< 0

Dielectric

Σε> 0
µ> 0


 Original transmission problems because ε and µ change sign at the
interface Σ.
I Broadly speaking, I investigate the following questions:

Do these problems with sign-changing coefficients have
a unique solution?

If not, why (link with physics)?

Numerical methods to approximate the solution?
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Outline of the talk

1 The coerciveness issue for the scalar case

2 A new functional framework in the critical interval

3 A curious instability phenomenon for a rounded corner
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A scalar model problem
I Under appropriate assumptions, the study of Maxwell’s equations
reduces to the study of the following problem:

Ω2
Ω1

Σ

σ|Ω1 = σ1 >0
σ|Ω2 = σ2 <0
(constant)

(P) Find u ∈ H1
0(Ω) such that:

−div(σ∇u) = f in Ω.

- H1
0(Ω) = {v ∈ L2(Ω) | ∇v ∈ L2(Ω); v|∂Ω = 0}

- f is a source term (data) in H−1(Ω)

(P) ⇔ (PV ) Find u ∈ H1
0(Ω) such that:

a(u, v) = `(v), ∀v ∈ H1
0(Ω),

with a(u, v) =
∫

Ω
σ∇u · ∇v dx and `(v) = 〈f , v〉.

Definition. We will say that the problem (P) is well-posed if the operator
div (σ∇·) is an isomorphism from H1

0(Ω) to H−1(Ω).

9 / 38



A scalar model problem
I Under appropriate assumptions, the study of Maxwell’s equations
reduces to the study of the following problem:

Ω2
Ω1

Σ

σ|Ω1 = σ1 >0
σ|Ω2 = σ2 <0
(constant)

(P) Find u ∈ H1
0(Ω) such that:

−div(σ∇u) = f in Ω.

- H1
0(Ω) = {v ∈ L2(Ω) | ∇v ∈ L2(Ω); v|∂Ω = 0}

- f is a source term (data) in H−1(Ω)

(P) ⇔ (PV ) Find u ∈ H1
0(Ω) such that:

a(u, v) = `(v), ∀v ∈ H1
0(Ω),

with a(u, v) =
∫

Ω
σ∇u · ∇v dx and `(v) = 〈f , v〉.

Definition. We will say that the problem (P) is well-posed if the operator
div (σ∇·) is an isomorphism from H1

0(Ω) to H−1(Ω).

9 / 38



A scalar model problem
I Under appropriate assumptions, the study of Maxwell’s equations
reduces to the study of the following problem:

Ω2
Ω1

Σ

σ|Ω1 = σ1 >0
σ|Ω2 = σ2 <0
(constant)

(P) Find u ∈ H1
0(Ω) such that:

−div(σ∇u) = f in Ω.

- H1
0(Ω) = {v ∈ L2(Ω) | ∇v ∈ L2(Ω); v|∂Ω = 0}

- f is a source term (data) in H−1(Ω)

(P) ⇔ (PV ) Find u ∈ H1
0(Ω) such that:

a(u, v) = `(v), ∀v ∈ H1
0(Ω),

with a(u, v) =
∫

Ω
σ∇u · ∇v dx and `(v) = 〈f , v〉.

Definition. We will say that the problem (P) is well-posed if the operator
div (σ∇·) is an isomorphism from H1

0(Ω) to H−1(Ω).

9 / 38



A scalar model problem
I Under appropriate assumptions, the study of Maxwell’s equations
reduces to the study of the following problem:

Ω2
Ω1

Σ

σ|Ω1 = σ1 >0
σ|Ω2 = σ2 <0
(constant)

(P) Find u ∈ H1
0(Ω) such that:

−div(σ∇u) = f in Ω.

- H1
0(Ω) = {v ∈ L2(Ω) | ∇v ∈ L2(Ω); v|∂Ω = 0}

- f is a source term (data) in H−1(Ω)

(P) ⇔ (PV ) Find u ∈ H1
0(Ω) such that:

a(u, v) = `(v), ∀v ∈ H1
0(Ω),

with a(u, v) =
∫

Ω
σ∇u · ∇v dx and `(v) = 〈f , v〉.

Definition. We will say that the problem (P) is well-posed if the operator
div (σ∇·) is an isomorphism from H1

0(Ω) to H−1(Ω).

9 / 38



A scalar model problem
I Under appropriate assumptions, the study of Maxwell’s equations
reduces to the study of the following problem:

Ω2
Ω1

Σ

σ|Ω1 = σ1 >0
σ|Ω2 = σ2 <0
(constant)

(P) Find u ∈ H1
0(Ω) such that:

−div(σ∇u) = f in Ω.

- H1
0(Ω) = {v ∈ L2(Ω) | ∇v ∈ L2(Ω); v|∂Ω = 0}

- f is a source term (data) in H−1(Ω)

(P) ⇔ (PV ) Find u ∈ H1
0(Ω) such that:

a(u, v) = `(v), ∀v ∈ H1
0(Ω),

with a(u, v) =
∫

Ω
σ∇u · ∇v dx and `(v) = 〈f , v〉.

Definition. We will say that the problem (P) is well-posed if the operator
div (σ∇·) is an isomorphism from H1

0(Ω) to H−1(Ω).

9 / 38



Mathematical difficulty

Classical case σ > 0 everywhere:

a(u, u) =
∫

Ω
σ |∇u|2 dx ≥ min(σ) ‖u‖2H1

0(Ω) coercivity

Lax-Milgram theorem ⇒ (P) well-posed.

VS.

The case σ changes sign:

a(u, u) =
∫

Ω
σ |∇u|2 dx ≥ C ‖u‖2H1

0(Ω)
loss of coercivity

I When σ2 = −σ1, (P) is always ill-posed (Costabel-Stephan 85).
For a symmetric domain (w.r.t. Σ) we can build a kernel of
infinite dimension.

How to study (P) when σ changes sign?
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Idea of the T-coercivity 1/2
Let T be an isomorphism of H1

0(Ω).

(P) ⇔ (PV ) Find u ∈ H1
0(Ω) such that:

a(u, v) = `(v), ∀v ∈ H1
0(Ω).

Goal: Find T such that a is T-coercive:
∫

Ω
σ∇u · ∇(Tu) dx ≥ C ‖u‖2

H1
0(Ω).

In this case, Lax-Milgram ⇒ (PT
V ) (and so (PV )) is well-posed.

1 Define
R1 transfer/extension operator

ΣΩ1 Ω2

R1

R1(u|Ω1) = u on Σ
R1(u|Ω1) = 0 on ∂Ω2 \ Σ

On Σ, we have −u + 2R1u = −u + 2u = u ⇒ T1u ∈ H1
0(Ω).

2 T1 ◦ T1 = Id so T1 is an isomorphism of H1
0(Ω)
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Idea of the T-coercivity 2/2

3 We find a(u, T1u) =
∫

Ω
|σ| |∇u|2 dx − 2

∫
Ω2

σ2∇u · ∇(R1(u|Ω1)) dx.

Young’s inequality: ⇒ a is T-coercive when σ1 > ‖R1‖2 |σ2|.

4 Working with T2u = u − 2R2(u|Ω2) in Ω1
−u in Ω2

, where R2 : Ω2 → Ω1, one

proves that a is T-coercive when |σ2| > ‖R2‖2 σ1.

5 Conclusion:

Theorem. If the contrast κσ = σ2/σ1 /∈ [−‖R2‖2;−1/‖R1‖2], then Problem
(P) is well-posed.

[−‖R2‖2;−1/‖R1‖2]

The interval depends on the
norms of the transfer operators
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Choice of R1, R2?
I A simple case: the symmetric domain

Ω1

Ω2

Σ

R1 = R2 = SΣ
One checks that ‖R1‖ = ‖R2‖ = 1

(P) well-posed ⇔ κσ 6= −1

I Interface with a 2D corner

I Using localization techniques, we can prove the

Proposition. (P) is well-posed in the Fredholm sense for a curvilinear
polygonal interface iff κσ /∈ [−Rγ ;−1/Rγ ] where γ is the smallest angle.

⇒When Σ is smooth, (P) is well-posed in the Fredholm sense iff κσ 6= −1.

γ
Ω2

Ω1

Σ
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Remarks
I Similarly, we can deal with non constant σ1, σ2 and with Neumann pb.

I 3D geometries can be handled in the same way.

Fichera corner. Using some symmetries, we can
build R1, R2 such that ‖R1‖2 = ‖R2‖2 = 7

(P) well-posedness ⇐ κσ /∈ [−7;−1/7]

More cases in 3D than in 2D: ...

I The T-coercivity technique allows to justify convergence of standard
finite element method for simple meshes (Bonnet-Ben Dhia et al. 10,
Nicaise, Venel 11, Chesnel, Ciarlet 12).

I T-coercivity is a necessary and sufficient condition (like inf-sup
condition) to guarantee that (P) is well-posed.

Define A : H1
0(Ω)→ H1

0(Ω) such that (Au, v)H1
0(Ω) = a(u, v), ∀u, v ∈ H1

0(Ω).

If A is an isomorphism, take T = A: a(u, Tu) = ‖Au‖2
H1

0(Ω) ≥ C ‖u‖2
H1

0(Ω).
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1 The coerciveness issue for the scalar case

2 A new functional framework in the critical interval

3 A curious instability phenomenon for a rounded corner
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Problem considered in this section

(P) Find u ∈ H1
0(Ω) such that:

−div(σ∇u) = f in Ω.

I To simplify the presentation, we work on a particular configuration.

Σ

Ω1
σ1 > 0

Ω2
σ2 < 0O

I Using the variational method of the T-coercivity, we prove the

Proposition. The problem (P) is well-posed as soon as the contrast κσ =
σ2/σ1 satisfies κσ /∈ Ic = [−1;−1/3].

What happens when κσ ∈ (−1;−1/3]?
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Analogy with a waveguide problem

• Bounded sector Ω

Σ

π/4

Ω1 Ω2

O (r, θ)

• Equation:
−div(σ∇u)︸ ︷︷ ︸

−r−2(σ(r∂r )2+∂θσ∂θ)u

= f

• Singularities in the sector
s(r , θ) = rλϕ(θ)

We compute the singularities s(r , θ) = rλϕ(θ) and we observe two cases:

I Outside the critical interval

λ1−λ1 λ2−λ2

1-1 2-2

1

-1

κσ = −1/4

H1not H1

r0

r 7→ rλ1

1

−1

I Inside the critical interval

λ1

−λ1

λ2−λ2

1-1 2-2

1

-1

κσ = −1/2

H1not H1

r0

r 7→ <e rλ1

1

−1 not H1

How to deal with the propagative singularities inside the critical interval?
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Inside the critical interval: message 1

For a contrast κσ inside the critical interval, there are singularities of the
form s(r , θ) = r±iηϕ(θ) with η ∈ R \ {0}.

I Using these singularities, we can show that the following a priori
estimate does not hold

‖u‖H1
0(Ω) ≤ C (‖Au‖H1

0(Ω) + ‖u‖L2(Ω)), ∀u ∈ H1
0(Ω),

where A : H1
0(Ω)→ H1

0(Ω) is the operator such that
(Au, v)H1

0(Ω) = (σ∇u,∇v)Ω, ∀u, v ∈ H1
0(Ω).

I We deduce the following result:

Proposition. For κσ ∈ (−1;−1/3), the operator A is not of Fred-
holm type (=mA is not closed in H1

0(Ω)).

Let’s see how to change the functional framework to recover a well-posed
problem ...
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Analogy with a waveguide problem

(z, θ) = (− ln r , θ)

(r , θ) = (e−z , θ)

(<e λ = a, =m λ = b)

s∈ H1(Ω) <e λ > 0 m is evanescent
s/∈ H1(Ω) <e λ = 0 m is propagative

• Bounded sector Ω

Σ

π/4

Ω1 Ω2

O (r, θ)

• Equation:
−div(σ∇u)︸ ︷︷ ︸

−r−2(σ(r∂r )2+∂θσ∂θ)u

= f

• Singularities in the sector
s(r , θ) = rλϕ(θ)

s(r , θ) = ra (cos b ln r + i sin b ln r)ϕ(θ)

• Half-strip B

z

θ

B1

B2
Σ θ = π/4

• Equation:
−div(σ∇u)︸ ︷︷ ︸
−(σ∂2

z +∂θσ∂θ)u

= e−2z f

• Modes in the strip
m(z, θ) = e−λzϕ(θ)

m(z, θ) = e−az (cos bz − i sin bz)ϕ(θ)

I This encourages us to use modal decomposition in the half-strip.

r0

r 7→ <e rλ
1

−1

z0

z 7→ <e e−λz
1

−1

We compute the singularities s(r , θ) = rλϕ(θ) and we observe two cases:

I Outside the critical interval

λ1−λ1 λ2−λ2

1-1 2-2

1

-1

κσ = −1/4

H1not H1

r0

r 7→ rλ1

1

−1

I Inside the critical interval
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H1not H1
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r 7→ <e rλ1
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−1 not H1

How to deal with the propagative singularities inside the critical interval?
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Modal analysis in the waveguide

λ1−λ1 λ2−λ2

1-1 2-2

1

-1

κσ = −1/4
I Outside the critical interval . All the
modes are exponentially growing or decaying.
→ We look for an exponentially decaying
solution. H1 framework

λ1

−λ1

λ2−λ2

1-1 2-2

1

-1

κσ = −1/2
I Inside the critical interval . There are
exactly two propagative modes.
→ The decomposition on the outgoing modes
leads to look for a solution of the form

u = c ϕ1 eλ1 z︸ ︷︷ ︸
propagative part

+ ue.︸︷︷︸
evanescent part

non H1 framework
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Inside the critical interval: message 2

There is a functional framework, different from H1
0(Ω), involving one

singularity, where existence and uniqueness of the solution holds.

21 / 38



How to numerically approximate the solution

in this new framework

22 / 38



Naive approximation
I Let us try a usual Finite Element Method (P1 Lagrange Finite
Element). We solve the problem

Find uh ∈ Vh s.t.:∫
Ω
σ∇uh · ∇vh =

∫
Ω
fvh, ∀v ∈ Vh,

where Vh approximates H1
0(Ω) as h → 0 (h is the mesh size).

I We display uh as h → 0.

Contrast κσ = −0.999 ∈ (−1;−1/3).

The sequence (uh) does not converge as h → 0!!!
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Remark

I Outside the critical interval, for the classical approximation method, the
sequence (uh) converges.

(. . . )

Contrast κσ = −1.001 /∈ (−1;−1/3).
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How to approximate the solution?

I We use a PML (Perfectly Matched Layer) to bound the domain B
+ finite elements in the truncated strip (κσ = −0.999 ∈ (−1;−1/3)).

PML

PM
L
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A curious black hole phenomenon
I For the Helmholtz equation div (σ∇u) + ω2u = f , analogously, it is
necessary to modify the functional framework to have a well-posed problem.

I In time domain, the solution adopts a curious behaviour.

(x, t) 7→ <e (u(x)e−iωt) for κσ = −1/1.3

I Everything happens like if a waves was absorbed by the corner point.

I Analogous phenomena occur in cuspidal domains in the theory of
water-waves and in elasticity (Cardone, Nazarov, Taskinen).
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Summary of the results

Σ

π
4

Ω1
σ1 > 0

Ω2
σ2 < 0

OO

−1/3−1

<e κσ

=m κσ

(P) Find u ∈ H1
0(Ω) s.t.:

−div (σ∇u) = f in Ω.

For κσ ∈ C\R−, (P) well-posed in
H1

0(Ω) (Lax-Milgram)

For κσ ∈ R∗−\[−1;−1/3], (P) well-
posed in H1

0(Ω) (T-coercivity)

For κσ ∈ (−1;−1/3), (P) is not
well-posed in the Fredholm sense in H1

0(Ω)
but well-posed in V+ (PMLs)

κσ = −1, (P) ill-posed in H1
0(Ω)

Prob
lem

Resu
lts
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1 The coerciveness issue for the scalar case

2 A new functional framework in the critical interval

3 A curious instability phenomenon for a rounded corner

28 / 38



The problematic of the rounded corner
I We recall the problem under consideration

(P) Find u ∈ H1
0(Ω) such that:

−div(σ∇u) = f in Ω.

I When the interface has a corner, (P) is well-posed in
the Fredholm sense iff κσ /∈ Ic (the critical interval).

I When the interface is smooth, (P) is well-posed in the
Fredholm sense iff κσ 6= −1.

What happens for a slightly rounded corner when
κσ ∈ Ic \ {−1}?
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Physical context
I For metals at optical frequency, ε(ω) < 0.

Figures from O’Connor et al., Appl. Phys. Lett. 95, 171112 (2009)

I Physicists use singular geometries to focus energy. It allows to stock
information.

Metal

Dielectric
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Numerical experiment 1/2

δ is the rounding
parameter

I For the numerical experiments, we round the corner in a particular way

(in this domain, we can separate variables).

Σ

Ω1
σ1 > 0

Ω2
σ2 < 0O

I Our goal is to study the behaviour of the solution, if it is well-defined, of

(
Pδ
) Find uδ ∈ H1

0(Ωδ) such that:
−div(σδ∇uδ) = f in Ωδ.

I We approximate uδ, assuming it is well-defined, by a usual P1 Finite
Element Method. We compute the solution uδh of the discretized problem
with FreeFem++.

We display the behaviour of uδh as δ → 0.
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Numerical experiments 1/2

σ1 = 1 and σ2 = 1 (positive materials)

0.75 0.8 0.85 0.9 0.95 1
0

2

4

6

8

10

uδh w.r.t. δ ‖∇uδh‖Ωδ w.r.t. 1− δ

I For positive materials, it is well-known that (uδ)δ converges to u, the
solution in the limit geometry.
I The rate of convergence depends on the regularity of u.
I To avoid to mesh Ωδ, we can approximate uδ by uh.
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Numerical experiments 2/2
... and what about for a sign-changing σ???

σ1 = 1 and σ2 = −0.9999

0.75 0.8 0.85 0.9 0.95 1
0

50

100

150

200

250

300

uδh w.r.t. δ ‖∇uδh‖Ωδ w.r.t. 1− δ

I For this configuration, uδ seems to depend critically on δ.

Why???
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How to approximate the solution?
I We use a PML (Perfectly Matched Layer) to bound the domain B

+ finite elements in the truncated strip (κσ = −0.999 ∈ (−1;−1/3)).

Without the PML, the solution in the truncated strip of length
L does not converge when L → ∞. This is what we observe in
our numerical experiment for the rounded corner.

PML

PM
L
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Source term problem

Ωδ2
Ωδ1

Ω2

Ω1

(
Pδ
) Find uδ ∈ H1

0(Ω) s.t.:
−div(σδ∇uδ) = f in Ω. (P) Find u ∈ H1

0(Ω) s.t.:
−div(σ∇u) = f in Ω.

I The behaviour of (uδ)δ depends on the properties of the limit problem.

If (P) well-posed (in H1
0(Ω)), then uδ is uniquely defined for δ small enough

and (uδ)δ converges to u (as for positive materials).

If the limit problem is well-posed only in the exotic framework, then (Pδ)
critically depends on the value of the rounding parameter δ.
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and (uδ)δ converges to u (as for positive materials).

If the limit problem is well-posed only in the exotic framework, then (Pδ)
critically depends on the value of the rounding parameter δ.

Idea of the approach:
1 We prove the a priori estimate ‖uδ‖H1

0(Ω) ≤ c | ln δ|1/2‖f ‖Ω for all δ
in some set S which excludes a discrete set accumulating in zero (♠
hard part of the proof, Nazarov’s technique).

ln δ

lnS = {ln δ, δ ∈ S }

2 We provide an asymptotic expansion of uδ, denoted ûδ with the
error estimate, for some β > 0,

‖uδ − ûδ‖H1
0(Ω) ≤ c δβ‖f ‖Ω, ∀δ ∈ S .

3 The behaviour of (ûδ)δ can be explicitly examined as δ → 0. The
sequence (ûδ)δ does not converge, even for the L2-norm!
4 Conclusion.

The sequence (uδ)δ does not converge, even for the L2-norm!
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sequence (ûδ)δ does not converge, even for the L2-norm!
4 Conclusion.

The sequence (uδ)δ does not converge, even for the L2-norm!

35 / 38



Source term problem

Ωδ2
Ωδ1

Ω2

Ω1

(
Pδ
) Find uδ ∈ H1

0(Ω) s.t.:
−div(σδ∇uδ) = f in Ω. (P) Find u ∈ H1

0(Ω) s.t.:
−div(σ∇u) = f in Ω.

I The behaviour of (uδ)δ depends on the properties of the limit problem.

If (P) well-posed (in H1
0(Ω)), then uδ is uniquely defined for δ small enough

and (uδ)δ converges to u (as for positive materials).

If the limit problem is well-posed only in the exotic framework, then (Pδ)
critically depends on the value of the rounding parameter δ.

35 / 38



1 The coerciveness issue for the scalar case

2 A new functional framework in the critical interval

3 A curious instability phenomenon for a rounded corner

36 / 38



Conclusion

I The T-coercivity approach can be adapted to consider other problems
(Maxwell equations, bilaplacian,...). Example:

(P̃)
Find u ∈ H1

0(Ω) ∩H2(Ω) such that:∫
Ω
σ∆u∆v dx = `(v), ∀v ∈ H1

0(Ω) ∩H2(Ω),

Define Tv such that ∆(Tv) = σ−1∆v.


 (P̃) well-posed as soon as σ ∈ L∞(Ω) satisfies σ−1 ∈ L∞(Ω) (no
sign assumption!)

I Our new model in the critical interval raises a lot of questions, related to
the physics of plasmonics and metamaterials.

Can we observe this black-hole effect in practice? Is it possible that
almost identical geometries leads to two different solutions?

More generally, can we reconsider the homogenization process to take into
account interfacial phenomena?
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Thank you for your attention!!!
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