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General setting

» We are interested in the propagation of waves in acoustic waveguides.

» In this talk, we study questions of invisibility.

Can we find situations where waves
go through like if there were no defect ®

e One can wish to have good energy transmission through the structure.

e One can wish to hide objects.
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Waveguide problem

» Scattering in time-harmonic regime of a plane wave in the acoustic
waveguide  coinciding with {(z,y) € R x (0;1)} outside a compact region.

Find v = v; + v, s. t.

Av+Ek*n = 0 inQ,
Opv = 0 ondQ,
Vs is outgoing.
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Waveguide problem

» Scattering in time-harmonic regime of a plane wave in the acoustic
waveguide 2 coinciding with {(z,y) € R x (0;1)} outside a compact region.

Find v = v; + v, s. t.

Av+Ek*n = 0 inQ,
Opv = 0 ondQ,
Vs is outgoing.

» For this problem, the modes are

Propagating | wi(x,y) = e*"#% cos(nmy), Bn = VEZ —n2n2, nc [0,N — 1]
Evanescent | w¥(z,y) = e¥#2% cos(nmy), B, = Vn2n2 — k2, n > N.
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Waveguide problem

» Scattering in time-harmonic regime of a plane wave in the acoustic
waveguide 2 coinciding with {(z,y) € R x (0;1)} outside a compact region.

Find v = v; + vy s. t.

Av+k*n = 0 inQ,
Opv = 0 ondQ,
v is outgoing.

» For ke (0;),

only 2 propagating modes w* = e /2 Vok. ‘
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» Scattering in time-harmonic regime of a plane wave in the acoustic
waveguide 2 coinciding with {(z,y) € R x (0;1)} outside a compact region.

Find v = v; + v, s. t.
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Opv = 0 ondQ,
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Waveguide problem

» Scattering in time-harmonic regime of a plane wave in the acoustic
waveguide 2 coinciding with {(z,y) € R x (0;1)} outside a compact region.

Find v = v; + v, s. t.

Av+Ek*n = 0 inQ,
Opv = 0 ondQ,
Vs is outgoing.

—_—

wT

—L +L
» For ke (0;n),

only 2 propagating modes wt = e*%= /1/2 ‘ Set v; = w™.

» o, is outgoing <& vy = sTwt + 05 for x> L,

with s* € C, 05 exponentially decaying at +oo.
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Waveguide problem

» Scattering in time-harmonic regime of a plane wave in the acoustic
waveguide 2 coinciding with {(z,y) € R x (0;1)} outside a compact region.

Find v = v; + v, s. t.

Av+Ek*n = 0 inQ,
Opv = 0 ondQ,
Vs is outgoing.

—L +L
» For ke (0;n),

only 2 propagating modes wt = e*%= /1/2 ‘ Set v; = w™.

» v, is outgoing & vy = sTwt + v, for +x > L,

with s* € C, 05 exponentially decaying at +oo.

DEFINITION: | v; = incident field
v = total field
vy = scattered field.
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Invisibility and complete reflectivity

» At infinity, one measures the reflection coefficient R = s~ and/or the
transmission coefficient 7'= 1+ s* (other terms are too small).

» From conservation of energy, one has

IR|> + |T)? = 1.
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Invisibility and complete reflectivity

» At infinity, one measures the reflection coefficient R = s~ and/or the
transmission coefficient 7'= 1+ s* (other terms are too small).

» From conservation of energy, one has

|R1> +|T|* = 1.

non reflecting if R=0 (|7 = 1)

DEFINITION: Defect is said Sy sl B — (06— )

@ For T' =1, defect cannot be detected from far field measurements.

REMARK: less ambitious than usual
cloaking and therefore, more accessi-
ble. Also relevant for applications.

o
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Invisibility and complete reflectivity

» At infinity, one measures the reflection coefficient R = s~ and/or the
transmission coefficient 7'= 1+ s* (other terms are too small).

» From conservation of energy, one has

IR|> + |T)? = 1.

_ ... | non reflecting if R =0 (|7 =1)
DEFINITION: Defect is said ety fo ATl ST 1L (8 — )
completely reflecting if T'=0 (|R| = 1).

@ For T' =1, defect cannot be detected from far field measurements

@ For T = 0, defect is like a mirror.

We explain how to find waveguides such that
GOAL
R=0(T)=1), T=1(R=0) or T=0(|R| =1).
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Outline of the talk

@ First constructive method

k is given, we use perturbative techniques to construct geometries such
that R=0or T =1.

© Second constructive method

k is given, we use an approach based on symmetries to construct geome-
tries such that R =0, 7 =1 or T'= 0 and even a bit more...

e A spectral approach to determine non reflecting wavenumbers

For a given geometry, we explain how to find non reflecting & solving a
spectral problem.
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Outline of the talk

@ First constructive method

k is given, we use perturbative techniques to construct geometries such
that R=0or T =1.
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General picture

» Perturbative technique: we construct small non reflecting defects using
variants of the implicit functions theorem.
1+ h(z)

R=0 R=0

» The idea was used in Nazarov 11 to construct waveguides for which
there are embedded eigenvalues in the continuous spectrum.

7 /45



Sketch of the method

» For h € 65°(R), set R = R(h) € C. i _-H_him)
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Sketch of the method

» For h € 65°(R), set R = R(h) € C. - 1+ h(z)

Note that R(O) =0

(no obstacle leads to null measurements). o o

‘Our goal: to find h € €5°(R) such that R(h) =0 (with h # 0)‘

»  We look for small perturbations of the reference medium: i = ¢y where
€ > 0 is a small parameter and where p has be to determined.
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Sketch of the method

» For h € 65°(R), set R = R(h) € C. - 1+ h(z)

Note that R(O) =0

(no obstacle leads to null measurements).

Our goal: to find h € €°(R) such that R(h) = 0 (with h # 0).

» Taylor: R(ep) = R(0) + edR(0)(1) + 2R (1)
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Sketch of the method

» For h € 6°(R), set R = R(h) € C. - 1+ h(z)

Note that R(O) =0

(no obstacle leads to null measurements).

Our goal: to find h € €°(R) such that R(h) = 0 (with h # 0).

» Taylor: R(ep) = edR(0)(p) + 2R ().

‘Assume that dR(0) : €5°(R) — C is onto. ‘
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Sketch of the method

» For h € 65°(R), set R = R(h) € C. __ 1+ h(x)

Note that R(0) = 0

(no obstacle leads to null measurements). o B

Our goal: to find h € €5°(R) such that R(h) = 0 (with h # 0).
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Sketch of the method

» For h € 65°(R), set R = R(h) € C. __ 1+ h(x)

Note that R(0) = 0

(no obstacle leads to null measurements). o B

Our goal: to find h € €5°(R) such that R(h) = 0 (with h # 0).

» Taylor: R(ep) = edR(0)(p) + 2R ().

Assume that dR(0) : €5°(R) — C is onto. ‘

Jo, pa, p2 € 657 (R) s.t. dR(0) (o) = 0, dR(0)(p1) = 1 and dR(0)(p2) = i.

» Take p = pg + 7141 + 7oz where the 7, are real parameters to set:
T

= (7—13 7_2)

> (= 7? ~ ~
0=R(ep) <« |F=G(7) where| . 7) = —e(Re R (1), Im R (p)) .
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Sketch of the method

» For h € 65°(R), set R = R(h) € C. __ 1+ h(x)

Note that R(0) = 0

(no obstacle leads to null measurements). o B

Our goal: to find h € €5°(R) such that R(h) = 0 (with h # 0).

» Taylor: R(ep) = edR(0)(p) + 2R ().

Assume that dR(0) : €5°(R) — C is onto. ‘
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0=R(ep) o |7=G(7)| where| 7= (107
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If G¢ is a contraction, the fixed-point equation has a unique solution 75°

Ge(7) = —e(Re R (), Sm Re () "
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Sketch of the method

» For h € 65°(R), set R = R(h) € C. __ 1+ h(x)

Note that R(0) = 0

(no obstacle leads to null measurements). o B

Our goal: to find h € €5°(R) such that R(h) = 0 (with h # 0).

» Taylor: R(ep) = edR(0)(p) + 2R ().

Assume that dR(0) : €5°(R) — C is onto. ‘

Jo, pa, p2 € 657 (R) s.t. dR(0) (o) = 0, dR(0)(p1) = 1 and dR(0)(p2) = i.

» Take p = pg + 7141 + 7oz where the 7, are real parameters to set:
T

T= (7'1,7'2)
Ge(7) = —e(Re R (), Sm Re () "

0=R(en) < | T=G(7)| where

If G¢ is a contraction, the fixed-point equation has a unique solution 73!

Set A%l := eu°l. We have R(h*!) = 0 (non reflecting perturbation).
87 45



Calculus of the differential

1+ ep(x)

» Using classical results of asymptotic analysis, we obtain

R(ep) =0+¢ (—% /_i g () (wh (z,1))? d:r) +0(e%).
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Calculus of the differential

1+ ep(x)

» Using classical results of asymptotic analysis, we obtain

0
R(ep) =0+¢ (—% /_e Bpp(z) (w (z,1))? dx> +0(e).
dR(0)(p)

dR(0) : 5°(R) — C is onto = we can get non trivial  s.t. R =0.
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Calculus of the differential

1+ ep(w)

QE

» Using classical results of asymptotic analysis, we obtain

0
R(&/,L) =0 + e (—% /_Z 8wu(];)(w+(x, 1))2 d],‘) + 0(82)~
dR(0)(p)

dR(0) : 65°(R) — C is onto = we can get non trivial 2 s.t. R = 0.

» Can we use the technique to construct €2 such that "= 17
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Calculus of the differential
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QE

» Using classical results of asymptotic analysis, we obtain

4
R(ep) =0+¢ (—; /_[ O i(z) (W (z, 1))2 dx) + 0(62)~
dR(0)(n)

dR(0) : 65°(R) — C is onto = we can get non trivial 2 s.t. R = 0.
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T(ep) —1=0+4¢ 0 + O(£?).
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Calculus of the differential

1+ ep(w)

Q&

» Using classical results of asymptotic analysis, we obtain

0
R(&/,L) =0 + e (—% /_Z 8wu(];)(w+(aj, 1))2 d],‘) + 0(82)~
dR(0)(p)

dR(0) : 65°(R) — C is onto = we can get non trivial 2 s.t. R = 0.

» Can we use the technique to construct €2 such that T'= 17 We obtain
T(ep) —1=0+¢0 + O(£?).

A dT'(0) is |not onto| = the approach fails to impose T = 1.

9/ 45



A perturbative method to get T'=1

» We study the same problem in the geometry °

>,

> Weobtain R = o+e(z‘kZizl(w(Mn))%an(khn))+0(s2)

T = 1+e (i/2505, tan(khy)) +O()
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A perturbative method to get T'=1

» We study the same problem in the geometry °

> Weobtain R = o+e(ikzizl(w(Mn))%an(khn))+0(s2)

T

1+ (i/250_, tan(bhy)) +O0()

1) We can find My, h, such that R = 0(¢?) and T =1+ O(¢?).




A perturbative method to get T'=1

» We study the same problem in the geometry °

3
c >,

ha hs

QE

> Weobtain R = 0+5(ikZiZl(w+(Mn))2tan(khn))+O(62)

T

1+e (i/? 2 tan(khn)) +O(e2)

1) We can find My, h, such that R = O(¢®) and T =1+ O(£?) .

2) Then changing hy into hn + 7o, and choosing a good T = (71,72,73) € R3
(fized point), we can get R =0 and SmT =0.

/
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A perturbative method to get T'=1

» We study the same problem in the geometry °

g
c >,

ha hs

QE

> Weobtain R = o+e(ikzizl(m(Mn)Ftan(khn))+0(e2)

T

1+e (i/? 2 tan(khn)) +O(e2)

1) We can find My, hyn, such that R = O(e?) and T =14 O(¢?).

2) Then changing hy, into hy, + T, and choosing a good T = (11,72, 73) € R?
(fized point), we can get R =0 and SmT =0.

3) Energy conservation + [T =14+0()] = T=1.

/
[
®
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Numerical results

» Perturbed waveguide (Re (v(

z,y)e "))
0.45
—20.22
s i |
2
0
> Reference waveguide (Re (v;(z,y)e”?))

0.45

=022
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Remark

» We could also have worked with gardens of flowers!
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Outline of the talk

© Sccond constructive method

k is given, we use an approach based on symmetries to construct geome-
tries such that R =0, T =1 or T = 0 and even a bit more...

First approach was perturbative.
How to get large invisible defects ®
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Geometrical setting

» We work in waveguides which are symmetric with respect to (Oy) and
which contain a branch of finite height .
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» We work in waveguides whic éetric with respect to (Oy) and

which contain a branch of finite

— We will study the behaviour of the coefficients R, T' € C as h — +oc.
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© Sccond constructive method

@ Main analysis
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Half-waveguide problems

» Consider a waveguide which is symmetric with respect (Oy) and which
contains a branch of finite height.
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—Av = kQ’U in Qh
0 on 082y,

&
<
|
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Half-waveguide problems

» Consider a waveguide which is symmetric with respect (Oy) and which
contains a branch of finite height.

—Av = kQ’U in Qh
Opv = 0 on 082y,
» Introduce the two half-waveguide problems
£/2
>‘/--< —Au = k’u in wp
Oywu = 0 on Owy,
_ wp —AU E2U  in wy
Neumann/ U = 0 on dwp, \ >,
_ Dirichlet U =0 on >,.
Zh
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Half-waveguide problems

» Consider a waveguide which is symmetric with respect (Oy) and which
contains a branch of finite height.

—Av = kQ’U in Qh
Opv = 0 on 99,
» Introduce the two half-waveguide problems
£/2
>/--< —Au = k’u in wp
Opu = 0 on Owy, Neumann B.C.
. wa —AU kU in wy
Neumann/ U = 0 on dwp \ ¥,
_ Dirichlet U = 0 on >;,. Mixed B.C.
Zh
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Relations for the scattering coefficients

» Half-waveguide problems admit the solutions

u = wt+RYw™ +1, with @ € H!(wy,) S

U=wr+RPw™ +T, with U € H*(wp,). Q
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Relations for the scattering coefficients

» Half-waveguide problems admit the solutions

u = wt+RYw™ +1, with @ € H!(wy,) -
U=wt+Rw +U, with U € H*(wp,). Q
RN - Rl)
» Due to conservation of energy, one has ,
N D
RY| = |RP| = 1.
+U —z,y) — U(—=,
» Using that v = “ inwp, v(z,y) = u=zy) 3 (czy) in Qp \ wn,
RN + RP RN — RP
we deduce that R= ——— and | T = ——.

2 2
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Relations for the scattering coefficients

» Half-waveguide problems admit the solutions

h
u = wt+RYw™ +1, with @ € H!(wy,) -
U=wt+RPw +70, with U € H (wp,). Q :
RD
» Due to conservation of energy, one has ,
N D
RY| = |RP| = 1. \
R
+U u(—z,y) — U(—x,
» Using that v = “ inwp, v(z,y) = (czy) 3 (czy) in Qp \ wn,
RN 4+ RD RN _ pP Non reflectivity
we deduce that R = — and [T = — o RN _ _RD

— Now, we study the behaviour of R = RY(h), R” = R”(h) as h — 4o0.
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Asymptotics of RV, R”

| Depends on the nb. of propagating modes in the vertical branch of wy,

L —Ap = kP inw
N oo
02 ) O = 0 on Owee
o W -Ap = K¢ inwe
S (2P| Gp = 0 on Oweo \ Yoo
L o p = 0 on >...
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Asymptotics of RY, RP

g | Depends on the nb. of propagating modes in the vertical branch of wes,

_ 12 :
)| o Z 07 onos
__ W -Ap = K¢ inwe
Q )Y (P2P)Y| Onp = 0 on dweo \ X
- - ¢ = 0 on > .

> ’Analysis for RP ‘

For £ € (057 /k), no prop. modes in the vertical branch of we, for (27)

= h — RP(h) tends to a constant on ¢ := {2z € C, |z| = 1}.
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Asymptotics of RY, RP

g | Depends on the nb. of propagating modes in the vertical branch of wes,

@] 5p 267 o
__ W -Ap = K¢ inwe
Q | 5 (PP)| O = 0 on Oweo \ o
- o v = 0 on Y.

> ‘Analysis for RP ‘

For £ € (057 /k), no prop. modes in the vertical branch of we, for (27)
= h — RP(h) tends to a constant on ¢ := {2z € C, |z| = 1}.

> ’Analysis for RN ‘

For £ € (0327 /k), 2 prop. modes in the vertical branch of w., for (2V)

= h + R™(h) runs continuously and almost periodically on €.
18 / 45



Conclusions for ¢ € (0;7/k), s12 # 0

: RN + RP RN — RP
» Reminder: | R = — and [T = —

PROPOSITION: Asympt. as h — +o0o, R and T run on circles of radius 1/2.
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Conclusions for ¢ € (0;7/k), s12 # 0

, RY + RP RN — RP
» Reminder: R = T — and T = — !

PROPOSITION: Asympt. as h — 400, R and 7' run on circles of radius 1/2.

PROPOSITION: There is an unbounded sequence (h,,) such that for h = h,,
RN = —RP and so R = 0 (non reflectivity).

PROPOSITION: There is an unbounded sequence (H,,) such that for h = H,,,
RN = RP and so T = 0 (complete reflectivity).

» Sequences (h,,) and (H,,) are almost periodic. As n — 400, we have

hpg1 —hp=7/k+... and Hps1 —Ho=7/k+....
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© Sccond constructive method

@ Numerical results
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Setting

» We compute numerically R, T for h € (2;10) in the geometry

» We use a P2 finite element method with Dirichlet-to-Neumann maps.

> Weset k=0.87and {=1¢€ (0;7/k).
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Numerical results

» Reflection coefficient R and transmission coefficient 7" for h € (2;10).

1-
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Non reflectivity

» Curve h — —In|R)|. Peaks correspond to non reflectivity.

8,
*
yas . ~ 71'/k X
*
6" * *
* * *
* " * * « .
5;igé . « %
x % %
w8 2 &
3; ¢ * : 3
27 03
1,
0,
_1 1 1 1 1 1 1 1 J
2 3 4 5 6 7 8 9 10
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Non reflectivity

» Total field v for A such that R = 0.

EU.QS
0.23

= [tf;
ININIRANINOINED .
» Scattered field vy.

Eﬂ.l
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0

d-l-l-l [:
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.1
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Non reflectivity

» Total field v for A such that R = 0.

» EMS

=0.23
II||| 0.00
-0.23
ININIFANINENn L.

» Scattered field vy.

Eﬂ.l
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0.
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allnim [
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Other non reflecting geometry

» Scattered field v,.
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Complete reflectivity

» Curve h— —In|T|. Peaks correspond to complete reflectivity.

4

35

3

25

2

15

1

* ~ T / k
< >
*
*
* *
*
* *
* *
*
*
* % * *
* #* *

* * *
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y *, *e o > .
*y o ok #£ < e

%
* * x% %

ot Nt N

)
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Complete reflectivity

» Total field v for h such that 7" = 0.
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The special case ¢ = 27 /k - perfect invisibility

» Now set £ = 27 /k in the geometry
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» Now set £ = 27 /k in the geometry

RN RP| | _RN-RP| RV RY
= —— an = |

» Westill h R
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*xu=wt +w” = C cos(kx) solves the Neum. pb. in w, = RN =1, Vh > 1.

x h + RP(h) still runs on the unit circle and goes through —1.
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The special case ¢ = 27 /k - perfect invisibility

» Now set £ = 27 /k in the geometry

RN RP| | _RN-RP| RV RY
= —— an = |

» Westill h R
e still have 5 5

*xu=wt +w” = C cos(kx) solves the Neum. pb. in w, = RN =1, Vh > 1.

x h + RP(h) still runs on the unit circle and goes through —1.

’There is a sequence (hy,) such that 7" =1 (perfect invisibility) ‘

26 / 45



The special case ¢ = 27 /k - perfect invisibility

» Works also in the geometry below (h is the height of the central branch).

» Perfectly invisible defect (¢ — Re (v —iwt)

0.42
Z0.21
_S.EE—DE
il ll.
e i L.

» Reference waveguide (¢ — Re (v(x,y)e “")).

0.42
Z0.21

3.8e-06

IO.ZI
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Outline of the talk

Q First constructive method

Q Second constructive method

0 A spectral approach to determine non reflecting wavenumbers
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Scattering problem

» Consider the scattering problem with & € (N — 1)m; N7), N € N*

Find v = v; + v, s. t.

Av+k?v = 0 inQ,
Opv = 0 on 99,
vg is outgoing.
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Av+k?v = 0 inQ,
Opv = 0 on 99,
vg is outgoing.

» For this problem, the modes are

Propagating | wk(z,y) = e*"#* cos(nmy), Bn = VEZ —n272, n € [0, N — 1]
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Opv = 0 on 99,

vg is outgoing.
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Scattering problem

» Consider the scattering problem with k& € ((N — 1)7; N7), N € N*

Find v = v; + v, s. t.

Av+k?v = 0 inQ,
Opv = 0 on 99,
vg is outgoing.

—L +L

» For this problem, the modes are

Propagating | wk(z,y) = e*"#* cos(nmy), Bn = VEZ —n272, n € [0, N — 1]
Evanescent | wi(x,y) = e¥9% cos(nmy), B, = vVn2n2 — k2, n > N.

N-1
» Setwv; = Z anw+ for some given (an) L eV,
n=0
» v, is outgoing & Z’yi £ for 42 > L, with (v*) e CN.
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Goal of the section

DEFINITION: v is a non reflecting mode if v is expo. decaying for z < —L
& v,=0,n€]0,N—1] < energy is completely transmitted.

For a given geometry, we present a method to find values of
k such that there is a non reflecting mode v.
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Goal of the section

DEFINITION: v is a non reflecting mode if v is expo. decaying for z < —L
& v,=0,n€]0,N—1] < energy is completely transmitted.

GOAL For a given geometry, we present a method to find values of
k such that there is a non reflecting mode v.

— Note that non reflection occurs for particular v; to be computed.
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Classical complex scaling to compute v, 1/2

N-1 400
REMINDER: v; = Z vE et cos(nmy) + Z vE TP cos(nmy), +x > L.
n=0 n=N

........................... ° Y
® —if31
® —ifo

exp. growing s exp. decaying

Modal exponents for vs (x < —L)
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Classical complex scaling to compute v, 1/2

N-1 400
REMINDER: v; = Z vE et cos(nmy) + Z vE TP cos(nmy), +x > L.
n=0 n=N

B2 B3
........................... ° Y
® —if31
® —ifo
exp. growing s exp. decaying

Modal exponents for vs (x < —L)

» For 0 € (0;7/2), consider the complex change of variables

—L+(x+L)e"? forx<-L
Ty(x) = x for x| < L
+L+ (x—L)e?  forz> L.
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» For 0 € (0;7/2), consider the complex change of variables
—L+(x+L)e"? forx<-L
Ty(x) = x for x| < L
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g 7 1) vg = v, for |z| < L.
> t = .
et v :=vs 0 (To(2), ) 2) vp is exp. decaying at infinity.
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Classical complex scaling to compute v, 1/2

+oo
REMINDER: v; = Z yE eEPn® cos(nmy) + Z vE TP cos(nmy), +x > L.

n=N
B2 B3
......................... : ° °
é—iﬂl
® —ifo
exp. growing exp. decaying
Modal exponents for vs (x < —L)
oSt m T m T m I mmmmmmmmmm “
: N ‘
o I
I 3. ~ 7
w 5E eXBn® cog(nm 5E €T cos(nm +r>L B, =pPne? |
| Tn y Tn Y), I
I n=0 n=N :
|
|
|

g 7 1) vg = v, for |z| < L.
> t = .
et v :=vs 0 (To(2), ) 2) vp is exp. decaying at infinity.
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Classical complex scaling to compute v, 1/2

+oo
REMINDER: v; = Z yE eEPn® cos(nmy) + Z vE TP cos(nmy), +x > L.

n=N )
B3 ..
.
B
L B2 B3 g °
........................ o o e
i 0\/ PR .
?—iﬂl e C @ —if3y
®—ifo . e —ijp
exp. growing exp. decaying
Modal exponents for vs (x < —L) Modal exponents for vy (x < —L)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, !
|
‘ |
I 400 |
I 3. ~ 7
w E 'yi ifnz T cos(nmy) + E FE eFPnT cos(nmy), Lx > L  Bp = Pne? |
|
I n=0 n=N :
|
|
|

g 7 1) vg = v, for |z| < L.
> t = .
et v := s 0 (To(2), ) 2) vp is exp. decaying at infinity.
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Classical complex scaling to compute v, 2/2

I k2”U9 0 in Q
Opvg = —Opv; omn ON.

6 (9’0() 82”0()
> vy solves | (%) 0‘9%(0‘9%) + 0y?
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Classical complex scaling to compute v,

>

g solves

6 (9’0() 82”0()
(%) ‘“%(“9%) * o2

+ k2”U9 =

8n1)9 =

0

_8nvi

in Q
on 0.

ag(xz) =1 for |z| < L

ag(x) = e~ for |z| > L

2/2
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Classical complex scaling to compute v,

2/2

(9 51}9 8 Vo 2 _ .
» vy solves (*) a"a—x<a98—x> + 3y + k vy 0 in Q
Onvyp = —0nv; on Of.
ag(z) =1for |z| < L ag(z) = =0 for 2| > L

e Numerically we solve () in the truncated domain

-R —L +L

= We obtain a good approximation of vy for |z| < L.

e This is the method of Perfectly Matched Layers (PMLs).

+R
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Spectral analysis

» Define the operators A, A, of L?(2) such that

Av = —Awv, Apv = —(ag aa ( gz) + %) + 9,v =0 on 99.

A is selfadjoint and positive.
0(A) = 0ess(A4) = [0; +00).
o(A) may contain embedded eigenvalues in the essential spectrum.

[Sm A
— ess. spectrum sm
P Re A

e trapped modes 0 ‘

Ay is not selfadjoint. o(A4y) C {pe, p >0, v € [-26;0]}.
chs(AG) = UnEN{n27r2 + tei2wv t> O}
= real eigenvalues of Ag = real eigenvalues of A.

Re A

— ess. spectrum
e trapped modes
o leaky modes
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Numerical results

» We work in the geometry
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Numerical results

» Discretized spectrum of

1

in k (not in k%). We take § = /4.

[ J
N ]
L] o ° %
.Q. .. ° [
® )
3 L ® 1
& Y
I % L
‘. .\. ‘.
S ) L
e [}
e . °
L ° ° .’ ,
L .
- - Gess(Ay) (in k) % % A ¢
! I I Q. \.\. I .
1 2 4 5 6 7 8
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Numerical results

» Discretized spectrum of A, in k (not in k?). We take § = /4.

1r T T T T T T T

Two trapped modes

- == 0ess(Ap) (in k)

5L I
0 1 2 3 4
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A new complex spectrum for non reflecting v

» Usual complex scaling selects scattered fields which are

outgoing at —oo and outgoing at +oo.

IMPORTANT REMARK: general v decompose as

N—-1 “+o00 “+o0
v:vi+27;w;+z'y;w; x < —L, U:Zfﬁ{w;f x> L.
n=0 n=N n=0
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1 “+o0 400
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A new complex spectrum for non reflecting v

» Usual complex scaling selects scattered fields which are

outgoing at —oo and outgoing at +o0.

IMPORTANT REMARK: non reflecting v decompose as
N—-1 +o00 +oco

v:Zanw:—i—ngw; z < —L, v:Z'y;fw: x> L.
n=0 n=N n=0

» In other words, non reflecting v are

ingoing at —oo and outgoing at +o00.

/

Let us change the sign of the complex scaling at —oc!

AN
s
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A new complex spectrum for non reflecting v

» For 6 € (0;7/2), consider the complex change of variables

~L+(x+L)e ™ forx<—L
Jo(z) = x for x| < L
+L+ (x—L) et  forx> L.
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A new complex spectrum for non reflecting v

» For 6 € (0;7/2), consider the complex change of variables
~L+(x+L)e ™ forx<—L
Jo(x) = x for |z| < L
+L+ (x—L) et  forx> L.
1) ugp = v for |z| < L.

> Set up:=vo (Jo(z),y).
2) uyg is exp. decaying at infinity.
571',80 . .“;iﬁo
®—iB IS e _ip
,,,,,,,,,,,,,,,,,,,,,,,, e o | e S
B2 Bs '
‘e
Bz

exp. growing exp. decaying : .
Modal exponents for v (z < —L) Modal exponents for ug (z < —L)
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A new complex spectrum for non reflecting v

>

For 6 € (0;7/2), consider the complex change of variables

—L+(z+1L)

Jo(x) = x

+L+ (z — L) et

Set wug :=wvo (Jp(x),y) .

exp. growing

' —iBo

® —if3
......... ° °
B2 B3

exp. decaying

Modal exponents for v (z < —L)

up solves

e @ forz<-—L

for x| < L

for x > L.

1) ugp = v for |z| < L.

2) uyg is exp. decaying at infinity.

------------- 79[ ® —ify

‘.C'Qiéo

{ Bz .
Modal exponents for ug (z < —L)

(%) 5(9 (59 &w)

82’119
8 2

I kz’LLg
Ong

‘®.

B2
=0 inQ
=0 on 0N.
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A new complex spectrum for non reflecting v

» For 6 € (0;7/2), consider the complex change of variables
~L+(x+L)e ™ forx<—L
Jo(z) = x for x| < L
+L+ (x—L) et  forx> L.
1) ugp = v for |z| < L.

> Set up:=vo (Jy(x),y).
2) uyg is exp. decaying at infinity.

®—i |
= . ®—ifo
e —if ' ‘o —if
........................ ° °
B2 B3 ‘e
B2 .
‘..
exp. growing exp. decaying Bs

Modal exponents for v (z < —L) Modal exponents for ug (z < —L)

8UG 82’119
> uy solves | (%) 56 (69 ) 0y?

+k%up =0 inQ
Opug = 0 on ON.

Bo(z) =1for [z < L, Bo(x)= €@ forx < —L, Bo(z)=e"" forz>1L 45 / 45



Spectral analysis

» Define the operator By of L?(Q) such that

Byv = —(ﬂe(% (ﬂe%) + 22;2}) + 0,v =0 on 0.

= By is not selfadjoint. o(By) C {pe®?, p >0, v € [—26;20]}.
® Oess(Bg) = Unen{n?n2 +te 29 t > 0} U {n2n2 +te? t > 0}.
» real eigenvalues of By = real eigenvalues of A+non reflecting k2.

essential spectrum
trapped modes

non reflecting modes
? modes

Re A\
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Remarks

— essential spectrum

e trapped modes

e non reflecting modes
® 7 modes

Re A

1) 7 modes correspond to solutions of the Helmholtz equation which are
exp. growing at one side of €2, exp. decaying at the other.

Different from leaky modes which are exp. growing both at £oo ...

2) It is not simple to prove that o(By) \ 0ess(Bg) is discrete.
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ek® o 7, is an eigenfunction for all k € Z.
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Remarks

X
By — zId invertible

e
Ay — zId invertible

Usual PMLs Conjugated PMLs

— C\ 0ess(By) is not connected = we cannot apply simply the analytic Fredholm thm.
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Remarks

— essential spectrum

e trapped modes

e non reflecting modes
® 7 modes

Re A

1) e ? modes correspond to solutions of the Helmholtz equation which are
exp. growing at one side of €2, exp. decaying at the other.

Different from leaky modes which are exp. growing both at £oo ...

2) It is not simple to prove that o(By) \ 0ess(Bg) is discrete.

N o — Not true in general!
A €% o 7, is an eigenfunction for all k € %"

— C\ 0ess(Bp) is not connected = we cannot apply simply the analytic Fredholm thm.

— A compact perturbation can change drastically the spectrum ( By is not selfadjoint ).

Numerical consequences?
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Numerical results

» Again we work in the geometry

» Define the operators P (Parity), 7 (Time reversal) such that

Po(z,y) =v(—z,y) and To(z,y)=v(z,y).

ProOP.: For symmetric Q = {(—=z,y) | (z,y) € Q}, By is PT symmetric:

PTByPT = By.

As a consequence, a(By) = a(By).

= If X\ is an “isolated” eigenvalue located close to the real axis, then A € R!
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Numerical results

» Discretized spectrum in k (not in k%). We take 6 = 7 /4.

5 T T @ 2@ P
- - - 0ess(By) (in k) ....' .“.
4 .... ‘.‘.
.c‘. o®

e The spectrum is indeed stable by conjugation.

-4t . . .

e Much more eigenvalues on the real axis than before. 5

5 I I I I "e "e I o
0 1 2 3 4 5 6 7
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Numerical results

» Discretized spectrum in k (not in k%). We take 6 = 7 /4.
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Oess(Byg) (in k)

@
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Numerical results

» Discretized spectrum in k (not in k%). We take 6 = 7 /4.

5 T T @ 2@
- - - 0ess(By) (in k) ....' .“.
4 .‘.. ‘.‘.
.c‘. o®

e PMLs with different signs + Classical PMLs
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Numerical results

» We display the eigenmodes for the ten first real eigenvalues in the whole
computational domain (including PMLs).

- T TIESTH
T e I 1.
— L, ——— L i | [
L Dws){ B S
[ — i 215§ mm el S
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Numerical results

» Let us focus on the eigenmodes such that 0 < k& < 7.

S m— e

First trapped mode Second trapped mode
k =1.2355... k =2.3897...
& N
First non reflecting mode Second non reflecting mode
k=1.4513... k = 2.8896...
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Numerical results

»  To check our results, we compute k+— |R(k)| for 0 < k < .

0.6 - b
0.5 N
04 N
0.3 N
0.2 b

0.1 N

0 I I & I I &

0 05 1 15 2 25 3
N
I 0
First non reflecting mode Second non reflecting mode
k = 1.4513... k = 2.8896...
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Numerical results

»  To check our results, we compute k+— |R(k)| for 0 < k < .

0.6 -

0.5

04

0.3

0.2

0.1

) = ) I-

First non reflecting mode

k=1.4513...

Second non reflecting mode
k = 2.8896...

There is perfect agreement!
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Numerical results

» Now the geometry is not symmetric in & nor in y:

» The operator By is no longer P7T-symmetric and we expect:

m No trapped modes

®  No invariance of the spectrum by complex conjugation.
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Numerical results

» Discretized spectrum of By in k (not in k?). We take = /4.
5 T
- - - Oess(Byg) (in k)

e Indeed, the spectrum is not symmetric w.r.t. the real axis.
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Numerical results

» We compute k+— |R(k)| for 0 < k < .

1 0

09

0.8

0.7

0.6

05
0.4
03
021

01

F'.L"\ L"\

k =1.28 4+ 0.0003¢ = 2.3866 + 0.0005¢ = 2.8647 + 0.0243:
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Numerical results

» We compute k+— |R(k)| for 0 < k < .

1 0

09

0.8

0.7

0.6

05

0.4

03

021

01

0

=] L"\ -_-'1

k =1.28 4+ 0.0003¢ = 2.3866 + 0.0005¢ = 2.8647 + 0.0243:

‘ Complex eigenvalues also contain information on almost no reflection. ‘
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Spectra for a changing geometry

» Two series of computations: one with PMLs with different sign, one
with classical PMLs. We compute the spectra for h € (1.3;8).

» The magenta marks on the real axis correspond to k = 7 /¢ & k = 27 /¢.
For k = 27/¢, trapped modes and T = 1 should occur for certain h.

» We zoom at the region 0 < Rek < 7.
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Outline of the talk

43 / 45



Conclusion

What we did

other equations (electromagnetism, elasticity,. . .

& We presented two methods to construct geometries such that R = 0,
T=0,T =1 at a given frequency k € (0;).

& We proposed a spectral approach to compute non reflecting k
(R =0) for a given geometry.

1) How to construct invisible or completely reflecting defects for a given
k > 7 (several propagating modes)?

2) Can we find a spectral approach to compute completely reflecting or
completely invisible k for a given geometry?

3) Can we prove existence of non reflecting k for the P7T-symmetric pb?

4) Can we work in free space with a finite number of directions? on

)?

1T
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Thank you for your attention!
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