Séminaire d'analyse de l'EPFL

Invisibility in acoustic waveguides

Lucas Chesnel¹

Coll. with A. Bera², A.-S. Bonnet-Ben Dhia², S.A. Nazarov³ and V. Pagneux⁴.

¹Defi team, CMAP, École Polytechnique, France
 ²Poems team, Ensta, France
 ³FMM, St. Petersburg State University, Russia
 ⁴LAUM, Université du Maine, France

EPFL, LAUSANNE, 11/05/2018

General setting

• We are interested in the propagation of waves in acoustic waveguides.

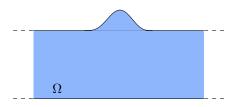
• In this talk, we study questions of invisibility.

Can we find situations where waves go through like if there were no defect

• One can wish to have good energy transmission through the structure.

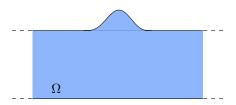
• One can wish to hide objects.

Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.



 $\begin{vmatrix} \text{Find } v = v_i + v_s \text{ s. t.} \\ \Delta v + k^2 v = 0 \quad \text{in } \Omega, \\ \partial_n v = 0 \quad \text{on } \partial\Omega, \\ v_s \text{ is outgoing.} \end{vmatrix}$

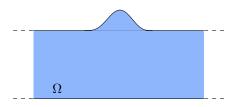
Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.



Find $v = v_i + v_s$ s. t. $\Delta v + k^2 v = 0$ in Ω , $\partial_n v = 0$ on $\partial \Omega$, v_s is outgoing.

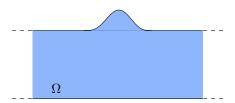
For this problem, the modes are Propagating $\begin{vmatrix} w_n^{\pm}(x,y) = e^{\pm i\beta_n x} \cos(n\pi y), & \beta_n = \sqrt{k^2 - n^2 \pi^2}, & n \in \llbracket 0, N - 1 \rrbracket$ Evanescent $\begin{vmatrix} w_n^{\pm}(x,y) = e^{\mp \beta_n x} \cos(n\pi y), & \beta_n = \sqrt{n^2 \pi^2 - k^2}, & n \ge N. \end{vmatrix}$

Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.



 $\begin{vmatrix} \text{Find } v = v_i + v_s \text{ s. t.} \\ \Delta v + k^2 v = 0 \quad \text{in } \Omega, \\ \partial_n v = 0 \quad \text{on } \partial\Omega, \\ v_s \text{ is outgoing.} \end{vmatrix}$

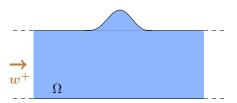
Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.



Find $v = v_i + v_s$ s. t. $\Delta v + k^2 v = 0$ in Ω , $\partial_n v = 0$ on $\partial \Omega$, v_s is outgoing.

For $k \in (0; \pi)$, only 2 propagating modes $w^{\pm} = e^{\pm ikx} / \sqrt{2k}$.

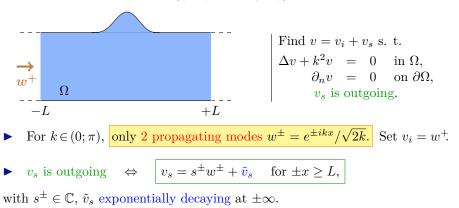
Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.



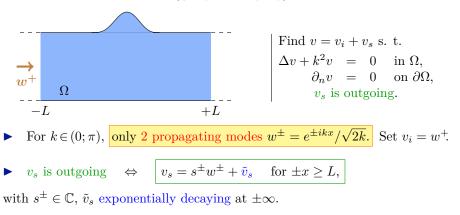
Find $v = v_i + v_s$ s. t. $\Delta v + k^2 v = 0$ in Ω , $\partial_n v = 0$ on $\partial \Omega$, v_s is outgoing.

For $k \in (0; \pi)$, only 2 propagating modes $w^{\pm} = e^{\pm ikx} / \sqrt{2k}$. Set $v_i = w^+$.

Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.



Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.



DEFINITION:	$v_i = $ incident field
	v = total field
	$v_s = $ scattered field.

- ▶ At infinity, one measures the reflection coefficient $R = s^-$ and/or the transmission coefficient $T = 1 + s^+$ (other terms are too small).
- From conservation of energy, one has

 $|R|^2 + |T|^2 = 1.$

At infinity, one measures the reflection coefficient $R = s^-$ and/or the transmission coefficient $T = 1 + s^+$ (other terms are too small).

From conservation of energy, one has

 $|R|^2 + |T|^2 = 1.$

DEFINITION: Defect is said $\begin{vmatrix} \text{non reflecting if } R = 0 \ (T = 1) \\ \text{perfectly invisible if } T = 1 \ (R = 0) \end{vmatrix}$	
--	--

• For T = 1, defect cannot be detected from far field measurements.

At infinity, one measures the reflection coefficient $R = s^-$ and/or the transmission coefficient $T = 1 + s^+$ (other terms are too small).

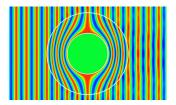
From conservation of energy, one has

$$|R|^2 + |T|^2 = 1.$$

on reflecting if $R = 0$ ($ T = 1$) erfectly invisible if $T = 1$ ($R = 0$)	DEFINITION: Defect is said
---	----------------------------

• For T = 1, defect cannot be detected from far field measurements.

REMARK: less ambitious than usual cloaking and therefore, more accessible. Also relevant for applications.



At infinity, one measures the reflection coefficient $R = s^-$ and/or the transmission coefficient $T = 1 + s^+$ (other terms are too small).

From conservation of energy, one has

 $|R|^2 + |T|^2 = 1.$

DEFINITION: Defect is said $\begin{vmatrix} \text{non reflecting if } R = 0 \ (T = 1) \\ \text{perfectly invisible if } T = 1 \ (R = 0) \end{vmatrix}$	
--	--

• For T = 1, defect cannot be detected from far field measurements.

At infinity, one measures the reflection coefficient $R = s^-$ and/or the transmission coefficient $T = 1 + s^+$ (other terms are too small).

From conservation of energy, one has

$$|R|^2 + |T|^2 = 1.$$

	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$
--	---

- For T = 1, defect cannot be detected from far field measurements.
- For T = 0, defect is like a mirror.

At infinity, one measures the reflection coefficient $R = s^-$ and/or the transmission coefficient $T = 1 + s^+$ (other terms are too small).

From conservation of energy, one has

$$|R|^2 + |T|^2 = 1.$$

DEFINITION: Defect is said	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$
----------------------------	---

- For T = 1, defect cannot be detected from far field measurements.
- For T = 0, defect is like a mirror.

We explain how to find waveguides such that R = 0 (|T| = 1), T = 1 (R = 0) or T = 0 (|R| = 1).

Outline of the talk

First constructive method

k is given, we use perturbative techniques to construct geometries such that R = 0 or T = 1.

Second constructive method

k is given, we use an approach based on symmetries to construct geometries such that R = 0, T = 1 or T = 0 and even a bit more...

A spectral approach to determine non reflecting wavenumbers

For a given geometry, we explain how to find non reflecting k solving a spectral problem.

Outline of the talk

First constructive method

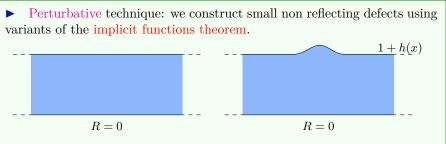
k is given, we use perturbative techniques to construct geometries such that R = 0 or T = 1.

2 Second constructive method

k is given, we use an approach based on symmetries to construct geometries such that R = 0, T = 1 or T = 0 and even a bit more...

A spectral approach to determine non reflecting wavenumbers

For a given geometry, we explain how to find non reflecting k solving a spectral problem.



► The idea was used in Nazarov 11 to construct waveguides for which there are embedded eigenvalues in the continuous spectrum.

• For $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$, set $R = R(h) \in \mathbb{C}$.

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$

Note that R(0) = 0(no obstacle leads to null measurements).

For
$$h \in \mathscr{C}_0^\infty(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^\infty(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• We look for small perturbations of the reference medium: $h = \varepsilon \mu$ where $\varepsilon > 0$ is a small parameter and where μ has be to determined.

1

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = R(0) + \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$$

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that $\underline{R}(h) = 0$ (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$$
.

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu).$$

Assume that $dR(0) : \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto.

• For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu).$$

Assume that $dR(0) : \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto.

 $\exists \mu_0, \mu_1, \mu_2 \in \mathscr{C}^\infty_0(\mathbb{R}) \text{ s.t. } dR(0)(\mu_0) = 0, \, dR(0)(\mu_1) = 1 \text{ and } dR(0)(\mu_2) = i.$

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu).$$

Assume that $dR(0) : \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto.

 $\exists \mu_0, \mu_1, \mu_2 \in \mathscr{C}^{\infty}_0(\mathbb{R}) \text{ s.t. } dR(0)(\mu_0) = 0, \, dR(0)(\mu_1) = 1 \text{ and } dR(0)(\mu_2) = i.$

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu).$$

Assume that $dR(0) : \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto.

 $\exists \mu_0, \mu_1, \mu_2 \in \mathscr{C}^\infty_0(\mathbb{R}) \text{ s.t. } dR(0)(\mu_0) = 0, \, dR(0)(\mu_1) = 1 \text{ and } dR(0)(\mu_2) = i.$

$$0 = R(\varepsilon\mu) \quad \Leftrightarrow \quad$$

• For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu).$$

Assume that $dR(0) : \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto.

 $\exists \mu_0, \mu_1, \mu_2 \in \mathscr{C}_0^{\infty}(\mathbb{R}) \text{ s.t. } dR(0)(\mu_0) = 0, \ dR(0)(\mu_1) = 1 \text{ and } dR(0)(\mu_2) = i.$

$$0 = R(\varepsilon\mu) \quad \Leftrightarrow \quad 0 = \varepsilon(\tau_1 dR(0)(\mu_1) + \tau_2 dR(0)(\mu_2)) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$$

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu).$$

Assume that $dR(0) : \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto.

 $\exists \mu_0, \mu_1, \mu_2 \in \mathscr{C}^\infty_0(\mathbb{R}) \text{ s.t. } dR(0)(\mu_0) = 0, \, dR(0)(\mu_1) = 1 \text{ and } dR(0)(\mu_2) = i.$

$$0 = R(\varepsilon\mu) \quad \Leftrightarrow \quad 0 = \varepsilon(\tau_1 + i\tau_2) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$$

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu).$$

Assume that $dR(0) : \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto.

 $\exists \mu_0, \mu_1, \mu_2 \in \mathscr{C}^\infty_0(\mathbb{R}) \text{ s.t. } dR(0)(\mu_0) = 0, \, dR(0)(\mu_1) = 1 \text{ and } dR(0)(\mu_2) = i.$

$$0 = R(\varepsilon\mu) \quad \Leftrightarrow \quad \vec{\tau} = G^{\varepsilon}(\vec{\tau}) \quad \text{where} \quad \begin{vmatrix} \vec{\tau} = (\tau_1, \tau_2)^{\top} \\ G^{\varepsilon}(\vec{\tau}) = -\varepsilon(\Re e \, \tilde{R}^{\varepsilon}(\mu), \Im m \, \tilde{R}^{\varepsilon}(\mu))^{\top} \end{vmatrix}$$

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu).$$

Assume that $dR(0) : \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto.

 $\exists \mu_0, \mu_1, \mu_2 \in \mathscr{C}^\infty_0(\mathbb{R}) \text{ s.t. } dR(0)(\mu_0) = 0, \, dR(0)(\mu_1) = 1 \text{ and } dR(0)(\mu_2) = i.$

Take $\mu = \mu_0 + \tau_1 \mu_1 + \tau_2 \mu_2$ where the τ_n are real parameters to set:

$$0 = R(\varepsilon\mu) \quad \Leftrightarrow \quad \boxed{\vec{\tau} = G^{\varepsilon}(\vec{\tau})} \quad \text{where} \quad \begin{vmatrix} \vec{\tau} = (\tau_1, \tau_2)^{\top} \\ G^{\varepsilon}(\vec{\tau}) = -\varepsilon(\Re e \, \tilde{R}^{\varepsilon}(\mu), \Im m \, \tilde{R}^{\varepsilon}(\mu))^{\top} \end{vmatrix}$$

If G^{ε} is a contraction, the fixed-point equation has a unique solution $\vec{\tau}^{\text{sol}}$.

8 / 45

For
$$h \in \mathscr{C}_0^{\infty}(\mathbb{R})$$
, set $R = R(h) \in \mathbb{C}$.

Note that R(0) = 0(no obstacle leads to null measurements).

Our goal: to find $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ such that R(h) = 0 (with $h \neq 0$).

• Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu).$$

Assume that $dR(0) : \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto.

 $\exists \mu_0, \mu_1, \mu_2 \in \mathscr{C}^\infty_0(\mathbb{R}) \text{ s.t. } dR(0)(\mu_0) = 0, \, dR(0)(\mu_1) = 1 \text{ and } dR(0)(\mu_2) = i.$

Take $\mu = \mu_0 + \tau_1 \mu_1 + \tau_2 \mu_2$ where the τ_n are real parameters to set:

$$0 = R(\varepsilon\mu) \quad \Leftrightarrow \quad \vec{\tau} = G^{\varepsilon}(\vec{\tau}) \quad \text{where} \quad \begin{vmatrix} \vec{\tau} = (\tau_1, \tau_2)^{\top} \\ G^{\varepsilon}(\vec{\tau}) = -\varepsilon(\Re e \, \tilde{R}^{\varepsilon}(\mu), \Im m \, \tilde{R}^{\varepsilon}(\mu))^{\top} \end{vmatrix}$$

If G^{ε} is a contraction, the fixed-point equation has a unique solution $\vec{\tau}^{\text{sol}}$. Set $h^{\text{sol}} := \varepsilon \mu^{\text{sol}}$. We have $R(h^{\text{sol}}) = 0$ (non reflecting perturbation).

8 / 45

Calculus of the differential

• Using classical results of asymptotic analysis, we obtain

$$R(\varepsilon\mu) = 0 + \varepsilon \left(-\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) (w^+(x,1))^2 \, dx \right) + O(\varepsilon^2).$$

Calculus of the differential

• Using classical results of asymptotic analysis, we obtain

$$R(\varepsilon\mu) = 0 + \varepsilon \left(-\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) (w^+(x,1))^2 \, dx \right) + O(\varepsilon^2).$$
$$dR(0)(\mu)$$

 $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto \Rightarrow we can get non trivial Ω s.t. R = 0.

Calculus of the differential



· Using classical results of asymptotic analysis, we obtain

$$R(\varepsilon\mu) = 0 + \varepsilon \left(-\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) (w^+(x,1))^2 \, dx \right) + O(\varepsilon^2).$$
$$dR(0)(\mu)$$

 $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto \Rightarrow we can get non trivial Ω s.t. R = 0.

• Can we use the technique to construct Ω such that T = 1?

Calculus of the differential

· Using classical results of asymptotic analysis, we obtain

$$R(\varepsilon\mu) = 0 + \varepsilon \left(-\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) (w^+(x,1))^2 \, dx \right) + O(\varepsilon^2).$$
$$dR(0)(\mu)$$

 $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto \Rightarrow we can get non trivial Ω s.t. R = 0.

• Can we use the technique to construct Ω such that T = 1? We obtain

$$T(\varepsilon\mu) - 1 = 0 + \varepsilon \ \mathbf{0} + O(\varepsilon^2).$$

Calculus of the differential



 \cdot $\,$ Using classical results of asymptotic analysis, we obtain

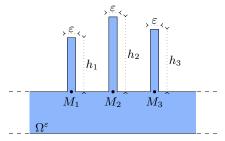
$$R(\varepsilon\mu) = 0 + \varepsilon \left(-\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) (w^+(x,1))^2 \, dx \right) + O(\varepsilon^2).$$
$$dR(0)(\mu)$$

 $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto \Rightarrow we can get non trivial Ω s.t. R = 0.

• Can we use the technique to construct Ω such that T = 1? We obtain

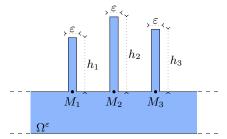
$$T(\varepsilon\mu) - 1 = 0 + \varepsilon \mathbf{0} + O(\varepsilon^2).$$

• We study the same problem in the geometry Ω^{ε}



• We obtain $R = 0 + \varepsilon \left(ik \sum_{n=1}^{3} (w^+(M_n))^2 \tan(kh_n) \right) + O(\varepsilon^2)$ $T = 1 + \varepsilon \left(i/2 \sum_{n=1}^{3} \tan(kh_n) \right) + O(\varepsilon^2)$

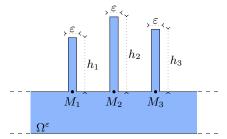
• We study the same problem in the geometry Ω^{ε}



• We obtain $R = 0 + \varepsilon \left(ik \sum_{n=1}^{3} (w^+(M_n))^2 \tan(kh_n) \right) + O(\varepsilon^2)$ $T = 1 + \varepsilon \left(i/2 \sum_{n=1}^{3} \tan(kh_n) \right) + O(\varepsilon^2)$

1) We can find M_n , h_n such that $R = O(\varepsilon^2)$ and $T = 1 + O(\varepsilon^2)$.

• We study the same problem in the geometry Ω^{ε}

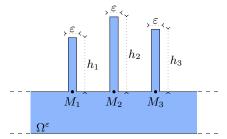


• We obtain $R = 0 + \varepsilon \left(ik \sum_{n=1}^{3} (w^+(M_n))^2 \tan(kh_n) \right) + O(\varepsilon^2)$ $T = 1 + \varepsilon \left(i/2 \sum_{n=1}^{3} \tan(kh_n) \right) + O(\varepsilon^2)$

1) We can find M_n , h_n such that $R = O(\varepsilon^2)$ and $T = 1 + O(\varepsilon^2)$.

2) Then changing h_n into $h_n + \tau_n$, and choosing a good $\tau = (\tau_1, \tau_2, \tau_3) \in \mathbb{R}^3$ (fixed point), we can get R = 0 and $\Im m T = 0$.

• We study the same problem in the geometry Ω^{ε}



• We obtain $R = 0 + \varepsilon \left(ik \sum_{n=1}^{3} (w^+(M_n))^2 \tan(kh_n) \right) + O(\varepsilon^2)$ $T = 1 + \varepsilon \left(i/2 \sum_{n=1}^{3} \tan(kh_n) \right) + O(\varepsilon^2)$

1) We can find M_n , h_n such that $R = O(\varepsilon^2)$ and $T = 1 + O(\varepsilon^2)$.

2) Then changing h_n into $h_n + \tau_n$, and choosing a good $\tau = (\tau_1, \tau_2, \tau_3) \in \mathbb{R}^3$ (fixed point), we can get R = 0 and $\Im m T = 0$.

3) Energy conservation $+ [T = 1 + O(\varepsilon)] \Rightarrow T = 1$.

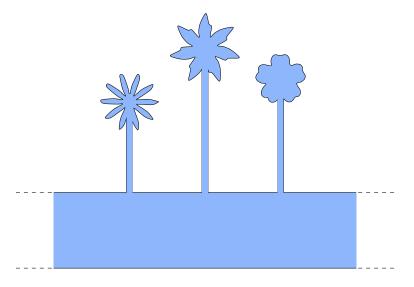
Numerical results

▶ Perturbed waveguide ($\Re e(v(x, y)e^{-i\omega t})$)

• Reference waveguide ($\Re e(v_i(x, y)e^{-i\omega t})$)

Remark

▶ We could also have worked with gardens of flowers!



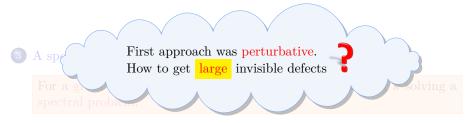
Outline of the talk

First constructive method

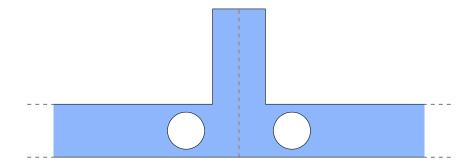
k is given, we use perturbative techniques to construct geometries such that R = 0 or T = 1.

2 Second constructive method

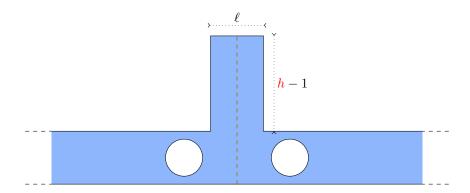
k is given, we use an approach based on symmetries to construct geometries such that R = 0, T = 1 or T = 0 and even a bit more...



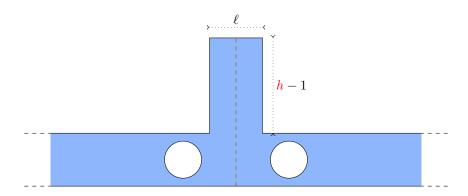
• We work in waveguides which are symmetric with respect to (Oy) and which contain a branch of finite height.



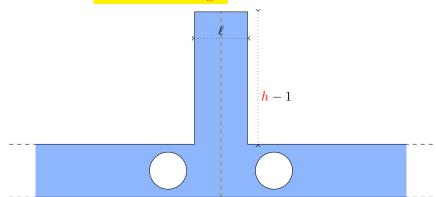
• We work in waveguides which are symmetric with respect to (Oy) and which contain a branch of finite height.

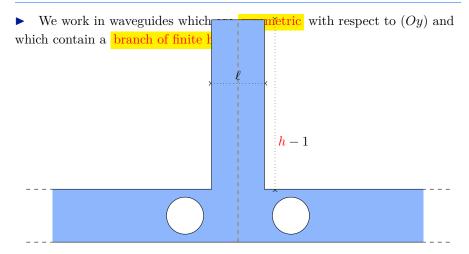


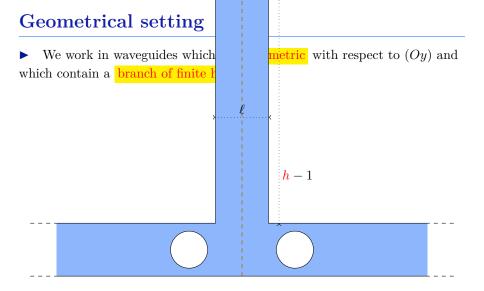
• We work in waveguides which are symmetric with respect to (Oy) and which contain a branch of finite height.



• We work in waveguides which are symmetric with respect to (Oy) and which contain a branch of finite height.



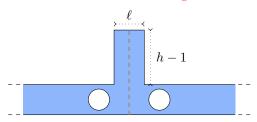




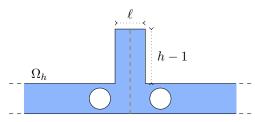
- 2 Second constructive method
 - Main analysis
 - Numerical results

3 A spectral approach to determine non reflecting wavenumbers

• Consider a waveguide which is symmetric with respect (Oy) and which contains a branch of finite height.

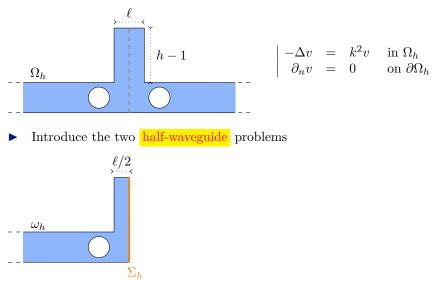


• Consider a waveguide which is symmetric with respect (Oy) and which contains a branch of finite height.

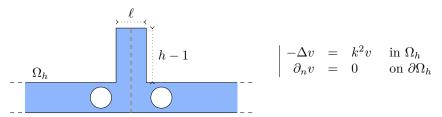


$$\begin{array}{rcl} -\Delta v &=& k^2 v & \mbox{in } \Omega_h \\ \partial_n v &=& 0 & \mbox{on } \partial \Omega_h \end{array}$$

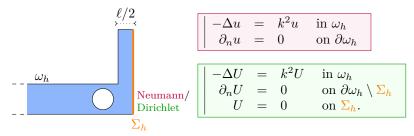
• Consider a waveguide which is symmetric with respect (Oy) and which contains a branch of finite height.



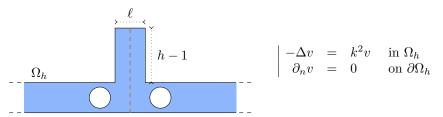
• Consider a waveguide which is symmetric with respect (Oy) and which contains a branch of finite height.



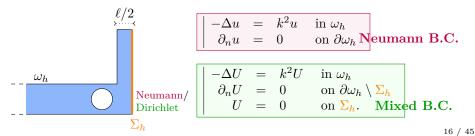
► Introduce the two half-waveguide problems



• Consider a waveguide which is symmetric with respect (Oy) and which contains a branch of finite height.



► Introduce the two half-waveguide problems

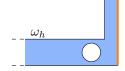


▶ Half-waveguide problems admit the solutions

 $u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{h})$ $U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{h}).$

▶ Half-waveguide problems admit the solutions

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{h})$$
$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{h}).$$

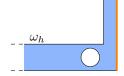


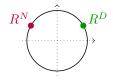
• Due to conservation of energy, one has

 $|\mathbf{R}^N| = |\mathbf{R}^D| = 1.$

▶ Half-waveguide problems admit the solutions

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{h})$$
$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{h}).$$





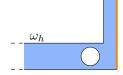
• Due to conservation of energy, one has $|\mathbb{R}^{N}| = |\mathbb{R}^{D}| = 1.$

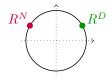
 $|\mathbf{R}^{N}| = |\mathbf{R}^{D}| = 1.$

▶ Half-waveguide problems admit the solutions

Due to conservation of energy, one has

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{h})$$
$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{h}).$$





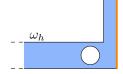
• Using that
$$v = \frac{u+U}{2}$$
 in ω_h , $v(x,y) = \frac{u(-x,y) - U(-x,y)}{2}$ in $\Omega_h \setminus \overline{\omega_h}$,
we deduce that $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N - R^D}{2}$.

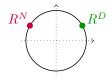
 $|\mathbf{R}^{N}| = |\mathbf{R}^{D}| = 1.$

▶ Half-waveguide problems admit the solutions

Due to conservation of energy, one has

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{h})$$
$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{h}).$$





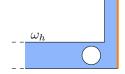
• Using that
$$v = \frac{u+U}{2}$$
 in ω_h , $v(x,y) = \frac{u(-x,y) - U(-x,y)}{2}$ in $\Omega_h \setminus \overline{\omega_h}$,
we deduce that $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N - R^D}{2}$. Non reflectivity
 $\Leftrightarrow R^N = -R^D$

 $|\mathbf{R}^{N}| = |\mathbf{R}^{D}| = 1.$

▶ Half-waveguide problems admit the solutions

Due to conservation of energy, one has

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{h})$$
$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{h}).$$



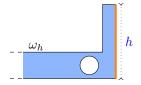
• Using that
$$v = \frac{u+U}{2}$$
 in ω_h , $v(x,y) = \frac{u(-x,y) - U(-x,y)}{2}$ in $\Omega_h \setminus \overline{\omega_h}$,
we deduce that $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N - R^D}{2}$. Non reflectivity
 $\Leftrightarrow R^N = -R^D$

 $|\mathbf{R}^{N}| = |\mathbf{R}^{D}| = 1.$

▶ Half-waveguide problems admit the solutions

Due to conservation of energy, one has

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{h})$$
$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{h}).$$

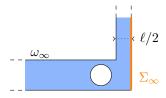


• Using that
$$v = \frac{u+U}{2}$$
 in ω_h , $v(x,y) = \frac{u(-x,y) - U(-x,y)}{2}$ in $\Omega_h \setminus \overline{\omega_h}$,
we deduce that $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N - R^D}{2}$. Non reflectivity
 $\Leftrightarrow R^N = -R^D$

 \rightarrow Now, we study the behaviour of $\mathbb{R}^N = \mathbb{R}^N(h)$, $\mathbb{R}^D = \mathbb{R}^D(h)$ as $h \rightarrow +\infty$.

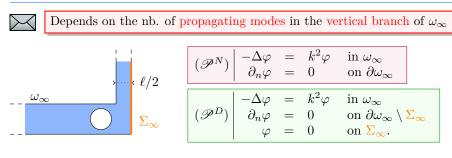
Asymptotics of R^N , R^D

Depends on the nb. of propagating modes in the vertical branch of ω_{∞}



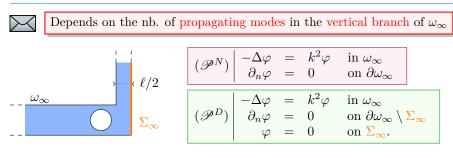
$$\begin{array}{c|c} (\mathscr{P}^{N}) & -\Delta\varphi &=& k^{2}\varphi & \text{in } \omega_{\infty} \\ \partial_{n}\varphi &=& 0 & \text{on } \partial\omega_{\infty} \end{array} \\ \hline (\mathscr{P}^{D}) & -\Delta\varphi &=& k^{2}\varphi & \text{in } \omega_{\infty} \\ \partial_{n}\varphi &=& 0 & \text{on } \partial\omega_{\infty} \setminus \Sigma_{\infty} \\ \varphi &=& 0 & \text{on } \Sigma_{\infty}. \end{array}$$

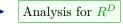
Asymptotics of R^N , R^D



For $\ell \in (0; \pi/k)$, no prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^D) $\Rightarrow h \mapsto R^D(h)$ tends to a constant on $\mathscr{C} := \{z \in \mathbb{C}, |z| = 1\}.$

Asymptotics of R^N , R^D





For $\ell \in (0; \pi/k)$, no prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^D) $\Rightarrow h \mapsto R^D(h)$ tends to a constant on $\mathscr{C} := \{z \in \mathbb{C}, |z| = 1\}.$

Analysis for \mathbb{R}^N

For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N) $\Rightarrow h \mapsto R^N(h)$ runs continuously and almost periodically on \mathscr{C} . Conclusions for $\ell \in (0; \pi/k), s_{12} \neq 0$

• Reminder:
$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$

PROPOSITION: Asympt. as $h \to +\infty$, R and T run on circles of radius 1/2.

Conclusions for $\ell \in (0; \pi/k), s_{12} \neq 0$

• Reminder:
$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$

PROPOSITION: Asympt. as $h \to +\infty$, R and T run on circles of radius 1/2.

PROPOSITION: There is an unbounded sequence (h_n) such that for $h = h_n$, $\mathbb{R}^N = -\mathbb{R}^D$ and so $\mathbb{R} = 0$ (non reflectivity).

Conclusions for $\ell \in (0; \pi/k), s_{12} \neq 0$

• Reminder:
$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$

PROPOSITION: Asympt. as $h \to +\infty$, R and T run on circles of radius 1/2.

PROPOSITION: There is an unbounded sequence (h_n) such that for $h = h_n$, $\mathbb{R}^N = -\mathbb{R}^D$ and so $\mathbb{R} = 0$ (non reflectivity).

PROPOSITION: There is an unbounded sequence (\mathcal{H}_n) such that for $h = \mathcal{H}_n$, $\mathbb{R}^N = \mathbb{R}^D$ and so T = 0 (complete reflectivity).

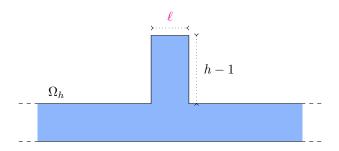
► Sequences (h_n) and (\mathcal{H}_n) are almost periodic. As $n \to +\infty$, we have $h_{n+1} - h_n = \pi/k + \dots$ and $\mathcal{H}_{n+1} - \mathcal{H}_n = \pi/k + \dots$

- 2 Second constructive method
 - Main analysis
 - Numerical results

3 A spectral approach to determine non reflecting wavenumbers

Setting

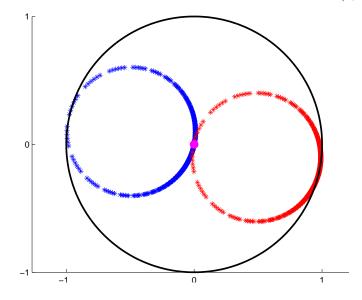
• We compute numerically R, T for $h \in (2; 10)$ in the geometry Ω_h



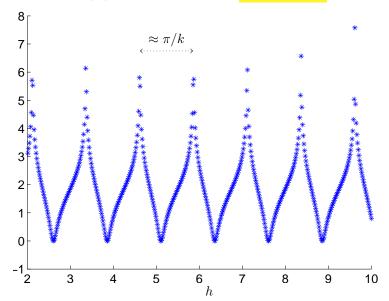
• We use a P2 finite element method with Dirichlet-to-Neumann maps.

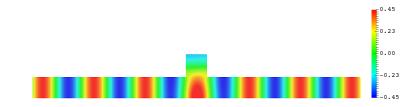
• We set $k = 0.8\pi$ and $\ell = 1 \in (0; \pi/k)$.

• Reflection coefficient R and transmission coefficient T for $h \in (2; 10)$.

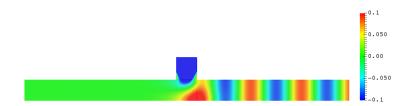


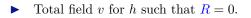
• Curve $h \mapsto -\ln |R|$. Peaks correspond to non reflectivity.

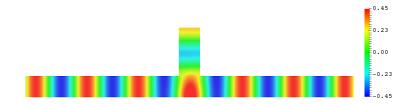


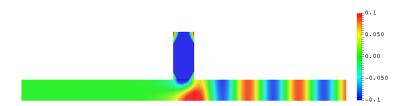


• Total field v for h such that R = 0.

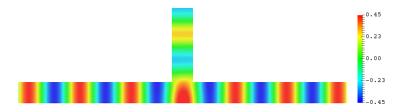


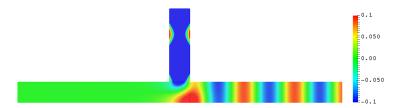




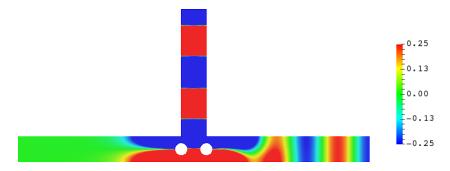


• Total field v for h such that $\mathbf{R} = 0$.



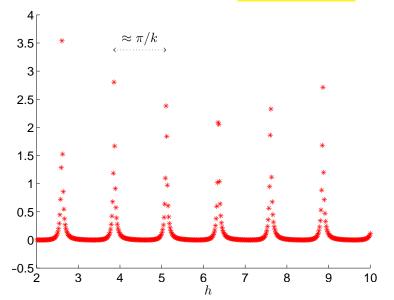


Other non reflecting geometry



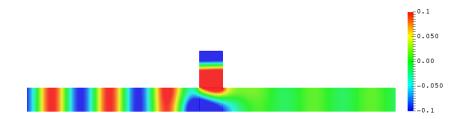
Complete reflectivity

• Curve $h \mapsto -\ln |T|$. Peaks correspond to complete reflectivity.



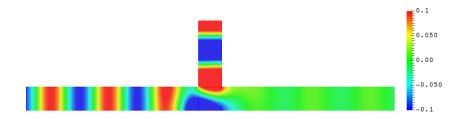
25 / 45

Total field v for h such that T = 0.



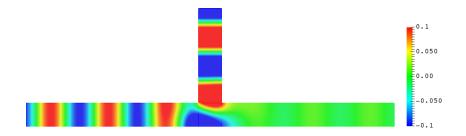
Complete reflectivity

Total field v for h such that T = 0.

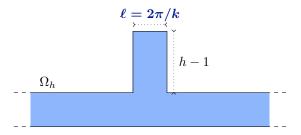


Complete reflectivity

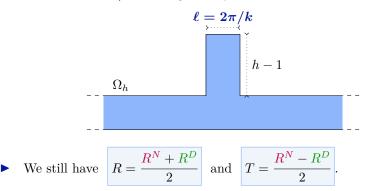
Total field v for h such that T = 0.



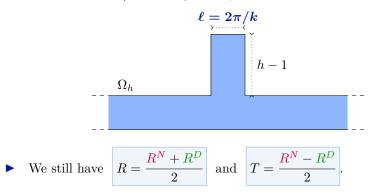
• Now set $\ell = 2\pi/k$ in the geometry



• Now set $\ell = 2\pi/k$ in the geometry



• Now set $\ell = 2\pi/k$ in the geometry



 $\star \, u = w^+ + w^- = C \, \cos(kx)$ solves the Neum. pb. in ω_h

The special case $\ell = 2\pi/k$ - perfect invisibility Now set $\ell = 2\pi/k$ in the geometry $\ell=2\pi/k$ h-1 Ω_h

• We still have
$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$.

* $u = w^+ + w^- = C \cos(kx)$ solves the Neum. pb. in $\omega_h \Rightarrow \mathbb{R}^N = 1, \forall h > 1$.

The special case $\ell = 2\pi/k$ - perfect invisibility Now set $\ell = 2\pi/k$ in the geometry $\ell=2\pi/k$ Ω_h We still have $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N - R^D}{2}$. R^{D_0} R^N

* $u = w^+ + w^- = C \cos(kx)$ solves the Neum. pb. in $\omega_h \Rightarrow \mathbb{R}^N = 1, \forall h > 1$. * $h \mapsto \mathbb{R}^D(h)$ still runs on the unit circle and goes through -1.

The special case $\ell = 2\pi/k$ - perfect invisibility Now set $\ell = 2\pi/k$ in the geometry $\ell=2\pi/k$ Ω_h We still have $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N - R^D}{2}$. \mathbb{R}^N

* $u = w^+ + w^- = C \cos(kx)$ solves the Neum. pb. in $\omega_h \Rightarrow \mathbb{R}^N = 1, \forall h > 1$. * $h \mapsto \mathbb{R}^D(h)$ still runs on the unit circle and goes through -1.

There is a sequence (h_n) such that T = 1 (perfect invisibility)

- Works also in the geometry below (h is the height of the central branch).
- Perfectly invisible defect $(t \mapsto \Re e(v(x, y)e^{-i\omega t}))$.

• Reference waveguide
$$(t \mapsto \Re e(v(x, y)e^{-i\omega t})).$$

Outline of the talk

First constructive method

k is given, we use perturbative techniques to construct geometries such that R = 0 or T = 1.

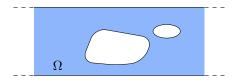
2 Second constructive method

k is given, we use an approach based on symmetries to construct geometries such that R = 0, T = 1 or T = 0 and even a bit more...

A spectral approach to determine non reflecting wavenumbers

For a given geometry, we explain how to find non reflecting k solving a spectral problem.

• Consider the scattering problem with $k \in ((N-1)\pi; N\pi), N \in \mathbb{N}^*$



 $\begin{array}{lll} \mbox{Find} v = v_i + v_s \mbox{ s. t.} \\ \Delta v + k^2 v &= 0 & \mbox{in } \Omega, \\ \partial_n v &= 0 & \mbox{on } \partial \Omega, \\ v_s \mbox{ is outgoing.} \end{array}$

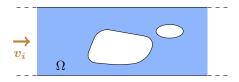
Consider the scattering problem with $k \in ((N-1)\pi; N\pi), N \in \mathbb{N}^*$

$$\begin{array}{lll} \mbox{Find} v = v_i + v_s \mbox{ s. t.} \\ \Delta v + k^2 v &= 0 & \mbox{in} \ \Omega, \\ \partial_n v &= 0 & \mbox{on} \ \partial \Omega, \\ v_s \mbox{ is outgoing.} \end{array}$$

• For this problem, the modes are

 $\begin{array}{l} \mbox{Propagating} \\ \mbox{Evanescent} \\ \end{array} \left| \begin{array}{l} w_n^{\pm}(x,y) = e^{\pm i\beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{k^2 - n^2 \pi^2}, \ n \in \llbracket 0, N-1 \rrbracket \\ w_n^{\pm}(x,y) = e^{\mp \beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{n^2 \pi^2 - k^2}, \ n \geq N. \end{array} \right.$

Consider the scattering problem with $k \in ((N-1)\pi; N\pi), N \in \mathbb{N}^*$



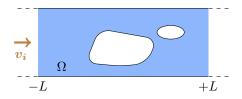
 $\begin{array}{lll} \mbox{Find} \ v = v_i + v_s \ {\rm s.} \ {\rm t.} \\ \Delta v + k^2 v &= 0 & \mbox{in} \ \Omega, \\ \partial_n v &= 0 & \mbox{on} \ \partial \Omega, \\ v_s \ {\rm is \ outgoing.} \end{array}$

• For this problem, the modes are

 $\begin{array}{l} \mbox{Propagating} & \left| \begin{array}{l} w_n^{\pm}(x,y) = e^{\pm i\beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{k^2 - n^2 \pi^2}, \ n \in \llbracket 0, N-1 \rrbracket \\ \mbox{Evanescent} & \left| \begin{array}{l} w_n^{\pm}(x,y) = e^{\mp \beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{n^2 \pi^2 - k^2}, \ n \ge N. \end{array} \right. \end{array}$

• Set
$$v_i = \sum_{n=0}^{N-1} \alpha_n w_n^+$$
 for some given $(\alpha_n)_{n=0}^{N-1} \in \mathbb{C}^N$.

Consider the scattering problem with $k \in ((N-1)\pi; N\pi), N \in \mathbb{N}^*$



 $\begin{array}{lll} \mbox{Find} \ v = v_i + v_s \ {\rm s.} \ {\rm t.} \\ \Delta v + k^2 v &= 0 & {\rm in} \ \Omega, \\ \partial_n v &= 0 & {\rm on} \ \partial \Omega, \\ v_s \ {\rm is \ outgoing.} \end{array}$

• For this problem, the modes are

 $\begin{array}{l} \mbox{Propagating} & \left| \begin{array}{l} w_n^{\pm}(x,y) = e^{\pm i\beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{k^2 - n^2 \pi^2}, \ n \in \llbracket 0, N-1 \rrbracket \\ \mbox{Evanescent} & \left| \begin{array}{l} w_n^{\pm}(x,y) = e^{\mp \beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{n^2 \pi^2 - k^2}, \ n \ge N. \end{array} \right. \end{array}$

• Set
$$v_i = \sum_{n=0}^{N-1} \alpha_n w_n^+$$
 for some given $(\alpha_n)_{n=0}^{N-1} \in \mathbb{C}^N$.

• v_s is outgoing \Leftrightarrow $v_s = \sum_{n=0}^{+\infty} \gamma_n^{\pm} w_n^{\pm}$ for $\pm x \ge L$, with $(\gamma_n^{\pm}) \in \mathbb{C}^{\mathbb{N}}$.

Goal of the section

DEFINITION: v is a non reflecting mode if v_s is expo. decaying for $x \leq -L$ $\Leftrightarrow \quad \gamma_n^- = 0, \ n \in [\![0, N-1]\!] \quad \Leftrightarrow \quad \text{energy is completely transmitted.}$

For a given geometry, we present a method to find values of k such that there is a non reflecting mode v.

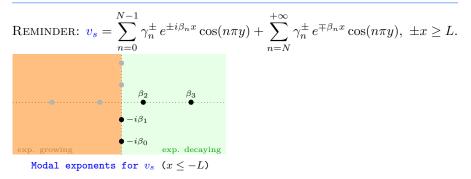
Goal of the section

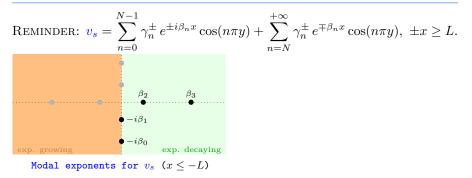
DEFINITION: v is a non reflecting mode if v_s is expo. decaying for $x \leq -L$ $\Leftrightarrow \quad \gamma_n^- = 0, \ n \in [\![0, N-1]\!] \quad \Leftrightarrow \quad \text{energy is completely transmitted.}$

GOAL

For a given geometry, we present a method to find values of k such that there is a non reflecting mode v.

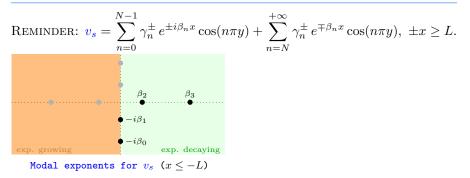
 \rightarrow Note that non reflection occurs for **particular** v_i to be computed.





For $\theta \in (0; \pi/2)$, consider the complex change of variables

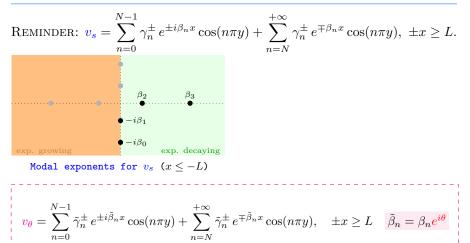
$$\mathcal{I}_{\theta}(x) = \begin{vmatrix} -L + (x+L) e^{i\theta} & \text{for } x \leq -L \\ x & \text{for } |x| < L \\ +L + (x-L) e^{i\theta} & \text{for } x \geq L. \end{vmatrix}$$



• For $\theta \in (0; \pi/2)$, consider the complex change of variables

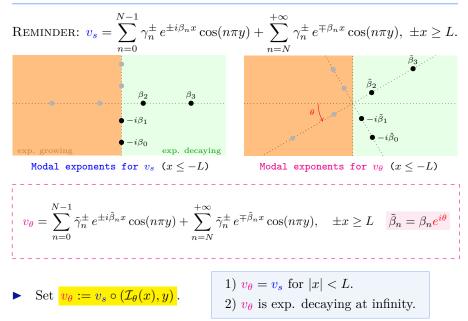
$$\mathcal{I}_{\theta}(x) = \begin{vmatrix} -L + (x+L) e^{i\theta} & \text{for } x \leq -L \\ x & \text{for } |x| < L \\ +L + (x-L) e^{i\theta} & \text{for } x \geq L. \end{vmatrix}$$

• Set $v_{\theta} := v_s \circ (\mathcal{I}_{\theta}(x), y)$.



• Set
$$v_{\theta} := v_s \circ (\mathcal{I}_{\theta}(x), y)$$
.

1)
$$v_{\theta} = v_s$$
 for $|x| < L$.
2) v_{θ} is exp. decaying at infinity.



 \triangleright v_{θ} solves

(*)
$$\left| \begin{array}{c} \alpha_{\theta} \frac{\partial}{\partial x} \left(\alpha_{\theta} \frac{\partial v_{\theta}}{\partial x} \right) + \frac{\partial^2 v_{\theta}}{\partial y^2} + k^2 v_{\theta} = 0 \quad \text{in } \Omega \\ \partial_n v_{\theta} = -\partial_n v_i \quad \text{on } \partial \Omega. \end{array} \right.$$

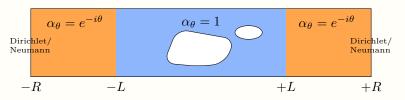
2/2

 \triangleright v_{θ} solves

$$\mathbf{s}\left[(\ast) \middle| \begin{array}{c} \alpha_{\theta} \frac{\partial}{\partial x} \left(\alpha_{\theta} \frac{\partial v_{\theta}}{\partial x} \right) + \frac{\partial^{2} v_{\theta}}{\partial y^{2}} + k^{2} v_{\theta} = 0 \quad \text{in } \Omega \\ \partial_{n} v_{\theta} = -\partial_{n} v_{i} \quad \text{on } \partial\Omega. \end{array} \right.$$
$$\alpha_{\theta}(x) = 1 \text{ for } |x| < L \qquad \alpha_{\theta}(x) = e^{-i\theta} \text{ for } |x| \ge L$$

•
$$v_{\theta}$$
 solves $\left| \begin{pmatrix} * \\ \end{pmatrix} \right| \left| \begin{array}{c} \alpha_{\theta} \frac{\partial}{\partial x} \left(\alpha_{\theta} \frac{\partial v_{\theta}}{\partial x} \right) + \frac{\partial^2 v_{\theta}}{\partial y^2} + k^2 v_{\theta} = 0 \quad \text{in } \Omega \\ \partial_n v_{\theta} = -\partial_n v_i \quad \text{on } \partial\Omega. \end{array} \right|$
 $\alpha_{\theta}(x) = 1 \text{ for } |x| < L \qquad \alpha_{\theta}(x) = e^{-i\theta} \text{ for } |x| \ge L$

• Numerically we solve (*) in the truncated domain



 \Rightarrow We obtain a good approximation of v_s for |x| < L.

• This is the method of Perfectly Matched Layers (PMLs).

Spectral analysis

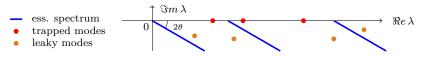
• Define the operators A, A_{θ} of $L^{2}(\Omega)$ such that

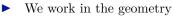
$$Av = -\Delta v, \qquad A_{\theta}v = -\left(\alpha_{\theta}\frac{\partial}{\partial x}\left(\alpha_{\theta}\frac{\partial v}{\partial x}\right) + \frac{\partial^2 v}{\partial y^2}\right) \qquad + \partial_n v = 0 \text{ on } \partial\Omega.$$

$$A_{\theta} \text{ is not selfadjoint. } \sigma(A_{\theta}) \subset \{\rho e^{i\gamma}, \ \rho \ge 0, \ \gamma \in [-2\theta; 0]\}.$$

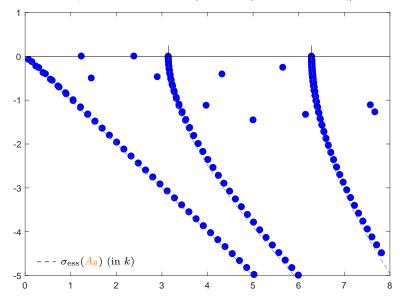
$$\sigma_{\text{occ}}(A_{\theta}) = \bigcup_{n \in \mathbb{N}} \{n^2 \pi^2 + t e^{-2i\theta}, \ t \ge 0\}.$$

• real eigenvalues of A_{θ} = real eigenvalues of A.



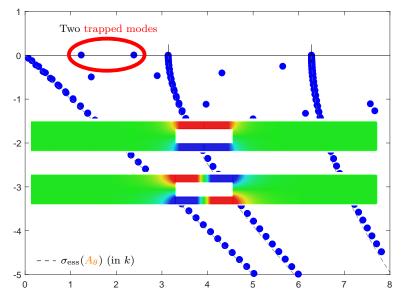


• Discretized spectrum of A_{θ} in k (not in k^2). We take $\theta = \pi/4$.



34 / 45

• Discretized spectrum of A_{θ} in k (not in k^2). We take $\theta = \pi/4$.



34 / 45

• Usual complex scaling selects scattered fields which are

outgoing at $-\infty$ and outgoing at $+\infty$.

IMPORTANT REMARK: general v decompose as

$$v = v_i + \sum_{n=0}^{N-1} \gamma_n^- w_n^- + \sum_{n=N}^{+\infty} \gamma_n^- w_n^- \quad x \le -L, \quad v = \sum_{n=0}^{+\infty} \gamma_n^+ w_n^+ \quad x \ge L.$$

• Usual complex scaling selects scattered fields which are

outgoing at $-\infty$ and outgoing at $+\infty$.

IMPORTANT REMARK: **non reflecting** v decompose as

$$v = v_i + \sum_{n=0}^{\infty-1} w_n w_n^- + \sum_{n=N}^{+\infty} \gamma_n^- w_n^- \quad x \le -L, \quad v = \sum_{n=0}^{+\infty} \gamma_n^+ w_n^+ \quad x \ge L.$$

• Usual complex scaling selects scattered fields which are

outgoing at $-\infty$ and outgoing at $+\infty$.

IMPORTANT REMARK: **non reflecting** v decompose as

$$v = \sum_{n=0}^{N-1} \alpha_n w_n^+ + \sum_{n=N}^{+\infty} \gamma_n^- w_n^- \quad x \le -L, \quad v = \sum_{n=0}^{+\infty} \gamma_n^+ w_n^+ \quad x \ge L.$$

• In other words, **non reflecting** v are

ingoing at $-\infty$ and outgoing at $+\infty$.

• Usual complex scaling selects scattered fields which are

outgoing at $-\infty$ and outgoing at $+\infty$.

IMPORTANT REMARK: **non reflecting** v decompose as

$$v = \sum_{n=0}^{N-1} \alpha_n w_n^+ + \sum_{n=N}^{+\infty} \gamma_n^- w_n^- \quad x \le -L, \quad v = \sum_{n=0}^{+\infty} \gamma_n^+ w_n^+ \quad x \ge L.$$

 \blacktriangleright In other words, **non reflecting** v are

ingoing at $-\infty$ and outgoing at $+\infty$.

Let us **change the sign** of the complex scaling at $-\infty$!

• For $\theta \in (0; \pi/2)$, consider the complex change of variables

$$\mathcal{J}_{\theta}(x) = \begin{vmatrix} -L + (x+L) & e^{-i\theta} & \text{for } x \leq -L \\ x & \text{for } |x| < L \\ +L + (x-L) & e^{+i\theta} & \text{for } x \geq L. \end{vmatrix}$$

• For $\theta \in (0; \pi/2)$, consider the complex change of variables

$$\mathcal{J}_{\theta}(x) = \begin{vmatrix} -L + (x+L) & e^{-i\theta} & \text{for } x \leq -L \\ x & \text{for } |x| < L \\ +L + (x-L) & e^{+i\theta} & \text{for } x \geq L. \end{vmatrix}$$
Set $u_{\theta} := v \circ (\mathcal{J}_{\theta}(x), y)$.

$$1) \ u_{\theta} = v \text{ for } |x| < L.$$

$$2) \ u_{\theta} \text{ is exp. decaying at infinity.}$$

$$\underbrace{\bullet^{-i\beta_{0}}_{\beta_{2}} & \bullet_{\beta_{3}}_{\beta_{3}}}_{\beta_{3}} \\ exp. \text{ growing} & exp. \text{ decaying} \\ \text{Modal exponents for } v \ (x \leq -L) \\ \end{bmatrix}$$
Modal exponents for $u_{\theta} \ (x \leq -L)$

• For $\theta \in (0; \pi/2)$, consider the complex change of variables

$$\mathcal{J}_{\theta}(x) = \begin{vmatrix} -L + (x+L) e^{-i\theta} & \text{for } x \leq -L \\ x & \text{for } |x| < L \\ +L + (x-L) e^{+i\theta} & \text{for } x \geq L. \end{vmatrix}$$
Set $u_{\theta} := v \circ (\mathcal{J}_{\theta}(x), y)$.
$$\begin{array}{c} 1 & u_{\theta} = v \text{ for } |x| < L. \\ 2 & u_{\theta} \text{ is exp. decaying at infinity.} \end{aligned}$$

$$\begin{array}{c} \bullet -i\beta_{1} & \bullet \\ \bullet -i\beta_{1} & \bullet \\ \beta_{2} & \beta_{3} & \bullet \\ \theta & \theta & \theta \\ \end{array}$$
Modal exponents for $v \ (x \leq -L) & \text{Modal exponents for } u_{\theta} \ (x \leq -L) \\ u_{\theta} \text{ solves } \hline (*) & \beta_{\theta} \frac{\partial}{\partial x} \left(\beta_{\theta} \frac{\partial u_{\theta}}{\partial x}\right) + \frac{\partial^{2} u_{\theta}}{\partial y^{2}} + k^{2} u_{\theta} = 0 & \text{in } \Omega \\ \partial_{n} u_{\theta} = 0 & \text{on } \partial \Omega. \end{aligned}$

• For $\theta \in (0; \pi/2)$, consider the complex change of variables

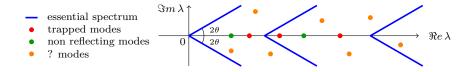
35 / 45

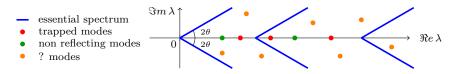
Spectral analysis

• Define the operator B_{θ} of $L^2(\Omega)$ such that

$$B_{\theta}v = -\left(\beta_{\theta}\frac{\partial}{\partial x}\left(\beta_{\theta}\frac{\partial v}{\partial x}\right) + \frac{\partial^2 v}{\partial y^2}\right) \qquad + \partial_n v = 0 \text{ on } \partial\Omega.$$

■ B_{θ} is not selfadjoint. $\sigma(B_{\theta}) \subset \{\rho e^{i\gamma}, \rho \ge 0, \gamma \in [-2\theta; 2\theta]\}.$ ■ $\sigma_{\text{ess}}(B_{\theta}) = \bigcup_{n \in \mathbb{N}} \{n^2 \pi^2 + t e^{-2i\theta}, t \ge 0\} \cup \{n^2 \pi^2 + t e^{2i\theta}, t \ge 0\}.$ ■ real eigenvalues of B_{θ} = real eigenvalues of A+non reflecting k^2 .

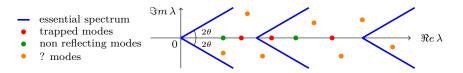




1) • ? modes correspond to solutions of the Helmholtz equation which are exp. growing at one side of Ω , exp. decaying at the other.

Different from leaky modes which are exp. growing both at $\pm \infty$...

2) It is not simple to prove that $\sigma(B_{\theta}) \setminus \sigma_{\text{ess}}(B_{\theta})$ is discrete.



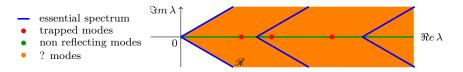
1) • ? modes correspond to solutions of the Helmholtz equation which are exp. growing at one side of Ω , exp. decaying at the other.

Different from leaky modes which are exp. growing both at $\pm \infty$...

2) It is not simple to prove that $\sigma(B_{\theta}) \setminus \sigma_{\text{ess}}(B_{\theta})$ is discrete.

 \rightarrow Not true in general!

 $e^{ikx} \circ \mathcal{J}_{\theta}$ is an eigenfunction for all $k \in \mathscr{R}$.



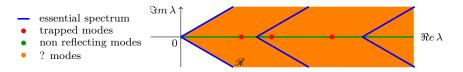
1) • ? modes correspond to solutions of the Helmholtz equation which are exp. growing at one side of Ω , exp. decaying at the other.

Different from leaky modes which are exp. growing both at $\pm \infty$...

2) It is not simple to prove that $\sigma(B_{\theta}) \setminus \sigma_{\text{ess}}(B_{\theta})$ is discrete.

 \rightarrow Not true in general!

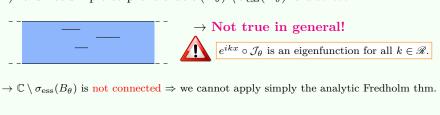
 $e^{ikx} \circ \mathcal{J}_{\theta}$ is an eigenfunction for all $k \in \mathscr{R}$.

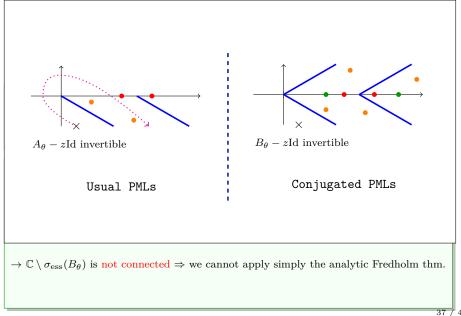


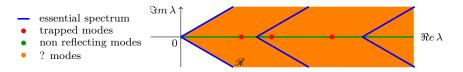
1) • ? modes correspond to solutions of the Helmholtz equation which are exp. growing at one side of Ω , exp. decaying at the other.

Different from leaky modes which are exp. growing both at $\pm \infty$...

2) It is not simple to prove that $\sigma(B_{\theta}) \setminus \sigma_{\text{ess}}(B_{\theta})$ is discrete.



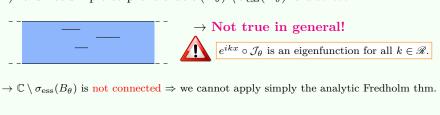


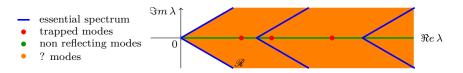


1) • ? modes correspond to solutions of the Helmholtz equation which are exp. growing at one side of Ω , exp. decaying at the other.

Different from leaky modes which are exp. growing both at $\pm \infty$...

2) It is not simple to prove that $\sigma(B_{\theta}) \setminus \sigma_{\text{ess}}(B_{\theta})$ is discrete.





1) • ? modes correspond to solutions of the Helmholtz equation which are exp. growing at one side of Ω , exp. decaying at the other.

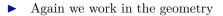
Different from leaky modes which are exp. growing both at $\pm \infty$...

2) It is not simple to prove that $\sigma(B_{\theta}) \setminus \sigma_{\text{ess}}(B_{\theta})$ is discrete.

 $\rightarrow \mathbb{C} \setminus \sigma_{\text{ess}}(B_{\theta}) \text{ is not connected} \Rightarrow \text{ we cannot apply simply the analytic Fredholm thm.}$ $\rightarrow \text{A compact perturbation can change drastically the spectrum (} \frac{B_{\theta} \text{ is not selfadjoint}}{B_{\theta} \text{ is not selfadjoint}}).$ Numerical consequences?

 \rightarrow Not true in general!

 $e^{ikx} \circ \mathcal{J}_{\theta}$ is an eigenfunction for all $k \in \mathscr{R}$.



• Define the operators \mathcal{P} (Parity), \mathcal{T} (Time reversal) such that

$$\mathcal{P}v(x,y) = v(-x,y)$$
 and $\mathcal{T}v(x,y) = \overline{v(x,y)}$.

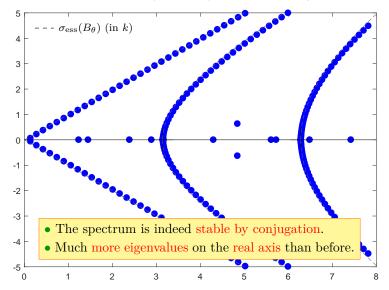
PROP.: For symmetric $\Omega = \{(-x, y) | (x, y) \in \Omega\}, B_{\theta} \text{ is } \mathcal{PT} \text{ symmetric:}$

 $\mathcal{PT}B_{\theta}\mathcal{PT} = B_{\theta}.$

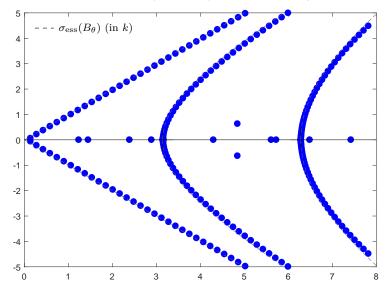
As a consequence, $\sigma(B_{\theta}) = \overline{\sigma(B_{\theta})}$.

 \Rightarrow If λ is an "isolated" eigenvalue located close to the real axis, then $\lambda \in \mathbb{R}$!

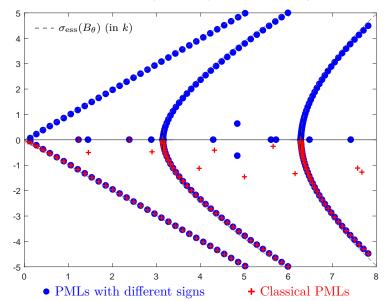
• Discretized spectrum in k (not in k^2). We take $\theta = \pi/4$.



• Discretized spectrum in k (not in k^2). We take $\theta = \pi/4$.

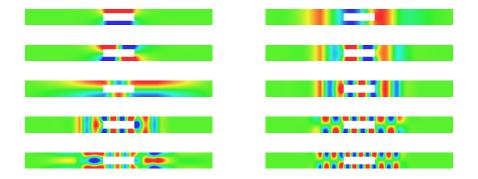


• Discretized spectrum in k (not in k^2). We take $\theta = \pi/4$.



38 / 45

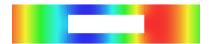
• We display the eigenmodes for the ten first real eigenvalues in the whole computational domain (including PMLs).



• Let us focus on the eigenmodes such that $0 < k < \pi$.

First trapped mode k = 1.2355...

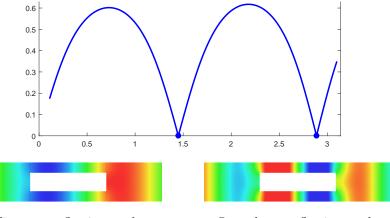
Second trapped mode k = 2.3897...



First non reflecting mode k = 1.4513...

Second non reflecting mode k = 2.8896...

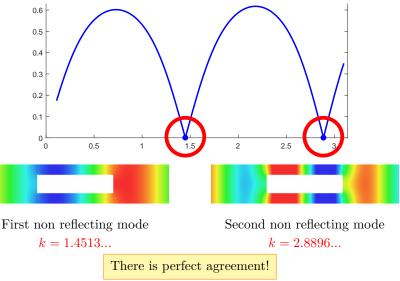
• To check our results, we compute $k \mapsto |R(k)|$ for $0 < k < \pi$.



First non reflecting mode k = 1.4513...

Second non reflecting mode k = 2.8896...

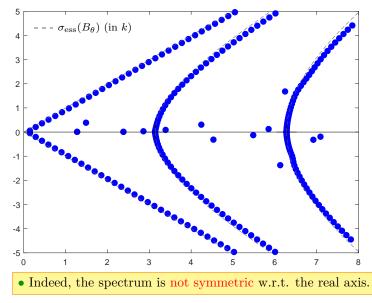
• To check our results, we compute $k \mapsto |R(k)|$ for $0 < k < \pi$.



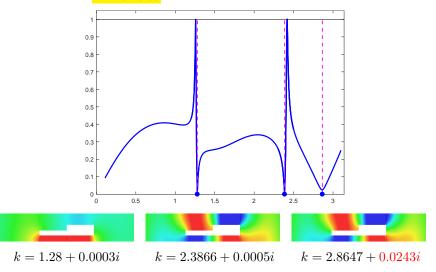
• Now the geometry is not symmetric in x nor in y:

- The operator B_{θ} is no longer \mathcal{PT} -symmetric and we expect:
 - No trapped modes
 - No invariance of the spectrum by complex conjugation.

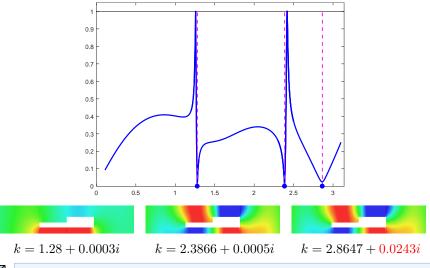
• Discretized spectrum of B_{θ} in k (not in k^2). We take $\theta = \pi/4$.



• We compute $k \mapsto |R(k)|$ for $0 < k < \pi$.



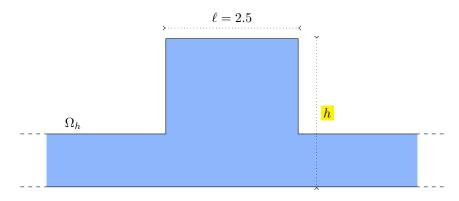
• We compute $k \mapsto |R(k)|$ for $0 < k < \pi$.



Complex eigenvalues also contain information on almost no reflection.

Spectra for a changing geometry

▶ Two series of computations: one with PMLs with different sign, one with classical PMLs. We compute the spectra for $h \in (1.3; 8)$.



The magenta marks on the real axis correspond to $k = \pi/\ell \& k = 2\pi/\ell$. For $k = 2\pi/\ell$, trapped modes and T = 1 should occur for certain h.

• We zoom at the region
$$0 < \Re e k < \pi$$
.

* PMLs with different signs

+ Classical PMLs

Outline of the talk

First constructive method

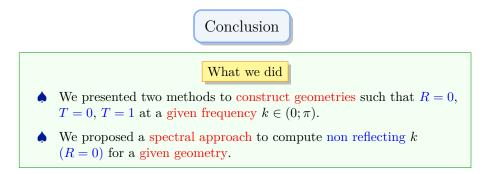
k is given, we use perturbative techniques to construct geometries such that R = 0 or T = 1.

2 Second constructive method

k is given, we use an approach based on symmetries to construct geometries such that R = 0, T = 1 or T = 0 and even a bit more...

A spectral approach to determine non reflecting wavenumbers

For a given geometry, we explain how to find non reflecting k solving a spectral problem.



Future work

- 1) How to construct invisible or completely reflecting defects for a given $k > \pi$ (several propagating modes)?
- 2) Can we find a spectral approach to compute completely reflecting or completely invisible k for a given geometry?
- 3) Can we prove existence of non reflecting k for the \mathcal{PT} -symmetric pb?
- 4) Can we work in free space with a finite number of directions? on other equations (electromagnetism, elasticity,...)?

Thank you for your attention!