DAYS ON DIFFRACTION

Acoustic passive cloaking using thin outer resonators

Lucas Chesnel

Coll. with J. Heleine¹, S.A. Nazarov².

¹IDEFIX team, Inria/CMAP, École Polytechnique, France ²FMM, St. Petersburg State University, Russia

Innío

Saint Petersburg, 31/05/2021

▶ We consider the propagation of waves in a 2D acoustic waveguide with an obstacle (also relevant in optics, microwaves, water-waves theory,...).

• We fix $k \in (0; \pi)$ so that only the plane waves $e^{\pm ikx}$ can propagate.

1/2

▶ We consider the propagation of waves in a 2D acoustic waveguide with an obstacle (also relevant in optics, microwaves, water-waves theory,...).

• We fix $k \in (0; \pi)$ so that only the plane waves $e^{\pm ikx}$ can propagate.

 \blacktriangleright The scattering of these waves leads us to consider the solutions of (\mathscr{P}) with the decomposition

$$u_{+} = \begin{vmatrix} e^{ikx} + R_{+} e^{-ikx} + \dots \\ T e^{+ikx} + \dots \end{vmatrix} \quad u_{-} = \begin{vmatrix} T e^{-ikx} + \dots \\ e^{-ikx} + R_{-} e^{+ikx} + \dots \end{vmatrix} \quad \begin{array}{c} x \to -\infty \\ x \to +\infty \end{vmatrix}$$

 $R_{\pm}, T \in \mathbb{C}$ are the scattering coefficients , the . . . are expon. decaying terms.

▶ We have the relations of conservation of energy

 $|R_{\pm}|^2 + |T|^2 = 1.$

• We have the relations of conservation of energy

$$|R_{\pm}|^2 + |T|^2 = 1.$$

Goal of the talk

We wish to slightly perturb the walls of the guide to obtain $R_{\pm} = 0$, T = 1 in the new geometry (as if there were no obstacle) \Rightarrow cloaking at "infinity".

• We have the relations of conservation of energy

$$|R_{\pm}|^2 + |T|^2 = 1.$$

Goal of the talk

We wish to slightly perturb the walls of the guide to obtain $R_{\pm} = 0$, T = 1 in the new geometry (as if there were no obstacle) \Rightarrow cloaking at "infinity".

REMARK: Different from the usual cloaking picture (Pendry *et al.* 06, Leonhardt 06, Greenleaf *et al.* 09). \rightarrow Less ambitious but doable without fancy materials (and relevant in practice).

Difficulty: the scattering coefficients have a **not explicit** and **not linear** dependence wrt the geometry.

1 Asymptotic analysis in presence of thin resonators

Asymptotic analysis in presence of thin resonators

Setting

• In this geometry, we have the scattering solutions

$$u_{+}^{\mathfrak{e}} = \begin{vmatrix} e^{ikx} + R_{+}^{\mathfrak{e}} e^{-ikx} + \dots \\ T^{\mathfrak{e}} e^{+ikx} + \dots \end{vmatrix} \quad u_{-}^{\mathfrak{e}} = \begin{vmatrix} T^{\mathfrak{e}} e^{-ikx} + \dots \\ e^{-ikx} + R_{-}^{\mathfrak{e}} e^{+ikx} + \dots \end{vmatrix} \quad x \to -\infty$$

Setting

• In this geometry, we have the scattering solutions

$$u_{+}^{\mathfrak{e}} = \begin{vmatrix} e^{ikx} + R_{+}^{\mathfrak{e}} e^{-ikx} + \dots \\ T^{\mathfrak{e}} e^{+ikx} + \dots \end{vmatrix} \quad u_{-}^{\mathfrak{e}} = \begin{vmatrix} T^{\mathfrak{e}} e^{-ikx} + \dots \\ e^{-ikx} + R_{-}^{\mathfrak{e}} e^{+ikx} + \dots \end{vmatrix} \quad x \to -\infty$$

Next we compute an asymptotic expansion of u_{\pm}^{ε} , R_{\pm}^{ε} , T^{ε} as $\varepsilon \to 0$. To proceed we use techniques of matched asymptotic expansions (see Beale 73, Gadyl'shin 93, Kozlov et al. 94, Nazarov 96, Maz'ya et al. 00...).

Limit problem in the resonator

• Considering the restriction of $(\mathscr{P}^{\varepsilon})$ to the thin resonator, when ε tends to zero, we meet the 1D problem

$$(\mathscr{P}_{1\mathrm{D}}) \begin{vmatrix} \partial_y^2 v + k^2 v = 0 & \text{in } (1; 1+\ell) \\ v(1) = \partial_y v(1+\ell) = 0. \end{vmatrix}$$

The features of (\mathcal{P}_{1D}) play a key role in the physical phenomena and in the asymptotic analysis.

Limit problem in the resonator

• Considering the restriction of $(\mathscr{P}^{\varepsilon})$ to the thin resonator, when ε tends to zero, we meet the 1D problem

$$(\mathscr{P}_{1\mathrm{D}}) \begin{vmatrix} \partial_y^2 v + k^2 v = 0 & \text{in } (1; 1+\ell) \\ v(1) = \partial_y v(1+\ell) = 0. \end{vmatrix}$$

The features of (\mathcal{P}_{1D}) play a key role in the physical phenomena and in the asymptotic analysis.

• At the **resonance lengths**,

$$\ell = \pi (m + 1/2)/k, \qquad m \in \mathbb{N},$$

 (\mathscr{P}_{1D}) admits the non zero solution $v(y) = \sin(k(y-1))$.

• Assume that $\ell \neq \pi(m+1/2)/k$, $m \in \mathbb{N}$. Then when $\varepsilon \to 0$, we get

$$\begin{split} u_{\pm}^{\varepsilon}(x,y) &= u_{\pm} + o(1) & \text{in } \Omega, \\ u_{\pm}^{\varepsilon}(x,y) &= u_{\pm}(A) v_0(y) + o(1) & \text{in the resonator,} \\ R_{\pm}^{\varepsilon} &= R_{\pm} + o(1), \qquad T^{\varepsilon} = T + o(1). \end{split}$$

Here $v_0(y) = \cos(k(y-1) + \tan(k(y-\ell))\sin(k(y-1)))$.

• Assume that $\ell \neq \pi(m+1/2)/k$, $m \in \mathbb{N}$. Then when $\varepsilon \to 0$, we get

$$\begin{aligned} u_{\pm}^{\varepsilon}(x,y) &= u_{\pm} + o(1) & \text{in } \Omega, \\ u_{\pm}^{\varepsilon}(x,y) &= u_{\pm}(A) v_0(y) + o(1) & \text{in the resonator,} \\ R_{\pm}^{\varepsilon} &= R_{\pm} + o(1), & T^{\varepsilon} &= T + o(1). \end{aligned}$$

Here $v_0(y) = \cos(k(y-1) + \tan(k(y-\ell)\sin(k(y-1))))$.

The thin resonator has no influence at order ε^0 .

 \rightarrow Not interesting for our purpose because we want $\begin{cases} R_{\pm}^{\varepsilon} = 0 + \dots \\ T^{\varepsilon} = 1 + \dots \end{cases}$

Now assume that

 $\ell = \pi (m + 1/2)/k$

• Now assume that

$$\ell = \pi (m + 1/2)/k + \varepsilon (\eta - \pi^{-1} \ln \varepsilon)$$

for a certain $m \in \mathbb{N}$ and $\eta \in \mathbb{R}$.

• Now assume that

$$\ell = \pi (m + 1/2)/k + \varepsilon (\eta - \pi^{-1} \ln \varepsilon)$$

for a certain $m \in \mathbb{N}$ and $\eta \in \mathbb{R}$. When $\varepsilon \to 0$, we have

$$\begin{split} u_{+}^{\varepsilon}(x,y) &= u_{+}(x,y) + a(\eta)k\gamma(x,y) + o(1) & \text{in } \Omega, \\ u_{+}^{\varepsilon}(x,y) &= \varepsilon^{-1}a(\eta)\sin(k(y-1)) + O(1) & \text{in the resonator}, \\ R_{+}^{\varepsilon} &= R_{+} + ia(\eta)u_{+}(A)/2 + o(1), \qquad T^{\varepsilon} = T + ia(\eta)u_{-}(A)/2 + o(1). \end{split}$$

 $\begin{array}{l} -\gamma \text{ is the outgoing Green function such that} \begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \Omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \Omega \\ -a(\eta) \text{ is a constant with an explicit dependence with respect to } \eta. \end{array}$

• Now assume that

$$\ell = \pi (m + 1/2)/k + \varepsilon (\eta - \pi^{-1} \ln \varepsilon)$$

for a certain $m \in \mathbb{N}$ and $\eta \in \mathbb{R}$. When $\varepsilon \to 0$, we have

$$\begin{split} u_{+}^{\varepsilon}(x,y) &= u_{+}(x,y) + \frac{a(\eta)k\gamma(x,y)}{a(\eta)k\gamma(x,y)} + o(1) & \text{in } \Omega, \\ u_{+}^{\varepsilon}(x,y) &= \varepsilon^{-1}a(\eta)\sin(k(y-1)) + O(1) & \text{in the resonator}, \\ R_{+}^{\varepsilon} &= R_{+} + \frac{ia(\eta)u_{+}(A)/2}{a(\eta)(u_{+}(A)/2)} + o(1), \qquad T^{\varepsilon} = T + \frac{ia(\eta)u_{-}(A)/2}{a(\eta)(u_{-}(A)/2)} + o(1). \end{split}$$

 $\begin{array}{l} -\gamma \text{ is the outgoing Green function such that } \begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \Omega \\ \partial_n \gamma = \delta_A \text{ on } \partial\Omega \\ -a(\eta) \text{ is a constant with an explicit dependence with respect to } \eta. \end{array}$

This time the thin resonator has an influence at order ε^0 which depends on the choice of η .

Below, for several $\eta \in \mathbb{R}$, we display the paths

 $\{(\varepsilon,\pi(m+1/2)/k+\varepsilon(\eta-\pi^{-1}|\ln\varepsilon|)),\,\varepsilon>0\}\subset\mathbb{R}^2.$

According to η , the limit of the scattering coefficients along the path as $\varepsilon \to 0^+$ is different.

▶ Below, for several $\eta \in \mathbb{R}$, we display the paths

 $\{(\varepsilon,\pi(m+1/2)/k+\varepsilon(\eta-\pi^{-1}|\ln\varepsilon|)),\,\varepsilon>0\}\subset\mathbb{R}^2.$

 \succ

According to η , the limit of the scattering coefficients along the path as $\varepsilon \to 0^+$ is different.

For a fixed small ε_0 , the scattering coefficients have a rapid variation for ℓ varying in a neighbourhood of the resonance length.

• We got
$$\begin{vmatrix} R_{+}^{\varepsilon} &= R_{+}^{0}(\eta) + o(1) \\ T^{\varepsilon} &= T^{0}(\eta) + o(1) \end{vmatrix}$$
 with $\begin{vmatrix} R_{+}^{0}(\eta) &:= R_{+} + ia(\eta) u_{\pm}(A) / 2 \\ T^{0}(\eta) &:= T + ia(\eta) u_{\pm}(A) / 2. \end{vmatrix}$

• One finds that the sets $\{R^0_+(\eta) \mid \eta \in \mathbb{R}\}, \{T^0(\eta) \mid \eta \in \mathbb{R}\}$ are circles in \mathbb{C} .

• We got
$$\begin{vmatrix} R_{+}^{\varepsilon} &= R_{+}^{0}(\eta) + o(1) \\ T^{\varepsilon} &= T^{0}(\eta) + o(1) \end{vmatrix}$$
 with $\begin{vmatrix} R_{+}^{0}(\eta) &:= R_{+} + ia(\eta) u_{\pm}(A) / 2 \\ T^{0}(\eta) &:= T + ia(\eta) u_{\pm}(A) / 2. \end{vmatrix}$

• One finds that the sets $\{R^0_+(\eta) \mid \eta \in \mathbb{R}\}, \{T^0(\eta) \mid \eta \in \mathbb{R}\}$ are circles in \mathbb{C} .

• Using the expansions of $u_{\pm}(A)$ far from the obstacle, one shows:

PROPOSITION: There are **positions of the resonator** A such that the circle $\{R^0_+(\eta) \mid \eta \in \mathbb{R}\}$ passes **through zero**.

• We got
$$\begin{vmatrix} R_{+}^{\varepsilon} &= R_{+}^{0}(\eta) + o(1) \\ T^{\varepsilon} &= T^{0}(\eta) + o(1) \end{vmatrix}$$
 with $\begin{vmatrix} R_{+}^{0}(\eta) &:= R_{+} + ia(\eta) u_{\pm}(A) / 2 \\ T^{0}(\eta) &:= T + ia(\eta) u_{\pm}(A) / 2. \end{vmatrix}$

• One finds that the sets $\{R^0_+(\eta) \mid \eta \in \mathbb{R}\}, \{T^0(\eta) \mid \eta \in \mathbb{R}\}$ are circles in \mathbb{C} .

• Using the expansions of $u_{\pm}(A)$ far from the obstacle, one shows:

PROPOSITION: There are **positions of the resonator** *A* such that the circle $\{R^0_+(\eta) \mid \eta \in \mathbb{R}\}$ passes **through zero**. $\Rightarrow \exists$ situations s.t. $R^{\varepsilon}_+ = 0 + o(1)$.

 \rightarrow Simulations realized with the <code>Freefem++</code> library.

• Example of situation where we have almost zero reflection ($\varepsilon = 0.01$).

 \rightarrow Simulations realized with the <code>Freefem++</code> library.

• Example of situation where we have almost zero reflection ($\varepsilon = 0.01$).

 \rightarrow Simulations realized with the <code>Freefem++</code> library.

To cloak the object, it remains to compensate the phase shift!

Asymptotic analysis in presence of thin resonators

▶ Working with two resonators, we can create phase shifters, that is devices with almost zero reflection and any desired phase.

• Here the device is designed to obtain a phase shift approx. equal to $\pi/4$.

Cloaking with three resonators

• Gathering the two previous results, we can cloak any object with three resonators.

Cloaking with two resonators

▶ Working a bit more, one can show that two resonators are enough to cloak any object.

 $t \mapsto \Re e\left(u_+(x,y)e^{-ikt}\right)$

$$t\mapsto \Re e\left(u_{+}^{\varepsilon}(x,y)e^{-ikt}\right)$$

 $t\mapsto \Re e\,(e^{i\,k\,(x\,-\,t\,)})$

Asymptotic analysis in presence of thin resonators

What we did

- We explained how to approximately cloak any object in monomode regime using thin resonators. Two main ingredients:
 - Around resonant lengths, effects of order ε^0 with perturb. of width ε .
 - The 1D limit problems in the resonator provide a rather explicit dependence wrt to the geometry.

What we did

- We explained how to approximately cloak any object in monomode regime using thin resonators. Two main ingredients:
 - Around resonant lengths, effects of order ε^0 with perturb. of width ε .
 - The 1D limit problems in the resonator provide a rather explicit dependence wrt to the geometry.

Possible extensions and open questions

- 1) We can similarly hide penetrable obstacles or work in 3D.
- 2) We can do cloaking at a finite number of wavenumbers (thin structures are resonant at one wavenumber otherwise act at order ε).
- 3) With Dirichlet BCs, other ideas must be found.
- 4) Can we realize exact cloaking (T = 1 exactly)? This question is also related to robustness of the device.

Thank you for your attention!

L. Chesnel, J. Heleine and S.A. Nazarov. Acoustic passive cloaking using thin outer resonators. submitted, arXiv:2105.00922, 2021.