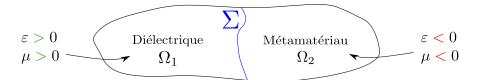
Quelques problèmes posés par la modélisation des métamatériaux

Séminaire des Doctorants du CMAP

A.S. Bonnet-Ben Dhia, <u>L. Chesnel</u>, P. Ciarlet Jr. chesnel@ensta-paristech.fr

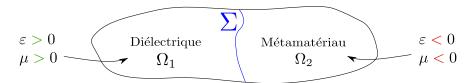
Problème d'électromagnétisme en régime périodique (à fréquence fixée) dans un milieu hétérogène borné :

Problème d'électromagnétisme en régime périodique (à fréquence fixée) dans un milieu hétérogène borné :



Métamatériaux négatifs = Structures à permittivité ε et perméabilité μ négatives

Problème d'électromagnétisme en régime périodique (à fréquence fixée) dans un milieu hétérogène borné :



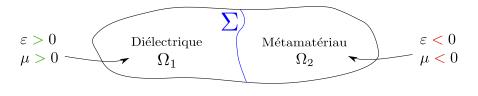
Métamatériaux négatifs

Structures à permittivité ε et perméabilité μ négatives

Alliance

Diélectrique + Métamatériau ⇒ applications intéressantes Exemple : la "superlentille"

Problème d'électromagnétisme en régime périodique (à fréquence fixée) dans un milieu hétérogène borné :



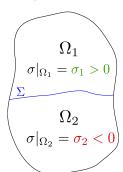
Métamatériaux négatifs = Structures à permittivité ε et perméabilité μ négatives

Alliance
Diélectrique + Métamatériau

⇒ applications intéressantes
Exemple : la "superlentille"

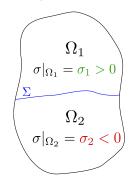
Cadre mathématique inhabituel pour le problème de transmission à cause du changement de signe de ε et μ .

$$(\mathscr{P}) \mid \text{Trouver } u \in H_0^1(\Omega) \text{ tel que :} \\ -\text{div}(\sigma \nabla u) = f \quad \text{dans } \Omega.$$



$$(\mathscr{P}) \mid \text{Trouver } u \in H_0^1(\Omega) \text{ tel que :} \\ -\text{div}(\sigma \nabla u) = f \quad \text{dans } \Omega.$$

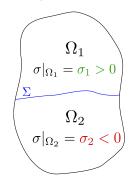
- $H_0^1(\Omega) = \{ v \in L^2(\Omega) \mid \nabla v \in L^2(\Omega); v \mid_{\partial\Omega} = 0 \}$
- $\bullet \ f$ est la donnée dans $H^{-1}(\Omega)$



$$(\mathscr{P}) \mid \text{Trouver } u \in H_0^1(\Omega) \text{ tel que :} \\ -\text{div}(\sigma \nabla u) = f \quad \text{dans } \Omega.$$

- $H_0^1(\Omega) = \{ v \in L^2(\Omega) \mid \nabla v \in L^2(\Omega); v \mid_{\partial\Omega} = 0 \}$
- f est la donnée dans $H^{-1}(\Omega)$

$$(\mathscr{P}) \Leftrightarrow \left| (\mathscr{P}_V) \right| \text{ Trouver } u \in H_0^1(\Omega) \text{ tel que :} \\ a(u,v) = l(v), \forall v \in H_0^1(\Omega).$$

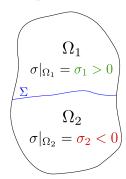


$$(\mathscr{P}) \mid \text{Trouver } u \in H^1_0(\Omega) \text{ tel que :} \\ -\text{div}(\sigma \nabla u) = f \quad \text{dans } \Omega.$$

- $H_0^1(\Omega) = \{ v \in L^2(\Omega) \mid \nabla v \in L^2(\Omega); v \mid_{\partial\Omega} = 0 \}$
- ullet f est la donnée dans $H^{-1}(\Omega)$

$$(\mathscr{P}) \Leftrightarrow \left| (\mathscr{P}_V) \right| \text{ Trouver } u \in H^1_0(\Omega) \text{ tel que :} \\ a(u,v) = l(v), \, \forall v \in H^1_0(\Omega).$$

avec
$$a(u, v) = \int_{\Omega} \sigma \nabla u \cdot \nabla v$$
 et $l(v) = \langle f, v \rangle$.



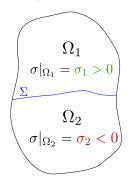
Difficulté du problème scalaire concentrée dans l'étude du problème

$$(\mathscr{P}) \mid \text{Trouver } u \in H^1_0(\Omega) \text{ tel que :} \\ -\text{div}(\sigma \nabla u) = f \quad \text{dans } \Omega.$$

- $H_0^1(\Omega) = \{ v \in L^2(\Omega) \mid \nabla v \in L^2(\Omega); v \mid_{\partial\Omega} = 0 \}$
- ullet f est la donnée dans $H^{-1}(\Omega)$

$$(\mathscr{P}) \Leftrightarrow \left| (\mathscr{P}_V) \right| \text{Trouver } u \in H_0^1(\Omega) \text{ tel que :} \\ a(u,v) = l(v), \forall v \in H_0^1(\Omega).$$

avec
$$a(u, v) = \int_{\Omega} \sigma \nabla u \cdot \nabla v$$
 et $l(v) = \langle f, v \rangle$.



▶ Pour simplifier les notations, σ_1 et σ_2 constants resp. sur Ω_1 et sur Ω_2

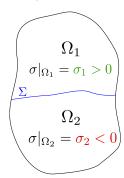
Difficulté du problème scalaire concentrée dans l'étude du problème

$$(\mathscr{P}) \mid \text{Trouver } u \in H_0^1(\Omega) \text{ tel que :} \\ -\text{div}(\sigma \nabla u) = f \quad \text{dans } \Omega.$$

- $H_0^1(\Omega) = \{ v \in L^2(\Omega) \mid \nabla v \in L^2(\Omega); \ v \mid_{\partial \Omega} = 0 \}$
- $\bullet \ f$ est la donnée dans $H^{-1}(\Omega)$

$$(\mathscr{P}) \Leftrightarrow \left(\mathscr{P}_V\right) \mid \text{Trouver } u \in H_0^1(\Omega) \text{ tel que :} \\ a(u,v) = l(v), \forall v \in H_0^1(\Omega).$$

avec
$$a(u, v) = \int_{\Omega} \sigma \nabla u \cdot \nabla v$$
 et $l(v) = \langle f, v \rangle$.



▶ Pour simplifier les notations, σ_1 et σ_2 constants resp. sur Ω_1 et sur Ω_2

DÉFINITION. Problème (\mathscr{P}) bien posé si pour tout $f \in H^{-1}(\Omega)$, (\mathscr{P}) possède une unique solution dépendant continûment de f.

• Le cas classique $\sigma > 0$ partout :

• Le cas classique $\sigma > 0$ partout :

$$a(u,u) = \int_{\Omega} \sigma |\nabla u|^2$$

• Le cas classique $\sigma > 0$ partout :

$$a(u,u) = \int_{\Omega} \sigma |\nabla u|^2 \ge \min(\sigma) \|u\|_{H_0^1(\Omega)}^2$$
 coercivité

• Le cas classique $\sigma > 0$ partout :

$$a(u,u) = \int_{\Omega} \sigma |\nabla u|^2 \ge \min(\sigma) \|u\|_{H_0^1(\Omega)}^2$$
 coercivité

Théorème de Lax-Milgram \Rightarrow (\mathscr{P}) bien posé.

• Le cas classique $\sigma > 0$ partout :

$$a(u,u) = \int_{\Omega} \sigma \, |\nabla u|^2 \ge \min(\sigma) \, \|u\|_{H^1_0(\Omega)}^2$$
 coercivité

Théorème de Lax-Milgram \Rightarrow (\mathscr{P}) bien posé.

----- VS. -----

 \bullet Le cas σ change de signe :

• Le cas classique $\sigma > 0$ partout :

$$a(u,u) = \int_{\Omega} \sigma \, |\nabla u|^2 \geq \min(\sigma) \, \|u\|_{H^1_0(\Omega)}^2 \quad \text{coercivit\'e}$$

Théorème de Lax-Milgram \Rightarrow (\mathscr{P}) bien posé.

----- VS. -----

 \bullet Le cas σ change de signe :

$$a(u,u) = \int_{\Omega} \sigma |\nabla u|^2 \ge C \|u\|_{H_0^1(\Omega)}^2 \qquad \mathbf{p}$$

perte de coercivité

• Le cas classique $\sigma > 0$ partout :

$$a(u,u) = \int_{\Omega} \sigma \, |\nabla u|^2 \geq \min(\sigma) \, \|u\|_{H^1_0(\Omega)}^2 \quad \text{coercivit\'e}$$

Théorème de Lax-Milgram \Rightarrow (\mathscr{P}) bien posé.

----- VS -----

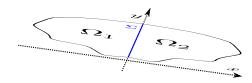
• Le cas σ change de signe :

$$a(u,u) = \int_{\Omega} \sigma |\nabla u|^2 \ge C \|u\|_{H_0^1(\Omega)}^2$$
 perte de coercivité

ightharpoonup Si u solution du problème homogène (f=0),

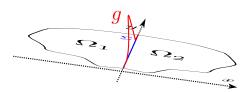
$$\int_{\Omega} \sigma |\nabla u|^2 = 0 \quad \not\Rightarrow \quad u = 0.$$

Considérons le cas Ω symétrique et $\sigma_2 = -\sigma_1$.



Considérons le cas Ω symétrique et $\sigma_2 = -\sigma_1$.

1 Soit $g \in \mathscr{C}_0^{\infty}(\Sigma)$.



Considérons le cas Ω symétrique et $\sigma_2 = -\sigma_1$.

Soit $g \in \mathcal{C}_0^{\infty}(\Sigma)$. Pour k = 1, 2, soit $u_k \in H^1(\Omega_k)$ tel que $\begin{vmatrix} \Delta u_k & = 0 \\ u_k | \partial \Omega \cap \partial \Omega_k & = 0 \\ u_k | \Sigma & = g \end{vmatrix}$

Considérons le cas Ω symétrique et $\sigma_2 = -\sigma_1$.

Soit $g \in \mathscr{C}_0^{\infty}(\Sigma)$. Pour k = 1, 2, soit $u_k \in H^1(\Omega_k)$ tel que $\begin{vmatrix} \Delta u_k & = 0 \\ u_k | \partial \Omega \cap \partial \Omega_k & = 0 \\ u_k | \Sigma & = g \end{vmatrix}$

Par unicité de la solution, $u_2(x,y) = u_1(-x,y)$.

Considérons le cas Ω symétrique et $\sigma_2 = -\sigma_1$.

Soit $g \in \mathscr{C}_0^{\infty}(\Sigma)$. Pour k = 1, 2, soit $u_k \in H^1(\Omega_k)$ tel que $\begin{vmatrix} \Delta u_k & = 0 \\ u_k | \partial \Omega \cap \partial \Omega_k & = 0 \\ u_k |_{\Sigma} & = g \end{vmatrix}$

- Par unicité de la solution, $u_2(x,y) = u_1(-x,y)$.
 - \Rightarrow (conservation du flux) $\sigma_1 \partial_x u_1 \sigma_2 \partial_x u_2 = 0 \text{ sur } \Sigma$.

Considérons le cas Ω symétrique et $\sigma_2 = -\sigma_1$.

- Soit $g \in \mathcal{C}_0^{\infty}(\Sigma)$. Pour k = 1, 2, soit $u_k \in H^1(\Omega_k)$ tel que $\begin{vmatrix} \Delta u_k & = 0 \\ u_k |_{\partial\Omega \cap \partial\Omega_k} & = 0 \\ u_k |_{\Sigma} & = g \end{vmatrix}$
- Par unicité de la solution, $u_2(x,y) = u_1(-x,y)$. \Rightarrow (conservation du flux) $\sigma_1 \partial_x u_1 - \sigma_2 \partial_x u_2 = 0$ sur Σ .
- 3 L'élément u de $H^1_0(\Omega)$ défini par $u_{|\Omega_k}=u_k$ vérifie $\operatorname{div}(\sigma \nabla u)=0.$

Considérons le cas Ω symétrique et $\sigma_2 = -\sigma_1$.

- Soit $g \in \mathscr{C}_0^{\infty}(\Sigma)$. Pour k = 1, 2, soit $u_k \in H^1(\Omega_k)$ tel que $\begin{vmatrix} \Delta u_k & = 0 \\ u_k | \partial \Omega \cap \partial \Omega_k & = 0 \\ u_k | \Sigma & = g \end{vmatrix}$
- Par unicité de la solution, $u_2(x,y) = u_1(-x,y)$. ⇒ (conservation du flux) $\sigma_1 \partial_x u_1 - \sigma_2 \partial_x u_2 = 0$ sur Σ.
- 3 L'élément u de $H^1_0(\Omega)$ défini par $u_{|\Omega_k}=u_k$ vérifie $\operatorname{div}(\sigma \nabla u)=0$.

PROPOSITION. Pour la géométrie symétrique avec $\sigma_2 = -\sigma_1$, le problème homogène (\mathscr{P}) possède une infinité de solutions (mal posé).

Objectifs et plan

- 1) Trouver un critère sur σ et la géométrie de l'interface pour assurer que le problème (\mathcal{P}) est bien posé.
- 2) Déterminer une méthode d'approximation numérique de cette solution.

- 1 La méthode de la *T*-coercivité
 - Principe de la *T*-coercivité
 - Géométries particulières
 - Géométrie générale
 - Approximation numérique des solutions

Objectifs et plan

- 1) Trouver un critère sur σ et la géométrie de l'interface pour assurer que le problème (\mathcal{P}) est bien posé.
- 2) Déterminer une méthode d'approximation numérique de cette solution.
- 3) Revoir la modélisation du problème lorsque (\mathcal{P}) n'est pas bien posé.

- 1 La méthode de la *T*-coercivité
 - Principe de la *T*-coercivité
 - Géométries particulières
 - Géométrie générale
 - Approximation numérique des solutions
- 2 Étude dans l'intervalle critique
 - Un phénomène de dégénérescence des singularités
 - Analogie avec un problème de guide d'ondes
 - Méthodes numériques

- $lue{1}$ La méthode de la T-coercivité
 - Principe de la *T*-coercivité
 - Géométries particulières
 - Géométrie générale
 - Approximation numérique des solutions
- 2 Étude dans l'intervalle critique
 - Un phénomène de dégénérescence des singularités
 - Analogie avec un problème de guide d'ondes
 - Méthodes numériques

Soit T un isomorphisme de $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \ \middle| \ \text{Trouver} \ u \in H^1_0(\Omega) \ \text{tel que} : \\ a(u,v) = l(v), \ \forall v \in H^1_0(\Omega).$$

Soit T un isomorphisme de $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^T) \middle| \text{Trouver } u \in H_0^1(\Omega) \text{ tel que :} \\ a(u, Tv) = l(Tv), \forall v \in H_0^1(\Omega).$$

Soit T un isomorphisme de $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^T) \middle| \text{Trouver } u \in H_0^1(\Omega) \text{ tel que :} \\ a(u, Tv) = l(Tv), \forall v \in H_0^1(\Omega).$$

Objectif : Trouver T tel que a soit T-coercive : $a(u, Tu) \ge C \|u\|_{H_0^1(\Omega)}^2$. Dans ce cas, Lax-Milgram $\Rightarrow (\mathscr{P}_V^T)$ (et donc (\mathscr{P}_V)) bien posé.

Soit T un isomorphisme de $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^T) \middle| \text{Trouver } u \in H_0^1(\Omega) \text{ tel que :} \\ a(u, Tv) = l(Tv), \forall v \in H_0^1(\Omega).$$

Objectif : Trouver T tel que a soit T-coercive : $a(u,Tu) \geq C \|u\|_{H_0^1(\Omega)}^2$.

Dans ce cas, Lax-Milgram $\Rightarrow (\mathscr{P}_V^T)$ (et donc (\mathscr{P}_V)) bien posé.

$$\begin{array}{|c|c|c|c|c|} \hline \textbf{1} & \text{Définissons } T_1 \, u = \begin{vmatrix} u_1 & & \text{dans } \Omega_1 \\ -u_2 + \dots & & \text{dans } \Omega_2 \end{vmatrix}$$

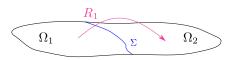
Soit T un isomorphisme de $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^T) \middle| \text{Trouver } u \in H_0^1(\Omega) \text{ tel que :} \\ a(u, Tv) = l(Tv), \forall v \in H_0^1(\Omega).$$

Objectif : Trouver T tel que a soit T-coercive : $a(u,Tu) \geq C \|u\|_{H_0^1(\Omega)}^2$. Dans ce cas, Lax-Milgram $\Rightarrow (\mathscr{P}_V^T)$ (et donc (\mathscr{P}_V)) bien posé.

$$\begin{array}{|c|c|c|c|c|} \hline \textbf{1} & \text{Définissons } T_1 \, u = \begin{vmatrix} u_1 & \text{dans } \Omega_1 \\ -u_2 + 2R_1 u_1 & \text{dans } \Omega_2 \end{vmatrix}, \quad \text{avec} \end{array}$$

 R_1 opérateur de transfert



Soit T un isomorphisme de $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^T) \middle| \begin{array}{l} \text{Trouver } u \in H_0^1(\Omega) \text{ tel que :} \\ a(u, Tv) = l(Tv), \forall v \in H_0^1(\Omega). \end{array}$$

Objectif : Trouver T tel que a soit T-coercive : $a(u, Tu) \ge C \|u\|_{H_0^1(\Omega)}^2$. Dans ce cas, Lax-Milgram $\Rightarrow (\mathscr{P}_V^T)$ (et donc (\mathscr{P}_V)) bien posé.

$$\begin{array}{|c|c|c|c|c|} \hline \textbf{1} & \text{D\'efinissons } T_1 \, u = \begin{vmatrix} u_1 & \text{dans } \Omega_1 \\ -u_2 + 2 \underline{R}_1 u_1 & \text{dans } \Omega_2 \end{vmatrix}, \quad \text{avec} \\ \end{array}$$

 R_1 opérateur de transfert linéaire continu de Ω_1 vers Ω_2

Soit T un isomorphisme de $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^T) \middle| \text{Trouver } u \in H_0^1(\Omega) \text{ tel que :} \\ a(u, Tv) = l(Tv), \forall v \in H_0^1(\Omega).$$

Objectif : Trouver T tel que a soit T-coercive : $a(u,Tu) \geq C \|u\|_{H^1_0(\Omega)}^2$. Dans ce cas, Lax-Milgram $\Rightarrow (\mathscr{P}_V^T)$ (et donc (\mathscr{P}_V)) bien posé.

$$\begin{array}{|c|c|c|c|c|} \hline \textbf{1} & \text{D\'efinissons} \ T_1 \, u = \begin{vmatrix} u_1 & \text{dans} \ \Omega_1 \\ -u_2 + 2 \underline{R}_1 u_1 & \text{dans} \ \Omega_2 \\ \end{vmatrix}, \quad \text{avec}$$

 R_1 opérateur de transfert linéaire continu de Ω_1 vers Ω_2

$$\begin{array}{c|cccc} R_1 & & & R_1 u_1 = u_1 & \sup \Sigma \\ \Omega_1 & & & \Omega_2 & & \sup \partial \Omega_2 \backslash \Sigma \end{array}$$

2 $T_1 \circ T_1 = Id \text{ donc}$ T_1 est un isomorphisme de $H_0^1(\Omega)$

3 On a
$$a(u, T_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla (R_1 u_1)$$

Principe de la T-coercivité 2/2

3 On a
$$a(u, T_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla (R_1 u_1)$$

Inégalité de Young $\Rightarrow a$ est T-coercive lorsque $\sigma_1 > ||R_1||^2 |\sigma_2|$.

Principe de la T-coercivité 2/2

3 On a
$$a(u, T_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla (R_1 u_1)$$

Inégalité de Young \Rightarrow a est T-coercive lorsque $\sigma_1 > ||R_1||^2 |\sigma_2|$.

4 En travaillant avec $T_2 u = \begin{vmatrix} u_1 - 2R_2 u_2 & \text{dans } \Omega_1 \\ -u_2 & \text{dans } \Omega_2 \end{vmatrix}$, où $R_2 : \Omega_2 \to \Omega_1$, on prouve que a est T-coercive lorsque $|\sigma_2| > ||R_2||^2 \sigma_1$.

Principe de la T-coercivité 2/2

3 On a
$$a(u, T_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla (R_1 u_1)$$

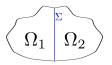
Inégalité de Young \Rightarrow a est T-coercive lorsque $\sigma_1 > ||R_1||^2 |\sigma_2|$.

4 En travaillant avec
$$T_2 u = \begin{vmatrix} u_1 - 2R_2 u_2 & \text{dans } \Omega_1 \\ -u_2 & \text{dans } \Omega_2 \end{vmatrix}$$
, où $R_2 : \Omega_2 \to \Omega_1$, on prouve que a est T -coercive lorsque $|\sigma_2| > ||R_2||^2 \sigma_1$.

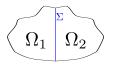
5 Conclusion:

Théorème. Si le contraste $\kappa_{\sigma} = \sigma_2/\sigma_1 \notin [-\|R_2\|^2; -1/\|R_1\|^2]$ (intervalle critique) alors le problème (\mathscr{P}) possède une unique solution dépendant continûment de f.

Ouvert symétrique :

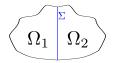


Ouvert symétrique :



symétrie par rapport à Σ $R_1 = S_{\Sigma}$ et $R_2 = S_{\Sigma}$ (\mathcal{P}) bien posé $\Leftrightarrow \kappa_{\sigma} \neq -1$

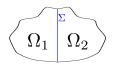
Ouvert symétrique :



► Coin droit :

symétrie par rapport à Σ $R_1 = S_{\Sigma}$ et $R_2 = S_{\Sigma}$ (\mathcal{P}) bien posé $\Leftrightarrow \kappa_{\sigma} \neq -1$

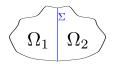
► Ouvert symétrique :



Coin droit :

symétrie par rapport à Σ $R_1 = S_{\Sigma}$ et $R_2 = S_{\Sigma}$ (\mathcal{P}) bien posé $\Leftrightarrow \kappa_{\sigma} \neq -1$

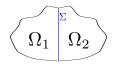
Ouvert symétrique :



► Coin droit :

symétrie par rapport à Σ $R_1 = S_{\Sigma}$ et $R_2 = S_{\Sigma}$ (\mathcal{P}) bien posé $\Leftrightarrow \kappa_{\sigma} \neq -1$

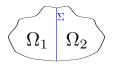
▶ Ouvert symétrique :



► Coin droit :

symétrie par rapport à Σ $R_1 = S_{\Sigma}$ et $R_2 = S_{\Sigma}$ (\mathscr{P}) bien posé $\Leftrightarrow \kappa_{\sigma} \neq -1$

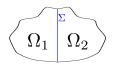
Ouvert symétrique :



► Coin droit :

symétrie par rapport à Σ $R_1 = S_{\Sigma}$ et $R_2 = S_{\Sigma}$ (\mathscr{P}) bien posé $\Leftrightarrow \kappa_{\sigma} \neq -1$

Ouvert symétrique :

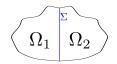


► Coin droit :

symétrie par rapport à Σ $R_1 = S_{\Sigma}$ et $R_2 = S_{\Sigma}$ (\mathscr{P}) bien posé $\Leftrightarrow \kappa_{\sigma} \neq -1$

 R_1 et R_2 obtenus à partir des symétries S_x et S_y (\mathscr{P}) bien posé $\Leftarrow \kappa_\sigma \notin [-3; -1/3]$

Ouvert symétrique :



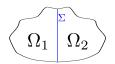
► Coin droit :

Coin quelconque :

symétrie par rapport à Σ $R_1 = S_{\Sigma}$ et $R_2 = S_{\Sigma}$ (\mathcal{P}) bien posé $\Leftrightarrow \kappa_{\sigma} \neq -1$

 R_1 et R_2 obtenus à partir des symétries S_x et S_y (\mathscr{P}) bien posé $\Leftarrow \kappa_{\sigma} \notin [-3; -1/3]$

▶ Ouvert symétrique :



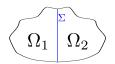
Coin droit :

Coin quelconque :

symétrie par rapport à Σ $R_1 = S_{\Sigma}$ et $R_2 = S_{\Sigma}$ (\mathscr{P}) bien posé $\Leftrightarrow \kappa_{\sigma} \neq -1$

 R_1 et R_2 obtenus à partir des symétries S_x et S_y (\mathscr{P}) bien posé $\Leftarrow \kappa_{\sigma} \notin [-3; -1/3]$

▶ Ouvert symétrique :



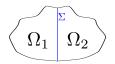
Coin droit :

Coin quelconque :

symétrie par rapport à Σ $R_1 = S_{\Sigma}$ et $R_2 = S_{\Sigma}$ (\mathscr{P}) bien posé $\Leftrightarrow \kappa_{\sigma} \neq -1$

 R_1 et R_2 obtenus à partir des symétries S_x et S_y (\mathscr{P}) bien posé $\Leftarrow \kappa_{\sigma} \notin [-3; -1/3]$

Ouvert symétrique :



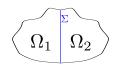
► Coin droit :

Coin quelconque :

symétrie par rapport à Σ $R_1 = S_{\Sigma}$ et $R_2 = S_{\Sigma}$ (\mathscr{P}) bien posé $\Leftrightarrow \kappa_{\sigma} \neq -1$

 R_1 et R_2 obtenus à partir des symétries S_x et S_y (\mathscr{P}) bien posé $\Leftarrow \kappa_\sigma \notin [-3; -1/3]$

► Ouvert symétrique :



symétrie par rapport à Σ $R_1 = S_{\Sigma}$ et $R_2 = S_{\Sigma}$ (\mathcal{P}) bien posé $\Leftrightarrow \kappa_{\sigma} \neq -1$

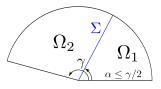
► Coin droit :

 R_1 et R_2 obtenus à partir des symétries S_x et S_y (\mathscr{P}) bien posé $\Leftarrow \kappa_\sigma \notin [-3; -1/3]$

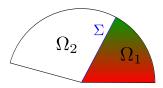
► Coin quelconque :

 R_1 et R_2 obtenus à partir de symétrie/dilatation en θ (\mathscr{P}) bien posé $\Leftarrow \kappa_{\sigma} \notin [-\frac{2\pi - \alpha}{\alpha}; -\frac{\alpha}{2\pi - \alpha}]$

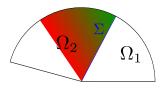
► Coin extérieur :



► Coin extérieur :



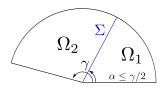
► Coin extérieur :



► Coin extérieur :

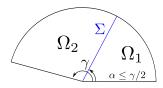


► Coin extérieur :

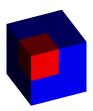


 R_1 : symétrie en θ + prolongement par 0 R_2 : symétrie + dilatation en θ (\mathscr{P}) bien posé $\Leftarrow \kappa_{\sigma} \notin [-\frac{\gamma - \alpha}{\alpha}; -1]$

► Coin extérieur :

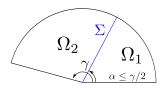


► Cube de Fichera :

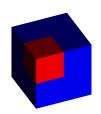


 R_1 : symétrie en θ + prolongement par 0 R_2 : symétrie + dilatation en θ (\mathscr{P}) bien posé $\Leftarrow \kappa_{\sigma} \notin [-\frac{\gamma - \alpha}{\sigma}; -1]$

► Coin extérieur :



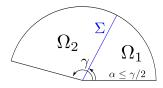
► Cube de Fichera :



 R_1 : symétrie en θ + prolongement par 0 R_2 : symétrie + dilatation en θ (\mathscr{P}) bien posé $\Leftarrow \kappa_{\sigma} \notin [-\frac{\gamma - \alpha}{\alpha}; -1]$

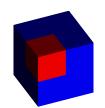
 R_1 et R_2 obtenus à partir de symétries (\mathscr{P}) bien posé $\Leftarrow \kappa_{\sigma} \notin [-7; -1/7]$ (rapport des volumes)

► Coin extérieur :



 R_1 : symétrie en θ + prolongement par 0 R_2 : symétrie + dilatation en θ (\mathscr{P}) bien posé $\Leftarrow \kappa_{\sigma} \notin [-\frac{\gamma-\alpha}{\alpha}; -1]$

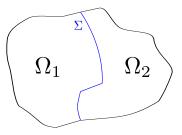
► Cube de Fichera :

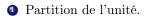


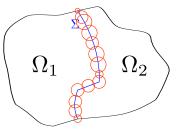
 R_1 et R_2 obtenus à partir de symétries (\mathscr{P}) bien posé $\Leftarrow \kappa_{\sigma} \notin [-7; -1/7]$ (rapport des volumes)

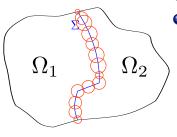
 \triangleright Plus généralement, R_1 et R_2 doivent minimiser

$$\sup_{u_1} \frac{\|R_1 u_1\|_{H_0^1(\Omega_2)}}{\|u_1\|_{H_0^1(\Omega_1)}} \quad \text{ et } \quad \sup_{u_2} \frac{\|R_2 u_2\|_{H_0^1(\Omega_1)}}{\|u_2\|_{H_0^1(\Omega_2)}}.$$

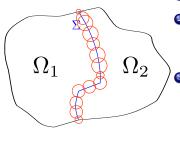








- Partition de l'unité.
- ② Inversion locale. On utilise les résultats obtenus pour les cas particuliers.



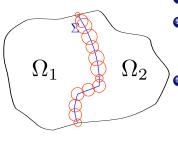
- Partition de l'unité.
 - Inversion locale.
 On utilise les résultats obtenus pour les cas particuliers.
- 3 Estimation a priori.

Si
$$\kappa_{\sigma} = \sigma_2/\sigma_1 \notin I_{\Sigma}$$
, pour tout $u \in H_0^1(\Omega)$,

$$||u||_{H_0^1(\Omega)} \le C \left(||\operatorname{div}(\sigma \nabla u)||_{H^{-1}(\Omega)} + ||u||_{L^2(\Omega)} \right)$$

+ injection compacte de $H^1(\Omega)$ dans $L^2(\Omega)$

Idée : raisonner par localisation



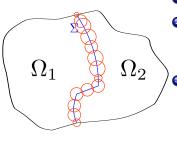
- Partition de l'unité.
 - Inversion locale.
 On utilise les résultats obtenus pour les cas particuliers.
 - Estimation a priori.

Si
$$\kappa_{\sigma} = \sigma_2/\sigma_1 \notin I_{\Sigma}$$
, pour tout $u \in H_0^1(\Omega)$,

$$||u||_{H_0^1(\Omega)} \le C \left(||\operatorname{div}(\sigma \nabla u)||_{H^{-1}(\Omega)} + ||u||_{L^2(\Omega)} \right)$$
+ injection compacte de $H^1(\Omega)$ dans $L^2(\Omega)$

Théorème. Si le contraste $\kappa_{\sigma} = \sigma_2/\sigma_1 \notin I_{\Sigma}$ (intervalle de \mathbb{R}_-) alors le problème (\mathscr{P}) est bien posé au sens de Fredholm (possibilité d'existence d'un noyau de dimension finie).

Idée : raisonner par localisation



- Partition de l'unité.
- Inversion locale.
 On utilise les résultats obtenus pour les cas particuliers.
- 3 Estimation a priori.

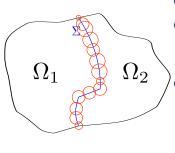
Si $\kappa_{\sigma} = \sigma_2/\sigma_1 \notin I_{\Sigma}$, pour tout $u \in H_0^1(\Omega)$,

$$\begin{aligned} \|u\|_{H_0^1(\Omega)} &\leq C \left(\|\operatorname{div}(\sigma \nabla u)\|_{H^{-1}(\Omega)} + \|u\|_{L^2(\Omega)} \right) \\ &+ \text{injection compacte de } H^1(\Omega) \text{ dans } L^2(\Omega) \end{aligned}$$

Théorème. Si le contraste $\kappa_{\sigma} = \sigma_2/\sigma_1 \notin I_{\Sigma}$ (intervalle de \mathbb{R}_-) alors le problème (\mathscr{P}) est bien posé au sens de Fredholm (possibilité d'existence d'un noyau de dimension finie).

L'intervalle I_{Σ} contient toujours -1.

Idée: raisonner par localisation



- 1 Partition de l'unité.
- 2 Inversion locale.
 On utilise les résultats obtenus pour les cas particuliers.
- 3 Estimation a priori.

Si
$$\kappa_{\sigma} = \sigma_2/\sigma_1 \notin I_{\Sigma}$$
, pour tout $u \in H_0^1(\Omega)$,
 $\|u\|_{H_0^1(\Omega)} \leq C(\|\operatorname{div}(\sigma \nabla u)\|_{H^{-1}(\Omega)} + \|u\|_{L^2(\Omega)})$

+injection compacte de $H^1(\Omega)$ dans $L^2(\Omega)$

Théorème. Si le contraste $\kappa_{\sigma} = \sigma_2/\sigma_1 \notin I_{\Sigma}$ (intervalle de \mathbb{R}_-) alors le problème (\mathscr{P}) est bien posé au sens de Fredholm (possibilité d'existence d'un noyau de dimension finie).

- L'intervalle I_{Σ} contient toujours -1.
- Si l'interface Σ est régulière sans extrémité (\mathscr{C}^1) , alors $I_{\Sigma} = \{-1\}$.

Espace de discrétisation :

$$V_h = \{v_h \in \mathscr{C}^0(\overline{\Omega}) \mid v_h \mid_T \text{ affine sur } T, \forall T \in \mathcal{T}_h\} \subset H^1_0(\Omega)$$

Espace de discrétisation:

$$V_h = \{v_h \in \mathscr{C}^0(\overline{\Omega}) | v_h|_T \text{ affine sur } T, \forall T \in \mathcal{T}_h\} \subset H^1_0(\Omega)$$

1

Si $T(V_h) \subset V_h$ (maillage stable par T)

Espace de discrétisation:

$$V_h = \{v_h \in \mathscr{C}^0(\overline{\Omega}) \mid v_h \mid_T \text{ affine sur } T, \forall T \in \mathcal{T}_h\} \subset H^1_0(\Omega)$$

1 Si $T(V_h) \subset V_h$ (maillage stable par T)

$$(\mathscr{P}_h)$$
 Trouver $u_h \in V_h$ tel que: $a(u_h, v_h) = l(v_h), \forall v_h \in V_h$.

Espace de discrétisation :

$$V_h = \{v_h \in \mathscr{C}^0(\overline{\Omega}) \mid v_h \mid_T \text{ affine sur } T, \forall T \in \mathcal{T}_h\} \subset H_0^1(\Omega)$$

1 Si $T(V_h) \subset V_h$ (maillage stable par T)

$$(\mathscr{P}_h) \left| \begin{array}{l} \text{Trouver } u_h \in V_h \text{ tel que}: \\ a(u_h, v_h) = l(v_h), \, \forall v_h \in V_h. \end{array} \right. \Leftrightarrow \left| \begin{array}{l} \text{Trouver } u_h \in V_h \text{ tel que}: \\ a(u_h, Tv_h) = l(Tv_h), \, \forall v_h \in V_h. \end{array} \right.$$

Espace de discrétisation :

$$V_h = \{v_h \in \mathscr{C}^0(\overline{\Omega}) | v_h|_T \text{ affine sur } T, \forall T \in \mathcal{T}_h\} \subset H^1_0(\Omega)$$

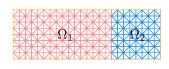
1 Si $T(V_h) \subset V_h$ (maillage stable par T)

$$(\mathscr{P}_h) \left| \begin{array}{l} \text{Trouver } u_h \in V_h \text{ tel que :} \\ a(u_h, v_h) = l(v_h), \ \forall v_h \in V_h. \end{array} \right. \Leftrightarrow \left| \begin{array}{l} \text{Trouver } u_h \in V_h \text{ tel que :} \\ a(u_h, Tv_h) = l(Tv_h), \ \forall v_h \in V_h. \end{array} \right.$$

Lemme de Céa :

$$||u - u_h||_{H_0^1(\Omega)} \le C \inf_{v_h \in V_h} ||u - v_h||_{H_0^1(\Omega)}$$

Méthode des éléments finis



Espace de discrétisation :

$$V_h = \{v_h \in \mathscr{C}^0(\overline{\Omega}) | v_h|_T \text{ affine sur } T, \forall T \in \mathcal{T}_h\} \subset H^1_0(\Omega)$$

1 Si $T(V_h) \subset V_h$ (maillage stable par T)

$$(\mathscr{P}_h) \left| \begin{array}{l} \text{Trouver } u_h \in V_h \text{ tel que}: \\ a(u_h, v_h) = l(v_h), \, \forall v_h \in V_h. \end{array} \right. \Leftrightarrow \left| \begin{array}{l} \text{Trouver } u_h \in V_h \text{ tel que}: \\ a(u_h, Tv_h) = l(Tv_h), \, \forall v_h \in V_h. \end{array} \right.$$

Lemme de Céa :

$$||u - u_h||_{H_0^1(\Omega)} \le C \inf_{v_h \in V_h} ||u - v_h||_{H_0^1(\Omega)}$$

(vrai aussi si maillage localement stable par T)

Méthode des éléments finis

Espace de discrétisation :

$$V_h = \{v_h \in \mathscr{C}^0(\overline{\Omega}) | v_h|_T \text{ affine sur } T, \forall T \in \mathcal{T}_h\} \subset H^1_0(\Omega)$$

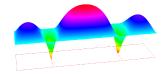
1 Si $T(V_h) \subset V_h$ (maillage stable par T)

$$(\mathscr{P}_h) \left| \begin{array}{l} \text{Trouver } u_h \in V_h \text{ tel que}: \\ a(u_h, v_h) = l(v_h), \, \forall v_h \in V_h. \end{array} \right. \Leftrightarrow \left| \begin{array}{l} \text{Trouver } u_h \in V_h \text{ tel que}: \\ a(u_h, Tv_h) = l(Tv_h), \, \forall v_h \in V_h. \end{array} \right.$$

Lemme de Céa :

$$||u - u_h||_{H_0^1(\Omega)} \le C \inf_{v_h \in V_h} ||u - v_h||_{H_0^1(\Omega)}$$

(vrai aussi si maillage localement stable par T)



Méthode des éléments finis

Espace de discrétisation :

$$V_h = \{v_h \in \mathscr{C}^0(\overline{\Omega}) | v_h|_T \text{ affine sur } T, \forall T \in \mathcal{T}_h\} \subset H^1_0(\Omega)$$

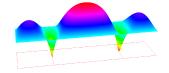
Si $T(V_h) \subset V_h$ (maillage stable par T)

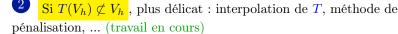
$$(\mathscr{P}_h) \left| \begin{array}{l} \text{Trouver } u_h \in V_h \text{ tel que}: \\ a(u_h, v_h) = l(v_h), \, \forall v_h \in V_h. \end{array} \right. \Leftrightarrow \left| \begin{array}{l} \text{Trouver } u_h \in V_h \text{ tel que}: \\ a(u_h, Tv_h) = l(Tv_h), \, \forall v_h \in V_h. \end{array} \right.$$

Lemme de Céa :

$$||u - u_h||_{H_0^1(\Omega)} \le C \inf_{v_h \in V_h} ||u - v_h||_{H_0^1(\Omega)}$$
The average of mailless becalement stable part

(vrai aussi si maillage localement stable par T)





Rappel des questions:

1) Trouver un critère sur σ et la géométrie de l'interface pour assurer que le problème ($\mathscr P$) est bien posé.

Rappel des questions:

1) Trouver un critère sur σ et la géométrie de l'interface pour assurer que le problème (\mathscr{P}) est bien posé.

 $\checkmark(\mathscr{P})$ est bien posé lorsque $\kappa_{\sigma} \notin I_{\Sigma}$ (intervalle de \mathbb{R}_{-} contenant -1).

Rappel des questions :

- 1) Trouver un critère sur σ et la géométrie de l'interface pour assurer que le problème (\mathscr{P}) est bien posé.
- $\checkmark(\mathscr{P})$ est bien posé lorsque $\kappa_{\sigma} \notin I_{\Sigma}$ (intervalle de \mathbb{R}_{-} contenant -1).
- 2) Déterminer une méthode d'approximation numérique de cette solution.

Rappel des questions :

- 1) Trouver un critère sur σ et la géométrie de l'interface pour assurer que le problème (\mathscr{P}) est bien posé.
- $\checkmark(\mathscr{P})$ est bien posé lorsque $\kappa_{\sigma} \notin I_{\Sigma}$ (intervalle de \mathbb{R}_{-} contenant -1).
- 2) Déterminer une méthode d'approximation numérique de cette solution.
- ✓ Méthode des éléments finis pour approcher la solution ⇒ convergence justifiée par la *T*-coercivité

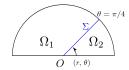
Rappel des questions :

- 1) Trouver un critère sur σ et la géométrie de l'interface pour assurer que le problème (\mathscr{P}) est bien posé.
- $\checkmark(\mathscr{P})$ est bien posé lorsque $\kappa_{\sigma} \notin I_{\Sigma}$ (intervalle de \mathbb{R}_{-} contenant -1).
- 2) Déterminer une méthode d'approximation numérique de cette solution.
- ✓ Méthode des <u>éléments finis</u> pour approcher la solution ⇒ convergence justifiée par la *T*-coercivité

3) Que se passe-t-il dans l'intervalle critique?

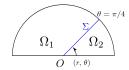
- $lue{1}$ La méthode de la T-coercivité
 - \bullet Principe de la T-coercivité
 - Géométries particulières
 - Géométrie générale
 - Approximation numérique des solutions
- 2 Étude dans l'intervalle critique
 - Un phénomène de dégénérescence des singularités
 - Analogie avec un problème de guide d'ondes
 - Méthodes numériques

Fixons Ω :



▶ Pour $\kappa_{\sigma} \notin [-1; -1/3]$, problème (\mathscr{P}) bien posé dans $H_0^1(\Omega)$.

Fixons Ω :

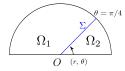


▶ Pour $\kappa_{\sigma} \notin [-1; -1/3]$, problème (\mathscr{P}) bien posé dans $H_0^1(\Omega)$.

Si $f \in L^2(\Omega)$, l'analyse de Mellin montre que

$$u = u_{reg} + cs$$
 avec $u_{reg}|_{\Omega_k} \in H^2(\Omega_k)$

Fixons Ω :

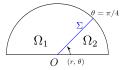


▶ Pour $\kappa_{\sigma} \notin [-1; -1/3]$, problème (\mathscr{P}) bien posé dans $H_0^1(\Omega)$.

Si $f \in L^2(\Omega)$, l'analyse de Mellin montre que

$$u = u_{reg} + c \, s \quad \text{avec} \quad \left| \begin{array}{l} u_{reg}|_{\Omega_k} \in H^2(\Omega_k) \\ s(r,\theta) = r^{\lambda_1} \varphi_1(\theta) \in H^1(\Omega) \ (\Re e \, \lambda_1 > 0) \end{array} \right. .$$

Fixons Ω :



▶ Pour $\kappa_{\sigma} \notin [-1; -1/3]$, problème (\mathscr{P}) bien posé dans $H_0^1(\Omega)$.

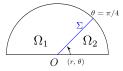
Si $f \in L^2(\Omega)$, l'analyse de Mellin montre que

$$u = u_{reg} + c s$$
 avec
$$\begin{vmatrix} u_{reg}|_{\Omega_k} \in H^2(\Omega_k) \\ s(r,\theta) = r^{\lambda_1} \varphi_1(\theta) \in H^1(\Omega) \ (\Re \lambda_1 > 0) \end{vmatrix}.$$

----- VS.

• Pour $\kappa_{\sigma} \in]-1;-1/3[$,

Fixons Ω :



▶ Pour $\kappa_{\sigma} \notin [-1; -1/3]$, problème (\mathscr{P}) bien posé dans $H_0^1(\Omega)$.

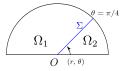
Si $f \in L^2(\Omega)$, l'analyse de Mellin montre que

$$u = u_{reg} + c s$$
 avec
$$\begin{vmatrix} u_{reg}|_{\Omega_k} \in H^2(\Omega_k) \\ s(r,\theta) = r^{\lambda_1} \varphi_1(\theta) \in H^1(\Omega) \ (\Re e \lambda_1 > 0) \end{vmatrix}.$$

----- VS.

▶ Pour $\kappa_{\sigma} \in]-1;-1/3[$, $\Re e \pm \lambda_1 = 0 \Rightarrow s, s^* \in L^2(\Omega) \setminus H^1(\Omega).$

Fixons Ω :



▶ Pour $\kappa_{\sigma} \notin [-1; -1/3]$, problème (\mathscr{P}) bien posé dans $H_0^1(\Omega)$.

Si $f \in L^2(\Omega)$, l'analyse de Mellin montre que

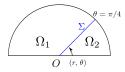
$$u = u_{reg} + c \, s \quad \text{avec} \quad \left| \begin{array}{l} u_{reg}|_{\Omega_k} \in H^2(\Omega_k) \\ s(r,\theta) = r^{\lambda_1} \varphi_1(\theta) \in H^1(\Omega) \ (\Re e \, \lambda_1 > 0) \end{array} \right. .$$

----- VS.

▶ Pour $\kappa_{\sigma} \in]-1;-1/3[$, $\Re e \pm \lambda_1 = 0 \Rightarrow s, s^* \in L^2(\Omega) \setminus H^1(\Omega).$

$$\|u\|_{H^1_0(\Omega)} \leq C\left(\|\operatorname{div}(\sigma \nabla u)\|_{H^{-1}(\Omega)} + \|u\|_{L^2(\Omega)}\right) \text{ estimation a priori}$$

Fixons Ω :



▶ Pour $\kappa_{\sigma} \notin [-1; -1/3]$, problème (\mathscr{P}) bien posé dans $H_0^1(\Omega)$.

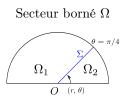
Si $f \in L^2(\Omega)$, l'analyse de Mellin montre que

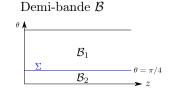
$$u = u_{reg} + cs$$
 avec
$$\begin{vmatrix} u_{reg}|_{\Omega_k} \in H^2(\Omega_k) \\ s(r,\theta) = r^{\lambda_1} \varphi_1(\theta) \in H^1(\Omega) \ (\Re e \lambda_1 > 0) \end{vmatrix}.$$

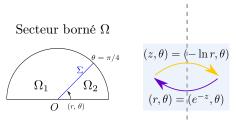
----- VS.

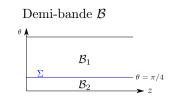
Pour $\kappa_{\sigma} \in]-1;-1/3[$, $\Re e \pm \lambda_{1} = 0 \Rightarrow s, s^{*} \in L^{2}(\Omega) \setminus H^{1}(\Omega).$ $||u||_{H^{1}_{0}(\Omega)} \leq C(||\operatorname{div}(\sigma \nabla u)||_{H^{-1}(\Omega)} + ||u||_{L^{2}(\Omega)}) \text{ estimation a priori}$

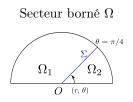
PROPOSITION. Pour $\kappa_{\sigma} \in [-1; -1/3]$, le problème (\mathscr{P}) n'est pas bien posé au sens de Fredholm.

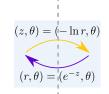


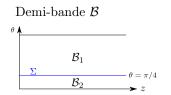












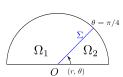
Équation de Helmholtz :

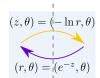
$$\underbrace{-\operatorname{div}(\sigma \nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$$

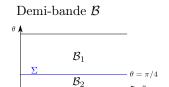
Équation de Helmholtz :

$$\underbrace{-\text{div}(\sigma \nabla u)}_{-(\sigma \partial_z^2 + \partial_\theta \sigma \partial_\theta)u} = e^{-2z} f$$

Secteur borné Ω







Équation de Helmholtz :

$$\underbrace{-\operatorname{div}(\sigma \nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$$

Singularités dans le secteur

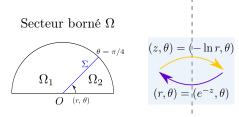
$$s(r,\theta) = r^{\lambda} \varphi(\theta)$$

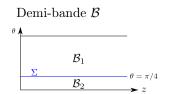
Équation de Helmholtz:

$$\underbrace{-\text{div}(\sigma \nabla u)}_{-(\sigma \partial_z^2 + \partial_\theta \sigma \partial_\theta)u} = e^{-2z} f$$

Modes dans la bande

$$m(z,\theta) = e^{-\lambda z} \varphi(\theta)$$





Équation de Helmholtz :

$$\underbrace{-\operatorname{div}(\sigma \nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$$

Singularités dans le secteur

$$s(r,\theta) = r^{\lambda} \varphi(\theta)$$

$$s \in H^1(\Omega)$$

 $\Re e \, \lambda > 0$

Équation de Helmholtz :

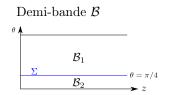
$$\underbrace{-\text{div}(\sigma \nabla u)}_{-(\sigma \partial_z^2 + \partial_\theta \sigma \partial_\theta)u} = e^{-2z} f$$

Modes dans la bande

$$m(z,\theta) = e^{-\lambda z} \varphi(\theta)$$

m est évanescent





Équation de Helmholtz :

$$\underbrace{-\operatorname{div}(\sigma \nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$$

Singularités dans le secteur

$$s(r,\theta) = r^{\lambda} \varphi(\theta)$$

$$s \in H^1(\Omega)$$

 $s \notin H^1(\Omega)$

$$\Re e \, \lambda \stackrel{!}{>} 0 \\ \Re e \, \lambda \stackrel{!}{=} 0$$

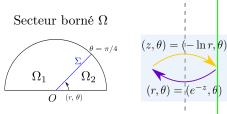
Équation de Helmholtz :

$$\underbrace{-\text{div}(\sigma \nabla u)}_{-(\sigma \partial_z^2 + \partial_\theta \sigma \partial_\theta)u} = e^{-2z} f$$

Modes dans la bande

$$m(z,\theta) = e^{-\lambda z} \varphi(\theta)$$

m est évanescent m est propagatif



Équation de Helmholtz :

$$\underbrace{-\operatorname{div}(\sigma \nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$$

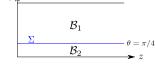
Singularités dans le secteur

$$s(r,\theta) = r^{\lambda} \varphi(\theta)$$

$$s \in H^1(\Omega)$$
$$s \notin H^1(\Omega)$$

 $\Re e \, \lambda > 0$ $\Re e \, \lambda = 0$

Demi-bande \mathcal{B}



Équation de Helmholtz:

$$\underbrace{-\operatorname{div}(\sigma \nabla u)}_{-(\sigma \partial_z^2 + \partial_\theta \sigma \partial_\theta)u} = e^{-2z} f$$

Modes dans la bande $m(z, \theta) = e^{-\lambda z} \varphi(\theta)$

m est évanescent

m est propagatif

Unicité dans l'espace des modes sortants : $u = c \varphi_1 e^{\lambda_1 z} + u_e$ où u_e évanescent en $+\infty$ $(e^{-\beta z} u_e \in H^1(\mathcal{B}))$ pour un certain $\beta > 0$.

Unicité dans l'espace des modes sortants : $u = c \varphi_1 e^{\lambda_1 z} + u_e$ où u_e évanescent en $+\infty$ $(e^{-\beta z} u_e \in H^1(\mathcal{B}))$ pour un certain $\beta > 0$.

Unicité dans l'espace des modes sortants : $u = c \varphi_1 e^{\lambda_1 z} + u_e$ où u_e évanescent en $+\infty$ $(e^{-\beta z} u_e \in H^1(\mathcal{B}))$ pour un certain $\beta > 0$.

THÉORÈME. Soit $\kappa_{\sigma} \in]-1;-1/3[$ et $0 < \beta < 2.$ L'opérateur $\operatorname{div}(\sigma \nabla \cdot)$ est un isomorphisme de W^+ dans W_{β}^* .

Unicité dans l'espace des modes sortants : $u = c \varphi_1 e^{\lambda_1 z} + u_e$ où u_e évanescent en $+\infty$ $(e^{-\beta z} u_e \in H^1(\mathcal{B}))$ pour un certain $\beta > 0$.

THÉORÈME. Soit $\kappa_{\sigma} \in]-1;-1/3[$ et $0 < \beta < 2.$ L'opérateur $\operatorname{div}(\sigma \nabla \cdot)$ est un isomorphisme de W^+ dans W_{β}^* .

Idées de la preuve : 1) Décomposition sur les modes (\spadesuit délicate à cause du changement de signe de σ).

2) Processus d'absorption limite pour sélectionner le mode sortant.

Unicité dans l'espace des modes sortants : $u = c \varphi_1 e^{\lambda_1 z} + u_e$ où u_e évanescent en $+\infty$ $(e^{-\beta z} u_e \in H^1(\mathcal{B}))$ pour un certain $\beta > 0$.

THÉORÈME. Soit $\kappa_{\sigma} \in]-1;-1/3[$ et $0 < \beta < 2.$ L'opérateur $\operatorname{div}(\sigma \nabla \cdot)$ est un isomorphisme de W^+ dans W_{β}^* .

Idées de la preuve : 1) Décomposition sur les modes (\spadesuit délicate à cause du changement de signe de σ).

2) Processus d'absorption limite pour sélectionner le mode sortant.

$$\text{Soit} \quad \left| \begin{array}{ll} V_{-\beta} &= \{v \,|\, r^{-\beta} \nabla v \in (L^2(\Omega))^2,\, r^{-\beta-1} v \in L^2(\Omega) \text{ et } v|_{\partial \Omega} = 0\} \\ V^+ &= \text{vect } (\varphi_1 \, r^{\lambda_1}) \oplus V_{-\beta} \end{array} \right.$$

Unicité dans l'espace des modes sortants : $u = c \varphi_1 e^{\lambda_1 z} + u_e$ où u_e évanescent en $+\infty$ $(e^{-\beta z} u_e \in H^1(\mathcal{B}))$ pour un certain $\beta > 0$.

THÉORÈME. Soit $\kappa_{\sigma} \in]-1;-1/3[$ et $0<\beta<2.$ L'opérateur $\operatorname{div}(\sigma \nabla \cdot)$ est un isomorphisme de W^+ dans W_{β}^* .

Idées de la preuve : 1) Décomposition sur les modes (\spadesuit délicate à cause du changement de signe de σ).

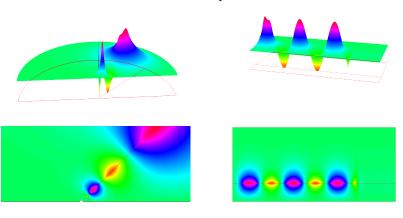
2) Processus d'absorption limite pour sélectionner le mode sortant.

$$\text{Soit} \quad \left| \begin{array}{ll} V_{-\beta} &= \{v \,|\, r^{-\beta} \nabla v \in (L^2(\Omega))^2, \, r^{-\beta-1} v \in L^2(\Omega) \text{ et } v|_{\partial \Omega} = 0\} \\ V^+ &= \text{vect } \left(\varphi_1 \, r^{\lambda_1}\right) \oplus V_{-\beta} \end{array} \right|$$

THÉORÈME. Soit $\kappa_{\sigma} \in]-1;-1/3[$ et $0 < \beta < 2.$ L'opérateur $\operatorname{div}(\sigma \nabla \cdot)$ est un isomorphisme de V^+ dans V_{β}^* .

Méthodes numériques

➤ On utilise des PMLs (Perfectly Matched Layers) pour borner \mathcal{B} + éléments finis dans la bande tronquée



$$\kappa_{\sigma} = 1/1.05$$

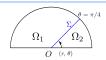
Un phénomène de trou noir dans l'intervalle critique

$$\kappa_{\sigma} = -1/1.3 \in]-1;-1/3[$$

(Film en attente ...)

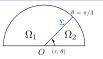
Problème

$$(\mathscr{P}) \mid \text{Trouver } u \in H_0^1(\Omega) \text{ tel que :} \\ -\text{div}(\sigma \nabla u) = f \quad \text{dans } \Omega.$$



Problème

Trouver $u \in H_0^1(\Omega)$ tel que : $-\operatorname{div}(\sigma \nabla u) = f$ dans Ω .

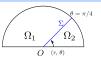


- 1) Trouver un critère sur σ et la géométrie de l'interface pour assurer que le problème (\mathcal{P}) est bien posé.
- 2) Déterminer une méthode d'approximation numérique de cette solution.
- 3) Revoir la modélisation du problème lorsque (\mathcal{P}) n'est pas bien posé.

Problème

Objectifs

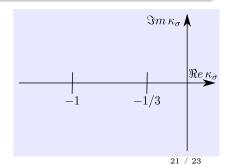
Trouver $u \in H_0^1(\Omega)$ tel que : $-\operatorname{div}(\sigma \nabla u) = f \quad \text{dans } \Omega.$



- 1) Trouver un critère sur σ et la géométrie de l'interface pour assurer que le problème ($\mathscr P$) est bien posé.
- 2) Déterminer une méthode d'approximation numérique de cette solution.
- 3) Revoir la modélisation du problème lorsque (\mathcal{P}) n'est pas bien posé.

Résultats

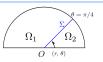
Pour $\kappa_{\sigma} \in \mathbb{C}\backslash\mathbb{R}_{-}$, (\mathscr{P}) bien posé dans $H_{0}^{1}(\Omega)$ (Lax-Milgram) (E.F.)



Problème

Objectifs

Trouver
$$u \in H_0^1(\Omega)$$
 tel que :
 $-\operatorname{div}(\sigma \nabla u) = f \quad \text{dans } \Omega.$

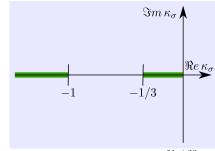


- 1) Trouver un critère sur σ et la géométrie de l'interface pour assurer que le problème (\mathcal{P}) est bien posé.
- 2) Déterminer une méthode d'approximation numérique de cette solution.
- 3) Revoir la modélisation du problème lorsque (\mathcal{P}) n'est pas bien posé.

Résultats

Pour $\kappa_{\sigma} \in \mathbb{C}\backslash\mathbb{R}_{-}$, (\mathscr{P}) bien posé dans $H_0^1(\Omega)$ (Lax-Milgram) (E.F.)

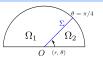
Pour $\kappa_{\sigma} \in \mathbb{R}_{-}^{*} \setminus [-1; -1/3], (\mathscr{P})$ bien posé dans $H_{0}^{1}(\Omega)$ (*T*-coercivité) (E.F.)



Problème

Objectifs

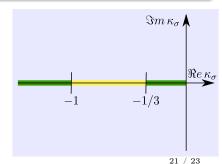
Trouver
$$u \in H_0^1(\Omega)$$
 tel que :
 $-\text{div}(\sigma \nabla u) = f$ dans Ω .



- 1) Trouver un critère sur σ et la géométrie de l'interface pour assurer que le problème (\mathcal{P}) est bien posé.
- 2) Déterminer une méthode d'approximation numérique de cette solution.
- 3) Revoir la modélisation du problème lorsque (\mathcal{P}) n'est pas bien posé.

Résultats

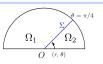
- Pour $\kappa_{\sigma} \in \mathbb{C}\backslash\mathbb{R}_{-}$, (\mathscr{P}) bien posé dans $H_0^1(\Omega)$ (Lax-Milgram) (E.F.)
- Pour $\kappa_{\sigma} \in \mathbb{R}_{-}^{*} \setminus [-1; -1/3], (\mathscr{P})$ bien posé dans $H_{0}^{1}(\Omega)$ (*T*-coercivité) (E.F.)
- Pour $\kappa_{\sigma} \in]-1;-1/3[$, (\mathscr{P}) pas bien posé au sens de Fredholm dans $H_0^1(\Omega)$ mais bien posé dans V^+ (PMLs)



Problème

Objectifs

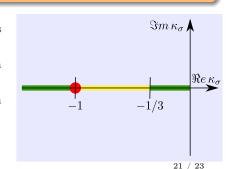
Trouver $u \in H_0^1(\Omega)$ tel que : $-\operatorname{div}(\sigma \nabla u) = f$ dans Ω .



- 1) Trouver un critère sur σ et la géométrie de l'interface pour assurer que le problème (\mathcal{P}) est bien posé.
- 2) Déterminer une méthode d'approximation numérique de cette solution.
- 3) Revoir la modélisation du problème lorsque (P) n'est pas bien posé.

Résultats

- Pour $\kappa_{\sigma} \in \mathbb{C}\backslash\mathbb{R}_{-}$, (\mathscr{P}) bien posé dans $H_0^1(\Omega)$ (Lax-Milgram) (E.F.)
- Pour $\kappa_{\sigma} \in \mathbb{R}_{-}^{*} \setminus [-1; -1/3], (\mathscr{P})$ bien posé dans $H_{0}^{1}(\Omega)$ (*T*-coercivité) (E.F.)
- Pour $\kappa_{\sigma} \in]-1;-1/3[,(\mathscr{P})$ pas bien posé au sens de Fredholm dans $H_0^1(\Omega)$ mais bien posé dans V^+ (PMLs)
 - $\kappa_{\sigma} = -1$, (\mathscr{P}) mal posé dans $H_0^1(\Omega)$



Conclusion : généralisations et perspectives

Généralisations

- T-coercivité fonctionne également pour σ non constant (L^{∞}) .
- Méthode de la T-coercivité exploitable pour d'autres problèmes (Maxwell, problème de transmission intérieur, ...).

Conclusion : généralisations et perspectives

Généralisations

- T-coercivité fonctionne également pour σ non constant (L^{∞}) .
- Méthode de la *T*-coercivité exploitable pour d'autres problèmes (Maxwell, problème de transmission intérieur, ...).

Perspectives

- Preuve de la convergence de la méthode des éléments finis incomplète en dehors de l'intervalle critique.
- Analyse asymptotique lorsqu'on régularise l'interface?
- Le cas $\kappa_{\sigma} = -1$ est encore incompris (physiquement et mathématiquement) : apparition de singularités sur toute l'interface. Peut-on définir un cadre dans lequel ce problème est bien posé?

Merci

Merci

- A.-S. Bonnet-Ben Dhia, L. Chesnel, P. Ciarlet Jr., Optimality of T-coercivity for scalar interface problems between dielectrics and metamaterials, soumis.
- A.-S. Bonnet-Ben Dhia, P. Ciarlet Jr., C.M. Zwölf, *Time harmonic wave diffraction problems in materials with sign-shifting coefficients*, J. Comput. Appl. Math., 234:1912–1919, 2010, Corrigendum *J. Comput. Appl. Math.*, 234:2616, 2010.
- N. A. Kozlov, V. G. Maz'ya, J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, Mathematical Surveys and Monographs, AMS, 52, Providence, 1997.
- S. A. Nazarov, B. A. Plamenevsky, *Elliptic Problems in Domains with Piecewise Smooth Boundaries*, Expositions in Mathematics, de Gruyter, 13, Berlin, Allemagne, 1994.