Séminaire du Centre de Mathématiques Appliquées

### A curious instability phenomenon for rounded corners in plasmonic metamaterials

Lucas Chesnel<sup>1</sup>

Coll. with A.-S. Bonnet-Ben Dhia<sup>2</sup>, P. Ciarlet<sup>2</sup>, C. Carvalho<sup>2</sup>, X. Claeys<sup>3</sup>, S.A. Nazarov<sup>4</sup>

<sup>1</sup>Defi team, CMAP, École Polytechnique, France
 <sup>2</sup>POems team, Ensta ParisTech, France
 <sup>3</sup>LJLL, Paris VI, France
 <sup>4</sup>FMM, St. Petersburg State University, Russia



ÉCOLE POLYTECHNIQUE, 31/03/2015

# Introduction: physical context

► Electromagnetism in presence of metamaterials.



ZOOM ON A METAMATERIAL (NASA)

# Introduction: physical context

► Electromagnetism in presence of metamaterials.



ZOOM ON A METAMATERIAL (NASA)

"Metamaterials are artificial materials engineered to have properties that may not be found in nature. [...] Metamaterials gain their properties not from their composition, but from their exactingly-designed structures."

#### One example in nature



► For certain butterflies, bright colors are not due chemical pigments but rather to a geometric arrangement of tissues.

## Some applications of metamaterials

The general idea is to design structures to control light.

Realization of cloaking devices (*capes d'invisibilité*).



Remark: a priori, one could use the same idea to bend tsunami and seismic waves.

# Some applications of metamaterials

• Realization of negative refractive index materials (n < 0).



 $\Rightarrow$  The negative refraction at the interface metamaterial/dielectric could allow the realization of perfect lenses, photonic traps...

► To design a material with a negative refractive index (n < 0), it is necessary to have both  $\varepsilon < 0$  and  $\mu < 0$ .

• Here,  $\varepsilon$  and  $\mu$  denote the permittivity and the permeability appearing in the Maxwell's equations:

$$\begin{aligned} \operatorname{div} \boldsymbol{E} &= \rho/\varepsilon \\ \operatorname{div} \boldsymbol{B} &= 0 \\ \operatorname{curl} \boldsymbol{E} &+ \frac{\partial \boldsymbol{B}}{\partial t} &= 0 \\ \boldsymbol{\mu}^{-1} \operatorname{curl} \boldsymbol{B} &- \varepsilon \frac{\partial \boldsymbol{E}}{\partial t} &= \boldsymbol{J}, \end{aligned}$$

► To design a material with a negative refractive index (n < 0), it is necessary to have both  $\varepsilon < 0$  and  $\mu < 0$ .

• Here,  $\varepsilon$  and  $\mu$  denote the permittivity and the permeability appearing in the Maxwell's equations:

div 
$$\boldsymbol{E} = \rho/\varepsilon$$
  
div  $\boldsymbol{B} = 0$   
curl  $\boldsymbol{E} + \frac{\partial \boldsymbol{B}}{\partial t} = 0$   
 $\mu^{-1}$ curl  $\boldsymbol{B} - \varepsilon \frac{\partial \boldsymbol{E}}{\partial t} = \boldsymbol{J}$ 

where

E is the electric field B is the magnetic field  $\rho$  is the charge density J is the current density.

▶ To design a material with a negative refractive index (n < 0), it is necessary to have both  $\varepsilon < 0$  and  $\mu < 0$ .

► To design a material with a negative refractive index (n < 0), it is necessary to have both  $\varepsilon < 0$  and  $\mu < 0$ .

▶ In the applications, presence of interfaces neg. material/pos. material.



► To design a material with a negative refractive index (n < 0), it is necessary to have both  $\varepsilon < 0$  and  $\mu < 0$ .

▶ In the applications, presence of interfaces neg. material/pos. material.



▶ In this talk, we consider only the homogenized model of the metamaterial (mathematical justification: Bouchitté, Bourel, Felbacq 09...).

► To design a material with a negative refractive index (n < 0), it is necessary to have both  $\varepsilon < 0$  and  $\mu < 0$ .

▶ In the applications, presence of interfaces neg. material/pos. material.



► To design a material with a negative refractive index (n < 0), it is necessary to have both  $\varepsilon < 0$  and  $\mu < 0$ .

▶ In the applications, presence of interfaces neg. material/pos. material.



• Original transmission problems because  $\varepsilon$  and  $\mu$  change sign at the interface  $\Sigma$ .

Broadly speaking, I investigate the following questions:

- Do these problems with sign-changing coefficients have a unique solution?
- If not, why (link with physics)?
- Numerical methods to approximate the solution?

The coerciveness issue for the scalar case 

#### 2 A new functional framework in the critical interval



3 A curious instability phenomenon for a rounded corner

#### 1 The coerciveness issue for the scalar case

2 A new functional framework in the critical interval

3 A curious instability phenomenon for a rounded corner

▶ Under appropriate assumptions, the study of Maxwell's equations reduces to the study of the following problem:

$$(\mathscr{P}) \ \left| \begin{array}{l} \mathrm{Find} \ u \in \mathrm{H}^{1}_{0}(\Omega) \ \mathrm{such} \ \mathrm{that:} \\ -\mathrm{div}(\sigma \nabla u) = f \ \mathrm{in} \ \Omega. \end{array} \right.$$



▶ Under appropriate assumptions, the study of Maxwell's equations reduces to the study of the following problem:

$$(\mathscr{P}) \mid \begin{array}{c} \text{Find } u \in \mathrm{H}^{1}_{0}(\Omega) \text{ such that:} \\ -\mathrm{div}(\sigma \nabla u) = f \text{ in } \Omega. \end{array}$$



- 
$$\mathrm{H}^1_0(\Omega) = \{ v \in \mathrm{L}^2(\Omega) \mid \nabla v \in \mathrm{L}^2(\Omega); v \mid_{\partial \Omega} = 0 \}$$

- 
$$f$$
 is a source term (data) in  $\mathrm{H}^{-1}(\Omega)$ 

▶ Under appropriate assumptions, the study of Maxwell's equations reduces to the study of the following problem:

$$(\mathscr{P}) \mid \begin{array}{c} \text{Find } u \in \mathrm{H}^{1}_{0}(\Omega) \text{ such that:} \\ -\mathrm{div}(\sigma \nabla u) = f \text{ in } \Omega. \end{array}$$

- 
$$\mathrm{H}^1_0(\Omega) = \{ v \in \mathrm{L}^2(\Omega) \mid \nabla v \in \mathrm{L}^2(\Omega); v \mid_{\partial \Omega} = 0 \}$$

- f is a source term (data) in  $\mathrm{H}^{-1}(\Omega)$ 



$$\sigma|_{\Omega_1} = \sigma_1 > 0$$
  
$$\sigma|_{\Omega_2} = \sigma_2 < 0$$
  
(constant)

▶ Under appropriate assumptions, the study of Maxwell's equations reduces to the study of the following problem:

$$(\mathscr{P}) \mid \begin{array}{c} \text{Find } u \in \mathrm{H}^{1}_{0}(\Omega) \text{ such that:} \\ -\mathrm{div}(\sigma \nabla u) = f \text{ in } \Omega. \end{array}$$

- 
$$\mathrm{H}^{1}_{0}(\Omega) = \{ v \in \mathrm{L}^{2}(\Omega) \mid \nabla v \in \mathrm{L}^{2}(\Omega); v \mid_{\partial \Omega} = 0 \}$$

- f is a source term (data) in  $\mathrm{H}^{-1}(\Omega)$ 

$$\Omega_1$$

$$\begin{vmatrix} \sigma |_{\Omega_1} = \sigma_1 > 0 \\ \sigma |_{\Omega_2} = \sigma_2 < 0 \\ (\text{constant}) \end{vmatrix}$$

$$(\mathscr{P}) \quad \Leftrightarrow \qquad (\mathscr{P}_V) \quad \left| \begin{array}{c} \operatorname{Find} \ u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ a(u,v) = \ell(v), \ \forall v \in \mathrm{H}^1_0(\Omega), \end{array} \right.$$

with 
$$a(u, v) = \int_{\Omega} \sigma \, \nabla u \cdot \nabla v \, d\boldsymbol{x}$$
 and  $\ell(v) = \langle f, v \rangle$ .

▶ Under appropriate assumptions, the study of Maxwell's equations reduces to the study of the following problem:

$$(\mathscr{P}) \mid \begin{array}{c} \text{Find } u \in \mathrm{H}^{1}_{0}(\Omega) \text{ such that:} \\ -\mathrm{div}(\sigma \nabla u) = f \text{ in } \Omega. \end{array}$$

- 
$$\mathrm{H}^{1}_{0}(\Omega) = \{ v \in \mathrm{L}^{2}(\Omega) \mid \nabla v \in \mathrm{L}^{2}(\Omega); v \mid_{\partial \Omega} = 0 \}$$

- f is a source term (data) in  $\mathrm{H}^{-1}(\Omega)$ 

$$\Omega_1$$

$$\begin{array}{l} \sigma|_{\Omega_1} = \sigma_1 > 0 \\ \sigma|_{\Omega_2} = \sigma_2 < 0 \\ (\text{constant}) \end{array}$$

$$(\mathscr{P}) \quad \Leftrightarrow \qquad (\mathscr{P}_V) \quad \left| \begin{array}{c} \operatorname{Find} \ u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ a(u,v) = \ell(v), \ \forall v \in \mathrm{H}^1_0(\Omega), \end{array} \right.$$

with 
$$a(u, v) = \int_{\Omega} \sigma \nabla u \cdot \nabla v \, d\boldsymbol{x}$$
 and  $\ell(v) = \langle f, v \rangle$ .

DEFINITION. We will say that the problem  $(\mathscr{P})$  is well-posed if the operator div  $(\sigma \nabla \cdot)$  is an isomorphism from  $\mathrm{H}_0^1(\Omega)$  to  $\mathrm{H}^{-1}(\Omega)$ .

• Classical case  $\sigma > 0$  everywhere:

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \, d\boldsymbol{x} \ge \min(\sigma) \, \|u\|_{\mathrm{H}^{1}_{0}(\Omega)}^{2} \quad \text{coercivity}$$

Lax-Milgram theorem  $\Rightarrow$  ( $\mathscr{P}$ ) well-posed.

• Classical case  $\sigma > 0$  everywhere:

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \, d\mathbf{x} \ge \min(\sigma) \, \|u\|_{\mathrm{H}^1_0(\Omega)}^2$$
 coercivity

----- VS. -----

Lax-Milgram theorem  $\Rightarrow$  ( $\mathscr{P}$ ) well-posed.

• The case  $\sigma$  changes sign:

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \, dx \ge C \|u\|_{\mathrm{H}^1_0(\Omega)}^2 \quad \text{loss of coercivity}$$

• Classical case  $\sigma > 0$  everywhere:

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \, d\boldsymbol{x} \ge \min(\sigma) \, \|u\|_{\mathrm{H}^{1}_{0}(\Omega)}^{2} \quad \text{coercivity}$$

----- VS. -----

Lax-Milgram theorem  $\Rightarrow$  ( $\mathscr{P}$ ) well-posed.

• The case  $\sigma$  changes sign:

 $a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \, dx \ge C \, \|u\|_{\mathrm{H}^1_0(\Omega)}^2 \quad \text{loss of coercivity}$ 

▶ When  $\sigma_2 = -\sigma_1$ , ( $\mathscr{P}$ ) is always ill-posed (Costabel-Stephan 85). For a symmetric domain (w.r.t.  $\Sigma$ ) we can build a kernel of infinite dimension.

• Classical case  $\sigma > 0$  everywhere:

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \, d\boldsymbol{x} \ge \min(\sigma) \, \|u\|_{\mathrm{H}^{1}_{0}(\Omega)}^{2} \quad \text{coercivity}$$

----- VS. -----

Lax-Milgram theorem  $\Rightarrow$  ( $\mathscr{P}$ ) well-posed.

• The case  $\sigma$  changes sign:

 $a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \, dx \ge C \, \|u\|_{\mathrm{H}^1_0(\Omega)}^2 \quad \text{loss of coercivity}$ 

▶ When  $\sigma_2 = -\sigma_1$ , ( $\mathscr{P}$ ) is always ill-posed (Costabel-Stephan 85). For a symmetric domain (w.r.t.  $\Sigma$ ) we can build a kernel of infinite dimension.

How to study  $(\mathscr{P})$  when  $\sigma$  changes sign?

Let **T** be an isomorphism of  $H_0^1(\Omega)$ .

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \middle| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ a(u,v) = \ell(v), \ \forall v \in \mathrm{H}^1_0(\Omega). \end{array}$$

Let T be an isomorphism of  $H_0^1(\Omega)$ .

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \begin{array}{c} \text{Find } u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ a(u, \mathsf{T} v) = \ell(\mathsf{T} v), \, \forall v \in \mathrm{H}^1_0(\Omega). \end{array}$$

Let T be an isomorphism of  $H_0^1(\Omega)$ .

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \operatorname{Find} u \in \mathrm{H}^1_0(\Omega) \text{ such that:} a(u, \mathsf{T}v) = \ell(\mathsf{T}v), \, \forall v \in \mathrm{H}^1_0(\Omega).$$

Goal: Find **T** such that *a* is **T**-coercive:  $\int_{\Omega} \sigma \nabla u \cdot \nabla(\mathbf{T}u) \, d\boldsymbol{x} \geq C \, \|u\|_{\mathrm{H}^{1}_{0}(\Omega)}^{2}.$ In this case, Lax-Milgram  $\Rightarrow (\mathscr{P}_{V}^{\mathrm{T}})$  (and so  $(\mathscr{P}_{V})$ ) is well-posed.

Let T be an isomorphism of  $H_0^1(\Omega)$ .

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \begin{array}{c} \text{Find } u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ a(u, \mathsf{T} v) = \ell(\mathsf{T} v), \, \forall v \in \mathrm{H}^1_0(\Omega). \end{array}$$

Goal: Find **T** such that *a* is **T**-coercive:  $\int_{\Omega} \sigma \nabla u \cdot \nabla(\mathbf{T}u) \, d\mathbf{x} \geq C \, \|u\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2}.$ In this case, Lax-Milgram  $\Rightarrow (\mathscr{P}_{V}^{\mathrm{T}})$  (and so  $(\mathscr{P}_{V})$ ) is well-posed.

 $\begin{array}{c|c} \bullet & \text{Define } \mathtt{T}_1 u = \begin{array}{c} u & \text{in } \Omega_1 \\ -u + \dots & \text{in } \Omega_2 \end{array}$ 

Let **T** be an isomorphism of  $H_0^1(\Omega)$ .

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \operatorname{Find} u \in \mathrm{H}^1_0(\Omega) \text{ such that:} a(u, \mathsf{T}v) = \ell(\mathsf{T}v), \, \forall v \in \mathrm{H}^1_0(\Omega).$$

Goal: Find **T** such that *a* is **T**-coercive:  $\int_{\Omega} \sigma \nabla u \cdot \nabla(\mathbf{T}u) \, d\boldsymbol{x} \geq C \, \|u\|_{\mathrm{H}^{1}_{0}(\Omega)}^{2}.$ In this case, Lax-Milgram  $\Rightarrow (\mathscr{P}_{V}^{\mathrm{T}})$  (and so  $(\mathscr{P}_{V})$ ) is well-posed.

1 Define  $T_1 u = \begin{vmatrix} u & & \text{in } \Omega_1 \\ -u + 2R_1(u|_{\Omega_1}) & & \text{in } \Omega_2 \end{vmatrix}$ , with

 $R_1$  transfer/extension operator



Let **T** be an isomorphism of  $H_0^1(\Omega)$ .

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \operatorname{Find} u \in \mathrm{H}^1_0(\Omega) \text{ such that:} a(u, \mathsf{T}v) = \ell(\mathsf{T}v), \, \forall v \in \mathrm{H}^1_0(\Omega).$$

Goal: Find **T** such that *a* is **T**-coercive:  $\int_{\Omega} \sigma \nabla u \cdot \nabla(\mathbf{T}u) \, d\boldsymbol{x} \geq C \, \|u\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2}.$ In this case, Lax-Milgram  $\Rightarrow (\mathscr{P}_{V}^{\mathrm{T}})$  (and so  $(\mathscr{P}_{V})$ ) is well-posed.

**1** Define  $T_1 u = \begin{vmatrix} u & \text{in } \Omega_1 \\ -u + 2R_1(u|_{\Omega_1}) & \text{in } \Omega_2 \end{vmatrix}$ , with  $R_1$  transfer/extension operator continuous from  $\Omega_1$  to  $\Omega_2$ 

$$\Omega_1$$
  $\Sigma$   $\Omega_2$ 

$$\begin{aligned} & \frac{R_1(u|_{\Omega_1}) = u \quad \text{on } \Sigma \\ & \frac{R_1(u|_{\Omega_1}) = 0 \quad \text{on } \partial\Omega_2 \setminus \Sigma \end{aligned}$$

Let T be an isomorphism of  $H_0^1(\Omega)$ .

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \operatorname{Find} u \in \mathrm{H}^1_0(\Omega) \text{ such that:} a(u, \mathsf{T}v) = \ell(\mathsf{T}v), \, \forall v \in \mathrm{H}^1_0(\Omega).$$

Goal: Find **T** such that *a* is **T**-coercive:  $\int_{\Omega} \sigma \nabla u \cdot \nabla(\mathbf{T}u) \, d\boldsymbol{x} \geq C \, \|u\|_{\mathrm{H}^{1}_{0}(\Omega)}^{2}.$ In this case, Lax-Milgram  $\Rightarrow (\mathscr{P}_{V}^{\mathrm{T}})$  (and so  $(\mathscr{P}_{V})$ ) is well-posed.

**1** Define 
$$T_1 u = \begin{vmatrix} u & \text{in } \Omega_1 \\ -u + 2R_1(u|_{\Omega_1}) & \text{in } \Omega_2 \end{vmatrix}$$
, with  
 $R_1$  transfer/extension operator continuous from  $\Omega_1$  to  $\Omega_2$ 

transier/extension operator continuous from  $\Omega_1$  to  $\Omega_2$ 

$$\Omega_1 \qquad \Sigma \qquad \Omega_2 \qquad \begin{vmatrix} R_1(u|_{\Omega_1}) = u & \text{on } \Sigma \\ R_1(u|_{\Omega_1}) = 0 & \text{on } \partial\Omega_2 \setminus \Sigma \end{vmatrix}$$

On  $\Sigma$ , we have  $-u + 2\mathbf{R}_1 u = -u + 2u = u \Rightarrow \mathsf{T}_1 u \in \mathrm{H}_0^1(\Omega)$ .

Let **T** be an isomorphism of  $H_0^1(\Omega)$ .

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \operatorname{Find} u \in \mathrm{H}^1_0(\Omega) \text{ such that:} a(u, \mathsf{T}v) = \ell(\mathsf{T}v), \, \forall v \in \mathrm{H}^1_0(\Omega).$$

Goal: Find **T** such that *a* is **T**-coercive:  $\int_{\Omega} \sigma \nabla u \cdot \nabla(\mathbf{T}u) \, d\mathbf{x} \geq C \, \|u\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2}.$ In this case, Lax-Milgram  $\Rightarrow (\mathscr{P}_V^{\mathsf{T}})$  (and so  $(\mathscr{P}_V)$ ) is well-posed.

**1** Define 
$$T_1 u = \begin{vmatrix} u & \text{in } \Omega_1 \\ -u + 2R_1(u|_{\Omega_1}) & \text{in } \Omega_2 \end{vmatrix}$$
, with  
*R*, transfer/extension operator continuous from  $\Omega_1$  to  $\Omega_2$ 

transfer/extension operator continuous from  $\Omega_1$  to  $\Omega_2$ 

$$\begin{array}{c|c} R_1 \\ \hline \Omega_1 \\ \Sigma \\ \hline \Omega_2 \\ \hline \end{array} \begin{array}{c} R_1(u|_{\Omega_1}) = u & \text{on } \Sigma \\ R_1(u|_{\Omega_1}) = 0 & \text{on } \partial\Omega_2 \setminus \Sigma \end{array}$$

**2**  $T_1 \circ T_1 = Id$  so  $T_1$  is an isomorphism of  $H_0^1(\Omega)$ 



**3** We find 
$$a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 d\boldsymbol{x} - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla (R_1(u|_{\Omega_1})) d\boldsymbol{x}.$$

Young's inequality:  $\Rightarrow$  a is **T-coercive** when  $\sigma_1 > ||R_1||^2 |\sigma_2|$ .

2/2

**3** We find 
$$a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 d\boldsymbol{x} - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla (R_1(u|_{\Omega_1})) d\boldsymbol{x}.$$

Young's inequality:  $\Rightarrow$  a is **T-coercive** when  $\sigma_1 > ||R_1||^2 |\sigma_2|$ .

4 Working with 
$$T_2 u = \begin{vmatrix} u - 2R_2(u|_{\Omega_2}) & \text{in } \Omega_1 \\ -u & \text{in } \Omega_2 \end{vmatrix}$$
, where  $R_2 : \Omega_2 \to \Omega_1$ , one proves that  $a$  is **T-coercive** when  $|\sigma_2| > ||R_2||^2 \sigma_1$ .

**3** We find 
$$a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 d\boldsymbol{x} - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla (R_1(u|_{\Omega_1})) d\boldsymbol{x}.$$

Young's inequality:  $\Rightarrow$  *a* is **T-coercive** when  $\sigma_1 > ||R_1||^2 |\sigma_2|$ .

4 Working with 
$$T_2 u = \begin{vmatrix} u - 2R_2(u|_{\Omega_2}) & \text{in } \Omega_1 \\ -u & \text{in } \Omega_2 \end{vmatrix}$$
, where  $R_2 : \Omega_2 \to \Omega_1$ , one proves that *a* is **T-coercive** when  $|\sigma_2| > ||R_2||^2 \sigma_1$ .



#### Conclusion:

THEOREM. If the contrast  $\kappa_{\sigma} = \sigma_2/\sigma_1 \notin [-\|R_2\|^2; -1/\|R_1\|^2]$ , then Problem  $(\mathscr{P})$  is well-posed.
### Idea of the T-coercivity

2/2

**3** We find 
$$a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 d\boldsymbol{x} - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla (R_1(u|_{\Omega_1})) d\boldsymbol{x}.$$

Young's inequality:  $\Rightarrow a$  is **T-coercive** when  $\sigma_1 > ||R_1||^2 |\sigma_2|$ .

4 Working with 
$$T_2 u = \begin{vmatrix} u - 2R_2(u|_{\Omega_2}) & \text{in } \Omega_1 \\ -u & \text{in } \Omega_2 \end{vmatrix}$$
, where  $R_2 : \Omega_2 \to \Omega_1$ , one proves that  $a$  is **T-coercive** when  $|\sigma_2| > ||R_2||^2 \sigma_1$ .



• A simple case: the symmetric domain



► A simple case: the symmetric domain



$$\begin{split} R_1 &= R_2 = S_{\Sigma} \\ \text{One checks that } \|R_1\| = \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed} \Leftrightarrow \kappa_{\sigma} \neq -1 \end{split}$$

► A simple case: the symmetric domain



$$\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{One checks that } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed} \Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$$

▶ Interface with a 2D corner



► A simple case: the symmetric domain



$$\begin{split} R_1 &= R_2 = S_{\Sigma} \\ \text{One checks that } \|R_1\| = \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed} \Leftrightarrow \kappa_{\sigma} \neq -1 \end{split}$$

► Interface with a 2D corner



Action of  $R_1$ :

► A simple case: the symmetric domain



 $\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{One checks that } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed} \Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$ 

▶ Interface with a 2D corner



Action of  $R_1$ :

► A simple case: the symmetric domain



$$\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{One checks that } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed} \Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$$

• Interface with a 2D corner



Action of  $R_1$ : symmetry

► A simple case: the symmetric domain



$$\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{One checks that } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed} \Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$$

• Interface with a 2D corner



Action of  $R_1$ : symmetry + dilatation in  $\theta$ 

► A simple case: the symmetric domain



$$\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{One checks that } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed} \Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$$

• Interface with a 2D corner



Action of  $R_1$ : symmetry + dilatation in  $\theta$ 

$$\|R_1\|^2 = \mathcal{R}_{\gamma} := (2\pi - \gamma)/\gamma$$

• A simple case: the symmetric domain



$$\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{One checks that } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed} \Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$$

Interface with a 2D corner



Action of  $R_1$ : symmetry + dilatation in  $\theta$ Action of  $R_2$ : symmetry + contraction in  $\theta$  $||R_1||^2 = ||R_2||^2 = \mathcal{R}_{\gamma} := (2\pi - \gamma)/\gamma$ 

• A simple case: the symmetric domain



$$\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{One checks that } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed} \Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$$

• Interface with a 2D corner



Action of  $R_1$ : symmetry + dilatation in  $\theta$ Action of  $R_2$ : symmetry + contraction in  $\theta$  $\|R_1\|^2 = \|R_2\|^2 = \mathcal{R}_{\gamma} := (2\pi - \gamma)/\gamma$  $(\mathscr{P})$  well-posedness  $\Leftarrow \kappa_{\sigma} \notin [-\mathcal{R}_{\gamma}; -1/\mathcal{R}_{\gamma}]$ 

• A simple case: the symmetric domain



$$\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{One checks that } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed} \Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$$

• Interface with a 2D corner



Action of  $R_1$ : symmetry + dilatation in  $\theta$ Action of  $R_2$ : symmetry + contraction in  $\theta$  $||R_1||^2 = ||R_2||^2 = \mathcal{R}_{\gamma} := (2\pi - \gamma)/\gamma$  $(\mathscr{P})$  well-posedness  $\Leftrightarrow \kappa_{\sigma} \notin [-\mathcal{R}_{\gamma}; -1/\mathcal{R}_{\gamma}]$ 

► A simple case: the symmetric domain



• A simple case: the symmetric domain



• Using localization techniques, we can prove the

PROPOSITION. ( $\mathscr{P}$ ) is well-posed in the Fredholm sense for a curvilinear polygonal interface iff  $\kappa_{\sigma} \notin [-\mathcal{R}_{\gamma}; -1/\mathcal{R}_{\gamma}]$  where  $\gamma$  is the smallest angle.

 $\Rightarrow$  When  $\Sigma$  is smooth, ( $\mathscr{P}$ ) is well-posed in the Fredholm sense iff  $\kappa_{\sigma} \neq -\frac{1}{13}$ .

• Similarly, we can deal with non constant  $\sigma_1$ ,  $\sigma_2$  and with Neumann pb.

- Similarly, we can deal with non constant  $\sigma_1$ ,  $\sigma_2$  and with Neumann pb.
- ▶ 3D geometries can be handled in the same way.



Fichera corner. Using some symmetries, we can build  $R_1$ ,  $R_2$  such that  $||R_1||^2 = ||R_2||^2 = 7$  $(\mathscr{P})$  well-posedness  $\Leftarrow \kappa_\sigma \notin [-7; -1/7]$ 

- Similarly, we can deal with non constant  $\sigma_1$ ,  $\sigma_2$  and with Neumann pb.
- ▶ 3D geometries can be handled in the same way.



Fichera corner. Using some symmetries, we can build  $R_1$ ,  $R_2$  such that  $||R_1||^2 = ||R_2||^2 = 7$  $(\mathscr{P})$  well-posedness  $\leftarrow \kappa_\sigma \notin [-7; -1/7]$ 

More cases in 3D than in 2D:



- Similarly, we can deal with non constant  $\sigma_1$ ,  $\sigma_2$  and with Neumann pb.
- ▶ 3D geometries can be handled in the same way.



Fichera corner. Using some symmetries, we can build  $R_1$ ,  $R_2$  such that  $||R_1||^2 = ||R_2||^2 = 7$  $(\mathscr{P})$  well-posedness  $\Leftarrow \kappa_\sigma \notin [-7; -1/7]$ 

More cases in 3D than in 2D:



▶ The T-coercivity technique allows to justify convergence of standard finite element method for simple meshes (Bonnet-Ben Dhia *et al.* 10, Nicaise, Venel 11, Chesnel, Ciarlet 12).

- Similarly, we can deal with non constant  $\sigma_1$ ,  $\sigma_2$  and with Neumann pb.
- ► 3D geometries can be handled in the same way.



Fichera corner. Using some symmetries, we can build  $R_1$ ,  $R_2$  such that  $||R_1||^2 = ||R_2||^2 = 7$  $(\mathscr{P})$  well-posedness  $\leftarrow \kappa_\sigma \notin [-7; -1/7]$ 

More cases in 3D than in 2D:



▶ The T-coercivity technique allows to justify convergence of standard finite element method for simple meshes (Bonnet-Ben Dhia *et al.* 10, Nicaise, Venel 11, Chesnel, Ciarlet 12).

▶ T-coercivity is a necessary and sufficient condition (like *inf-sup* condition) to guarantee that  $(\mathscr{P})$  is well-posed.

- Similarly, we can deal with non constant  $\sigma_1$ ,  $\sigma_2$  and with Neumann pb.
- ▶ 3D geometries can be handled in the same way.



Fichera corner. Using some symmetries, we can build  $R_1$ ,  $R_2$  such that  $||R_1||^2 = ||R_2||^2 = 7$  $(\mathscr{P})$  well-posedness  $\Leftarrow \kappa_\sigma \notin [-7; -1/7]$ 

More cases in 3D than in 2D:



▶ The T-coercivity technique allows to justify convergence of standard finite element method for simple meshes (Bonnet-Ben Dhia *et al.* 10, Nicaise, Venel 11, Chesnel, Ciarlet 12).

▶ T-coercivity is a necessary and sufficient condition (like *inf-sup* condition) to guarantee that  $(\mathscr{P})$  is well-posed.

Define  $A: \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{1}_{0}(\Omega)$  such that  $(Au, v)_{\mathrm{H}^{1}_{0}(\Omega)} = a(u, v), \quad \forall u, v \in \mathrm{H}^{1}_{0}(\Omega).$ 

- Similarly, we can deal with non constant  $\sigma_1$ ,  $\sigma_2$  and with Neumann pb.
- ▶ 3D geometries can be handled in the same way.



Fichera corner. Using some symmetries, we can build  $R_1$ ,  $R_2$  such that  $||R_1||^2 = ||R_2||^2 = 7$  $(\mathscr{P})$  well-posedness  $\Leftarrow \kappa_\sigma \notin [-7; -1/7]$ 

More cases in 3D than in 2D:



▶ The T-coercivity technique allows to justify convergence of standard finite element method for simple meshes (Bonnet-Ben Dhia *et al.* 10, Nicaise, Venel 11, Chesnel, Ciarlet 12).

▶ T-coercivity is a necessary and sufficient condition (like *inf-sup* condition) to guarantee that  $(\mathscr{P})$  is well-posed.

Define  $A: \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{1}_{0}(\Omega)$  such that  $(Au, v)_{\mathrm{H}^{1}_{0}(\Omega)} = a(u, v), \quad \forall u, v \in \mathrm{H}^{1}_{0}(\Omega).$ 

If A is an isomorphism, take  $\mathbb{T} = A$ :  $a(u, \mathbb{T}u) = \|Au\|_{\mathrm{H}^{1}_{\alpha}(\Omega)}^{2} \geq C \|u\|_{\mathrm{H}^{1}_{\alpha}(\Omega)}^{2}$ .

**1** The coerciveness issue for the scalar case

#### 2 A new functional framework in the critical interval

3 A curious instability phenomenon for a rounded corner

$$(\mathscr{P}) \ \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{such} \ \mathrm{that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \mathrm{in} \ \Omega. \end{array} \right.$$

• To simplify the presentation, we work on a particular configuration.



$$(\mathscr{P}) \ \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{such} \ \mathrm{that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \mathrm{in} \ \Omega. \end{array} \right.$$

• To simplify the presentation, we work on a particular configuration.



$$(\mathscr{P}) \ \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{such} \ \mathrm{that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \mathrm{in} \ \Omega. \end{array} \right.$$

• To simplify the presentation, we work on a particular configuration.



$$(\mathscr{P}) \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{such} \ \mathrm{that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \mathrm{in} \ \Omega. \end{array} \right.$$

• To simplify the presentation, we work on a particular configuration.



• Using the variational method of the T-coercivity, we prove the

PROPOSITION. The problem ( $\mathscr{P}$ ) is well-posed as soon as the contrast  $\kappa_{\sigma} = \sigma_2/\sigma_1$  satisfies  $\kappa_{\sigma} \notin I_c = [-1; -1/3]$ .

$$(\mathscr{P}) \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{such} \ \mathrm{that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \mathrm{in} \ \Omega. \end{array} \right.$$

• To simplify the presentation, we work on a particular configuration.



• Using the variational method of the T-coercivity, we prove the

PROPOSITION. The problem ( $\mathscr{P}$ ) is well-posed as soon as the contrast  $\kappa_{\sigma} = \sigma_2/\sigma_1$  satisfies  $\kappa_{\sigma} \notin I_c = [-1; -1/3]$ .

What happens when  $\kappa_{\sigma} \in (-1; -1/3]$ ?

• Bounded sector  $\Omega$ 



• Equation:

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$$

• Bounded sector  $\Omega$ 



• Equation:

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$$

• Singularities in the sector

$$s(r,\theta) = r^{\lambda}\varphi(\theta)$$

We compute the singularities  $s(r, \theta) = r^{\lambda} \varphi(\theta)$  and we observe two cases:





We compute the singularities  $s(r, \theta) = r^{\lambda} \varphi(\theta)$  and we observe two cases: Outside the critical interval  $1 \stackrel{\uparrow}{+} \quad r \mapsto r^{\lambda_1}$  $\kappa_{\sigma} = -1/4 \frac{1}{1}$  $-\lambda_2 \quad -\lambda_1 \quad \lambda_1 \quad \lambda_2$ -2 -1 1 2 0 not  $H^1 = -1$  $\mathbf{H}^1$  $-1^{+}$ Inside the critical interval  $r \mapsto \Re e r^{\lambda_1}$  $\lambda_2$ -2 -1  $-\lambda_1$  -1 -1 -1 -1 -1 -10 not  $H^1$ not  $H^1$  $H^1$ 

## Inside the critical interval: message 1

For a contrast  $\kappa_{\sigma}$  inside the critical interval, there are singularities of the form  $s(r, \theta) = r^{\pm i\eta} \varphi(\theta)$  with  $\eta \in \mathbb{R} \setminus \{0\}$ .

▶ Using these singularities, we can show that the following *a priori* estimate does not hold

$$\|u\|_{\mathrm{H}^1_0(\Omega)} \leq C(\|Au\|_{\mathrm{H}^1_0(\Omega)} + \|u\|_{\mathrm{L}^2(\Omega)}), \quad \forall u \in \mathrm{H}^1_0(\Omega),$$

where  $A: \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{1}_{0}(\Omega)$  is the operator such that

 $(Au, v)_{\mathrm{H}^{1}_{0}(\Omega)} = (\sigma \nabla u, \nabla v)_{\Omega}, \qquad \forall u, v \in \mathrm{H}^{1}_{0}(\Omega).$ 

# Inside the critical interval: message 1

For a contrast  $\kappa_{\sigma}$  inside the critical interval, there are singularities of the form  $s(r, \theta) = r^{\pm i\eta} \varphi(\theta)$  with  $\eta \in \mathbb{R} \setminus \{0\}$ .

 $\blacktriangleright$  Using these singularities, we can show that the following *a priori* estimate does not hold

$$\|u\|_{\mathrm{H}^1_0(\Omega)} \leq C \left( \|Au\|_{\mathrm{H}^1_0(\Omega)} + \|u\|_{\mathrm{L}^2(\Omega)} \right), \quad \forall u \in \mathrm{H}^1_0(\Omega),$$

where  $A: \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{1}_{0}(\Omega)$  is the operator such that

 $(Au, v)_{\mathrm{H}^{1}_{0}(\Omega)} = (\sigma \nabla u, \nabla v)_{\Omega}, \qquad \forall u, v \in \mathrm{H}^{1}_{0}(\Omega).$ 

• We deduce the following result:



PROPOSITION. For  $\kappa_{\sigma} \in (-1; -1/3)$ , the operator A is not of Fredholm type ( $\Im m A$  is not closed in  $\mathrm{H}^{1}_{0}(\Omega)$ ).

# Inside the critical interval: message 1

For a contrast  $\kappa_{\sigma}$  inside the critical interval, there are singularities of the form  $s(r, \theta) = r^{\pm i\eta} \varphi(\theta)$  with  $\eta \in \mathbb{R} \setminus \{0\}$ .

 $\blacktriangleright$  Using these singularities, we can show that the following *a priori* estimate does not hold

$$\|u\|_{\mathrm{H}^1_0(\Omega)} \leq C \left( \|Au\|_{\mathrm{H}^1_0(\Omega)} + \|u\|_{\mathrm{L}^2(\Omega)} \right), \quad \forall u \in \mathrm{H}^1_0(\Omega),$$

where  $A: \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{1}_{0}(\Omega)$  is the operator such that

 $(Au, v)_{\mathrm{H}_{0}^{1}(\Omega)} = (\sigma \nabla u, \nabla v)_{\Omega}, \qquad \forall u, v \in \mathrm{H}_{0}^{1}(\Omega).$ 

• We deduce the following result:



PROPOSITION. For  $\kappa_{\sigma} \in (-1; -1/3)$ , the operator A is not of Fredholm type ( $\Im m A$  is not closed in  $\mathrm{H}_{0}^{1}(\Omega)$ ).

Let's see how to change the functional framework to recover a well-posed problem ...

We compute the singularities  $s(r, \theta) = r^{\lambda} \varphi(\theta)$  and we observe two cases: Outside the critical interval  $1 \stackrel{\uparrow}{\uparrow} \quad r \mapsto r^{\lambda_1}$  $\kappa_{\sigma} = -1/4 \frac{1}{1}$  $-\lambda_2$   $-\lambda_1$   $\lambda_1$   $\lambda_2$ -2 -1 1 2 0 not  $H^1 - 1$  $\mathbf{H}^1$ -1+Inside the critical interval  $r \mapsto \Re e r^{\lambda_1}$  $\kappa_{\sigma} = -1/2 \qquad 1 \qquad \bullet \qquad \lambda_1$ 1  $\lambda_2$  $\begin{array}{c} -2 & -1 \\ -\lambda_1 & \bullet \\ & -1 \end{array}$  not  $H^1$ 0 2 not  $H^1$  $\mathbf{H}^{1}$ 


• Bounded sector  $\Omega$ 



• Equation:

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$$

• Singularities in the sector

 $s(r,\theta)=r^\lambda\varphi(\theta)$ 

• Bounded sector  $\Omega$ 





• Half-strip  $\mathcal{B}$ 



• Equation:

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$$

• Singularities in the sector

 $s(r,\theta)=r^\lambda\varphi(\theta)$ 

- Bounded sector  $\Omega$ Half-strip  $\mathcal{B}$  $(z,\theta) = (-\ln r,\theta)$ ſθ  $\pi/4$  $\mathcal{B}_1$  $\Omega_1$  $\Omega_2$  $\theta = \pi/4$ Bo  $(r, \theta) = (e^{-z}, \theta)$ 2 0  $(r, \theta)$ Equation: Equation:  $-\operatorname{div}(\sigma \nabla u)$  $-\operatorname{div}(\sigma \nabla u) = e^{-2z} f$ = f $-(\sigma\partial_z^2 + \partial_\theta \sigma\partial_\theta)u$  $-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta\sigma\partial_\theta)u$
- Singularities in the sector

 $s(r,\theta) = r^{\lambda}\varphi(\theta)$ 

• Bounded sector  $\Omega$ 





• Half-strip  $\mathcal{B}$ 



- Equation:  $\underbrace{-\operatorname{div}(\sigma \nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$
- Singularities in the sector  $s(r, \theta) = r^{\lambda} \varphi(\theta)$

- Equation:  $\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-(\sigma\partial_x^2 + \partial_\theta\sigma\partial_\theta)u} = e^{-2z}f$
- Modes in the strip  $m(z,\theta) = e^{-\lambda z} \varphi(\theta)$



• Singularities in the sector  $s(r, \theta) = r^{\lambda} \varphi(\theta)$ 

• Modes in the strip  $m(z, \theta) = e^{-\lambda z} \varphi(\theta)$ 

 $s \in \mathrm{H}^1(\Omega)$   $\Re e \, \lambda'_{\mathsf{l}} > 0$  m is evanescent





19 / 38

#### Modal analysis in the waveguide



#### Modal analysis in the waveguide



#### Modal analysis in the waveguide



#### Inside the critical interval: message 2



There is a functional framework, different from  $H_0^1(\Omega)$ , involving one singularity, where existence and uniqueness of the solution holds.

# How to numerically approximate the solution in this new framework

# Naive approximation

▶ Let us try a usual Finite Element Method (P1 Lagrange Finite Element). We solve the problem

Find 
$$u_h \in \mathcal{V}_h$$
 s.t.:  
$$\int_{\Omega} \sigma \nabla u_h \cdot \nabla v_h = \int_{\Omega} f v_h, \quad \forall v \in \mathcal{V}_h,$$

where  $V_h$  approximates  $H_0^1(\Omega)$  as  $h \to 0$  (*h* is the mesh size).

# Naive approximation

▶ Let us try a usual Finite Element Method (P1 Lagrange Finite Element). We solve the problem

$$\begin{vmatrix} \text{Find } u_h \in \mathcal{V}_h \text{ s.t.:} \\ \int_{\Omega} \sigma \nabla u_h \cdot \nabla v_h = \int_{\Omega} f v_h, \quad \forall v \in \mathcal{V}_h, \end{vmatrix}$$

where  $V_h$  approximates  $H_0^1(\Omega)$  as  $h \to 0$  (*h* is the mesh size).

• We display  $u_h$  as  $h \to 0$ .

# Naive approximation

▶ Let us try a usual Finite Element Method (P1 Lagrange Finite Element). We solve the problem



$$(\dots)$$

Contrast 
$$\kappa_{\sigma} = -0.999 \in (-1; -1/3).$$

#### Remark

• Outside the critical interval, for the classical approximation method, the sequence  $(u_h)$  converges.

 $(\dots)$ 

Contrast 
$$\kappa_{\sigma} = -1.001 \notin (-1; -1/3).$$

### How to approximate the solution?

• We use a PML (*Perfectly Matched Layer*) to bound the domain  $\mathcal{B}$  + finite elements in the truncated strip ( $\kappa_{\sigma} = -0.999 \in (-1; -1/3)$ ).



# A curious black hole phenomenon

► For the Helmholtz equation div  $(\sigma \nabla u) + \omega^2 u = f$ , analogously, it is necessary to modify the functional framework to have a well-posed problem.

▶ In time domain, the solution adopts a curious behaviour.

$$(\boldsymbol{x}, t) \mapsto \Re e\left(u(\boldsymbol{x})e^{-i\omega t}\right) \text{ for } \kappa_{\sigma} = -1/1.3$$

• Everything happens like if a waves was absorbed by the corner point.

► Analogous phenomena occur in cuspidal domains in the theory of water-waves and in elasticity (Cardone, Nazarov, Taskinen).





















For  $\kappa_{\sigma} \in \mathbb{R}^*_{-} \setminus [-1; -1/3], (\mathscr{P})$  wellposed in  $\mathrm{H}^1_0(\Omega)$  (**T-coercivity**)









Results For  $\kappa_{\sigma} \in \mathbb{C} \setminus \mathbb{R}_{-}$ ,  $(\mathscr{P})$  well-posed in  $H_0^1(\Omega)$  (Lax-Milgram)

For  $\kappa_{\sigma} \in \mathbb{R}^*_{-} \setminus [-1; -1/3], (\mathscr{P})$  wellposed in  $H_0^1(\Omega)$  (T-coercivity)

For  $\kappa_{\sigma} \in (-1; -1/3)$ , ( $\mathscr{P}$ ) is not well-posed in the Fredholm sense in  $H_0^1(\Omega)$ but well-posed in  $V^+$  (PMLs)







 $\begin{array}{c} \mathbb{R}^{\text{esults}}\\ \hline \\ \text{For } \kappa_{\sigma} \in \mathbb{C} \backslash \mathbb{R}_{-}, \ (\mathscr{P}) \text{ well-posed in}\\ H^{1}_{0}(\Omega) \ (\text{Lax-Milgram}) \end{array}$ 

For  $\kappa_{\sigma} \in \mathbb{R}^*_{-} \setminus [-1; -1/3], (\mathscr{P})$  wellposed in  $\mathrm{H}^1_0(\Omega)$  (**T-coercivity**)

For  $\kappa_{\sigma} \in (-1; -1/3)$ ,  $(\mathscr{P})$  is not well-posed in the Fredholm sense in  $\mathrm{H}^{1}_{0}(\Omega)$ but well-posed in V<sup>+</sup> (PMLs)

$$\kappa_{\sigma} = -1, (\mathscr{P}) \text{ ill-posed in } \mathrm{H}_{0}^{1}(\Omega)$$



**1** The coerciveness issue for the scalar case

2 A new functional framework in the critical interval

3 A curious instability phenomenon for a rounded corner

## The problematic of the rounded corner

• We recall the problem under consideration

$$(\mathscr{P}) \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}^{1}_{0}(\Omega) \text{ such that:} \\ -\operatorname{div}(\sigma \nabla u) = f \quad \text{in } \Omega. \end{array} \right.$$

▶ When the interface has a corner,  $(\mathscr{P})$  is well-posed in the Fredholm sense iff  $\kappa_{\sigma} \notin I_c$  (the critical interval).



# The problematic of the rounded corner

• We recall the problem under consideration

$$(\mathscr{P}) \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}^{1}_{0}(\Omega) \text{ such that:} \\ -\operatorname{div}(\sigma \nabla u) = f \quad \text{in } \Omega. \end{array} \right.$$

▶ When the interface has a corner,  $(\mathscr{P})$  is well-posed in the Fredholm sense iff  $\kappa_{\sigma} \notin I_c$  (the critical interval).





• When the interface is smooth,  $(\mathscr{P})$  is well-posed in the Fredholm sense iff  $\kappa_{\sigma} \neq -1$ .

## The problematic of the rounded corner

• We recall the problem under consideration

$$(\mathscr{P}) \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}^{1}_{0}(\Omega) \text{ such that:} \\ -\operatorname{div}(\sigma \nabla u) = f \quad \text{in } \Omega. \end{array} \right.$$

▶ When the interface has a corner,  $(\mathscr{P})$  is well-posed in the Fredholm sense iff  $\kappa_{\sigma} \notin I_c$  (the critical interval).



• When the interface is smooth,  $(\mathscr{P})$  is well-posed in the Fredholm sense iff  $\kappa_{\sigma} \neq -1$ .

What happens for a slightly rounded corner when  $\kappa_{\sigma} \in I_c \setminus \{-1\}$ ?



## **Physical context**

• For metals at optical frequency,  $\varepsilon(\omega) < 0$ .



Figures from O'Connor et al., Appl. Phys. Lett. 95, 171112 (2009)

▶ Physicists use singular geometries to focus energy. It allows to stock information.

▶ For the numerical experiments, we round the corner in a particular way



▶ For the numerical experiments, we round the corner in a particular way



▶ For the numerical experiments, we round the corner in a particular way



► For the numerical experiments, we round the corner in a particular way



 $\delta$  is the rounding parameter

► For the numerical experiments, we round the corner in a particular way (in this domain, we can separate variables).





► For the numerical experiments, we round the corner in a particular way (in this domain, we can separate variables).



• Our goal is to study the behaviour of the solution, *if it is well-defined*, of

$$\left(\mathscr{P}^{\delta}\right) \left| \begin{array}{c} \operatorname{Find} u^{\delta} \in \mathrm{H}^{1}_{0}(\Omega^{\delta}) \text{ such that:} \\ -\operatorname{div}(\sigma^{\delta} \nabla u^{\delta}) = f \quad \text{ in } \Omega^{\delta}. \end{array} \right.$$

► For the numerical experiments, we round the corner in a particular way (in this domain, we can separate variables).



Our goal is to study the behaviour of the solution, if it is well-defined, of

$$\left( \mathscr{P}^{\delta} \right) \left| \begin{array}{c} \operatorname{Find} \, u^{\delta} \in \mathrm{H}^{1}_{0}(\Omega^{\delta}) \text{ such that:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = f \quad \text{ in } \Omega^{\delta}. \end{array} \right.$$

▶ We approximate  $u^{\delta}$ , assuming it is well-defined, by a usual P1 Finite Element Method. We compute the solution  $u_h^{\delta}$  of the discretized problem with *FreeFem++*.

We display the behaviour of  $u_h^{\delta}$  as  $\delta \to 0$ .

$$\sigma_1 = 1$$
 and  $\sigma_2 = 1$  (positive materials)
#### Numerical experiments 1/2



• For positive materials, it is well-known that  $(u^{\delta})_{\delta}$  converges to u, the solution in the limit geometry.

- The rate of convergence depends on the regularity of u.
- To avoid to mesh  $\Omega^{\delta}$ , we can approximate  $u^{\delta}$  by  $u_h$ .

#### Numerical experiments 2/2

... and what about for a sign-changing  $\sigma$ ???

$$\sigma_1 = 1 \text{ and } \sigma_2 = -0.9999$$



• For this configuration,  $u^{\delta}$  seems to depend critically on  $\delta$ .

### Numerical experiments 2/2

... and what about for a sign-changing  $\sigma$ ???

$$\sigma_1 = 1 \text{ and } \sigma_2 = -0.9999$$



• For this configuration,  $u^{\delta}$  seems to depend critically on  $\delta$ .



#### How to approximate the solution?

• We use a PML (*Perfectly Matched Layer*) to bound the domain  $\mathcal{B}$  + finite elements in the truncated strip ( $\kappa_{\sigma} = -0.999 \in (-1; -1/3)$ ).



### How to approximate the solution?

• We use a PML (*Perfectly Matched Layer*) to bound the domain  $\mathcal{B}$  + finite elements in the truncated strip ( $\kappa_{\sigma} = -0.999 \in (-1; -1/3)$ ).





• The behaviour of  $(u^{\delta})_{\delta}$  depends on the properties of the limit problem.



• The behaviour of  $(u^{\delta})_{\delta}$  depends on the properties of the limit problem.

If  $(\mathscr{P})$  well-posed (in  $\mathrm{H}_{0}^{1}(\Omega)$ ), then  $u^{\delta}$  is uniquely defined for  $\delta$  small enough and  $(u^{\delta})_{\delta}$  converges to u (as for positive materials).



• The behaviour of  $(u^{\delta})_{\delta}$  depends on the properties of the limit problem.

If  $(\mathscr{P})$  well-posed (in  $\mathrm{H}_{0}^{1}(\Omega)$ ), then  $u^{\delta}$  is uniquely defined for  $\delta$  small enough and  $(u^{\delta})_{\delta}$  converges to u (as for positive materials).

If the limit problem is well-posed only in the exotic framework, then  $(\mathscr{P}^{\delta})$  critically depends on the value of the rounding parameter  $\delta$ .

#### IDEA OF THE APPROACH:

**1** We prove the *a priori* estimate  $||u^{\delta}||_{H_0^1(\Omega)} \leq c |\ln \delta|^{1/2} ||f||_{\Omega}$  for all  $\delta$  in some set  $\mathscr{S}$  which excludes a discrete set accumulating in zero ( $\blacklozenge$  hard part of the proof, Nazarov's technique).

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

The behaviour of  $(u^{\delta})_{\delta}$  depends on the properties of the limit problem.

If  $(\mathscr{P})$  well-posed (in  $\mathrm{H}_0^1(\Omega)$ ), then  $u^{\delta}$  is uniquely defined for  $\delta$  small enough and  $(u^{\delta})_{\delta}$  converges to u (as for positive materials).

If the limit problem is well-posed only in the exotic framework, then (3 critically depends on the value of the rounding parameter  $\delta$ .

#### IDEA OF THE APPROACH:

**1** We prove the *a priori* estimate  $||u^{\delta}||_{H_0^1(\Omega)} \leq c |\ln \delta|^{1/2} ||f||_{\Omega}$  for all  $\delta$  in some set  $\mathscr{S}$  which excludes a discrete set accumulating in zero ( $\blacklozenge$  hard part of the proof, Nazarov's technique).

$$\ln \mathscr{S} = \{\ln \delta, \delta \in \mathscr{S}\}$$

2 We provide an asymptotic expansion of  $u^{\delta}$ , denoted  $\hat{u}^{\delta}$  with the error estimate, for some  $\beta > 0$ ,

$$\|u^{\delta} - \hat{u}^{\delta}\|_{\mathrm{H}^{1}_{0}(\Omega)} \leq \ c \, \delta^{\beta} \|f\|_{\Omega}, \qquad \forall \delta \in \mathscr{S}.$$

f ( $\mathscr{P}$ ) well-posed (in  $\mathrm{H}^{1}_{0}(\Omega)$ ), then  $u^{a}$  is uniquely defined for  $\delta$  small enough  $\mathrm{nd} \ (u^{\delta})_{\delta}$  converges to u (as for positive materials).

If the limit problem is well-posed only in the exotic framework, then ( critically depends on the value of the rounding parameter  $\delta$ .

#### IDEA OF THE APPROACH:

**1** We prove the *a priori* estimate  $||u^{\delta}||_{H_0^1(\Omega)} \leq c |\ln \delta|^{1/2} ||f||_{\Omega}$  for all  $\delta$  in some set  $\mathscr{S}$  which excludes a discrete set accumulating in zero ( $\blacklozenge$  hard part of the proof, Nazarov's technique).

$$\begin{array}{c} & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

2 We provide an asymptotic expansion of  $u^{\delta}$ , denoted  $\hat{u}^{\delta}$  with the error estimate, for some  $\beta > 0$ ,

 $\|u^{\delta} - \hat{u}^{\delta}\|_{\mathrm{H}^{1}_{0}(\Omega)} \leq \ c \, \delta^{\beta} \|f\|_{\Omega}, \qquad \forall \delta \in \mathscr{S}.$ 

**3** The behaviour of  $(\hat{u}^{\delta})_{\delta}$  can be explicitly examined as  $\delta \to 0$ . The sequence  $(\hat{u}^{\delta})_{\delta}$  does not converge, even for the L<sup>2</sup>-norm!

f the limit problem is well-posed only in the exotic framework, then (, ritically depends on the value of the rounding parameter  $\delta$ .

#### IDEA OF THE APPROACH:

**1** We prove the *a priori* estimate  $||u^{\delta}||_{H_0^1(\Omega)} \leq c |\ln \delta|^{1/2} ||f||_{\Omega}$  for all  $\delta$  in some set  $\mathscr{S}$  which excludes a discrete set accumulating in zero ( $\blacklozenge$  hard part of the proof, Nazarov's technique).

$$\begin{array}{c} & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

2 We provide an asymptotic expansion of  $u^{\delta}$ , denoted  $\hat{u}^{\delta}$  with the error estimate, for some  $\beta > 0$ ,

$$\|u^{\delta}-\hat{u}^{\delta}\|_{\mathrm{H}^{1}_{0}(\Omega)}\leq \ c\,\delta^{\beta}\|f\|_{\Omega}, \qquad \forall \delta\in\mathscr{S}.$$

**3** The behaviour of  $(\hat{u}^{\delta})_{\delta}$  can be explicitly examined as  $\delta \to 0$ . The sequence  $(\hat{u}^{\delta})_{\delta}$  does not converge, even for the L<sup>2</sup>-norm!

4 Conclusion.

The sequence  $(u^{\delta})_{\delta}$  does not converge, even for the L<sup>2</sup>-norm!



• The behaviour of  $(u^{\delta})_{\delta}$  depends on the properties of the limit problem.

If  $(\mathscr{P})$  well-posed (in  $\mathrm{H}_{0}^{1}(\Omega)$ ), then  $u^{\delta}$  is uniquely defined for  $\delta$  small enough and  $(u^{\delta})_{\delta}$  converges to u (as for positive materials).

If the limit problem is well-posed only in the exotic framework, then  $(\mathscr{P}^{\delta})$  critically depends on the value of the rounding parameter  $\delta$ .

**1** The coerciveness issue for the scalar case

2 A new functional framework in the critical interval

3 A curious instability phenomenon for a rounded corner

▶ The T-coercivity approach can be adapted to consider other problems (Maxwell equations, bilaplacian,...). Example:

$$(\tilde{\mathscr{P}}) \left| \begin{array}{l} \text{Find } u \in \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega) \text{ such that:} \\ \int_{\Omega} \sigma \, \Delta u \Delta v \, d\boldsymbol{x} = \ell(v), \quad \forall v \in \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega), \end{array} \right.$$

▶ The T-coercivity approach can be adapted to consider other problems (Maxwell equations, bilaplacian,...). Example:

$$\begin{split} (\tilde{\mathscr{P}}) & \left| \begin{array}{c} \operatorname{Find} \ u \in \mathrm{H}^{1}_{0}(\Omega) \cap \mathrm{H}^{2}(\Omega) \ \text{such that:} \\ & \int_{\Omega} \sigma \, \Delta u \Delta v \ d\boldsymbol{x} = \ell(v), \quad \forall v \in \mathrm{H}^{1}_{0}(\Omega) \cap \mathrm{H}^{2}(\Omega), \\ \end{array} \right. \end{split}$$
 Define  $\mathrm{T}v$  such that  $\Delta(\mathrm{T}v) = \sigma^{-1}\Delta v.$ 

▶ The T-coercivity approach can be adapted to consider other problems (Maxwell equations, bilaplacian,...). Example:

$$\begin{split} (\tilde{\mathscr{P}}) & \left| \begin{array}{l} \operatorname{Find} \ u \in \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega) \text{ such that:} \\ \int_{\Omega} \sigma \, \Delta u \Delta v \, d\boldsymbol{x} = \ell(v), \quad \forall v \in \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega), \\ \end{array} \right. \end{split}$$

$$\tilde{\mathscr{P}} \text{ Define } \mathrm{T}v \text{ such that } \Delta(\mathrm{T}v) = \sigma^{-1}\Delta v.$$

$$\stackrel{\bullet}{\bullet} (\tilde{\mathscr{P}}) \text{ well-posed as soon as } \sigma \in \mathrm{L}^{\infty}(\Omega) \text{ satisfies } \sigma^{-1} \in \mathrm{L}^{\infty}(\Omega) \text{ (no sign assumption!)} \end{split}$$

▶ The T-coercivity approach can be adapted to consider other problems (Maxwell equations, bilaplacian,...). Example:

$$(\tilde{\mathscr{P}}) \middle| \begin{array}{c} \operatorname{Find} \ u \in \mathrm{H}^{1}_{0}(\Omega) \cap \mathrm{H}^{2}(\Omega) \text{ such that:} \\ \int_{\Omega} \sigma \, \Delta u \Delta v \, d\boldsymbol{x} = \ell(v), \quad \forall v \in \mathrm{H}^{1}_{0}(\Omega) \cap \mathrm{H}^{2}(\Omega), \end{array}$$

Define  $\mathbf{T}v$  such that  $\Delta(\mathbf{T}v) = \sigma^{-1}\Delta v$ .

•  $(\tilde{\mathscr{P}})$  well-posed as soon as  $\sigma \in L^{\infty}(\Omega)$  satisfies  $\sigma^{-1} \in L^{\infty}(\Omega)$  (no sign assumption!)

• Our new model in the critical interval raises a lot of questions, related to the physics of plasmonics and metamaterials.

Can we observe this **black-hole effect** in practice? Is it possible that almost identical geometries leads to two different solutions?

More generally, can we reconsider the homogenization process to take into account interfacial phenomena?

# Thank you for your attention!!!