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Introduction 1/2
I We consider the propagation of waves in a 2D acoustic waveguide with
an obstacle (also relevant in optics, microwaves, water-waves theory,...).

1
x

y

Ω

(P) ∆u+ k2u = 0 in Ω,
∂nu = 0 on ∂Ω

I We fix k ∈ (0;π) so that only the plane waves e±ikx can propagate.

I The scattering of these waves leads us to consider the solutions of (P)
with the decomposition

u+ = eikx +R+ e
−ikx + . . .

T e+ikx + . . .
u− = T e−ikx + . . . x→ −∞

e−ikx +R− e
+ikx + . . . x→ +∞

R±, T ∈ C are the scattering coefficients , the . . . are expon. decaying terms.
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Introduction 2/2
I We have the relations of conservation of energy

|R±|2 + |T |2 = 1.

Goal of the talk

We wish to slightly perturb the walls of the guide to obtain R± = 0, T = 1
in the new geometry (as if there were no obstacle)⇒ cloaking at “infinity”.

Remark: Different from the usual cloaking picture
(Pendry et al. 06, Leonhardt 06, Greenleaf et al. 09).
→ Less ambitious but doable without fancy materi-
als (and relevant in practice).

Difficulty: the scattering coefficients have a not explicit and not linear
dependence wrt the geometry.
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Outline of the talk

1 Asymptotic analysis in presence of thin resonators

2 Almost zero reflection

3 Cloaking
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Setting

Main ingredient of our approach: outer resonators of width ε� 1.
ε

`

A

Ωε

(Pε) ∆u+ k2u = 0 in Ωε,
∂nu = 0 on ∂Ωε

I In this geometry, we have the scattering solutions

uε
+ = eikx +Rε

+ e
−ikx + . . .

T ε e+ikx + . . .
uε

− = T ε e−ikx + . . . x→ −∞
e−ikx +Rε

− e
+ikx + . . . x→ +∞

Next we compute an asymptotic expansion of uε
±, Rε

±, T ε as ε→ 0.
To proceed we use techniques of matched asymptotic expansions
(see Beale 73, Gadyl’shin 93, Kozlov et al. 94, Nazarov 96, Maz’ya et al. 00...).
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Limit problem in the resonator
I Considering the restriction of (Pε) to the thin resonator, when ε tends
to zero, we meet the 1D problem

(P1D)
∂2

yv + k2v = 0 in (1; 1 + `)
v(1) = ∂yv(1 + `) = 0.

The features of (P1D) play a key role in the physical phenomena
and in the asymptotic analysis.

I At the resonance lengths,

` = π(m+ 1/2)/k, m ∈ N,

(P1D) admits the non zero solution v(y) = sin(k(y − 1)).
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Asymptotic analysis – Non resonant case

I Assume that ` 6= π(m+ 1/2)/k , m ∈ N. Then when ε→ 0, we get

uε
±(x, y) = u± + o(1) in Ω,

uε
±(x, y) = u±(A) v0(y) + o(1) in the resonator,

Rε
± = R± + o(1), T ε = T + o(1).

Here v0(y) = cos(k(y − 1) + tan(k(y − `) sin(k(y − 1).

The thin resonator has no influence at order ε0.

→ Not interesting for our purpose because we want Rε
± = 0 + . . .
T ε = 1 + . . .
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Asymptotic analysis – Resonant case
I Now assume that

` = π(m+ 1/2)/k

for a certain m ∈ N and η ∈ R. When ε→ 0, we have

uε
+(x, y) = u+(x, y) + a(η)kγ(x, y) + o(1) in Ω,

uε
+(x, y) = ε−1a(η) sin(k(y − 1)) +O(1) in the resonator,

Rε
+ = R+ + ia(η)u+(A)/2 + o(1), T ε = T + ia(η)u−(A)/2 + o(1).

− γ is the outgoing Green function such that ∆γ + k2γ = 0 in Ω
∂nγ = δA on ∂Ω

− a(η) is a constant with an explicit dependence with respect to η.

This time the thin resonator has an influence at order ε0

which depends on the choice of η.
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Asymptotic analysis – Resonant case
I Below, for several η ∈ R, we display the paths

{(ε, π(m+ 1/2)/k + ε(η − π−1| ln ε|)), ε > 0} ⊂ R2.

ε

`

π(m+ 1/2)
k

ε0

ε

`

A

Ωε

According to η, the limit of the scattering coefficients along
the path as ε→ 0+ is different.

I For a fixed small ε0, the scattering coefficients have a rapid variation for
` varying in a neighbourhood of the resonance length.
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Almost zero reflection

I We got
Rε

+ = R0
+(η) + o(1)

T ε = T 0(η) + o(1)
with

R0
+(η) := R+ + ia(η) u±(A) /2
T 0(η) := T + ia(η) u±(A) /2.

I One finds that the sets {R0
+(η) | η ∈ R}, {T 0(η) | η ∈ R} are circles in C.

-1 -0.5 0.5 1

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

I Using the expansions of u±(A) far from the obstacle, one shows:

Proposition: There are positions of the resonator A such that the circle
{R0

+(η) | η ∈ R} passes through zero. ⇒ ∃ situations s.t. Rε
+ = 0 + o(1).
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Almost zero reflection
I Example of situation where we have almost zero reflection (ε = 0.3).

<e uε
+

<e eikx

<e (uε
+ − eikx)

→ Simulations realized with the Freefem++ library.

To cloak the object, it remains to compensate the phase shift!
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Phase shifter

I Working with two resonators, we can create phase shifters , that is
devices with almost zero reflection and any desired phase.

<e uε

<e eikx

I Here the device is designed to obtain a phase shift approx. equal to π/4.
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Cloaking with three resonators
I Gathering the two previous results, we can cloak any object with three
resonators.

<e u+

<e uε
+

<e (uε
+ − eikx)
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Cloaking with two resonators
I Working a bit more, one can show that two resonators are enough to
cloak any object.

t 7→ <e (u+(x, y)e−ikt)

t 7→ <e (uε
+(x, y)e−ikt)

t 7→ <e (eik(x−t))
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Conclusion

What we did

♠ We explained how to approximately cloak any object in monomode
regime using thin resonators. Two main ingredients:

- Around resonant lengths, effects of order ε0 with perturb. of width ε.
- The 1D limit problems in the resonator provide a rather explicit
dependence wrt to the geometry.

Possible extensions and open questions

1) We can similarly hide penetrable obstacles or work in 3D.

2) We can do cloaking at a finite number of wavenumbers (thin
structures are resonant at one wavenumber otherwise act at order ε).

3) With Dirichlet BCs, other ideas must be found.

4) Can we realize exact cloaking (T = 1 exactly)? This question is also
related to robustness of the device.
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Thank you for your attention!

L. Chesnel, J. Heleine and S.A. Nazarov. Acoustic passive cloaking using thin outer
resonators. submitted, arXiv:2105.00922, 2021.
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