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Introduction: general framework
I Scattering by a metal in electromagnetism in time-harmonic regime at
optical frequency.
I For metals at optical frequency, <e ε(ω) < 0 and =mε(ω) << |<e ε(ω)|.

⇒ We neglect losses and study the ideal case ε(ω) ∈ (−∞; 0).

Negative metal
ε< 0

and µ> 0

Positive material
ε> 0

and µ> 0

I Waves called Surface Plasmon Polaritons can propagate at the interface
between a dielectric and a negative metal.
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Introduction: applications
I Surface Plasmons Polaritons can propagate information. Physicists hope
to exploit them to reduce the size of computer chips.

Figures from O’Connor et al., Appl. Phys. Lett. 95, 171112 (2009)

I In this context, physicists use singular geometries to focus energy. It
allows to stock information.

Metal

Dielectric
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Introduction: in this talk
I We study a scalar model problem set in a bounded domain Ω ⊂ R2:

Ω2

Ω1 Σ

σ|Ω1 = σ1 >0
σ|Ω2 = σ2 <0
(constant)

(P) Find u ∈ H1
0(Ω) s.t.:

−div(σ∇u) = f in Ω.

H1
0(Ω) = {v ∈ L2(Ω) | ∇v ∈ L2(Ω); v|∂Ω = 0}

f is the source term in H−1(Ω)

I We slightly round the interface Σ:

Ωδ2

Ωδ1 Σδ

σδ|Ω1 = σ1 >0
σδ|Ω2 = σ2 <0

(
Pδ
) Find uδ ∈ H1

0(Ω) s.t.:
−div(σδ∇uδ) = f in Ω.

δ denotes the radius of curvature of the
rounded interface at the origin.

What is the behaviour of the sequence (uδ)δ when δ tends to zero?
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Outline of the talk

1 Numerical experiments

To get an intuition, we discretize
(
Pδ
)
and observe what happens when

δ → 0.

2 Properties of the limit problem

We present the properties of the limit problem in the geometry with the
real corner (δ = 0). Since σ changes sign, original phenomena appear.

3 Asymptotic analysis

We prove a curious instability phenomenon: for certain configurations,
(Pδ) critically depends on δ.
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1 Numerical experiments

2 Properties of the limit problem

3 Asymptotic analysis
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Numerical experiments: setting

δ is the rounding
parameter

I For the numerical experiments, we round the corner in a particular way

(in this domain, we can separate variables).

Σ

Ω+
σ+> 0

Ω−
σ−< 0O

I Our goal is to study the behaviour of the solution, if it is well-defined, of

(
Pδ
) Find uδ ∈ H1

0(Ωδ) such that:
−div(σδ∇uδ) = f in Ωδ.

I We approximate uδ, assuming it is well-defined, by a usual P1 Finite
Element Method. We compute the solution uδh of the discretized problem
with FreeFem++.

We display the behaviour of uδh as δ → 0.
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Numerical experiments: results 1/2

σ+ = 1 and σ− = 1 (positive materials)

0.75 0.8 0.85 0.9 0.95 1
0

2

4

6

8

10

uδh w.r.t. δ ‖∇uδh‖Ωδ w.r.t. 1− δ

I For positive materials, it is well-known that (uδ)δ converges to u, the
solution in the limit geometry.
I The rate of convergence depends on the regularity of u.
I To avoid to mesh Ωδ, we can approximate uδ by uh.
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Numerical experiments: results 2/2
... and what about for a sign-changing σ???

σ+ = 1 and σ− = −0.9999

0.75 0.8 0.85 0.9 0.95 1
0

50

100

150

200

250

300

uδh w.r.t. δ ‖∇uδh‖Ωδ w.r.t. 1− δ

I For this configuration, uδ seems to depend critically on δ.

In this talk, our goal is to explain the presence of these peaks.
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1 Numerical experiments

2 Properties of the limit problem

3 Asymptotic analysis
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Mathematical difficulty

Classical case σ > 0 everywhere:

a(u, u) =
∫

Ω
σ |∇u|2 ≥ min(σ) ‖u‖2H1

0(Ω) coercivity

Lax-Milgram theorem ⇒ (P) well-posed.

VS.

The case σ changes sign:

a(u, u) =
∫

Ω
σ |∇u|2 ≥ C ‖u‖2H1

0(Ω)
loss of coercivity

I When σ2 = −σ1, (P) is always ill-posed (Costabel-Stephan 85).
For a symmetric domain (w.r.t. Σ) we can build a kernel of
infinite dimension.
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Problems with a sign changing coefficient

(P) Find u ∈ H1
0(Ω) such that:

−div(σ∇u) = f in Ω.

I We have the following properties (see Costabel and Stephan 85,
Dauge and Texier 97, Bonnet-Ben Dhia et al. 99,10,12,13):

Smooth interface Σ Interface Σ with a corner

σ2 < 0

σ1 > 0

ϑσ2 < 0

σ1 > 0

4 (P) well-posed in the Fredholm
sense iff κσ = σ2/σ1 6= −1.

4 (P) well-posed in the Fredholm sense
iff κσ /∈ Ic = [−`;−1/`], ` = (2π − ϑ)/ϑ.

Well-posedness depends on the smoothness of Σ and on σ.

12 / 38
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The problematic of the rounded corner

(P) Find u ∈ H1
0(Ω) such that:

−div(σ∇u) = f in Ω.

I When the interface has a corner, (P) is well-posed in
the Fredholm sense iff κσ /∈ Ic (the critical interval).

I When the interface is smooth, (P) is well-posed in the
Fredholm sense iff κσ 6= −1.

What happens for a slightly rounded corner when
κσ ∈ Ic \ {−1}?

I We need to clarify the properties of (P) when
the interface has a corner in the case κσ ∈ Ic\{−1}.
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Properties of the limit problem inside the
critical interval

(P) Find u ∈ H1
0(Ω) such that:

−div(σ∇u) = f in Ω.

I To simplify the presentation, we work on a particular configuration.

Σ

Ω1
σ1> 0

Ω2
σ2< 0O

I Using the variational method of the T-coercivity, we prove the

Proposition. The problem (P) is well-posed as soon as the contrast κσ =
σ2/σ1 satisfies κσ /∈ Ic = [−1;−1/3].

What happens when κσ ∈ (−1;−1/3]?

14 / 38
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Analogy with a waveguide problem

(z, θ) = (− ln r, θ)

(r, θ) = (e−z , θ)

(<e λ = a, =mλ = b)

s∈ H1(Ω) <e λ > 0 m is evanescent
s/∈ H1(Ω) <e λ = 0 m is propagative

• Bounded sector Ω

Σ

π/4

Ω1 Ω2

O (r, θ)

• Equation:
−div(σ∇u)︸ ︷︷ ︸

−r−2(σ(r∂r)2+∂θσ∂θ)u

= f

• Singularities in the sector
s(r, θ) = rλϕ(θ)

s(r, θ) = ra (cos b ln r + i sin b ln r)ϕ(θ)

• Half-strip B

z

θ

B1

B2
Σ θ = π/4

• Equation:
−div(σ∇u)︸ ︷︷ ︸
−(σ∂2

z+∂θσ∂θ)u

= e−2z f

• Modes in the strip
m(z, θ) = e−λzϕ(θ)

m(z, θ) = e−az (cos bz − i sin bz)ϕ(θ)

I This encourages us to use modal decomposition in the half-strip.

r0

r 7→ <e rλ
1

−1

z0

z 7→ <e e−λz
1

−1

We compute the singularities s(r, θ) = rλϕ(θ) and we observe two cases:

I Outside the critical interval

λ1−λ1 λ2−λ2

1-1 2-2

1

-1

κσ = −1/4

H1not H1

r0

r 7→ rλ1

1

−1

I Inside the critical interval

λ1

−λ1

λ2−λ2

1-1 2-2

1

-1

κσ = −1/2

H1not H1

r0

r 7→ <e rλ1

1

−1 not H1

How to deal with the propagative singularities inside the critical interval?
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Modal analysis in the waveguide

λ1−λ1 λ2−λ2

1-1 2-2

1

-1

κσ = −1/4
I Outside the critical interval . All the
modes are exponentially growing or decaying.
→ We look for an exponentially decaying
solution. H1 framework

λ1

−λ1

λ2−λ2

1-1 2-2

1

-1

κσ = −1/2
I Inside the critical interval . There are
exactly two propagative modes.
→ The decomposition on the outgoing modes
leads to look for a solution of the form

u = c1 ϕ1 e
λ1 z︸ ︷︷ ︸

propagative part
+ ue.︸︷︷︸
evanescent part

non H1 framework
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The new functional framework

Consider 0 < β < 2, ζ a cut-off function (equal to 1 in +∞) and define

W−β = {v | eβzv ∈ H1
0(B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescent part

Wβ = {v | e−βzv ∈ H1
0(B)} space of exponentially growing functions

Theorem. Let κσ ∈ (−1;−1/3) and 0 < β < 2. The operator A+ :
div(σ∇·) from W+ to Wβ

∗ is an isomorphism.

Ideas of the proof:
1 A−β : div(σ∇·) from W−β to Wβ

∗ is injective but not surjective.

2 Aβ : div(σ∇·) from Wβ to W−β∗ is surjective but not injective.
3 The intermediate operator A+ : W+ →Wβ

∗ is injective (energy
integral) and surjective (residue theorem).

4 Limiting absorption principle to select the outgoing mode.

∩
∩

17 / 38



The new functional framework

Consider 0 < β < 2, ζ a cut-off function (equal to 1 in +∞) and define

W−β = {v | eβzv ∈ H1
0(B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescent part

Wβ = {v | e−βzv ∈ H1
0(B)} space of exponentially growing functions

Theorem. Let κσ ∈ (−1;−1/3) and 0 < β < 2. The operator A+ :
div(σ∇·) from W+ to Wβ

∗ is an isomorphism.

Ideas of the proof:
1 A−β : div(σ∇·) from W−β to Wβ

∗ is injective but not surjective.

2 Aβ : div(σ∇·) from Wβ to W−β∗ is surjective but not injective.
3 The intermediate operator A+ : W+ →Wβ

∗ is injective (energy
integral) and surjective (residue theorem).

4 Limiting absorption principle to select the outgoing mode.

∩
∩

17 / 38



The new functional framework

Consider 0 < β < 2, ζ a cut-off function (equal to 1 in +∞) and define

W−β = {v | eβzv ∈ H1
0(B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescent part

Wβ = {v | e−βzv ∈ H1
0(B)} space of exponentially growing functions

Theorem. Let κσ ∈ (−1;−1/3) and 0 < β < 2. The operator A+ :
div(σ∇·) from W+ to Wβ

∗ is an isomorphism.

Ideas of the proof:
1 A−β : div(σ∇·) from W−β to Wβ

∗ is injective but not surjective.

2 Aβ : div(σ∇·) from Wβ to W−β∗ is surjective but not injective.
3 The intermediate operator A+ : W+ →Wβ

∗ is injective (energy
integral) and surjective (residue theorem).

4 Limiting absorption principle to select the outgoing mode.

∩
∩

17 / 38



The new functional framework

Consider 0 < β < 2, ζ a cut-off function (equal to 1 in +∞) and define

W−β = {v | eβzv ∈ H1
0(B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescent part

Wβ = {v | e−βzv ∈ H1
0(B)} space of exponentially growing functions

Theorem. Let κσ ∈ (−1;−1/3) and 0 < β < 2. The operator A+ :
div(σ∇·) from W+ to Wβ

∗ is an isomorphism.

Ideas of the proof:
1 A−β : div(σ∇·) from W−β to Wβ

∗ is injective but not surjective.

2 Aβ : div(σ∇·) from Wβ to W−β∗ is surjective but not injective.
3 The intermediate operator A+ : W+ →Wβ

∗ is injective (energy
integral) and surjective (residue theorem).

4 Limiting absorption principle to select the outgoing mode.

∩
∩

17 / 38



The new functional framework

Consider 0 < β < 2, ζ a cut-off function (equal to 1 in +∞) and define

W−β = {v | eβzv ∈ H1
0(B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescent part

Wβ = {v | e−βzv ∈ H1
0(B)} space of exponentially growing functions

Theorem. Let κσ ∈ (−1;−1/3) and 0 < β < 2. The operator A+ :
div(σ∇·) from W+ to Wβ

∗ is an isomorphism.

Ideas of the proof:
1 A−β : div(σ∇·) from W−β to Wβ

∗ is injective but not surjective.

2 Aβ : div(σ∇·) from Wβ to W−β∗ is surjective but not injective.
3 The intermediate operator A+ : W+ →Wβ

∗ is injective (energy
integral) and surjective (residue theorem).

4 Limiting absorption principle to select the outgoing mode.

∩
∩

17 / 38



The new functional framework

Consider 0 < β < 2, ζ a cut-off function (equal to 1 in +∞) and define

W−β = {v | eβzv ∈ H1
0(B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescent part

Wβ = {v | e−βzv ∈ H1
0(B)} space of exponentially growing functions

Theorem. Let κσ ∈ (−1;−1/3) and 0 < β < 2. The operator A+ :
div(σ∇·) from W+ to Wβ

∗ is an isomorphism.

Ideas of the proof:
1 A−β : div(σ∇·) from W−β to Wβ

∗ is injective but not surjective.

2 Aβ : div(σ∇·) from Wβ to W−β∗ is surjective but not injective.
3 The intermediate operator A+ : W+ →Wβ

∗ is injective (energy
integral) and surjective (residue theorem).

4 Limiting absorption principle to select the outgoing mode.

∩
∩

17 / 38



The new functional framework

Consider 0 < β < 2, ζ a cut-off function (equal to 1 in +∞) and define

W−β = {v | eβzv ∈ H1
0(B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescent part

Wβ = {v | e−βzv ∈ H1
0(B)} space of exponentially growing functions

Theorem. Let κσ ∈ (−1;−1/3) and 0 < β < 2. The operator A+ :
div(σ∇·) from W+ to Wβ

∗ is an isomorphism.

Ideas of the proof:
1 A−β : div(σ∇·) from W−β to Wβ

∗ is injective but not surjective.
2 Aβ : div(σ∇·) from Wβ to W−β∗ is surjective but not injective.

3 The intermediate operator A+ : W+ →Wβ
∗ is injective (energy

integral) and surjective (residue theorem).
4 Limiting absorption principle to select the outgoing mode.

∩
∩

17 / 38



The new functional framework

Consider 0 < β < 2, ζ a cut-off function (equal to 1 in +∞) and define

W−β = {v | eβzv ∈ H1
0(B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescent part

Wβ = {v | e−βzv ∈ H1
0(B)} space of exponentially growing functions

Theorem. Let κσ ∈ (−1;−1/3) and 0 < β < 2. The operator A+ :
div(σ∇·) from W+ to Wβ

∗ is an isomorphism.

Ideas of the proof:
1 A−β : div(σ∇·) from W−β to Wβ

∗ is injective but not surjective.
2 Aβ : div(σ∇·) from Wβ to W−β∗ is surjective but not injective.
3 The intermediate operator A+ : W+ →Wβ

∗ is injective (energy
integral) and surjective (residue theorem).

4 Limiting absorption principle to select the outgoing mode.

∩
∩

17 / 38



The new functional framework

Consider 0 < β < 2, ζ a cut-off function (equal to 1 in +∞) and define

W−β = {v | eβzv ∈ H1
0(B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescent part

Wβ = {v | e−βzv ∈ H1
0(B)} space of exponentially growing functions

Theorem. Let κσ ∈ (−1;−1/3) and 0 < β < 2. The operator A+ :
div(σ∇·) from W+ to Wβ

∗ is an isomorphism.

Ideas of the proof:
1 A−β : div(σ∇·) from W−β to Wβ

∗ is injective but not surjective.
2 Aβ : div(σ∇·) from Wβ to W−β∗ is surjective but not injective.
3 The intermediate operator A+ : W+ →Wβ

∗ is injective (energy
integral) and surjective (residue theorem).

4 Limiting absorption principle to select the outgoing mode.

∩
∩

17 / 38



Naive approximation
I Let us try a usual Finite Element Method (P1 Lagrange Finite
Element). We solve the problem

Find uh ∈ Vh s.t.:∫
Ω
σ∇uh · ∇vh =

∫
Ω
fvh, ∀v ∈ Vh,

where Vh approximates H1
0(Ω) as h→ 0 (h is the mesh size).

I We display uh as h→ 0.

Contrast κσ = −0.999 ∈ (−1;−1/3).

The sequence (uh) does not converge as h→
0!!!
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Remark

I Outside the critical interval, the sequence (uh) converges with the naive
approximation.

(. . . )

Contrast κσ = −1.001 /∈ (−1;−1/3).
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How to approximate the solution?
I We use a PML (Perfectly Matched Layer) to bound the domain B

+ finite elements in the truncated strip (κσ = −0.999 ∈ (−1;−1/3)).

Without the PML, the solution in the truncated strip of length
L does not converge when L → ∞. This is what we observed
in our numerical experiment for the rounded corner.

PML

PM
L
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A black hole phenomenon

I The same phenomenon occurs for the Helmholtz equation.

(x, t) 7→ <e (u(x)e−iωt) for κσ = −1/1.3

I Analogous phenomena occur in cuspidal domains in the theory of
water-waves and in elasticity (Cardone, Nazarov, Taskinen).
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1 Numerical experiments

2 Properties of the limit problem

3 Asymptotic analysis
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Source term problem

Ωδ2
Ωδ1

Ω2

Ω1

(
Pδ
) Find uδ ∈ H1

0(Ω) s.t.:
−div(σδ∇uδ) = f in Ω. (P) Find u ∈ H1

0(Ω) s.t.:
−div(σ∇u) = f in Ω.

I The behaviour of (uδ)δ depends on the properties of the limit problem.

If (P) well-posed (in H1
0(Ω)), then uδ is uniquely defined for δ small enough

and (uδ)δ converges to u (as for positive materials).

If the limit problem is well-posed only in the exotic framework, then (Pδ)
critically depends on the value of the rounding parameter δ.
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Idea of the approach:
1 We prove the a priori estimate ‖uδ‖H1

0(Ω) ≤ c | ln δ|1/2‖f‖Ω for all δ
in some set S which excludes a discrete set accumulating in zero (♠
hard part of the proof, Nazarov’s technique).

ln δ

ln S = {ln δ, δ ∈ S }

2 We provide an asymptotic expansion of uδ, denoted ûδ with the
error estimate, for some β > 0,

‖uδ − ûδ‖H1
0(Ω) ≤ c δβ‖f‖Ω, ∀δ ∈ S .

3 The behaviour of (ûδ)δ can be explicitly examined as δ → 0. The
sequence (ûδ)δ does not converge, even for the L2-norm!
4 Conclusion.

The sequence (uδ)δ does not converge, even for the L2-norm!
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Spectral problem 1/4
I In the geometry with a rounded corner, we consider the spectral problem

Find (λδ, uδ) ∈ C× (H1
0(Ω) \ {0}) s.t.:

−div(σδ∇uδ) = λδuδ in Ω.

I We define the operator Aδ : D(Aδ)→ L2(Ω) such that
D(Aδ) = {u ∈ H1

0(Ω) |div(σδ∇u) ∈ L2(Ω)}
Aδu = div(σδ∇u).

Proposition. Assume that κσ 6= −1. For δ > 0 ( in this case the interface
is “smooth” ), the operator Aδ is selfadjoint and has compact resolvent. Its
spectrum S(Aδ) consists in two sequences of isolated eigenvalues:

−∞ ←
n→+∞

. . . λδ−n ≤ · · · ≤ λδ−1 < 0 ≤ λδ1 ≤ λδ2 ≤ · · · ≤ λδn . . . →
n→+∞

+∞.

For n ∈ Z∗, what is the behaviour of λδn when δ tends to zero?

⇒ This depends on the features of the limit operator for δ = 0...
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Spectral problem 2/4

I Let A : D(A)→ L2(Ω) denote the limit operator (δ = 0) such that

D(A) = {u ∈ H1
0(Ω) |div(σ∇u) ∈ L2(Ω)}

Au = div(σ∇u).

I For δ = 0, the interface is no longer “smooth” and the properties of A
depend on the values of κσ:

♣ When κσ /∈ Ic, A is selfadjoint and has compact resolvent. Its spectrum
S(A) consists in two sequences of isolated eigenvalues:

−∞ ←
n→+∞

. . . λ−n ≤ · · · ≤ λ−1 < 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn . . . →
n→+∞

+∞.

In this case, there holds S(Aδ) →
δ→0

S(A).

♣ When κσ ∈ Ic \ {−1}, there holds D(A∗) = D(A) ⊕ span(s+, s−) where
s± = ζr±iηϕ(θ) (in particular A is not selfadjoint). Moreover, S(A) = C.
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Inside the critical interval:
1 The selfadjoint extensions of A are the operators

A(τ) : D(A(τ))→ L2(Ω), τ ∈ R, such that

D(A(τ)) = D(A)⊕ span(s+ + eiτs−)
A(τ)u = div(σ∇u).

2 Using matched asymptotic expansions techniques, we have proved the

Theorem. Assume that κσ ∈ Ic \ {−1}. There exist a 6= 0, b ∈ R, such
that dist(S(Aδ),S(A(a ln δ+ b)))→ 0 on each compact set of R as δ → 0.

3 Conclusion.

The spectrum of Aδ does not converge when δ → 0. Asymptoti-
cally, S(Aδ) is 2π/a–periodic in ln δ–scale.
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Selfadjoint extensions of A inside Ic

I The selfadjoint extensions of A are the operators A(τ), τ ∈ R, such that
D(A(τ)) = D(A)⊕ span(s+ + eiτs−)
A(τ)u = div(σ∇u).

Proof: Pick two ui = λi(c+s+ + c−s−) + ũi with λi ∈ C, ũi ∈ D(A). We find

(A∗u1, u2)Ω − (u1,A∗u2)Ω = 2iµλ1λ2 (|c+|2 − |c−|2).

Therefore, we must impose |c+| = |c−|. We take c+ = 1, c− = eiτ with τ ∈ R.

For all τ ∈ R, A(τ) has compact resolvent. Its spectrum S(A(τ)) consists
in two sequences of isolated eigenvalues:

−∞ ←
n→+∞

. . . η−n(τ) ≤ . . .≤ η−1(τ) < 0 ≤ η1(τ) ≤ . . .≤ ηn(τ) . . . →
n→+∞

+∞.

Proof: As for Aδ when δ > 0.

Maybe S(Aδ)→ S(A(τ)) for some τ as δ → 0. But for which τ?
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Asymptotic expansion
I From now, we assume that κσ ∈ (−1;−1/`).

I Consider (λδ, uδ) an eigenpair of the original spectral problem.

Find (λδ, uδ) ∈ C× (H1
0(Ω) \ {0}) s.t.:

−div(σδ∇uδ) = λδuδ in Ω.

I To compute an asymptotic expansion of (λδ, uδ), we make the ansatz

λδ = ηδ + . . .

uδ(x) = vδ(x) + . . . far from O

uδ(x) = V δ(x/δ) + . . . near O

where ηδ, vδ, V δ have to be determined (. . . stand for lower order terms).

I Note that ηδ, vδ, V δ will be defined as solutions of problems set in
geometries independent of δ.

27 / 38



Asymptotic expansion
I From now, we assume that κσ ∈ (−1;−1/`).

I Consider (λδ, uδ) an eigenpair of the original spectral problem.

Find (λδ, uδ) ∈ C× (H1
0(Ω) \ {0}) s.t.:

−div(σδ∇uδ) = λδuδ in Ω.

I To compute an asymptotic expansion of (λδ, uδ), we make the ansatz

λδ = ηδ + . . .

uδ(x) = vδ(x) + . . . far from O

uδ(x) = V δ(x/δ) + . . . near O

where ηδ, vδ, V δ have to be determined (. . . stand for lower order terms).

I Note that ηδ, vδ, V δ will be defined as solutions of problems set in
geometries independent of δ.

27 / 38



Far field
I The far field is defined in the geometry obtained taking δ = 0.

I We find that the pair (ηδ, vδ) must verify

−div(σ0∇vδ) = ηδvδ in Ω
vδ = 0 on ∂Ω.

Ω−
Ω+

O

I Since we do not know which behaviour to prescribe at O, we allow
decomposition on the two singularities s± and search for vδ under the form

vδ = cδ+ s+ + cδ− s− + ṽδ

= cδ+ r
iµφ(θ) + cδ− r

−iµφ(θ) + ṽδ,

where the jauge functions cδ± and ṽδ ∈ D(A) have to be determined.
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Near field
I Introduce the rapid coordinate ξ := x/δ and let δ → 0.

Set Uδ(ξ) = uδ(δξ). We have

uδ(x) = V δ(x/δ) + . . .

⇔ Uδ(ξ) = V δ(ξ) + . . . .

I Letting δ → 0 in −div(σδ∇Uδ) = δ2λδUδ, we find that V δ must satisfy

−div(σ∞∇V δ) = 0 in Ξ := R× (0; +∞)
V δ = 0 on ∂Ξ.

I There is V δ solution of this problem admitting the expansion

V δ(ξ) = |ξ|iµφ(θ) + α |ξ|−iµφ(θ) + Ṽ δ(ξ), with α ∈ C, Ṽ δ ∈ H1(Ξ).

Important: there holds |α| = 1.

From
−div(σ∞∇V δ) = 0 in Ξ, V δ = 0 on ∂Ξ,

multiplying by V δ and integrating by parts on {ξ ∈ Ξ | |ξ| < R}, we find

0 = =m
∫

Ξ∩{|ξ|=R}
σ∞∂rV

δV δ dθ

= 1− |α|2 +O(R−γ), for some γ > 0.

Taking the limit R→ +∞ gives |α| = 1.

29 / 38



Near field
I Introduce the rapid coordinate ξ := x/δ and let δ → 0.

Set Uδ(ξ) = uδ(δξ). We have

uδ(x) = V δ(x/δ) + . . .

⇔ Uδ(ξ) = V δ(ξ) + . . . .

I Letting δ → 0 in −div(σδ∇Uδ) = δ2λδUδ, we find that V δ must satisfy

−div(σ∞∇V δ) = 0 in Ξ := R× (0; +∞)
V δ = 0 on ∂Ξ.

I There is V δ solution of this problem admitting the expansion

V δ(ξ) = |ξ|iµφ(θ) + α |ξ|−iµφ(θ) + Ṽ δ(ξ), with α ∈ C, Ṽ δ ∈ H1(Ξ).
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Taking the limit R→ +∞ gives |α| = 1.
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Matching procedure
I We match the far field and near field expansions in some intermediate

region where r → 0 and r/δ → +∞ (for example where r ∼
√
δ).

Far field: vδ(x) = cδ+ r
iµφ(θ) + cδ− r

−iµφ(θ) + . . .

Near field: V δ(x/δ) = (r/δ)iµφ(θ) + α(r/δ)−iµφ(θ) + . . .

I Since r 7→ riµ and r 7→ r−iµ are linearly independent, we impose

cδ+ = δ−iµ and cδ− = α δiµ

⇒ cδ−/c
δ
+ = α δ2iµ.

This suggests that the eigenpairs of Aδ behave as the eigenpairs
of the model operator M (δ) such that

D(M (δ)) = D(A)⊕ span(s+ + α δ2iµs−)
M (δ)u = div(σ∇u).

I The model operator at first order depends and δ. Moreover, for δ > 0,
we have |α δ2iµ| = 1. ⇒ M (δ) is selfadjoint.
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Main result

Theorem. For κσ ∈ (−1;−1/`), on each compact set of R, we have

dist(S(Aδ),S(M (δ)) ) −→
δ→0

0.

(Asymptotically, the spectrum of Aδ behaves as the one of M (δ) as δ → 0.)

I D(M (δ)) = D(A)⊕ span(s+ +α δ2iµs−). Since δ2iµ = e2iµ ln δ, if δ2, δ1 s.t.

ln δ2 = ln δ1 + kπ/µ, k ∈ Z then M (δ2) = M (δ1).

The spectrum of Aδ does not converge when δ → 0. Asymptoti-
cally, S(Aδ) is π/µ–periodic in ln δ–scale.

Comments

• As κσ → −1+, we have µ→ +∞ (period becomes shorter).
• There is z satisfying div(σ∇z) = 0 in Ω and z|∂Ω = 0 with

z = s+ + β s− + z̃, β ∈ C, z̃ ∈ D(A).

Important: there holds |β| = 1 ⇒ for δ s.t. α δ2iµ = β, z ∈ D(M (δ)).

β

1
α δ2iµ

0.75 0.8 0.85 0.9 0.95 1
0

50

100

150

200

250

300

‖∇uδh‖Ωδ w.r.t. 1− δ
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Comments concerning the proof
I For the source term problem, we proved the estimate, for some β > 0,

‖(Aδ)−1f − (M (δ))−1f‖L2(Ω) ≤ C δβ‖f‖L2(Ω) (1)

for all δ in some set S excluding a neighbourhood of {δ | kerM (δ) 6= {0}}.

ln δ

ln S = {ln δ, δ ∈ S }
But {δ | kerM (δ) 6= {0}} accumulates in zero ⇒ This is not enough! We
want some uniform estimate w.r.t to δ → 0.

Go in the complex plane!

I We proved the estimate, for some β > 0,

‖(Aδ + iId)−1f − (M (δ) + iId)−1f‖L2(Ω) ≤ C δβ‖f‖L2(Ω) (2)

for δ small enough. This implies that the spectra are closed to each other.

♠ Proving (1), (2) is not straightforward due to the change of sign of σ.
This aspect is interesting in itself (S.A. Nazarov’s technique).
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‖(Aδ + iId)−1f − (M (δ) + iId)−1f‖L2(Ω) ≤ C δβ‖f‖L2(Ω) (2)

for δ small enough. This implies that the spectra are closed to each other.

♠ Proving (1), (2) is not straightforward due to the change of sign of σ.
This aspect is interesting in itself (S.A. Nazarov’s technique).
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Spectral problem: numerical experiments 3/4

κσ = −1.0001 (outside the critical interval)
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I S(Aδ) converges to S(A) (A is the limit operator) when δ → 0.
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Spectral problem: numerical experiments 4/4

κσ = −0.9999 (inside the critical interval)
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I Asymptotically, S(Aδ) is periodic in ln δ–scale as δ → 0.
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1 Numerical experiments

2 Properties of the limit problem

3 Asymptotic analysis
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Conclusion 1/2

Let us remind the initial question:

What is the behaviour of (uδ)δ when δ tends to zero?

This depends on the features of the limit problem.

κσ = −1.0001 /∈ Ic κσ = −0.9999 ∈ Ic

When κσ ∈ Ic, (uδ)δ does not converge, even for the L2-norm!

In this case, it is impossible to simulate the fields since it is impossible
to measure exactly δ. ⇒ What happens physically?
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Conclusion 2/2

And concerning the spectral problem?

What is the behaviour of S(Aδ)δ when δ tends to zero?

This depends on the features of the limit problem.
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κσ = −1.0001 /∈ Ic κσ = −0.9999 ∈ Ic

? S(Aδ) tends to S(A) where A
is the limit operator for δ = 0.

? S(Aδ) behaves as S(M (δ)),
which is periodic in ln δ-scale.
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Spectrum for a small inclusion: setting
I Let Ω, Ξ be smooth domains of R3 such that O ∈ Ξ, Ξ ⊂ Ω.
I For δ ∈ (0; 1], we consider the spectral problem

Find (λδ, uδ) ∈ C× (H1
0(Ω) \ {0}) s.t.:

−div(σδ∇uδ) = λδuδ in Ω,

where σδ = σ1> 0 in Ωδ1 := Ω \ δ Ξ
σ2< 0 in Ωδ2 := δ Ξ.

δ

Ωδ1

Ωδ2

I We define the operator Aδ : D(Aδ)→ L2(Ω) such that

D(Aδ) = {u ∈ H1
0(Ω) |div(σδ∇u) ∈ L2(Ω)}

Aδu = div(σδ∇u).

Proposition. Assume that κσ 6= −1. For δ > 0, the operator Aδ is
selfadjoint and has compact resolvent. Its spectrum S(Aδ) consists in two
sequences of isolated eigenvalues:

−∞ ←
n→+∞

. . . λδ−n ≤ · · · ≤ λδ−1 < 0 ≤ λδ1 ≤ λδ2 ≤ · · · ≤ λδn . . . →
n→+∞

+∞.

I For all δ ∈ (0; 1], Aδ has negative spectrum. At the limit δ = 0, the
inclusion of negative material vanishes and σ is strictly positive.

What happens to the negative spectrum when δ tends to zero?
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Limit operators
I As δ → 0, the small inclusion of negative material disappears. We
introduce the far field operator A0 such that

D(A0) = {v ∈ H1
0(Ω) |∆v ∈ L2(Ω)}

A0v = −σ1∆v.

There holds S(A0) = {µn}n≥1 with 0 <µ1 < µ2 ≤ · · · ≤ µn . . . →
n→+∞

+∞.

Ω
σ1

Ξ−
σ∞ = σ2

σ∞ = σ1

I Introduce the rapid coordinate ξ := δ−1x and let δ → 0.
Define the near field operator B∞ such that

D(B∞) := {w ∈ H1(R3) | div (σ∞∇w) ∈ L2(R3)}

B∞w = −div (σ∞∇w).

Proposition. Assume that κσ 6= −1. The continuous spectrum of B∞ is
equal to [0; +∞) while its discrete spectrum is a sequence of eigenvalues:

S(B∞) \ R+ = {µ−n}n≥1 with 0 > µ−1 ≥ · · · ≥ µ−n . . . →
n→+∞

−∞.
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Spectrum for a small inclusion: results
Assume that κσ 6= −1 and that B∞ is injective. For n ∈ N∗, we denote λδ±n,
µδn, µδ−n the eigenvalues of Aδ, A0, B∞ as in the previous slides.

Theorem. (Positive spectrum) For all n ∈ N∗, ε ∈ (0; 1), there exist
constants C, δ0 > 0 depending on n, ε but independent of δ, such that

|λδn − µn| ≤ C δ3/2−ε, ∀δ ∈ (0; δ0].

Theorem. (Negative spectrum) For all n ∈ N∗, there exist constants
C, γ, δ0 > 0, depending on n but independent of δ, such that

|λδ−n − δ−2µ−n| ≤ C exp(−γ/δ), ∀δ ∈ (0; δ0].

Proposition. (Localization effect) For all n ∈ N∗, let uδ−n be an
eigenfunction corresponding to the negative eigenvalue λδ−n. There exist
constants C, γ, δ0 > 0, depending on n but independent of δ, such that∫

Ω
(|uδ−n|2 + |∇uδ−n|2)eγx/δdx ≤ C ‖uδ−n‖Ω, ∀δ ∈ (0; δ0].

41 / 38



Spectrum for a small inclusion: results
Assume that κσ 6= −1 and that B∞ is injective. For n ∈ N∗, we denote λδ±n,
µδn, µδ−n the eigenvalues of Aδ, A0, B∞ as in the previous slides.

Theorem. (Positive spectrum) For all n ∈ N∗, ε ∈ (0; 1), there exist
constants C, δ0 > 0 depending on n, ε but independent of δ, such that

|λδn − µn| ≤ C δ3/2−ε, ∀δ ∈ (0; δ0].

Theorem. (Negative spectrum) For all n ∈ N∗, there exist constants
C, γ, δ0 > 0, depending on n but independent of δ, such that

|λδ−n − δ−2µ−n| ≤ C exp(−γ/δ), ∀δ ∈ (0; δ0].

Proposition. (Localization effect) For all n ∈ N∗, let uδ−n be an
eigenfunction corresponding to the negative eigenvalue λδ−n. There exist
constants C, γ, δ0 > 0, depending on n but independent of δ, such that∫

Ω
(|uδ−n|2 + |∇uδ−n|2)eγx/δdx ≤ C ‖uδ−n‖Ω, ∀δ ∈ (0; δ0].

41 / 38



Spectrum for a small inclusion: results
Assume that κσ 6= −1 and that B∞ is injective. For n ∈ N∗, we denote λδ±n,
µδn, µδ−n the eigenvalues of Aδ, A0, B∞ as in the previous slides.

Theorem. (Positive spectrum) For all n ∈ N∗, ε ∈ (0; 1), there exist
constants C, δ0 > 0 depending on n, ε but independent of δ, such that

|λδn − µn| ≤ C δ3/2−ε, ∀δ ∈ (0; δ0].

Theorem. (Negative spectrum) For all n ∈ N∗, there exist constants
C, γ, δ0 > 0, depending on n but independent of δ, such that

|λδ−n − δ−2µ−n| ≤ C exp(−γ/δ), ∀δ ∈ (0; δ0].

Proposition. (Localization effect) For all n ∈ N∗, let uδ−n be an
eigenfunction corresponding to the negative eigenvalue λδ−n. There exist
constants C, γ, δ0 > 0, depending on n but independent of δ, such that∫

Ω
(|uδ−n|2 + |∇uδ−n|2)eγx/δdx ≤ C ‖uδ−n‖Ω, ∀δ ∈ (0; δ0].

Schematically, we have:

S(Aδ)

∼
δ→0

λδ1 λδ2λδ−1λδ−2

µ1 µ2δ−2µ−1δ−2µ−2

S(A0)δ−2S(B∞) ∩ (−∞; 0)
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Numerical experiments for the small inclusion

I We approximate numerically the spectrum of Aδ using a usual P1 Finite
Element Method and we make δ goes to zero.

I We consider the following 2D geometry:

∂Ω

Ωδ+ Ωδ−

1

δ/2

δ
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Numerical experiments for the small inclusion
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I The positive part of S(Aδ) converges to S(A0) when δ → 0.
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I The negative part of S(Aδ) is asymptotically equivalent to the negative
part of δ−2S(B∞) when δ → 0.
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Numerical experiments for the small inclusion
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Linear regression for the 1st negative eigenvalue: a = −2.0056

I The negative part of S(Aδ) is asymptotically equivalent to the negative
part of δ−2S(B∞) when δ → 0.
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Localization effect

Eigenfunction associated to the
first negative eigenvalue

Eigenfunction associated to the
first positive eigenvalue

δ=0.5

δ=0.05

δ=0.5

δ=0.05

I The eigenfunctions corresponding to the negative eigenvalues are
localized around the small inclusion. Here, κσ = −2.5. 43 / 38
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