Spectrum for a small inclusion of negative material

Lucas Chesnel\(^1\)

Coll. with X. Claeys\(^2\) and S.A. Nazarov\(^3\).

\(^1\)Inverse Problems Research Group, Aalto University, Finland
\(^2\)LJLL, Paris VI, France
\(^3\)FMM, St. Petersburg State University, Russia
Introduction: general setting

- Scattering by a negative material in electromagnetism in time-harmonic regime (at a given frequency):

Positive material
\[\varepsilon > 0 \]
and \[\mu > 0 \]

Negative material
\[\varepsilon < 0 \]
and/or \[\mu < 0 \]

Do such negative materials occur in practice?

- For metals at optical frequencies, \[\varepsilon < 0 \] and \[\mu > 0 \].
- Recently, artificial metamaterials have been realized which can be modelled (at some frequency of interest) by \[\varepsilon < 0 \] and \[\mu < 0 \].

Zoom on a metamaterial: practical realizations of metamaterials are achieved by a periodic assembly of small resonators.

Example of metamaterial (NASA).

Mathematical justification of the homogenized model (Bouchitté, Bourel, Felbacq 09).
Introduction: general setting

- Scattering by a negative material in electromagnetism in time-harmonic regime (at a given frequency):

 Positive material
 \[\varepsilon > 0 \]
 and \[\mu > 0 \]

 Negative material
 \[\varepsilon < 0 \]
 and/or \[\mu < 0 \]

Do such negative materials occur in practice?

- For metals at optical frequencies, \(\varepsilon < 0 \) and \(\mu > 0 \).
Introduction: general setting

- Scattering by a **negative material** in electromagnetism in time-harmonic regime (at a given frequency):

 Positive material
 \[\varepsilon > 0 \]
 and \[\mu > 0 \]

 Negative material
 \[\varepsilon < 0 \]
 and/or \[\mu < 0 \]

Do such **negative** materials occur in practice?

- For **metals** at optical frequencies, \(\varepsilon < 0 \) and \(\mu > 0 \).

- Recently, artificial **metamaterials** have been realized which can be modelled (at some frequency of interest) by \(\varepsilon < 0 \) and \(\mu < 0 \).
Introduction: general setting

Scattering by a negative material in electromagnetism in time-harmonic regime (at a given frequency):

Zoom on a metamaterial: practical realizations of metamaterials are achieved by a periodic assembly of small resonators.

Example of metamaterial (NASA)

Mathematical justification of the homogenized model (Bouchitté, Bourel, Felbacq 09).

Do such negative materials exist in practice?

For metals at optical frequencies, $\varepsilon < 0$ and $\mu > 0$.

Recently, artificial metamaterials have been realized which can be modelled (at some frequency of interest) by $\varepsilon < 0$ and $\mu < 0$.
Introduction: general setting

Scattering by a negative material in electromagnetism in time-harmonic regime (at a given frequency):

Positive material
\[\varepsilon > 0 \]
and \[\mu > 0 \]

Negative material
\[\varepsilon < 0 \]
and/or \[\mu < 0 \]

Do such negative materials occur in practice?

For metals at optical frequencies, \(\varepsilon < 0 \) and \(\mu > 0 \).

Recently, artificial metamaterials have been realized which can be modelled (at some frequency of interest) by \(\varepsilon < 0 \) and \(\mu < 0 \).
Introduction: in this talk

In this talk, we investigate a Dirichlet spectral problem for a small inclusion of negative material in a bounded domain.

Let Ω, ω be smooth domains of \mathbb{R}^3 such that $O \in \omega$, $\omega \subset \Omega$. For $\delta \in (0; 1]$, we consider the problem

Find $(\lambda^\delta, u^\delta) \in \mathbb{C} \times (H^1_0(\Omega) \setminus \{0\})$ s.t.:

$$-\text{div}(\sigma^\delta \nabla u^\delta) = \lambda^\delta u^\delta \quad \text{in } \Omega,$$

with

\begin{align*}
\Omega^\delta_1 &> \cdots > \Omega^\delta_2
\end{align*}
In this talk, we investigate a Dirichlet spectral problem for a small inclusion of negative material in a bounded domain.

Let Ω, ω be smooth domains of \mathbb{R}^3 such that $O \in \omega$, $\overline{\omega} \subset \Omega$. For $\delta \in (0;1]$, we consider the problem

\[
\text{Find } (\lambda^\delta, u^\delta) \in \mathbb{C} \times (H^1_0(\Omega) \setminus \{0\}) \text{ s.t.:}
\]
\[
-\text{div}(\sigma^\delta \nabla u^\delta) = \lambda^\delta u^\delta \quad \text{in } \Omega, \text{ with,}
\]

- $H^1_0(\Omega) := \{ u \in H^1(\Omega) \mid u = 0 \text{ on } \partial \Omega \}$
- $\sigma^\delta =
\begin{align*}
\sigma_1 &> 0 \quad \text{in } \Omega_1^\delta := \Omega \setminus \overline{\delta \omega} \\
\sigma_2 &< 0 \quad \text{in } \Omega_2^\delta := \delta \omega.
\end{align*}$
Introduction: in this talk

In this talk, we investigate a Dirichlet spectral problem for a small inclusion of negative material in a bounded domain.

Let Ω, ω be smooth domains of \mathbb{R}^3 such that $O \in \omega, \bar{\omega} \subset \Omega$. For $\delta \in (0; 1]$, we consider the problem

$$\text{Find } (\lambda^\delta, u^\delta) \in \mathbb{C} \times (H^1_0(\Omega) \setminus \{0\}) \text{ s.t.:}$$
$$- \text{div}(\sigma^\delta \nabla u^\delta) = \lambda^\delta u^\delta \quad \text{in } \Omega, \text{ with,}$$

- $H^1_0(\Omega) := \{ u \in H^1(\Omega) \mid u = 0 \text{ on } \partial \Omega \}$
- $\sigma^\delta = \begin{cases} \sigma_1 > 0 & \text{in } \Omega^\delta_1 := \Omega \setminus \delta \omega \\ \sigma_2 < 0 & \text{in } \Omega^\delta_2 := \delta \omega. \end{cases}$

This problem is not classical because σ^δ changes sign.
Introduction: in this talk

- In this talk, we investigate a **Dirichlet spectral** problem for a small inclusion of negative material in a bounded domain.

- Let Ω, ω be **smooth** domains of \mathbb{R}^3 such that $O \in \omega$, $\overline{\omega} \subset \Omega$. For $\delta \in (0;1]$, we consider the problem

\[
\text{Find } (\lambda^\delta, u^\delta) \in \mathbb{C} \times (H^1_0(\Omega) \setminus \{0\}) \text{ s.t.:}
\]

\[\begin{align*}
- \text{div}(\sigma^\delta \nabla u^\delta) &= \lambda^\delta u^\delta \quad \text{in } \Omega, \\
\end{align*}\]

- $H^1_0(\Omega) := \{u \in H^1(\Omega) | u = 0 \text{ on } \partial\Omega\}$

- $\sigma^\delta = \begin{cases}
\sigma_1 > 0 & \text{in } \Omega_1^\delta := \Omega \setminus \overline{\delta \omega} \\
\sigma_2 < 0 & \text{in } \Omega_2^\delta := \delta \omega.
\end{cases}$

This problem is not classical because σ^δ changes sign.

- We define the operator $A^\delta : D(A^\delta) \to L^2(\Omega)$ such that

\[
\begin{align*}
D(A^\delta) &= \{u \in H^1_0(\Omega) | \text{div}(\sigma^\delta \nabla u) \in L^2(\Omega)\} \\
A^\delta u &= -\text{div}(\sigma^\delta \nabla u).
\end{align*}\]
Introduction: main question of the talk

Using boundary integral equations (see Costabel and Stephan 85, Dauge and Texier 97) or the T-coercivity approach (see Bonnet-Ben Dhia et al. 99,10,12,13), we can prove the:

Proposition. Assume that $\sigma_2/\sigma_1 \neq -1$. For $\delta > 0$, the operator A^δ is selfadjoint and has compact resolvent. Its spectrum $\mathcal{S}(A^\delta)$ consists in two sequences of isolated eigenvalues:

$$-\infty \leftarrow \ldots \lambda_{-n}^\delta \leq \ldots \leq \lambda_{-1}^\delta < 0 \leq \lambda_1^\delta \leq \lambda_2^\delta \leq \ldots \leq \lambda_n^\delta \ldots \rightarrow \infty.$$
Introduction: main question of the talk

Using boundary integral equations (see Costabel and Stephan 85, Dauge and Texier 97) or the T-coercivity approach (see Bonnet-Ben Dhia et al. 99,10,12,13), we can prove the:

\begin{proof}
Assume that $\sigma_2/\sigma_1 \neq -1$. For $\delta > 0$, the operator A^δ is selfadjoint and has compact resolvent. Its spectrum $\mathcal{S}(A^\delta)$ consists in two sequences of isolated eigenvalues:

$$-\infty \leftarrow \ldots \lambda_{-n}^\delta \leq \cdots \leq \lambda_{-1}^\delta < 0 \leq \lambda_1^\delta \leq \lambda_2^\delta \leq \cdots \leq \lambda_n^\delta \ldots \rightarrow \infty + \infty.$$

For all $\delta \in (0;1]$, A^δ has negative spectrum. At the limit $\delta = 0$, the inclusion of negative material vanishes and σ^0 is strictly positive.
\end{proof}
Introduction: main question of the talk

- Using boundary integral equations (see Costabel and Stephan 85, Dauge and Texier 97) or the T-coercivity approach (see Bonnet-Ben Dhia et al. 99,10,12,13), we can prove the:

PROPOSITION. Assume that $\sigma_2/\sigma_1 \neq -1$. For $\delta > 0$, the operator A^δ is selfadjoint and has compact resolvent. Its spectrum $\mathcal{S}(A^\delta)$ consists in two sequences of isolated eigenvalues:

$$-\infty \xrightarrow{n \to +\infty} \ldots \lambda_{-n}^\delta \leq \ldots \leq \lambda_{-1}^\delta < 0 \leq \lambda_1^\delta \leq \lambda_2^\delta \leq \ldots \leq \lambda_n^\delta \ldots \xrightarrow{n \to +\infty} +\infty.$$

- For all $\delta \in (0; 1]$, A^δ has negative spectrum. At the limit $\delta = 0$, the inclusion of negative material vanishes and σ^0 is strictly positive.

? What happens to the negative spectrum when δ tends to zero?
Outline of the talk

1. **Limit operators**

 We introduce the two natural limit operators which appear when \(\delta \to 0 \).

2. **Results**

 We state the main results concerning the asymptotic behaviour of the eigenvalues when \(\delta \to 0 \).

3. **Numerical experiments**

 We illustrate the theoretical results with numerical experiments.
1 Limit operators

2 Results

3 Numerical experiments
Far field operator

- As $\delta \to 0$, the small inclusion of negative material disappears.
Far field operator

- As $\delta \to 0$, the small inclusion of negative material disappears.
Far field operator

- As $\delta \to 0$, the small inclusion of negative material disappears.
Far field operator

- As $\delta \to 0$, the small inclusion of negative material disappears.
Far field operator

- As $\delta \to 0$, the small inclusion of negative material disappears.
As $\delta \to 0$, the small inclusion of negative material disappears.
Far field operator

- As $\delta \to 0$, the small inclusion of negative material disappears.

- We introduce the far field operator A^0 such that

$$D(A^0) = \{ v \in H_0^1(\Omega) \mid \Delta v \in L^2(\Omega) \}$$

$$A^0 v = -\sigma_1 \Delta v.$$

Proposition. There holds $\mathcal{S}(A^0) = \{ \mu_n \}_{n \geq 1}$ with $0 < \mu_1 < \mu_2 \leq \cdots \leq \mu_n \cdots \xrightarrow{n \to +\infty} +\infty$.

Near field operator

- Introduce the rapid coordinate $\xi := \delta^{-1} x$ and let $\delta \to 0$.

\[B_\infty w = -\text{div} (\sigma_\infty \nabla w) \]

Proposition. Assume that $\sigma_2 / \sigma_1 \neq -1$. The continuous spectrum of B_∞ is equal to $[0; +\infty)$ while its discrete spectrum is a sequence of eigenvalues:

\[\mathcal{S}(B_\infty) \setminus \mathbb{R}^+ = \{ \mu - n \} \quad n \geq 1 \]

with $0 > \mu - 1 \geq \cdots \geq \mu - n \ldots \to n \to +\infty - \infty$.

Near field operator

- Introduce the rapid coordinate $\xi := \delta - 1/x$ and let $\delta \to 0$.

Define the near field operator B_{∞} such that $D(\sigma_{\infty} \nabla w) \in L^2(R^3)$.

Proposition. Assume that $\sigma_2/\sigma_1 \neq -1$. The continuous spectrum of B_{∞} is equal to $[0; +\infty)$ while its discrete spectrum is a sequence of eigenvalues: $S(B_{\infty}) \setminus \mathbb{R}^+ = \{ \mu - n \}_{n \geq 1}$ with $0 > \mu - 1 \geq \cdots \geq \mu - n \to +\infty - \infty$.
Near field operator

Introduce the rapid coordinate $\xi := \delta^{-1}x$ and let $\delta \to 0$.

Define the near field operator B_∞ such that

$$D(B_\infty) = \{ w \in H^1(\mathbb{R}^3) \mid \text{div}(\sigma_\infty \nabla w) \in L^2(\mathbb{R}^3) \}$$

$$B_\infty w = -\text{div}(\sigma_\infty \nabla w).$$

Proposition. Assume that $\sigma_2/\sigma_1 \neq -1$. The continuous spectrum of B_∞ is equal to $[0; +\infty)$ while its discrete spectrum is a sequence of eigenvalues:

$$S(B_\infty) \setminus \mathbb{R}^+ = \{ \mu - n \}_{n \geq 1}$$

with $0 > \mu - 1 \geq \cdots \geq \mu - n \to n \to +\infty - \infty$.

Introduce the rapid coordinate $\xi = \delta^{-1}x$ and let $\delta \to 0$.

Define the near field operator B_∞ such that

$$D(B_\infty) = \{ w \in H^1(\mathbb{R}^3) \mid \text{div} (\sigma_\infty \nabla w) \in L^2(\mathbb{R}^3) \}$$

$$B_\infty w = -\text{div} (\sigma_\infty \nabla w).$$

Proposition. Assume that $\sigma_2 / \sigma_1 \neq -1$. The continuous spectrum of B_∞ is equal to $[0; +\infty)$ while its discrete spectrum is a sequence of eigenvalues:

$$S(B_\infty) \setminus \mathbb{R}^+ = \{ \mu - n \}_{n \geq 1}$$

with $0 > \mu - 1 \geq \cdots \geq \mu - n \to -\infty$.
Near field operator

Introduce the rapid coordinate \(\xi := \delta - 1 \times \) and let \(\delta \to 0 \).

Define the near field operator \(B_\infty \) such that

\[
D(B_\infty) = \{ w \in H_1(\mathbb{R}^3) \mid \text{div}(\sigma_\infty \nabla w) \in L_2(\mathbb{R}^3) \}
\]

\[
B_\infty w = -\text{div}(\sigma_\infty \nabla w).
\]

Proposition. Assume that \(\sigma_2/\sigma_1 \neq -1 \). The continuous spectrum of \(B_\infty \) is equal to \([0; +\infty)\) while its discrete spectrum is a sequence of eigenvalues:

\[
S(B_\infty) \notin \mathbb{R}^+ = \{ \mu - n \}_{n \geq 1} \text{ with } 0 > \mu - 1 \geq \ldots \geq \mu - n \ldots \to n \to +\infty \to -\infty.
\]
Near field operator

- Introduce the rapid coordinate $\xi := \delta^{-1} x$ and let $\delta \to 0$.

Proposition. Assume that $\sigma_2/\sigma_1 \neq -1$. The continuous spectrum of B_∞ is equal to $[0; +\infty)$ while its discrete spectrum is a sequence of eigenvalues:

$$S(B_\infty) \setminus \mathbb{R}^+ = \{ \mu - n \} \quad n \geq 1$$

with $0 > \mu - 1 \geq \cdots \geq \mu - n \to +\infty \to -\infty$.

Introduce the rapid coordinate $\xi := \delta^{-1} x$ and let $\delta \to 0$.

Define the near field operator B^∞ such that

$$D(B^\infty) = \{ w \in H^1(\mathbb{R}^3) \mid \text{div} (\sigma^\infty \nabla w) \in L^2(\mathbb{R}^3) \}$$

$$B^\infty w = -\text{div} (\sigma^\infty \nabla w).$$
Near field operator

- Introduce the rapid coordinate $\xi := \delta^{-1}x$ and let $\delta \to 0$.

Define the near field operator B^∞ such that

$$D(B^\infty) = \{ w \in H^1(\mathbb{R}^3) \mid \text{div} (\sigma^\infty \nabla w) \in L^2(\mathbb{R}^3) \}$$

$$B^\infty w = -\text{div} (\sigma^\infty \nabla w).$$

Proposition. Assume that $\sigma_2/\sigma_1 \neq -1$. The continuous spectrum of B^∞ is equal to $[0; +\infty)$ while its discrete spectrum is a sequence of eigenvalues:

$$\mathcal{G}(B^\infty) \setminus \overline{\mathbb{R}^+} = \{ \mu_{-n} \}_{n \geq 1} \quad \text{with} \quad 0 > \mu_{-1} \geq \cdots \geq \mu_{-n} \ldots \quad n \to +\infty \to -\infty.
1 Limit operators

2 Results

3 Numerical experiments
Spectrum for a small inclusion: results

Assume that $\sigma_2/\sigma_1 \neq -1$ and that B^∞ is injective. For $n \in \mathbb{N}^*$, we denote $\lambda_{\pm n}^\delta$, μ_n^δ, μ_{-n}^δ the eigenvalues of A^δ, A^0, B^∞ as in the previous slides.

Theorem. (Positive spectrum) For all $n \in \mathbb{N}^*$, $\varepsilon \in (0; 1)$, there exist constants $C, \delta_0 > 0$ depending on n, ε but independent of δ, such that

$$|\lambda_n^\delta - \mu_n| \leq C \delta^{3/2 - \varepsilon}, \quad \forall \delta \in (0; \delta_0].$$
Assume that \(\frac{\sigma_0}{\sigma_1} \neq 1 \) and that \(B^\infty \) is injective. For \(n \in \mathbb{N}^* \), we denote \(\lambda_{\delta n}, \mu_{\delta n}, \mu_{-\delta n} \) the eigenvalues of \(A_{\delta}, A_0, B^\infty \) as in the previous slides.

Theorem. (Positive spectrum) For all \(n \in \mathbb{N}^*, \varepsilon \in (0; 1) \), there exist constants \(C, \delta_0 > 0 \) depending on \(n, \varepsilon \) but independent of \(\delta \), such that
\[
|\lambda_{\delta n} - \mu_n| \leq C \delta^{3/2} - \varepsilon, \quad \forall \delta \in (0; \delta_0].
\]

Idea of the proof:

1. We prove the *a priori* estimate \(\|u^\delta\|_{H_0^1(\Omega)} \leq c \|A^\delta u^\delta\|_{\Omega} \) for \(\delta \) small enough (♠ hard part of the proof: weighted Sobolev spaces + overlapping cut-off functions + Nazarov’s technique).

2. If \((\mu_n, v_n)\) is an eigenpair of \(A^0 \), we construct \(u \) such that
\[
\|A^\delta u - \mu_n u\|_{\Omega} \leq c \delta^{\beta} \|u\|_{\Omega}, \quad \text{for some } \beta > 0.
\]

3. If \((\lambda_{\delta n}, u_{\delta n})\) is an eigenpair of \(A^\delta \), we construct \(v \) such that
\[
\|A^0 v - \lambda_{\delta n} v\|_{\Omega} \leq c \delta^{\beta} \|v\|_{\Omega}, \quad \text{for some } \beta > 0.
\]

4. We conclude with a classical lemma on quasi eigenvalues.
Spectrum for a small inclusion: results

Assume that \(\sigma_2 / \sigma_1 \neq -1 \) and that \(B^\infty \) is injective. For \(n \in \mathbb{N}^* \), we denote \(\lambda_\pm^n, \mu^n_\delta, \mu_{-n}^\delta \) the eigenvalues of \(A^\delta, A^0, B^\infty \) as in the previous slides.

Theorem. (Positive spectrum) For all \(n \in \mathbb{N}^*, \varepsilon \in (0; 1) \), there exist constants \(C, \delta_0 > 0 \) depending on \(n, \varepsilon \) but independent of \(\delta \), such that

\[
|\lambda_\delta^n - \mu_n| \leq C \delta^{3/2-\varepsilon}, \quad \forall \delta \in (0; \delta_0].
\]

Theorem. (Negative spectrum) For all \(n \in \mathbb{N}^* \), there exist constants \(C, \gamma, \delta_0 > 0 \), depending on \(n \) but independent of \(\delta \), such that

\[
|\lambda_\delta^n - \mu_{-n}^-\delta| \leq C \exp(-\gamma/\delta), \quad \forall \delta \in (0; \delta_0].
\]

Proposition. (Localization effect) For all \(n \in \mathbb{N}^* \), let \(u_\delta_{-n} \) be an eigenfunction corresponding to the negative eigenvalue \(\lambda_\delta_{-n} \). There exist constants \(C, \gamma, \delta_0 > 0 \), depending on \(n \) but independent of \(\delta \), such that

\[
\int_{\Omega} \left(|u_\delta_{-n}|^2 + |\nabla u_\delta_{-n}|^2 \right) e^{\gamma x/\delta} dx \leq C \|u_\delta_{-n}\|_\Omega, \quad \forall \delta \in (0; \delta_0].
\]
Assume that $\sigma_2/\sigma_1 \neq -1$ and that B^∞ is injective. For $n \in \mathbb{N}^*$, we denote $\lambda^\delta_{\pm n}$, μ^δ_n, μ^δ_{-n} the eigenvalues of A^δ, A^0, B^∞ as in the previous slides.

Theorem. (Positive spectrum) For all $n \in \mathbb{N}^*$, $\varepsilon \in (0;1)$, there exist constants $C, \delta_0 > 0$ depending on n, ε but independent of δ, such that

$$|\lambda^\delta_n - \mu_n| \leq C \delta^{3/2 - \varepsilon}, \quad \forall \delta \in (0; \delta_0].$$

Theorem. (Negative spectrum) For all $n \in \mathbb{N}^*$, there exist constants $C, \gamma, \delta_0 > 0$, depending on n but independent of δ, such that

$$|\lambda^\delta_n - \delta^{-2} \mu_{-n}| \leq C \exp(-\gamma/\delta), \quad \forall \delta \in (0; \delta_0].$$
Spectrum for a small inclusion: results

Assume that \(\sigma_2 / \sigma_1 \neq -1 \) and that \(B^\infty \) is injective. For \(n \in \mathbb{N}^* \), we denote \(\lambda_\delta \pm n, \mu_\delta \pm n \) the eigenvalues of \(A^\delta, A^0, B^\infty \) as in the previous slides.

Theorem. (Positive spectrum) For all \(n \in \mathbb{N}^* \), \(\epsilon \in (0; 1) \), there exist constants \(C, \delta_0 > 0 \) depending on \(n, \epsilon \) but independent of \(\delta \), such that

\[
|\lambda_\delta - \mu_\delta| \leq C \exp(-\gamma/\delta), \quad \forall \delta \in (0; \delta_0].
\]

Theorem. (Negative spectrum) For all \(n \in \mathbb{N}^* \), there exist constants \(C, \gamma, \delta_0 > 0 \), depending on \(n \) but independent of \(\delta \), such that

\[
|\lambda_\delta - \mu_\delta| \leq C \exp\left(-\frac{\gamma}{\delta}\right), \quad \forall \delta \in (0; \delta_0].
\]

Why is it a \(\delta^{-2} \)?

- If \((\lambda_\delta, u_\delta) \) is an eigenpair of \(A^\delta \), there holds

\[
\int_\Omega \sigma^\delta \nabla_x u^\delta \cdot \nabla_x v \, dx = \lambda^\delta \int_\Omega u^\delta v \, dx, \quad \forall v \in H^1_0(\Omega).
\]

- \(x = \delta \xi \Rightarrow \nabla_x = \delta^{-1} \nabla_\xi \). Denoting \(U^\delta(\xi) = u^\delta(\delta \xi) \), we deduce

\[
\int_{\delta^{-1}\Omega} \sigma^\infty \nabla_\xi U^\delta \cdot \nabla_\xi V \, d\xi = \delta^2 \lambda^\delta \int_{\delta^{-1}\Omega} U^\delta V \, d\xi, \quad \forall V \in H^1_0(\delta^{-1}\Omega).
\]

Why the convergence is exponential?

- If \((\mu_\pm, v_\pm) \) is an eigenpair of \(B^\infty \), \(v_\pm \) is exponentially decaying at \(\infty \).
Assume that $\frac{\sigma_2}{\sigma_1} \neq -1$ and that B^∞ is injective. For $n \in \mathbb{N}^*$, we denote $\lambda_{\pm n}^\delta$, μ_n^δ, μ_{-n}^δ the eigenvalues of A^δ, A^0, B^∞ as in the previous slides.

Theorem. (Positive spectrum) For all $n \in \mathbb{N}^*$, $\varepsilon \in (0; 1)$, there exist constants $C, \delta_0 > 0$ depending on n, ε but independent of δ, such that

$$|\lambda_n^\delta - \mu_n| \leq C \delta^{3/2-\varepsilon}, \quad \forall \delta \in (0; \delta_0].$$

Theorem. (Negative spectrum) For all $n \in \mathbb{N}^*$, there exist constants $C, \gamma, \delta_0 > 0$, depending on n but independent of δ, such that

$$|\lambda_{-n}^\delta - \delta^2 \mu_{-n}| \leq C \exp(-\gamma/\delta), \quad \forall \delta \in (0; \delta_0].$$
Spectrum for a small inclusion: results

Assume that $\sigma_2/\sigma_1 \neq -1$ and that B^{∞} is injective. For $n \in \mathbb{N}^*$, we denote $\lambda_{\pm n}^\delta, \mu_n^\delta, \mu_{-n}^\delta$ the eigenvalues of $A^\delta, A^0, B^{\infty}$ as in the previous slides.

Schematically, we have:

\[
\begin{array}{cccc}
\mathcal{S}(A^\delta) & \lambda_{-2}^\delta & \lambda_{-1}^\delta & \lambda_1^\delta & \lambda_2^\delta \\
\times & \times & \times & 0 & \to \\
\mathcal{S}(A^0) & \delta^{-2}\mu_2 & \delta^{-2}\mu_1 & \mu_1 & \mu_2 \\
\times & \times & \times & 0 & \to \\
\delta^{-2}\mathcal{S}(B^{\infty}) \cap (-\infty; 0) & \mathcal{S}(A^0)
\end{array}
\]
Assume that $\sigma_2/\sigma_1 \neq -1$ and that B^∞ is injective. For $n \in \mathbb{N}^*$, we denote $\lambda_{\pm n}^\delta$, μ_n^δ, μ_{-n}^δ the eigenvalues of A^δ, A^0, B^∞ as in the previous slides.

Theorem. (Positive spectrum) For all $n \in \mathbb{N}^*$, $\varepsilon \in (0;1)$, there exist constants $C, \delta_0 > 0$ depending on n, ε but independent of δ, such that

$$|\lambda_n^\delta - \mu_n| \leq C \delta^{3/2 - \varepsilon}, \quad \forall \delta \in (0; \delta_0].$$

Theorem. (Negative spectrum) For all $n \in \mathbb{N}^*$, there exist constants $C, \gamma, \delta_0 > 0$, depending on n but independent of δ, such that

$$|\lambda_{-n}^\delta - \delta^{-2} \mu_{-n}| \leq C \exp(-\gamma/\delta), \quad \forall \delta \in (0; \delta_0].$$
Spectrum for a small inclusion: results

Assume that $\sigma_2/\sigma_1 \neq -1$ and that B^∞ is injective. For $n \in \mathbb{N}^*$, we denote $\lambda_{\pm n}, \mu_n, \mu_{-n}$ the eigenvalues of A^δ, A^0, B^∞ as in the previous slides.

Theorem. (Positive spectrum) For all $n \in \mathbb{N}^*, \varepsilon \in (0;1)$, there exist constants $C, \delta_0 > 0$ depending on n, ε but independent of δ, such that

$$|\lambda_\delta - \mu_n| \leq C \delta^{3/2 - \varepsilon}, \quad \forall \delta \in (0; \delta_0].$$

Theorem. (Negative spectrum) For all $n \in \mathbb{N}^*$, there exist constants $C, \gamma, \delta_0 > 0$, depending on n but independent of δ, such that

$$|\lambda_{-n}^\delta - \delta^{-2} \mu_{-n}| \leq C \exp(-\gamma/\delta), \quad \forall \delta \in (0; \delta_0].$$

Proposition. (Localization effect) For all $n \in \mathbb{N}^*$, let u_{-n}^δ be an eigenfunction corresponding to the negative eigenvalue λ_{-n}^δ. There exist constants $C, \gamma, \delta_0 > 0$, depending on n but independent of δ, such that

$$\int_{\Omega} (|u_{-n}^\delta|^2 + |\nabla u_{-n}^\delta|^2) e^{\gamma x/\delta} \, d\mathbf{x} \leq C \|u_{-n}^\delta\|_{\Omega}, \quad \forall \delta \in (0; \delta_0].$$
1 Limit operators

2 Results

3 Numerical experiments
Numerical experiments for the small inclusion

- Using FreeFem++, we approximate numerically the spectrum of A^δ using a usual P1 Finite Element Method. We solve the problem

\[
\text{Find } (\lambda_{h}^\delta, u_{h}^\delta) \in \mathbb{C} \times (V_{h} \setminus \{0\}) \text{ s.t.:
}\]

\[
\int_{\Omega} \sigma_{h}^\delta \nabla u_{h}^\delta \cdot \nabla v_{h} = \lambda_{h}^\delta \int_{\Omega} u_{h}^\delta v_{h}, \quad \forall v_{h} \in V_{h},
\]

where V_{h} approximates $H_{0}^{1}(\Omega)$ as $h \to 0$ (h is the mesh size).

- We consider the following 2D geometry:
Numerical experiments for the small inclusion

Using FreeFem++, we approximate numerically the spectrum of \(A^\delta \) using a usual P1 Finite Element Method. We solve the problem

\[
\begin{align*}
\text{Find } (\lambda_h^\delta, u_h^\delta) \in \mathbb{C} \times (V_h \setminus \{0\}) \text{ s.t.:} \\
\int_\Omega \sigma_h^\delta \nabla u_h^\delta \cdot \nabla v_h = \lambda_h^\delta \int_\Omega u_h^\delta v_h, \quad \forall v_h \in V_h,
\end{align*}
\]

where \(V_h \) approximates \(H_0^1(\Omega) \) as \(h \to 0 \) (\(h \) is the mesh size).

We consider the following 2D geometry:

We display the spectrum as \(\delta \to 0 \) (\(h \) is more or less fixed).
Numerical experiments for the small inclusion

Contrast $\kappa_\sigma = -2.5$

The positive part of $\mathcal{S}(A^\delta)$ converges to $\mathcal{S}(A^0)$ when $\delta \to 0$.
The negative part of $\mathcal{G}(A^{\delta})$ is asymptotically equivalent to the negative part of $\delta^{-2}\mathcal{G}(B^\infty)$ when $\delta \to 0$.
Numerical experiments for the small inclusion

Contrast $\kappa_{\sigma} = -2.5$

The negative part of $\mathcal{G}(A^\delta)$ is asymptotically equivalent to the negative part of $\delta^{-2}\mathcal{G}(B^\infty)$ when $\delta \to 0$.
The eigenfunctions corresponding to the negative eigenvalues are localized around the small inclusion. Here, $\sigma_2/\sigma_1 = -2.5$.
Thank you for your attention!!!

