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General setting
I We are interested in the propagation of waves in acoustic waveguides.

I In this talk, we study questions of invisibility.

Can we find situations where waves
go through like if there were no defect

• One can wish to have good energy transmission through the structure.
• One can wish to hide objects.
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Waveguide problem
I Scattering in time-harmonic regime of a plane wave in the acoustic
waveguide Ω coinciding with {(x, y) ∈ R× (0; 1)} outside a compact region.

Ω

+L−L

w+

Find v = vi + vs s. t.
∆v + k2v = 0 in Ω,

∂nv = 0 on ∂Ω,
vs is outgoing.

I For k∈ (0;π), only 2 propagating modes w± = e±ikx/
√

2k. Set vi = w+.

I vs is outgoing ⇔ vs = s±w± + ṽs for ±x ≥ L,

with s± ∈ C, ṽs exponentially decaying at ±∞.

Definition: vi = incident field
v = total field
vs = scattered field.
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Invisibility and complete reflectivity

I At infinity, one measures the reflection coefficient R = s− and/or the
transmission coefficient T = 1 + s+ (other terms are too small).

I From conservation of energy, one has

|R|2 + |T |2 = 1.

Definition: Defect is said non reflecting if R = 0 (|T | = 1)
perfectly invisible if T = 1 (R = 0)

completely reflecting if T = 0 (|R| = 1).

For T = 1, defect cannot be detected from far field measurements.

For T = 0, defect is like a mirror.

GOAL
We explain how to find waveguides such that

R = 0 (|T | = 1), T = 1 (R = 0) or T = 0 (|R| = 1).
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Outline of the talk

1 First constructive method

k is given, we use perturbative techniques to construct geometries such
that R = 0 or T = 1.

2 Second constructive method

k is given, we use an approach based on symmetries to construct geome-
tries such that R = 0, T = 1 or T = 0 and even a bit more...

3 A spectral approach to determine non reflecting wavenumbers

For a given geometry, we explain how to find non reflecting k solving a
spectral problem.
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General picture

I Perturbative technique: we construct small non reflecting defects using
variants of the implicit functions theorem.

R = 0

1 + h(x)

R = 0

I The idea was used in Nazarov 11 to construct waveguides for which
there are embedded eigenvalues in the continuous spectrum.
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Sketch of the method
1 + h(x)I For h ∈ C∞0 (R), set R = R(h) ∈ C.

Note that R(0) = 0
(no obstacle leads to null measurements).

Our goal: to find h ∈ C∞0 (R) such that R(h) = 0 (with h 6≡ 0).

I We look for small perturbations of the reference medium: h = εµ where
ε > 0 is a small parameter and where µ has be to determined.
Assume that dR(0) : C∞0 (R)→ C is onto.

∃µ0, µ1, µ2 ∈ C∞0 (R) s.t. dR(0)(µ0) = 0, dR(0)(µ1) = 1 and dR(0)(µ2) = i.

I Take µ = µ0 + τ1µ1 + τ2µ2 where the τn are real parameters to set:

0 = R(εµ) ⇔

If Gε is a contraction, the fixed-point equation has a unique solution ~τ sol.

Set hsol := εµsol. We have R(hsol) = 0 (non reflecting perturbation).
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Calculus of the differential
1 + εµ(x)

Ωε

I Using classical results of asymptotic analysis, we obtain

R(εµ) = 0 + ε

(
−1

2

∫ `

−`
∂xµ(x)(w+(x, 1))2 dx

)
+O(ε2).

dR(0)(µ)

dR(0) : C∞0 (R)→ C is onto ⇒ we can get non trivial Ω s.t. R = 0.

I Can we use the technique to construct Ω such that T = 1? We obtain

T (εµ)− 1 = 0 + ε 0 +O(ε2).

dT (0) is not onto ⇒ the approach fails to impose T = 1.
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A perturbative method to get T = 1
I We study the same problem in the geometry Ωε

ε

ε
ε

h1
h2 h3

Ωε

M1 M2 M3

I We obtain R = 0 + ε
(
ik
∑3
n=1(w+(Mn))2 tan(khn)

)
+O(ε2)

T = 1 + ε
(
i/2
∑3
n=1 tan(khn)

)
+O(ε2)

1) We can find Mn, hn such that R = O(ε2) and T = 1 +O(ε2) .
2) Then changing hn into hn + τn, and choosing a good τ = (τ1, τ2, τ3) ∈ R3

(fixed point), we can get R = 0 and =mT = 0 .
3) Energy conservation + [T = 1 +O(ε)] ⇒ T = 1 .
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Numerical results
I Perturbed waveguide (<e (v(x, y)e−iωt) )

I Reference waveguide (<e (vi(x, y)e−iωt) )
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Remark
I We could also have worked with gardens of flowers!
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Outline of the talk

1 First constructive method

k is given, we use perturbative techniques to construct geometries such
that R = 0 or T = 1.

2 Second constructive method

k is given, we use an approach based on symmetries to construct geome-
tries such that R = 0, T = 1 or T = 0 and even a bit more...

3 A spectral approach to determine non reflecting wavenumbers

For a given geometry, we explain how to find non reflecting k solving a
spectral problem.

First approach was perturbative.
How to get large invisible defects

13 / 45



Geometrical setting
I We work in waveguides which are symmetric with respect to (Oy) and
which contain a branch of finite height .

`

h− 1

→ We will study the behaviour of the coefficients R, T ∈ C as h→ +∞.
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1 First constructive method

2 Second constructive method

Main analysis

Numerical results

3 A spectral approach to determine non reflecting wavenumbers
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Half-waveguide problems
I Consider a waveguide which is symmetric with respect (Oy) and which
contains a branch of finite height.

`

h− 1

Ωh
−∆v = k2v in Ωh
∂nv = 0 on ∂Ωh

I Introduce the two half-waveguide problems

`/2

ωh

Neumann/
Dirichlet

Σh

−∆u = k2u in ωh
∂nu = 0 on ∂ωh

Neumann B.C.

−∆U = k2U in ωh
∂nU = 0 on ∂ωh \ Σh
U = 0 on Σh.

Mixed B.C.
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Relations for the scattering coefficients
I Half-waveguide problems admit the solutions

u = w+ +RN w− + ũ, with ũ ∈ H1(ωh)
U = w+ +RD w− + Ũ , with Ũ ∈ H1(ωh).

I Due to conservation of energy, one has
|RN | = |RD| = 1.

ωh

h

RDRN
RD

RN

I Using that v =
u+ U

2 in ωh, v(x, y) =
u(−x, y)− U(−x, y)

2 in Ωh \ ωh,

we deduce that R =
RN +RD

2 and T =
RN −RD

2 .
Non reflectivity
⇔ RN = −RD

→ Now, we study the behaviour of RN = RN (h), RD = RD(h) as h→ +∞.
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I Due to conservation of energy, one has
|RN | = |RD| = 1.

ωh

h

RDRN

RD

RN

I Using that v =
u+ U

2 in ωh, v(x, y) =
u(−x, y)− U(−x, y)

2 in Ωh \ ωh,

we deduce that R =
RN +RD

2 and T =
RN −RD

2 .

Non reflectivity
⇔ RN = −RD

→ Now, we study the behaviour of RN = RN (h), RD = RD(h) as h→ +∞.

17 / 45



Relations for the scattering coefficients
I Half-waveguide problems admit the solutions

u = w+ +RN w− + ũ, with ũ ∈ H1(ωh)
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Asymptotics of RN , RD

Depends on the nb. of propagating modes in the vertical branch of ω∞

`/2
ω∞

Σ∞

(PN ) −∆ϕ = k2ϕ in ω∞
∂nϕ = 0 on ∂ω∞

(PD)
−∆ϕ = k2ϕ in ω∞
∂nϕ = 0 on ∂ω∞ \ Σ∞
ϕ = 0 on Σ∞.

I Analysis for RD

For ` ∈ (0;π/k), no prop. modes in the vertical branch of ω∞ for (PD)
⇒ h 7→ RD(h) tends to a constant on C := {z ∈ C, |z| = 1}.

I Analysis for RN

For ` ∈ (0; 2π/k), 2 prop. modes in the vertical branch of ω∞ for (PN )
⇒ h 7→ RN (h) runs continuously and almost periodically on C .
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Conclusions for ` ∈ (0; π/k), s12 6= 0

I Reminder: R =
RN +RD

2 and T =
RN −RD

2 .

Proposition: Asympt. as h→ +∞, R and T run on circles of radius 1/2.

Proposition: There is an unbounded sequence (hn) such that for h = hn,
RN = −RD and so R = 0 (non reflectivity).

Proposition: There is an unbounded sequence (Hn) such that for h = Hn,
RN = RD and so T = 0 (complete reflectivity).

I Sequences (hn) and (Hn) are almost periodic. As n→ +∞, we have

hn+1 − hn = π/k + . . . and Hn+1 −Hn = π/k + . . . .
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1 First constructive method

2 Second constructive method

Main analysis

Numerical results

3 A spectral approach to determine non reflecting wavenumbers
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Setting

I We compute numerically R, T for h ∈ (2; 10) in the geometry Ωh

`

h− 1
Ωh

I We use a P2 finite element method with Dirichlet-to-Neumann maps.

I We set k = 0.8π and ` = 1 ∈ (0;π/k).

21 / 45



Numerical results
I Reflection coefficient R and transmission coefficient T for h ∈ (2; 10).

−1 0 1
−1

0

1
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Non reflectivity
I Curve h 7→ − ln |R|. Peaks correspond to non reflectivity.
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Non reflectivity

I Total field v for h such that R = 0.

I Scattered field vs.
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Other non reflecting geometry

I Scattered field vs.
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Complete reflectivity
I Curve h 7→ − ln |T |. Peaks correspond to complete reflectivity.
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Complete reflectivity

I Total field v for h such that T = 0.

25 / 45



Complete reflectivity

I Total field v for h such that T = 0.

25 / 45



Complete reflectivity

I Total field v for h such that T = 0.
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The special case ` = 2π/k - perfect invisibility
I Now set ` = 2π/k in the geometry

` = 2π/k

h− 1
Ωh

I We still have R =
RN +RD

2 and T =
RN −RD

2 .

RN

RD

RD

? u = w+ +w− = C cos(kx) solves the Neum. pb. in ωh ⇒ RN = 1, ∀h > 1.

? h 7→ RD(h) still runs on the unit circle and goes through −1.

There is a sequence (hn) such that T = 1 (perfect invisibility)
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The special case ` = 2π/k - perfect invisibility

I Works also in the geometry below (h is the height of the central branch).

I Perfectly invisible defect ( t 7→ <e (v(x, y)e−iωt) ).

I Reference waveguide ( t 7→ <e (v(x, y)e−iωt) ).
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Outline of the talk

1 First constructive method

k is given, we use perturbative techniques to construct geometries such
that R = 0 or T = 1.

2 Second constructive method

k is given, we use an approach based on symmetries to construct geome-
tries such that R = 0, T = 1 or T = 0 and even a bit more...

3 A spectral approach to determine non reflecting wavenumbers

For a given geometry, we explain how to find non reflecting k solving a
spectral problem.
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Scattering problem
I Consider the scattering problem with k ∈ ((N − 1)π;Nπ), N ∈ N∗

Ω

+L−L

vi

Find v = vi + vs s. t.
∆v + k2v = 0 in Ω,

∂nv = 0 on ∂Ω,
vs is outgoing.

I For this problem, the modes are

Propagating
Evanescent

w±n (x, y) = e±iβnx cos(nπy), βn =
√
k2 − n2π2, n ∈ J0, N − 1K

w±n (x, y) = e∓βnx cos(nπy), βn =
√
n2π2 − k2, n ≥ N.

I Set vi =
N−1∑
n=0

αnw
+
n for some given (αn)N−1

n=0 ∈ CN .

I vs is outgoing ⇔ vs =
+∞∑
n=0

γ±n w
±
n for ±x ≥ L, with (γ±n ) ∈ CN.
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Goal of the section

Definition: v is a non reflecting mode if vs is expo. decaying for x ≤ −L
⇔ γ−n = 0, n ∈ J0, N − 1K ⇔ energy is completely transmitted.

GOAL
For a given geometry, we present a method to find values of
k such that there is a non reflecting mode v.

→ Note that non reflection occurs for particular vi to be computed.
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Classical complex scaling to compute vs 1/2

Reminder: vs =
N−1∑
n=0

γ±n e
±iβnx cos(nπy) +

+∞∑
n=N

γ±n e
∓βnx cos(nπy), ±x ≥ L.

−iβ1

−iβ0

β2 β3

exp. growing exp. decaying

θ
−iβ̃1

−iβ̃0

β̃2

β̃3

Modal exponents for vs (x ≤ −L)

Modal exponents for vθ (x ≤ −L)

I For θ ∈ (0;π/2), consider the complex change of variables

Iθ(x) =
−L+ (x+ L) eiθ for x ≤ −L

x for |x| < L
+L+ (x− L) eiθ for x ≥ L.

I Set vθ := vs ◦ (Iθ(x), y) .
1) vθ = vs for |x| < L.
2) vθ is exp. decaying at infinity.

vθ =
N−1∑
n=0

γ̃±n e
±iβ̃nx cos(nπy) +

+∞∑
n=N

γ̃±n e
∓β̃nx cos(nπy), ±x ≥ L β̃n = βne

iθ
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Classical complex scaling to compute vs 2/2

I vθ solves (∗) αθ
∂

∂x

(
αθ
∂vθ
∂x

)
+ ∂2vθ

∂y2 + k2vθ = 0 in Ω
∂nvθ = −∂nvi on ∂Ω.

αθ(x) = 1 for |x| < L αθ(x) = e−iθ for |x| ≥ L

• Numerically we solve (∗) in the truncated domain

αθ = e−iθ αθ = e−iθαθ = 1

+L−L +R−R

Dirichlet/
Neumann

Dirichlet/
Neumann

⇒ We obtain a good approximation of vs for |x| < L.

• This is the method of Perfectly Matched Layers (PMLs).
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Spectral analysis
I Define the operators A, Aθ of L2(Ω) such that

Av = −∆v, Aθv = −
(
αθ

∂

∂x

(
αθ
∂v

∂x

)
+ ∂2v

∂y2

)
+ ∂nv = 0 on ∂Ω.

� A is selfadjoint and positive.
� σ(A) = σess(A) = [0; +∞).
� σ(A) may contain embedded eigenvalues in the essential spectrum.

0 <e λ
=mλess. spectrum

trapped modes

� Aθ is not selfadjoint. σ(Aθ) ⊂ {ρ eiγ , ρ ≥ 0, γ ∈ [−2θ; 0]}.
� σess(Aθ) = ∪n∈N{n2π2 + t e−2iθ, t ≥ 0}.
� real eigenvalues of Aθ = real eigenvalues of A.

2θ0 <e λ
=mλ

ess. spectrum
trapped modes
leaky modes
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Numerical results

I We work in the geometry
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Numerical results

I Discretized spectrum of Aθ in k (not in k2). We take θ = π/4.

0 1 2 3 4 5 6 7 8
-5

-4

-3

-2

-1

0

1

σess(Aθ) (in k)

Two trapped modes
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A new complex spectrum for non reflecting v

I Usual complex scaling selects scattered fields which are

outgoing at −∞ and outgoing at +∞.

Important remark: general v decompose as

v = vi +
N−1∑
n=0

γ−n w
−
n +

+∞∑
n=N

γ−n w
−
n x ≤ −L, v =

+∞∑
n=0

γ+
n w

+
n x ≥ L.

I In other words, non reflecting v are

ingoing at −∞ and outgoing at +∞.

Let us change the sign of the complex scaling at −∞!
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A new complex spectrum for non reflecting v

I For θ ∈ (0;π/2), consider the complex change of variables

Jθ(x) =
−L+ (x+ L) e−iθ for x ≤ −L

x for |x| < L

+L+ (x− L) e+iθ for x ≥ L.

I Set uθ := v ◦ (Jθ(x), y) . 1) uθ = v for |x| < L.
2) uθ is exp. decaying at infinity.

−iβ1

−iβ0

β2 β3

exp. growing exp. decaying

−θ −iβ̂1

−iβ̂0

β̂2

β̂3

Modal exponents for v (x ≤ −L) Modal exponents for uθ (x ≤ −L)

I uθ solves (∗) βθ
∂

∂x

(
βθ
∂uθ
∂x

)
+ ∂2uθ

∂y2 + k2uθ = 0 in Ω
∂nuθ = 0 on ∂Ω.

βθ(x) = 1 for |x| < L, βθ(x) = eiθ for x ≤ −L, βθ(x) = e−iθ for x ≥ L
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Spectral analysis

I Define the operator Bθ of L2(Ω) such that

Bθv = −
(
βθ

∂

∂x

(
βθ
∂v

∂x

)
+ ∂2v

∂y2

)
+ ∂nv = 0 on ∂Ω.

� Bθ is not selfadjoint. σ(Bθ) ⊂ {ρ eiγ , ρ ≥ 0, γ ∈ [−2θ; 2θ]}.
� σess(Bθ) = ∪n∈N{n2π2 + t e−2iθ, t ≥ 0} ∪ {n2π2 + t e2iθ, t ≥ 0}.
� real eigenvalues of Bθ = real eigenvalues of A+non reflecting k2.

2θ
2θ

0 <e λ

=mλ
essential spectrum
trapped modes
non reflecting modes
? modes
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Remarks

2θ
2θ

0 <e λ

=mλ
essential spectrum
trapped modes
non reflecting modes
? modes

1) • ? modes correspond to solutions of the Helmholtz equation which are
exp. growing at one side of Ω, exp. decaying at the other.

Different from leaky modes which are exp. growing both at ±∞ ...

2) It is not simple to prove that σ(Bθ) \ σess(Bθ) is discrete.

→ Not true in general!

eikx ◦ Jθ is an eigenfunction for all k ∈ R.

→ C \ σess(Bθ) is not connected ⇒ we cannot apply simply the analytic Fredholm thm.

→ A compact perturbation can change drastically the spectrum ( Bθ is not selfadjoint ).
Numerical consequences?

Aθ − zId invertible

Usual PMLs

Bθ − zId invertible

Conjugated PMLs

37 / 45
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Numerical results

I Again we work in the geometry

I Define the operators P (Parity), T (Time reversal) such that

Pv(x, y) = v(−x, y) and T v(x, y) = v(x, y).

Prop.: For symmetric Ω = {(−x, y) | (x, y) ∈ Ω}, Bθ is PT symmetric:

PT BθPT = Bθ.

As a consequence, σ(Bθ) = σ(Bθ).

⇒ If λ is an “isolated” eigenvalue located close to the real axis, then λ ∈ R !
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Numerical results
I Discretized spectrum in k (not in k2). We take θ = π/4.
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• The spectrum is indeed stable by conjugation.
• Much more eigenvalues on the real axis than before.

• PMLs with different signs Classical PMLs
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Numerical results

I We display the eigenmodes for the ten first real eigenvalues in the whole
computational domain (including PMLs).
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Numerical results
I Let us focus on the eigenmodes such that 0 < k < π.

First trapped mode Second trapped mode
k = 1.2355... k = 2.3897...

First non reflecting mode Second non reflecting mode
k = 1.4513... k = 2.8896...
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There is perfect agreement!
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Numerical results

I Now the geometry is not symmetric in x nor in y:

I The operator Bθ is no longer PT -symmetric and we expect:

� No trapped modes
� No invariance of the spectrum by complex conjugation.
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Numerical results
I Discretized spectrum of Bθ in k (not in k2). We take θ = π/4.
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Numerical results
I We compute k 7→ |R(k)| for 0 < k < π.
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k = 1.28 + 0.0003i k = 2.3866 + 0.0005i k = 2.8647 + 0.0243i

Complex eigenvalues also contain information on almost no reflection.
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Spectra for a changing geometry

I Two series of computations: one with PMLs with different sign, one
with classical PMLs. We compute the spectra for h ∈ (1.3; 8) .

` = 2.5

h
Ωh

I The magenta marks on the real axis correspond to k = π/` & k = 2π/`.
For k = 2π/`, trapped modes and T = 1 should occur for certain h.
I We zoom at the region 0 < <e k < π.
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++ PMLs with different signs + Classical PMLs



Outline of the talk

1 First constructive method

k is given, we use perturbative techniques to construct geometries such
that R = 0 or T = 1.

2 Second constructive method

k is given, we use an approach based on symmetries to construct geome-
tries such that R = 0, T = 1 or T = 0 and even a bit more...

3 A spectral approach to determine non reflecting wavenumbers

For a given geometry, we explain how to find non reflecting k solving a
spectral problem.
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Conclusion

What we did

♠ We presented two methods to construct geometries such that R = 0,
T = 0, T = 1 at a given frequency k ∈ (0;π).

♠ We proposed a spectral approach to compute non reflecting k
(R = 0) for a given geometry.

Future work

1) How to construct invisible or completely reflecting defects for a given
k > π (several propagating modes)?

2) Can we find a spectral approach to compute completely reflecting or
completely invisible k for a given geometry?

3) Can we prove existence of non reflecting k for the PT -symmetric pb?

4) Can we work in free space with a finite number of directions? on
other equations (electromagnetism, elasticity,. . . )?
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v

vi

Thank you for your attention!
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