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Introduction 1/2

» We consider the propagation of waves in a 2D acoustic waveguide with
an obstacle (also relevant in optics, microwaves, water-waves theory,...).

Au+ku = 0 inQ,

(Z) Onu 0 on 09

Lo

> We fix k € (0;7) so that only the plane waves e*™® can propagate.
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Introduction 1/2

» We consider the propagation of waves in a 2D acoustic waveguide with
an obstacle (also relevant in optics, microwaves, water-waves theory,...).

Au+k*u = 0 inQ,
Iy_)z 1 A (Z) Opu = 0 on 9N

+ikx

» We fix k € (0;7) so that only the plane waves e can propagate.
» The scattering of these waves leads us to consider the solutions of (&)
with the decomposition

kT 4 R et T e Ty . T — —00
(T— . U_ = s .
* T etike 4 ethr L R etikz 4 T — 400

Ry, T € C are the scattering coefficients , the ... are expon. decaying terms.
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Introduction 2/2

» We have the relations of conservation of energy

|Ry|? +|T]* = 1.
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Introduction

» We have the relations of conservation of energy

|Ry|? +|T]* = 1.

Goal of the talk

2/2

We wish to slightly perturb the walls of the guide to obtain Ry =0, 7 =1
in the new geometry (as if there were no obstacle) = cloaking at “infinity”.
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Introduction 2/2

» We have the relations of conservation of energy

|Re|* + T =1

Goal of the talk

We wish to slightly perturb the walls of the guide to obtain Ry = 0,7 =1
in the new geometry (as if there were no obstacle) = cloaking at “infinity”.

| REMARK: Different from the usual cloaking picture
: (Pendry et al. 06, Leonhardt 06, Greenleaf et al. 09).

| — Less ambitious but doable without fancy materi- |
I als (and relevant in practice). |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Difficulty: the scattering coefficients have a not explicit and not linear
dependence wrt the geometry.
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Outline of the talk

@ Asymptotic analysis in presence of thin resonators

Q Almost zero reflection

@ Cloaking
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e Asymptotic analysis in presence of thin resonators
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Setting

\ 7

\9:‘ ‘ Main ingredient of our approach: outer resonators of width e < 1.
S

4

Au+Ek?u=0 in Q°,

(79 Opu =0 on 00°

» In this geometry, we have the scattering solutions

TE e~k T — —00

etk Rs e~tkr e
e~thr L Re etikr 4 T — 400

u- =

us =
+ Te etike 4 -
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Setting

\9\_ ‘ Main ingredient of our approach: outer resonators of width e < 1.
S

Au+k?u =0 in Q°,

(79 Opu =0 on 00°

» In this geometry, we have the scattering solutions

TE e~ ke T — —00

etk Rs e~tkr e
e~thr L Re etikr 4 T — 400

Teetike 4 U=

£ _
us =

Next we compute an asymptotic expansion of ug, RS, T¢ as € — 0.
To proceed we use techniques of matched asymptotic expansions
(see Beale 73, Gadyl’shin 93, Kozlovet al. 94, Nazarov96, Maz’yaet al. 00... )
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Limit problem in the resonator

» Considering the restriction of (£¢) to the thin resonator, when e tends

to zero, we meet the 1D problem

2 2, (1
Oyv +k*v =0 in (1;14¢)

(Z1p) (1) = dyv(1+ ) = 0.

The features of (#1p) play a key role in the physical phenomena
g and in the asymptotic analysis.
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Limit problem in the resonator

» Considering the restriction of (£¢) to the thin resonator, when e tends
to zero, we meet the 1D problem

2 2, (1
Oyv +k*v =0 in (1;14¢)

(Z1p) (1) = dyv(1+ ) = 0.

The features of (#1p) play a key role in the physical phenomena
g and in the asymptotic analysis.

» At the resonance lengths,
t=n(m+1/2)/k, m € N,

(Z1p) admits the non zero solution v(y) = sin(k(y — 1)).
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Asymptotic analysis — Non resonant case

» Assume that ¢ # w(m+1/2)/k, m € N. Then when ¢ — 0, we get

ug(z,y) = ux +o(1) in €,
ug (z,y) = us(A)vo(y) + o(1) in the resonator,

S = Ry +o0(1), Ts =T +o(1).

Here vo(y) = cos(k(y — 1) + tan(k(y — £) sin(k(y — 1).
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Asymptotic analysis — Non resonant case

» Assume that ¢ # w(m+1/2)/k, m € N. Then when ¢ — 0, we get

ug (z,y) = usr +o(1) in Q,
ug (z,y) = us(A)vo(y) + o(1) in the resonator,

< = Ry +o(1), Te = [ + o(1).

Here vo(y) = cos(k(y — 1) + tan(k(y — £) sin(k(y — 1).

The thin resonator has no influence at order £°.

RL=0+...

— Not interesting for our purpose because we want Te— 14
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Asymptotic analysis — Resonant case

» Now assume that

0= m(m+1/2)/k
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Asymptotic analysis — Resonant case

» Now assume that
{=n(m+1/2)/k+e(n—m'lne)

for a certain m € N and n € R.
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Asymptotic analysis — Resonant case

» Now assume that
{=n(m+1/2)/k+e(n—m'lne)

for a certain m € N and n € R. When € — 0, we have

us (z,y) = ui(z,y) + a(nky(z,y) +o(1) inQ,
u® (z,y) = e ta(n)sin(k(y — 1)) + O(1)  in the resonator,

RS = Ry + ia(n)us(A)/2 + o(1), T =T+ ia(n)u—(A4)/2 + o(1).

— # is the outgoing Green function such that | Ay +4*y=0in Q
Ony =064 on 02

— a(n) is a constant with an explicit dependence with respect to 7.
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Asymptotic analysis — Resonant case

» Now assume that
{=n(m+1/2)/k+e(n—m'lne)

for a certain m € N and n € R. When € — 0, we have

ug (z,y) = ui(z,y) + a(ky(z,y) +o(1) inQ,
u® (z,y) = e ta(n)sin(k(y — 1)) + O(1)  in the resonator,

RS = Ry + ia(n)us(A)/2 + o(1), T =T+ ia(n)u—(A4)/2 + o(1).

— # is the outgoing Green function such that | Ay +4*y=0in Q
Ony =064 on 02

— a(n) is a constant with an explicit dependence with respect to 7.

°0 This time the thin resonator has an influence at order £°
~ which depends on the choice of 7.
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Asymptotic analysis — Resonant case

» Below, for several € R, we display the paths
{(e,m(m +1/2)/k +e(n— 7 *|1nel)), e > 0} C R%.

>8<
m(m+1/2) ¢ . /
A

9

@ According to 7, the limit of the scattering coefficients along
the path as ¢ — 07 is different.
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Asymptotic analysis — Resonant case

» Below, for several € R, we display the paths
{(e,m(m +1/2)/k +e(n— 7 *|1nel)), e > 0} C R%.

@ According to 7, the limit of the scattering coefficients along
the path as ¢ — 07 is different.

» For a fixed small g, the scattering coefficients have a rapid variation for

{ varying in a neighbourhood of the resonance length.
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© Almost zero reflection
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Almost zero reflection

RS = R%.(n) +o(1) RY.() == Ry + ia(n) us(A) /2

» We got
T¢ = T°(n) + o(1) T%n) == T +ia(n) us(A) /2.

» One finds that the sets {R%.(n) |n € R}, {T°(n)|n € R} are circles in C.
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Almost zero reflection

Re = RY(n) +o(1) RO.(n) = Ry + ia(n) us(4) /2
© = T9(n) + o(1) TO(y) = T + ia(n) us(4) /2.

» We got

» One finds that the sets {R%.(n) |n € R}, {T°(n)|n € R} are circles in C.

» Using the expansions of ui(A) far from the obstacle, one shows:

PROPOSITION: There are positions of the resonator A such that the circle
{R%(n) |n € R} passes through zero.




Almost zero reflection

Re = RY(n) +o(1) RO.(n) = Ry + ia(n) us(4) /2
© = T9(n) + o(1) T0(n) = T+ ia(n) us(4) /2.

» We got

» One finds that the sets {R%.(n) |n € R}, {T°(n)|n € R} are circles in C.

» Using the expansions of ui(A) far from the obstacle, one shows:

PROPOSITION: There are positions of the resonator A such that the circle
{R%.(n) |n € R} passes through zero. = I situationss.t. RS =0+ o(1).
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Almost zero reflection

» Example of situation where we have almost zero reflection (¢ = 0.3).

o
ET R _.WE]
ER I'l L BB

— Simulations realized with the Freefem++ library.
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Almost zero reflection

» Example of situation where we have almost zero reflection (¢ = 0.01).

|
L § 0N 3
IIJ _

Re (ug — et) h‘ '

— Simulations realized with the Freefem++ library.

13 / 20



Almost zero reflection

» Example of situation where we have almost zero reflection (¢ = 0.01).

|
28 90N §
IIIJIII

Re (uf, - eike) el

— Simulations realized with the Freefem++ library.

To cloak the object, it remains to compensate the phase shift!
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e Cloaking
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Phase shifter

» Working with two resonators, we can create phase shifters, that is
devices with almost zero reflection and any desired phase.

T8 13421813
ININININ

» Here the device is designed to obtain a phase shift approx. equal to /4.
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Cloaking with three resonators

» Gathering the two previous results, we can cloak any object with three
resonators.

IRWNLE T

Reuq

FAvLNININE
.

-

R e _ _ikx
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Cloaking with two resonators

» Working a bit more, one can show that two resonators are enough to
cloak any object.

£ et o )e ™ n I

Il'-‘” .‘Il

t— Re (ug (x, y)e ikt

t s Re (etk(@—1))
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o Asymptotic analysis in presence of thin resonators

9 Almost zero reflection

6 Cloaking

18 / 20



Conclusion

What we did

& We explained how to approximately cloak any object in monomode
regime using thin resonators. Two main ingredients:

- Around resonant lengths, effects of order £ with perturb. of width e.

- The 1D limit problems in the resonator provide a rather explicit
dependence wrt to the geometry.
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Conclusion

What we did

& We explained how to approximately cloak any object in monomode
regime using thin resonators. Two main ingredients:

- Around resonant lengths, effects of order £ with perturb. of width e.

- The 1D limit problems in the resonator provide a rather explicit
dependence wrt to the geometry.

Possible extensions and open questions ‘

1) We can similarly hide penetrable obstacles or work in 3D.

2) We can do cloaking at a finite number of wavenumbers (thin

structures are resonant at one wavenumber otherwise act at order ¢).

3) With Dirichlet BCs, other ideas must be found.

4) Can we realize exact cloaking (T' = 1 exactly)? This question is also

related to robustness of the device.
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Thank you for your attention!

@ L. Chesnel, J. Heleine and S.A. Nazarov. Acoustic passive cloaking using thin outer
resonators. submitted, arXiv:2105.00922, 2021.
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