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General setting
I We are interested in the propagation of waves in acoustic waveguides.

I In this talk, we study questions of invisibility.

Can we find situations where waves
go through like if there were no defect

• One can wish to have good energy transmission through the structure.
• One can wish to hide objects.
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Scattering problem in a waveguide
I Scattering in time-harmonic regime of an incident wave in the acoustic
waveguide Ω coinciding with {(x, y) ∈ R× (0; 1)} outside a compact region.

Ω

+L−L

vi

Find v = vi + vs s. t.
∆v + k2v = 0 in Ω,

∂nv = 0 on ∂Ω,
vs is outgoing.

I For this problem with k ∈ ((N − 1)π;Nπ), N ∈ N∗, the modes are

Propagating
Evanescent

w±n (x, y) = e±iβnx cos(nπy), βn =
√
k2 − n2π2, n ∈ J0, N − 1K

w±n (x, y) = e∓βnx cos(nπy), βn =
√
n2π2 − k2, n ≥ N.

I Set vi =
N−1∑
n=0

αnw
+
n (propagating) for some given (αn)N−1

n=0 ∈ CN .

I vs is outgoing ⇔ vs =
+∞∑
n=0

γ±n w
±
n for ±x ≥ L, with (γ±n ) ∈ CN.

3 / 23



Scattering problem in a waveguide
I Scattering in time-harmonic regime of an incident wave in the acoustic
waveguide Ω coinciding with {(x, y) ∈ R× (0; 1)} outside a compact region.

Ω

+L−L

vi

Find v = vi + vs s. t.
∆v + k2v = 0 in Ω,

∂nv = 0 on ∂Ω,
vs is outgoing.

I For this problem with k ∈ ((N − 1)π;Nπ), N ∈ N∗, the modes are

Propagating
Evanescent

w±n (x, y) = e±iβnx cos(nπy), βn =
√
k2 − n2π2, n ∈ J0, N − 1K

w±n (x, y) = e∓βnx cos(nπy), βn =
√
n2π2 − k2, n ≥ N.

I Set vi =
N−1∑
n=0

αnw
+
n (propagating) for some given (αn)N−1

n=0 ∈ CN .

I vs is outgoing ⇔ vs =
+∞∑
n=0

γ±n w
±
n for ±x ≥ L, with (γ±n ) ∈ CN.

3 / 23



Scattering problem in a waveguide
I Scattering in time-harmonic regime of an incident wave in the acoustic
waveguide Ω coinciding with {(x, y) ∈ R× (0; 1)} outside a compact region.

Ω

+L−L

vi

Find v = vi + vs s. t.
∆v + k2v = 0 in Ω,

∂nv = 0 on ∂Ω,
vs is outgoing.

I For this problem with k ∈ ((N − 1)π;Nπ), N ∈ N∗, the modes are

Propagating
Evanescent

w±n (x, y) = e±iβnx cos(nπy), βn =
√
k2 − n2π2, n ∈ J0, N − 1K

w±n (x, y) = e∓βnx cos(nπy), βn =
√
n2π2 − k2, n ≥ N.

I Set vi =
N−1∑
n=0

αnw
+
n (propagating) for some given (αn)N−1

n=0 ∈ CN .

I vs is outgoing ⇔ vs =
+∞∑
n=0

γ±n w
±
n for ±x ≥ L, with (γ±n ) ∈ CN.

3 / 23



Scattering problem in a waveguide
I Scattering in time-harmonic regime of an incident wave in the acoustic
waveguide Ω coinciding with {(x, y) ∈ R× (0; 1)} outside a compact region.

Ω
+L−L

vi

Find v = vi + vs s. t.
∆v + k2v = 0 in Ω,

∂nv = 0 on ∂Ω,
vs is outgoing.

I For this problem with k ∈ ((N − 1)π;Nπ), N ∈ N∗, the modes are

Propagating
Evanescent

w±n (x, y) = e±iβnx cos(nπy), βn =
√
k2 − n2π2, n ∈ J0, N − 1K

w±n (x, y) = e∓βnx cos(nπy), βn =
√
n2π2 − k2, n ≥ N.

I Set vi =
N−1∑
n=0

αnw
+
n (propagating) for some given (αn)N−1

n=0 ∈ CN .

I vs is outgoing ⇔ vs =
+∞∑
n=0

γ±n w
±
n for ±x ≥ L, with (γ±n ) ∈ CN.

3 / 23



Goal of the talk

Definition: v is a non reflecting mode if vs is expo. decaying for x ≤ −L
⇔ γ−n = 0, n ∈ J0, N − 1K ⇔ energy is completely transmitted.

GOAL
For a given geometry, we present a method to find values of
k such that there is a non reflecting mode v.

→ Note that non reflection occurs for particular vi to be computed.
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Outline of the talk

1 Introduction

2 Classical complex scaling

We recall how to use classical complex scaling to compute trapped modes
and complex resonances.

3 Conjugated complex scaling

We explain how to use conjugated complex scaling to compute non re-
flecting modes.
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Classical complex scaling to compute vs 1/2

Reminder: vs =
N−1∑
n=0

γ±n e
±iβnx cos(nπy) +

+∞∑
n=N

γ±n e
∓βnx cos(nπy), ±x ≥ L.

−iβ1

−iβ0

β2 β3

exp. growing exp. decaying

θ
−iβ̃1

−iβ̃0

β̃2

β̃3

Modal exponents for vs (x ≤ −L)

Modal exponents for vθ (x ≤ −L)

I For θ ∈ (0;π/2), consider the complex change of variables

Iθ(x) =
−L+ (x+ L) eiθ for x ≤ −L

x for |x| < L
+L+ (x− L) eiθ for x ≥ L.

I Set vθ := vs ◦ (Iθ(x), y) .
1) vθ = vs for |x| < L.
2) vθ is exp. decaying at infinity.

vθ =
N−1∑
n=0

γ̃±n e
±iβ̃nx cos(nπy) +

+∞∑
n=N

γ̃±n e
∓β̃nx cos(nπy), ±x ≥ L β̃n = βne

iθ
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Classical complex scaling to compute vs 2/2

I vθ solves (∗) αθ
∂

∂x

(
αθ
∂vθ
∂x

)
+ ∂2vθ

∂y2 + k2vθ = 0 in Ω
∂nvθ = −∂nvi on ∂Ω.

αθ(x) = 1 for |x| < L αθ(x) = e−iθ for |x| ≥ L

• Numerically we solve (∗) in the truncated domain

αθ = e−iθ αθ = e−iθαθ = 1

+L−L +R−R

Dirichlet/
Neumann

Dirichlet/
Neumann

⇒ We obtain a good approximation of vs for |x| < L.

• This is the method of Perfectly Matched Layers (PMLs).
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Spectral analysis
I Define the operators A, Aθ of L2(Ω) such that

Av = −∆v, Aθv = −
(
αθ

∂

∂x

(
αθ
∂v

∂x

)
+ ∂2v

∂y2

)
+ ∂nv = 0 on ∂Ω.

� A is selfadjoint and positive.
� σ(A) = σess(A) = [0; +∞).
� σ(A) may contain embedded eigenvalues in the essential spectrum.

0 <e λ
=mλess. spectrum

trapped modes

� Aθ is not selfadjoint. σ(Aθ) ⊂ {ρ eiγ , ρ ≥ 0, γ ∈ [−2θ; 0]}.
� σess(Aθ) = ∪n∈N{n2π2 + t e−2iθ, t ≥ 0}.
� real eigenvalues of Aθ = real eigenvalues of A.

2θ0 <e λ
=mλ

ess. spectrum
trapped modes
leaky modes
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Numerical results

I We work in the geometry
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Numerical results

I Discretized spectrum of Aθ in k (not in k2). We take θ = π/4.

0 1 2 3 4 5 6 7 8
-5

-4

-3

-2

-1

0

1

σess(Aθ) (in k)

Two trapped modes
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A new complex spectrum for non reflecting v

I Usual complex scaling selects scattered fields which are

outgoing at −∞ and outgoing at +∞.

Important remark: general v decompose as

v = vi +
N−1∑
n=0

γ−n w
−
n +

+∞∑
n=N

γ−n w
−
n x ≤ −L, v =

+∞∑
n=0

γ+
n w

+
n x ≥ L.

I In other words, non reflecting v are

ingoing at −∞ and outgoing at +∞.

Let us change the sign of the complex scaling at −∞!
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A new complex spectrum for non reflecting v

I For θ ∈ (0;π/2), consider the complex change of variables

Jθ(x) =
−L+ (x+ L) e−iθ for x ≤ −L

x for |x| < L

+L+ (x− L) e+iθ for x ≥ L.

I Set uθ := v ◦ (Jθ(x), y) . 1) uθ = v for |x| < L.
2) uθ is exp. decaying at infinity.

−iβ1

−iβ0

β2 β3

exp. growing exp. decaying

−θ −iβ̂1

−iβ̂0

β̂2

β̂3

Modal exponents for v (x ≤ −L) Modal exponents for uθ (x ≤ −L)

I uθ solves (∗) βθ
∂

∂x

(
βθ
∂uθ
∂x

)
+ ∂2uθ

∂y2 + k2uθ = 0 in Ω
∂nuθ = 0 on ∂Ω.

βθ(x) = 1 for |x| < L, βθ(x) = eiθ for x ≤ −L, βθ(x) = e−iθ for x ≥ L
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Spectral analysis

I Define the operator Bθ of L2(Ω) such that

Bθv = −
(
βθ

∂

∂x

(
βθ
∂v

∂x

)
+ ∂2v

∂y2

)
+ ∂nv = 0 on ∂Ω.

� Bθ is not selfadjoint. σ(Bθ) ⊂ {ρ eiγ , ρ ≥ 0, γ ∈ [−2θ; 2θ]}.
� σess(Bθ) = ∪n∈N{n2π2 + t e−2iθ, t ≥ 0} ∪ {n2π2 + t e2iθ, t ≥ 0}.
� real eigenvalues of Bθ = real eigenvalues of A+non reflecting k2.

2θ
2θ

0 <e λ

=mλ
essential spectrum
trapped modes
non reflecting modes
? modes
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Remarks

2θ
2θ

0 <e λ

=mλ
essential spectrum
trapped modes
non reflecting modes
? modes

1) • ? modes correspond to solutions of the Helmholtz equation which are
exp. growing at one side of Ω, exp. decaying at the other.

Different from leaky modes which are exp. growing both at ±∞ ...

2) It is not simple to prove that σ(Bθ) \ σess(Bθ) is discrete.

→ Not true in general!

eikx ◦ Jθ is an eigenfunction for all k ∈ R.

→ C \ σess(Bθ) is not connected ⇒ we cannot apply simply the analytic Fredholm thm.

→ A compact perturbation can change drastically the spectrum ( Bθ is not selfadjoint ).
Numerical consequences?

Aθ − zId invertible

Usual PMLs

Bθ − zId invertible

Conjugated PMLs

14 / 23
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→ A compact perturbation can change drastically the spectrum ( Bθ is not selfadjoint ).
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Numerical results

I Again we work in the geometry

I Define the operators P (Parity), T (Time reversal) such that

Pv(x, y) = v(−x, y) and T v(x, y) = v(x, y).

Prop.: For symmetric Ω = {(−x, y) | (x, y) ∈ Ω}, Bθ is PT symmetric:

PT BθPT = Bθ.

As a consequence, σ(Bθ) = σ(Bθ).

⇒ If λ is an “isolated” eigenvalue located close to the real axis, then λ ∈ R !
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Numerical results
I Discretized spectrum in k (not in k2). We take θ = π/4.
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• The spectrum is indeed stable by conjugation.
• Much more eigenvalues on the real axis than before.

• PMLs with different signs Classical PMLs
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Numerical results

I We display the eigenmodes for the ten first real eigenvalues in the whole
computational domain (including PMLs).
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Numerical results
I Let us focus on the eigenmodes such that 0 < k < π.

First trapped mode Second trapped mode
k = 1.2355... k = 2.3897...

First non reflecting mode Second non reflecting mode
k = 1.4513... k = 2.8896...
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There is perfect agreement!
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Numerical results

I Now the geometry is not symmetric in x nor in y:

I The operator Bθ is no longer PT -symmetric and we expect:

� No trapped modes
� No invariance of the spectrum by complex conjugation.
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Numerical results
I Discretized spectrum of Bθ in k (not in k2). We take θ = π/4.
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• Indeed, the spectrum is not symmetric w.r.t. the real axis.
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Numerical results
I We compute k 7→ |R(k)| for 0 < k < π.
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k = 1.28 + 0.0003i k = 2.3866 + 0.0005i k = 2.8647 + 0.0243i

Complex eigenvalues also contain information on almost no reflection.
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Remark
I For the Dirichlet problem

Find v = vi + vs s. t.
∆v + k2v = 0 in Ω,

v = 0 on ∂Ω,
vs is outgoing

in the junction of waveguides

1
√

2

Ω

the set C \ σess(Bθ) is connected. The sets of threshold frequencies are
{n2π2, n ∈ N∗} and {m2π2/2, m ∈ N∗}.
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Remark
I Discretized spectrum of Bθ (Dirichlet) in k (not in k2) with θ = π/4.
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Spectra for a changing geometry

I Two series of computations: one with PMLs with different sign, one
with classical PMLs. We compute the spectra for h ∈ (1.3; 8) .

` = 2.5

h
Ωh

I The magenta marks on the real axis correspond to k = π/` & k = 2π/`.
For k = 2π/`, trapped modes and T = 1 should occur for certain h.
I We zoom at the region 0 < <e k < π.
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++ PMLs with different signs + Classical PMLs



Outline of the talk

1 Introduction

2 Classical complex scaling

3 Conjugated complex scaling
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Conclusion

What we did

♠ We presented an approach to compute non reflecting k (values of k
s.t. there is a vi whose vs is exp. decaying at −∞) for a given Ω.

♠ The technique works with other B.C. (Dirichlet, ...), other
kinds of perturbation (penetrable obstacles, ...), in any dim..

With N leads, 2N in/out spectra:
1 purely in, 1 purely out, 2N − 2 non reflecting spectra.

in/out

in/outin/out

Future work

1) How to justify the numerics? Absence of spectral pollution?
2) Can we find a spectral approach to compute completely reflecting or

completely invisible k for a given geometry?
3) Can we find a spectral approach to identify modal conversion?
4) Can we prove existence of non reflecting k for the PT -symmetric pb?
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v

vi

Thank you for your attention!
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