Invisibilité et camouflage d'obstacles dans des guides d'ondes acoustiques

Lucas Chesnel¹

Coll. with A.-S. Bonnet-BenDhia², J. Heleine³, S.A. Nazarov⁴, V. Pagneux⁵

¹Idefix team, Inria/Ensta Paris, France

Poems team, Inria/Ensta Paris, France

³IMT, Univ. Paul Sabatier, France

⁴FMM, St. Petersburg State University, Russia

⁵LAUM, Univ. du Maine, France

$$(\mathscr{P}) \left| \begin{array}{rcl} \Delta u + k^2 u & = & 0 & \text{in } \Omega, \\ \partial_n u & = & 0 & \text{on } \partial \Omega \end{array} \right.$$

$$(\mathscr{P}) \left| \begin{array}{rcl} \Delta u + k^2 u & = & 0 & \text{in } \Omega, \\ \partial_n u & = & 0 & \text{on } \partial \Omega \end{array} \right|$$

► For this problem, the modes are

$$\begin{array}{ll} \text{Propagating} & \left| \begin{array}{ll} w_n^\pm(x,y) = e^{\pm i\beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{k^2 - n^2 \pi^2}, \ n \in \llbracket 0, N - 1 \rrbracket \\ \text{Evanescent} & \left| \begin{array}{ll} w_n^\pm(x,y) = e^{\mp \beta_n x} \cos(n\pi y), \ \beta_n = \sqrt{n^2 \pi^2 - k^2}, \ n \geq N. \end{array} \right. \end{array}$$

$$(\mathscr{P}) \left| \begin{array}{rcl} \Delta u + k^2 u & = & 0 & \text{in } \Omega, \\ \partial_n u & = & 0 & \text{on } \partial \Omega \end{array} \right.$$

$$(\mathscr{P}) \left| \begin{array}{rcl} \Delta u + k^2 u & = & 0 & \text{in } \Omega, \\ \partial_n u & = & 0 & \text{on } \partial \Omega \end{array} \right|$$

• We fix $k \in (0, \pi)$ so that only the plane waves $e^{\pm ikx}$ can propagate.

$$(\mathscr{P}) \left| \begin{array}{rcl} \Delta u + k^2 u & = & 0 & \text{in } \Omega, \\ \partial_n u & = & 0 & \text{on } \partial \Omega \end{array} \right.$$

- We fix $k \in (0; \pi)$ so that only the plane waves $e^{\pm ikx}$ can propagate.
- ▶ The scattering of the wave e^{ikx} leads us to consider the solutions of (\mathscr{P}) with the decomposition

$$u = \begin{vmatrix} e^{ikx} + Re^{-ikx} + \dots & x \to -\infty \\ Te^{+ikx} + \dots & x \to +\infty \end{vmatrix}$$

 $R, T \in \mathbb{C}$ are the scattering coefficients, the ... are expon. decaying terms.

- We have the relation of conservation of energy $|R|^2 + |T|^2 = 1$.
- Without obstacle, $u=e^{ikx}$ so that (R,T)=(0,1).

- With an obstacle, in general $(R,T) \neq (0,1)$.

- ▶ We have the relation of conservation of energy $|R|^2 + |T|^2 = 1$.
- Without obstacle, $u = e^{ikx}$ so that (R, T) = (0, 1).

- With an obstacle, in general $(R,T) \neq (0,1)$.

Goal of the talk

We wish to identify situations (geometries, k) where R=0 (zero reflection) or T=1 (perfect invisibility) \Rightarrow cloaking at "infinity".

Difficulty: the scattering coefficients have a non explicit and non linear dependence wrt the geometry and k.

 \rightarrow Optimization techniques fail due to local minima.

Remark: different from the usual cloaking picture (Pendry et al. 06, Leonhardt 06, Greenleaf et al. 09) because we wish to control only the scattering coef...

 \rightarrow Less ambitious but doable without fancy materials (and relevant in practice).

Outline of the talk

1 Smooth non reflecting perturbations of the reference strip

2 Non reflecting clouds of small obstacles

3 Construction of large invisible defects

4 Cloaking of given large obstacles

Outline of the talk

1 Smooth non reflecting perturbations of the reference strip

2 Non reflecting clouds of small obstacles

3 Construction of large invisible defects

4 Cloaking of given large obstacles

General picture

Perturbative technique: we construct small non reflecting defects using variants of the implicit functions theorem. $\frac{1+h(x)}{R=0}$ R=0

For $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$, denote $R(h) \in \mathbb{C}$ the reflection coef. in the geometry:

For $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$, denote $R(h) \in \mathbb{C}$ the reflection coef. in the geometry:

Note that R(0) = 0 (no obstacle leads to null measurements).

For $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$, denote $R(h) \in \mathbb{C}$ the reflection coef. in the geometry:

Our goal: to find $h \not\equiv 0$ such that R(h) = 0.

For $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$, denote $R(h) \in \mathbb{C}$ the reflection coef. in the geometry:

Our goal: to find $h \not\equiv 0$ such that R(h) = 0.

• We look for h of the form $h = \varepsilon \mu$ with $\varepsilon > 0$ small and μ to determine.

For $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$, denote $R(h) \in \mathbb{C}$ the reflection coef. in the geometry:

– 0

Our goal: to find $h \not\equiv 0$ such that R(h) = 0.

1 + h(x)

For $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$, denote $R(h) \in \mathbb{C}$ the reflection coef. in the geometry:

Our goal: to find $h \not\equiv 0$ such that R(h) = 0.

Taylor: $R(\varepsilon \mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$.

For $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$, denote $R(h) \in \mathbb{C}$ the reflection coef. in the geometry:

Our goal: to find $h \not\equiv 0$ such that R(h) = 0.

► Taylor: $R(\varepsilon \mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$.

We can show that $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto

For $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$, denote $R(h) \in \mathbb{C}$ the reflection coef. in the geometry:

Our goal: to find $h \not\equiv 0$ such that R(h) = 0.

Taylor: $R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$.

We can show that $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto

$$dR(0)(\mu_0) = 0$$
,

$$dR(0)(\mu_0) = 0,$$
 $dR(0)(\mu_1) = 1,$

$$\Rightarrow \exists \mu_0, \mu_1, \mu_2 \text{ s.t.}$$

1 + h(x)

$$dR(0)(\mu_2) = i.$$

For $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$, denote $R(h) \in \mathbb{C}$ the reflection coef. in the geometry:

Our goal: to find $h \not\equiv 0$ such that R(h) = 0.

► Taylor: $R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$.

We can show that
$$dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$$
 is onto $\Rightarrow \exists \mu_0, \mu_1, \mu_2 \quad \text{s.t.}$

$$dR(0)(\mu_0) = 0, \qquad dR(0)(\mu_1) = 1, \qquad dR(0)(\mu_2) = i.$$

- For $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$, denote $R(h) \in \mathbb{C}$ the reflection coef. in the geometry:
- Our goal: to find $h \not\equiv 0$ such that R(h) = 0.

► Taylor: $R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$.

We can show that
$$dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$$
 is onto $\Rightarrow \exists \mu_0, \mu_1, \mu_2 \text{ s.t.}$
$$dR(0)(\mu_0) = 0, \qquad dR(0)(\mu_1) = 1, \qquad dR(0)(\mu_2) = i.$$

$$0 = R(\varepsilon \mu) \Leftrightarrow$$

For $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$, denote $R(h) \in \mathbb{C}$ the reflection coef. in the geometry:

Our goal: to find $h \not\equiv 0$ such that R(h) = 0.

► Taylor: $R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$.

We can show that
$$dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$$
 is onto $\Rightarrow \exists \mu_0, \mu_1, \mu_2 \text{ s.t.}$

$$dR(0)(\mu_0) = 0, \qquad dR(0)(\mu_1) = 1, \qquad dR(0)(\mu_2) = i.$$

$$0 = R(\varepsilon \mu) \quad \Leftrightarrow \quad 0 = \varepsilon(\tau_1 dR(0)(\mu_1) + \tau_2 dR(0)(\mu_2)) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$$

For $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$, denote $R(h) \in \mathbb{C}$ the reflection coef. in the geometry:

Our goal: to find $h \not\equiv 0$ such that R(h) = 0.

► Taylor:
$$R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$$
.

We can show that
$$dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$$
 is onto $\Rightarrow \exists \mu_0, \mu_1, \mu_2 \quad \text{s.t.}$

$$dR(0)(\mu_0) = 0, \qquad dR(0)(\mu_1) = 1, \qquad dR(0)(\mu_2) = i.$$

$$0 = R(\varepsilon \mu) \quad \Leftrightarrow \quad 0 = \varepsilon(\tau_1 + i\tau_2) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$$

- For $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$, denote $R(h) \in \mathbb{C}$ the reflection coef. in the geometry:
- Our goal: to find $h \not\equiv 0$ such that R(h) = 0.

► Taylor: $R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$.

We can show that
$$dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$$
 is onto $\Rightarrow \exists \mu_0, \mu_1, \mu_2 \text{ s.t.}$

$$dR(0)(\mu_0) = 0, \qquad dR(0)(\mu_1) = 1, \qquad dR(0)(\mu_2) = i.$$

$$0 = R(\varepsilon \mu) \quad \Leftrightarrow \quad \boxed{\vec{\tau} = G^{\varepsilon}(\vec{\tau})} \quad \text{where} \quad \begin{vmatrix} \vec{\tau} = (\tau_1, \tau_2)^{\top} \\ G^{\varepsilon}(\vec{\tau}) = -\varepsilon (\Re e \, \tilde{R}^{\varepsilon}(\mu), \Im m \, \tilde{R}^{\varepsilon}(\mu))^{\top}. \end{vmatrix}$$

- For $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$, denote $R(h) \in \mathbb{C}$ the reflection coef. in the geometry:
- Our goal: to find $h \not\equiv 0$ such that R(h) = 0.

► Taylor: $R(\varepsilon \mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$.

We can show that
$$dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$$
 is onto $\Rightarrow \exists \mu_0, \mu_1, \mu_2 \text{ s.t.}$
$$dR(0)(\mu_0) = 0, \qquad dR(0)(\mu_1) = 1, \qquad dR(0)(\mu_2) = i.$$

Take $\mu = \mu_0 + \tau_1 \mu_1 + \tau_2 \mu_2$ where the τ_n are real parameters to set:

$$0 = R(\varepsilon \mu) \quad \Leftrightarrow \quad \boxed{\vec{\tau} = G^{\varepsilon}(\vec{\tau})} \quad \text{where} \quad \begin{vmatrix} \vec{\tau} = (\tau_1, \tau_2)^{\top} \\ G^{\varepsilon}(\vec{\tau}) = -\varepsilon (\Re e \, \tilde{R}^{\varepsilon}(\mu), \Im m \, \tilde{R}^{\varepsilon}(\mu))^{\top}. \end{vmatrix}$$

 G^{ε} is a contraction \Rightarrow the fixed-point equation has a unique solution $\vec{\tau}^{\mathrm{sol}}$.

For $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$, denote $R(h) \in \mathbb{C}$ the reflection coef. in the geometry:

Our goal: to find
$$h \not\equiv 0$$
 such that $R(h) = 0$.

Taylor: $R(\varepsilon\mu) = \varepsilon dR(0)(\mu) + \varepsilon^2 \tilde{R}^{\varepsilon}(\mu)$.

We can show that
$$dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$$
 is onto $\Rightarrow \exists \mu_0, \mu_1, \mu_2 \text{ s.t.}$

$$dR(0)(\mu_0) = 0, \qquad dR(0)(\mu_1) = 1, \qquad dR(0)(\mu_2) = i.$$

Take $\mu = \mu_0 + \tau_1 \mu_1 + \tau_2 \mu_2$ where the τ_n are real parameters to set:

$$0 = R(\varepsilon \mu) \quad \Leftrightarrow \quad \boxed{\vec{\tau} = G^{\varepsilon}(\vec{\tau})} \quad \text{where} \quad \begin{vmatrix} \vec{\tau} = (\tau_1, \tau_2)^{\top} \\ G^{\varepsilon}(\vec{\tau}) = -\varepsilon (\Re e \, \tilde{R}^{\varepsilon}(\mu), \Im m \, \tilde{R}^{\varepsilon}(\mu))^{\top}. \end{vmatrix}$$

 G^{ε} is a contraction \Rightarrow the fixed-point equation has a unique solution $\vec{\tau}^{\text{sol}}$. Set $h^{\text{sol}} := \varepsilon \mu^{\text{sol}}$. We have $R(h^{\text{sol}}) = 0$ (non reflecting perturbation).

1 + h(x)

▶ Using classical results of asymptotic analysis, we obtain

$$R(\varepsilon\mu) = 0 + \varepsilon \left(-\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) e^{2ikx} \, dx \right) + O(\varepsilon^2).$$

▶ Using classical results of asymptotic analysis, we obtain

$$R(\varepsilon\mu) = 0 + \varepsilon \left(-\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) e^{2ikx} dx \right) + O(\varepsilon^2).$$
$$dR(0)(\mu)$$

 $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto \Rightarrow we can get non trivial Ω s.t. R = 0.

▶ Using classical results of asymptotic analysis, we obtain

$$R(\varepsilon\mu) = 0 + \varepsilon \left(-\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) e^{2ikx} dx \right) + O(\varepsilon^2).$$
$$dR(0)(\mu)$$

 $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto \Rightarrow we can get non trivial Ω s.t. R = 0.

▶ Can we use the technique to construct Ω such that T=1?

▶ Using classical results of asymptotic analysis, we obtain

$$R(\varepsilon\mu) = 0 + \varepsilon \left(-\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) e^{2ikx} dx \right) + O(\varepsilon^2).$$
$$dR(0)(\mu)$$

 $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto \Rightarrow we can get non trivial Ω s.t. R = 0.

▶ Can we use the technique to construct Ω such that T=1? We obtain

$$T(\varepsilon\mu) - 1 = 0 + \varepsilon \cdot 0 + O(\varepsilon^2).$$

▶ Using classical results of asymptotic analysis, we obtain

$$R(\varepsilon\mu) = 0 + \varepsilon \left(-\frac{1}{2} \int_{-\ell}^{\ell} \partial_x \mu(x) e^{2ikx} dx \right) + O(\varepsilon^2).$$
$$dR(0)(\mu)$$

 $dR(0): \mathscr{C}_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ is onto \Rightarrow we can get non trivial Ω s.t. R = 0.

▶ Can we use the technique to construct Ω such that T = 1? We obtain

$$T(\varepsilon\mu) - 1 = 0 + \varepsilon \frac{\mathbf{0}}{\mathbf{0}} + O(\varepsilon^2).$$

dT(0) is not onto \Rightarrow the approach fails to impose T=1.

Numerical results

► The fixed point problem can be solved iteratively: $\vec{\tau}^{n+1} = G^{\varepsilon}(\vec{\tau}^n)$.

Numerics done by a group of students of École Polytechnique with the Freefem++ library \rightarrow P2 FEM + Dirichlet-to-Neumann to truncate Ω .

Numerical results

The fixed point problem can be solved iteratively: $\vec{\tau}^{n+1} = G^{\varepsilon}(\vec{\tau}^n)$.

Numerics done by a group of students of École Polytechnique with the Freefem++ library \rightarrow P2 FEM + Dirichlet-to-Neumann to truncate Ω .

Outline of the talk

Smooth non reflecting perturbations of the reference strip

2 Non reflecting clouds of small obstacles

3 Construction of large invisible defects

4 Cloaking of given large obstacles

Small Dirichlet obstacle

Can one hide a small Dirichlet obstacle centered at M_1

Find
$$u = u_i + u_s$$
 s. t.

$$\Delta u + k^2 u = 0 \quad \text{in } \Omega^{\varepsilon} := \Omega \setminus \overline{\mathcal{O}_1^{\varepsilon}},$$

$$u = 0 \quad \text{on } \partial \Omega^{\varepsilon},$$

$$u_s \text{ is outgoing.}$$

▶ With Dirichlet B.C., the modes are not the same as previously but this not important. Denote by w^{\pm} the first propagating modes.

Can one hide a small Dirichlet obstacle centered at M_1

Find
$$u = u_i + u_s$$
 s. t.

$$\Delta u + k^2 u = 0 \quad \text{in } \Omega^{\varepsilon} := \Omega \setminus \overline{\mathcal{O}_1^{\varepsilon}},$$

$$u = 0 \quad \text{on } \partial \Omega^{\varepsilon},$$

$$u_s \text{ is outgoing.}$$

- ▶ With Dirichlet B.C., the modes are not the same as previously but this not important. Denote by w^{\pm} the first propagating modes.
- ▶ In 3D, we obtain

$$R = 0 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O})w^{+}(M_{1})^{2}\right) + O(\varepsilon^{2})$$

$$T = 1 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O})|w^{+}(M_{1})|^{2}\right) + O(\varepsilon^{2}).$$

Can one hide a small Dirichlet obstacle centered at M_1

Find
$$u=u_i+u_s$$
 s. t.
$$\Delta u + k^2 u = 0 \quad \text{in } \Omega^\varepsilon := \Omega \setminus \overline{\mathcal{O}_1^\varepsilon},$$

$$u=0 \quad \text{on } \partial \Omega^\varepsilon,$$

$$u_s \text{ is outgoing.}$$

- ▶ With Dirichlet B.C., the modes are not the same as previously but this not important. Denote by w^{\pm} the first propagating modes.
- ▶ In 3D, we obtain

$$R = 0 + \varepsilon \frac{(4i\pi \operatorname{cap}(\mathcal{O})w^{+}(M_{1})^{2})}{(4i\pi \operatorname{cap}(\mathcal{O})|w^{+}(M_{1})|^{2})} + O(\varepsilon^{2})$$
 Non zero terms!
$$T = 1 + \varepsilon \frac{(4i\pi \operatorname{cap}(\mathcal{O})|w^{+}(M_{1})|^{2})}{(6\pi \operatorname{cap}(\mathcal{O}))} + O(\varepsilon^{2})$$

Can one hide a small Dirichlet obstacle centered at M_1

Find
$$u=u_i+u_s$$
 s. t.
$$\Delta u + k^2 u = 0 \quad \text{in } \Omega^\varepsilon := \Omega \setminus \overline{\mathcal{O}_1^\varepsilon},$$
 $u=0 \quad \text{on } \partial \Omega^\varepsilon,$ u_s is outgoing.

- With Dirichlet B.C., the modes are not the same as previously but this not important. Denote by w^{\pm} the first propagating modes.
- In 3D, we obtain

$$R = 0 + \varepsilon \frac{(4i\pi \operatorname{cap}(\mathcal{O})w^{+}(M_{1})^{2})}{(4i\pi \operatorname{cap}(\mathcal{O})|w^{+}(M_{1})|^{2})} + O(\varepsilon^{2})$$
 Non zero terms!
$$T = 1 + \varepsilon \frac{(4i\pi \operatorname{cap}(\mathcal{O})|w^{+}(M_{1})|^{2})}{(\varepsilon^{2})} + O(\varepsilon^{2})$$

- Let us try with **TWO** small Dirichlet obstacles at M_1 , M_2 .
- We obtain $R = 0 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} w^{+} (M_n)^2\right) + O(\varepsilon^2)$

$$T = 1 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} |w^{+}(M_n)|^2\right) + O(\varepsilon^2).$$

- Let us try with **TWO** small Dirichlet obstacles at M_1 , M_2 .
- We obtain $R = 0 + \varepsilon \left[(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} w^{+} (M_n)^2) \right] + O(\varepsilon^2)$

$$T = 1 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} |w^{+}(M_n)|^2\right) + O(\varepsilon^2).$$

- Let us try with **TWO** small Dirichlet obstacles at M_1 , M_2 .
- We obtain $R = 0 + \varepsilon \left[(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} w^{+} (M_n)^2) \right] + O(\varepsilon^2)$

$$T = 1 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1} |w^{+}(M_n)|^2\right) + O(\varepsilon^2).$$

We can find M_1 , M_2 such that $R = O(\varepsilon^2)$.

Let us try with **TWO** small Dirichlet obstacles at M_1 , M_2 .

We obtain
$$R = 0 + \varepsilon \left[(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} w^{+} (M_{n})^{2}) \right] + O(\varepsilon^{2})$$

$$T = 1 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} |w^{+}(M_{n})|^{2} \right) + O(\varepsilon^{2})$$

$$T = 1 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} |w^{+}(M_n)|^2\right) + O(\varepsilon^2).$$

We can find M_1 , M_2 such that $R = O(\varepsilon^2)$. Then moving $\mathcal{O}_1^{\varepsilon}$ from M_1 to $M_1 + \varepsilon \tau$, and choosing a good $\tau \in \mathbb{R}^3$ (fixed point), we can get R = 0.

Let us try with **TWO** small Dirichlet obstacles at M_1 , M_2 .

• We obtain $R = 0 + \varepsilon \left[(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} w^{+} (M_n)^2) \right] + O(\varepsilon^2)$

$$T = 1 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} |w^{+}(M_n)|^2\right) + O(\varepsilon^2).$$

We can find M_1 , M_2 such that $R = O(\varepsilon^2)$. Then moving $\mathcal{O}_1^{\varepsilon}$ from M_1 to $M_1 + \varepsilon \tau$, and choosing a good $\tau \in \mathbb{R}^3$ (fixed point), we can get R = 0.

Comments:

- \rightarrow Hard part is to justify the asymptotics for the fixed point problem.
- \rightarrow We cannot impose T = 1 with this strategy.
- \rightarrow When there are more propagative waves, we need more obstacles.

Let us try with **TWO** small Dirichlet obstacles at M_1 , M_2 .

• We obtain $R = 0 + \varepsilon \left[(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} w^{+} (M_n)^2) \right] + O(\varepsilon^2)$

$$T = 1 + \varepsilon \left(4i\pi \operatorname{cap}(\mathcal{O}) \sum_{n=1}^{2} |w^{+}(M_n)|^2\right) + O(\varepsilon^2).$$

We can find M_1 , M_2 such that $R = O(\varepsilon^2)$. Then moving $\mathcal{O}_1^{\varepsilon}$ from M_1 to $M_1 + \varepsilon \tau$, and choosing a good $\tau \in \mathbb{R}^3$ (fixed point), we can get R = 0.

Comments:

- \rightarrow Hard part is to justify the asymptotics for the fixed point problem.
- \rightarrow We cannot impose T = 1 with this strategy.
- \rightarrow When there are more propagative waves, we need more obstacles.

Acting as a team, flies can become invisible!

Outline of the talk

- 1 Smooth non reflecting perturbations of the reference strip
- 2 Non reflecting clouds of small obstacles
- 3 Construction of large invisible defects
- 4 Cloaking of given large obstacles

► Let us work in the geometry

► Let us work in the geometry

► Introduce the two half-waveguide problems

► Let us work in the geometry

▶ Introduce the two half-waveguide problems

Let us work in the geometry

► Introduce the two half-waveguide problems

Let us work in the geometry

Introduce the two half-waveguide problems

Dirichlet

▶ Half-waveguide problems admit the solutions

$$u = w^+ + R^N w^- + \tilde{u},$$
 with $\tilde{u} \in H^1(\omega_h)$
 $U = w^+ + R^D w^- + \tilde{U},$ with $\tilde{U} \in H^1(\omega_h).$

▶ Half-waveguide problems admit the solutions

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in H^{1}(\omega_{h})$$

$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in H^{1}(\omega_{h}).$$

▶ Due to conservation of energy, one has

$$|R^N| = |R^D| = 1.$$

▶ Half-waveguide problems admit the solutions

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in H^{1}(\omega_{h})$$

$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in H^{1}(\omega_{h}).$$

▶ Due to conservation of energy, one has

$$|R^N| = |R^D| = 1.$$

▶ Half-waveguide problems admit the solutions

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in H^{1}(\omega_{h})$$

$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in H^{1}(\omega_{h}).$$

▶ Due to conservation of energy, one has

$$|R^N| = |R^D| = 1.$$

▶ Using symmetry considerations, one can show that

$$R = \frac{R^N + R^D}{2} \quad \text{and} \quad T = \frac{R^N - R^D}{2}$$

Half-waveguide problems admit the solutions

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in H^{1}(\omega_{h})$$

$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in H^{1}(\omega_{h}).$$

Due to conservation of energy, one has

$$|R^N| = |R^D| = 1.$$

Using symmetry considerations, one can show that

$$R = \frac{R^N + R^D}{2}$$

$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$ (Perfect invisibility $\Leftrightarrow [R^N = 1, R^D = -1]$)

$$\Leftrightarrow [\mathbf{R}^{\mathbf{N}} = 1, R^D = -1]$$

Half-waveguide problems admit the solutions

$$u = w^+ + \mathbb{R}^N w^- + \tilde{u}, \quad \text{with } \tilde{u} \in H^1(\omega_h)$$

 $U = w^+ + \mathbb{R}^D w^- + \tilde{U}, \quad \text{with } \tilde{U} \in H^1(\omega_h).$

Due to conservation of energy, one has

$$|R^N| = |R^D| = 1.$$

Using symmetry considerations, one can show that

$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$ (Perfect invisibility $\Leftrightarrow [R^N = 1, R^D = -1]$)

$$T = \frac{R^N - R^D}{2}$$

$$\Leftrightarrow [R^N = 1, R^D = -1]$$

Half-waveguide problems admit the solutions

$$u = w^+ + \mathbb{R}^N w^- + \tilde{u}, \quad \text{with } \tilde{u} \in H^1(\omega_h)$$

 $U = w^+ + \mathbb{R}^D w^- + \tilde{U}, \quad \text{with } \tilde{U} \in H^1(\omega_h).$

Due to conservation of energy, one has

$$|R^N| = |R^D| = 1.$$

Using symmetry considerations, one can show that

$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$ Perfect invisibility $R = \frac{R^N + R^D}{2}$

Crucial point: in this particular geometry
$$\omega_h$$
, $u = w^+ + w^- = 2\cos(kx)$ solves the Neum. pb.

$$\Rightarrow R^N = 1, \, \forall h > 1.$$

Half-waveguide problems admit the solutions

$$u = w^+ + \mathbb{R}^N w^- + \tilde{u}, \quad \text{with } \tilde{u} \in H^1(\omega_h)$$

 $U = w^+ + \mathbb{R}^D w^- + \tilde{U}, \quad \text{with } \tilde{U} \in H^1(\omega_h).$

Due to conservation of energy, one has

$$|R^N| = |R^D| = 1.$$

Using symmetry considerations, one can show that

$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$ $R = \frac{R^N + R^D}{2}$ $R = \frac{R^N + R^D}{2}$ $R = \frac{R^N + R^D}{2}$

$$\Leftrightarrow [R^N = 1, R^D = -1]$$

Crucial point: in this particular geometry
$$\omega_h$$
, $u = w^+ + w^- = 2\cos(kx)$ solves the Neum. pb.

$$h)$$
 as $h \to +\infty$.

 $\Rightarrow R^N = 1, \forall h > 1.$

Depends on the nb. of propagating modes in the vertical branch of ω_{∞}

$$\begin{array}{c|cccc}
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

Depends on the nb. of propagating modes in the vertical branch of ω_{∞}

- For $\ell = 2\pi/k$, 2 modes can propagate in the vertical branch of ω_{∞} .

Depends on the nb. of propagating modes in the vertical branch of ω_{∞}

- For $\ell = 2\pi/k$, 2 modes can propagate in the vertical branch of ω_{∞} .
- ▶ Using asymptotic analysis, one shows that when $h \to +\infty$,

$$|R^D(h) - R^D_{\mathrm{asy}}(h)| \leq Ce^{-ch}$$

where $R_{\text{asv}}^D(h)$ runs periodically on the unit circle \mathscr{C} .

Depends on the nb. of propagating modes in the vertical branch of ω_{∞}

- For $\ell = 2\pi/k$, 2 modes can propagate in the vertical branch of ω_{∞} .
- ▶ Using asymptotic analysis, one shows that when $h \to +\infty$,

$$|R^D(h) - R_{\mathrm{asy}}^D(h)| \le Ce^{-ch}$$

where $R_{\rm asy}^D(h)$ runs periodically on the unit circle \mathscr{C} .

Additionally one can prove that $h \mapsto R^D(h)$ runs continuously on \mathscr{C} .

Depends on the nb. of propagating modes in the vertical branch of ω_{∞}

- For $\ell = 2\pi/k$, 2 modes can propagate in the vertical branch of ω_{∞} .
- ▶ Using asymptotic analysis, one shows that when $h \to +\infty$,

$$|R^D(h) - R_{\text{asy}}^D(h)| \le Ce^{-ch}$$

where $R_{\mathrm{asv}}^D(h)$ runs periodically on the unit circle $\mathscr{C}.$

▶ Additionally one can prove that $h \mapsto R^D(h)$ runs continuously on \mathscr{C} .

 \Rightarrow There is a sequence (h_n) with $h_n \to +\infty$ such that $R^D(h_n) = -1$.

Conclusion

THEOREM: There is an unbounded sequence (h_n) such that for $h = h_n$, we have T = 1 (perfect invisibility).

Numerical results

- ▶ Works also in the geometry below. When we vary h, the height of the central branch, T runs exactly on the circle $\mathscr{C}(1/2, 1/2)$.
- \rightarrow Numerically, we simply sweep in h and extract the h such that T(h)=1.
- ▶ Perfectly invisible defect $(t \mapsto \Re e(v(x,y)e^{-i\omega t}))$

Reference waveguide ($t \mapsto \Re e(v(x,y)e^{-i\omega t})$)

Remark

 \blacktriangleright Actually Ω does not have to be symmetric and we can work in the following geometry:

Remark

ightharpoonup Actually Ω does not have to be symmetric and we can work in the following geometry:

- ▶ In this Ω_h , we can show that there holds R+T=1.
- ▶ With the identity of energy $|R|^2 + |T|^2 = 1$, this guarantees that T must be on the circle $\mathscr{C}(1/2, 1/2)$.
 - Finally, with asy. analysis, we show that T goes through 1 as $h \to +\infty$.

Outline of the talk

- 1 Smooth non reflecting perturbations of the reference strip
- 2 Non reflecting clouds of small obstacles
- 3 Construction of large invisible defects
- 4 Cloaking of given large obstacles

Setting

Main ingredient of our approach: outer resonators of width $\varepsilon \ll 1$.

$$(\mathscr{P}^{\varepsilon}) \left| \begin{array}{c} \Delta u + k^2 u = 0 & \text{in } \Omega^{\varepsilon}, \\ \partial_n u = 0 & \text{on } \partial \Omega^{\varepsilon} \end{array} \right.$$

▶ In this geometry, we have the scattering solutions

$$u_{+}^{\varepsilon} = \left| \begin{array}{c} e^{ikx} + R_{+}^{\varepsilon} \, e^{-ikx} + \dots \\ T^{\varepsilon} \, e^{+ikx} + \dots \end{array} \right| \quad u_{-}^{\varepsilon} = \left| \begin{array}{c} T^{\varepsilon} \, e^{-ikx} + \dots \\ e^{-ikx} + R_{-}^{\varepsilon} \, e^{+ikx} + \dots \end{array} \right| \quad x \to -\infty \\ x \to +\infty$$

Setting

Main ingredient of our approach: outer resonators of width $\varepsilon \ll 1$.

$$(\mathscr{P}^{\varepsilon}) \left| \begin{array}{c} \Delta u + k^2 u = 0 & \text{in } \Omega^{\varepsilon}, \\ \partial_n u = 0 & \text{on } \partial \Omega^{\varepsilon} \end{array} \right.$$

▶ In this geometry, we have the scattering solutions

$$u_{+}^{\varepsilon} = \left| \begin{array}{c} e^{ikx} + R_{+}^{\varepsilon} \, e^{-ikx} + \dots \\ T^{\varepsilon} \, e^{+ikx} + \dots \end{array} \right| \quad u_{-}^{\varepsilon} = \left| \begin{array}{c} T^{\varepsilon} \, e^{-ikx} + \dots \\ e^{-ikx} + R_{-}^{\varepsilon} \, e^{+ikx} + \dots \end{array} \right| \quad x \to -\infty \\ x \to +\infty$$

In general, the thin ligament has only a weak influence on the scattering coefficients: $R_{\pm}^{\varepsilon} \approx R_{\pm}$, $T^{\varepsilon} \approx T$. But not always ...

Numerical experiment

▶ We vary the length of the ligament:

Numerical experiment

▶ For one particular length of the ligament, we get a standing mode (zero transmission):

To understand the phenomenon, we compute an asymptotic expansion of u_+^{ε} , R_+^{ε} , T^{ε} as $\varepsilon \to 0$.

$$(\mathscr{P}^{\varepsilon}) \left| \begin{array}{c} \Delta u_{+}^{\varepsilon} + k^{2} u_{+}^{\varepsilon} = 0 & \text{in } \Omega^{\varepsilon}, \\ \partial_{n} u_{+}^{\varepsilon} = 0 & \text{on } \partial \Omega^{\varepsilon} \end{array} \right.$$

$$u_{+}^{\mathbf{\varepsilon}} = \begin{vmatrix} e^{ikx} + R_{+}^{\mathbf{\varepsilon}} e^{-ikx} + \dots \\ T^{\mathbf{\varepsilon}} e^{+ikx} + \dots \end{vmatrix}$$

► To proceed we use techniques of matched asymptotic expansions (see Beale 73, Gadyl'shin 93, Kozlov et al. 94, Nazarov 96, Maz'ya et al. 00, Joly & Tordeux 06, Lin, Shipman & Zhang 17, 18, Brandao, Holley, Schnitzer 20,...).

We work with the outer expansions

$$\begin{split} u_+^\varepsilon(x,y) &= u^0(x,y) + \dots & \text{in } \Omega, \\ u_+^\varepsilon(x,y) &= \varepsilon^{-1} v^{-1}(y) + v^0(y) + \dots & \text{in the resonator.} \end{split}$$

ightharpoonup Considering the restriction of $(\mathscr{P}^{\varepsilon})$ to the thin resonator, when ε tends to zero, we find that v^{-1} must solve the homogeneous 1D problem

$$(\mathscr{P}_{1D}) \left| \begin{array}{l} \partial_y^2 v + k^2 v = 0 & \text{in } (1; 1 + \ell) \\ v(1) = \partial_y v(1 + \ell) = 0. \end{array} \right.$$

▶ We work with the outer expansions

$$\begin{split} u_+^\varepsilon(x,y) &= u^0(x,y) + \dots & \text{in } \Omega, \\ u_+^\varepsilon(x,y) &= \frac{\varepsilon^{-1}}{\varepsilon^{-1}} v^{-1}(y) + v^0(y) + \dots & \text{in the resonator.} \end{split}$$

ightharpoonup Considering the restriction of $(\mathscr{P}^{\varepsilon})$ to the thin resonator, when ε tends to zero, we find that v^{-1} must solve the homogeneous 1D problem

$$(\mathscr{P}_{1D}) \left| \begin{array}{l} \partial_y^2 v + k^2 v = 0 & \text{in } (1; 1 + \ell) \\ v(1) = \partial_y v(1 + \ell) = 0. \end{array} \right.$$

The features of (\mathcal{P}_{1D}) play a key role in the physical phenomena and in the asymptotic analysis.

▶ We work with the outer expansions

$$u_+^{\varepsilon}(x,y) = u^0(x,y) + \dots$$
 in Ω ,
 $u_+^{\varepsilon}(x,y) = \frac{\varepsilon^{-1}}{v^{-1}}(y) + v^0(y) + \dots$ in the resonator.

ightharpoonup Considering the restriction of $(\mathscr{P}^{\varepsilon})$ to the thin resonator, when ε tends to zero, we find that v^{-1} must solve the homogeneous 1D problem

$$(\mathscr{P}_{1D}) \left| \begin{array}{l} \partial_y^2 v + k^2 v = 0 & \text{in } (1; 1 + \ell) \\ v(1) = \partial_y v(1 + \ell) = 0. \end{array} \right.$$

The features of (\mathcal{P}_{1D}) play a key role in the physical phenomena and in the asymptotic analysis.

▶ We denote by ℓ_{res} (resonance lengths) the values of ℓ , given by

$$\ell_{\rm res} := \pi(m+1/2)/k, \qquad m \in \mathbb{N},$$

such that (\mathscr{P}_{1D}) admits the non zero solution $v(y) = \sin(k(y-1))$.

Assume that $\ell \neq \ell_{\rm res}$. Then we find $v^{-1} = 0$ and when $\varepsilon \to 0$, we get

$$u_{\pm}^{\varepsilon}(x,y) = u_{\pm} + o(1) \qquad \text{in } \Omega,$$

$$u_{\pm}^{\varepsilon}(x,y) = u_{\pm}(A) v_0(y) + o(1) \qquad \text{in the resonator,}$$

$$R_{\pm}^{\varepsilon} = R_{\pm} + o(1), \qquad T^{\varepsilon} = T + o(1).$$

Here $v_0(y) = \cos(k(y-1) + \tan(k(y-\ell)\sin(k(y-1)))$.

Assume that $\ell \neq \ell_{\rm res}$. Then we find $v^{-1} = 0$ and when $\varepsilon \to 0$, we get

$$u_{\pm}^{\varepsilon}(x,y) = \underline{u_{\pm}} + o(1) \qquad \text{in } \Omega,$$

$$u_{\pm}^{\varepsilon}(x,y) = u_{\pm}(A) v_0(y) + o(1) \qquad \text{in the resonator,}$$

$$R_{\pm}^{\varepsilon} = \underline{R_{\pm}} + o(1), \qquad T^{\varepsilon} = \underline{T} + o(1).$$

Here $v_0(y) = \cos(k(y-1) + \tan(k(y-\ell)\sin(k(y-1)))$.

The thin resonator has no influence at order ε^0 .

 \rightarrow Not interesting for our purpose because we want $\begin{vmatrix} R_{\pm}^{\varepsilon} = 0 + \dots \\ T^{\varepsilon} = 1 + \dots \end{vmatrix}$

For $\ell = \ell_{res}$, when $\varepsilon \to 0$, we obtain

$$\begin{split} u_+^\varepsilon(x,y) &= u_+(x,y) + \frac{ak\gamma(x,y)}{} + o(1) & \text{in } \Omega, \\ u_+^\varepsilon(x,y) &= \varepsilon^{-1} \frac{a}{\sin(k(y-1))} + O(1) & \text{in the resonator,} \\ R_+^\varepsilon &= R_+ + \frac{iau_+(A)}{2} + o(1), \qquad T^\varepsilon = T + \frac{iau_-(A)}{2} + o(1). \end{split}$$

Here γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \Omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \Omega \end{vmatrix}$ and

$$ak = -\frac{u_{+}(A)}{\Gamma + \pi^{-1} \ln |\varepsilon| + C_{\Xi}}.$$

For $\ell = \ell_{res}$, when $\varepsilon \to 0$, we obtain

$$u_+^{\varepsilon}(x,y) = u_+(x,y) + \frac{ak\gamma(x,y)}{ak\gamma(x,y)} + o(1) \quad \text{in } \Omega,$$

$$u_+^{\varepsilon}(x,y) = \varepsilon^{-1} a \sin(k(y-1)) + O(1) \quad \text{in the resonator},$$

$$R_+^{\varepsilon} = R_+ + \frac{iau_+(A)/2}{ak\gamma(x,y)} + o(1), \qquad T^{\varepsilon} = T + \frac{iau_-(A)/2}{ak\gamma(x,y)} + o(1).$$

Here γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \Omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \Omega \end{vmatrix}$ and

$$ak = -\frac{u_{+}(A)}{\Gamma + \pi^{-1} \ln |\varepsilon| + C_{\Xi}}.$$

This time the thin resonator has an influence at order ε^0

▶ For $\ell = \ell_{res} + \varepsilon \eta$ with $\eta \in \mathbb{R}$ fixed, when $\varepsilon \to 0$, we obtain

$$\begin{split} u_+^\varepsilon(x,y) &= u_+(x,y) + \underbrace{a(\eta)k\gamma(x,y)}_{} + o(1) \quad \text{in } \Omega, \\ u_+^\varepsilon(x,y) &= \varepsilon^{-1}a(\eta)\sin(k(y-1)) + O(1) \quad \text{in the resonator,} \\ R_+^\varepsilon &= R_+ + \underbrace{ia(\eta)u_+(A)/2}_{} + o(1), \qquad T^\varepsilon = T + \underbrace{ia(\eta)u_-(A)/2}_{} + o(1). \end{split}$$

Here γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \Omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \Omega \end{vmatrix}$ and

$$a(\eta)k = -\frac{u_{+}(A)}{\Gamma + \pi^{-1} \ln|\varepsilon| + C_{\Xi} + \eta}.$$

For $\ell = \ell_{res} + \varepsilon \eta$ with $\eta \in \mathbb{R}$ fixed, when $\varepsilon \to 0$, we obtain

$$u_+^{\varepsilon}(x,y) = u_+(x,y) + \frac{a(\eta)k\gamma(x,y)}{a(\eta)k\gamma(x,y)} + o(1) \quad \text{in } \Omega,$$

$$u_+^{\varepsilon}(x,y) = \varepsilon^{-1}a(\eta)\sin(k(y-1)) + O(1) \quad \text{in the resonator},$$

$$R_+^{\varepsilon} = R_+ + \frac{ia(\eta)u_+(A)/2}{a(\eta)u_+(A)/2} + o(1), \qquad T^{\varepsilon} = T + \frac{ia(\eta)u_-(A)/2}{a(\eta)u_-(A)/2} + o(1).$$

Here γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \Omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \Omega \end{vmatrix}$ and

$$a(\eta)k = -\frac{u_{+}(A)}{\Gamma + \pi^{-1} \ln|\varepsilon| + C_{\Xi} + \eta}.$$

This time the thin resonator has an influence at order ε^0 and it depends on the choice of η !

From this expansion, we find that asymptotically, when the length of the resonator is perturbed around ℓ_{res} , R_+^{ε} , T^{ε} run on circles whose features depend on the choice for A.

From this expansion, we find that asymptotically, when the length of the resonator is perturbed around ℓ_{res} , R_+^{ε} , T^{ε} run on circles whose features depend on the choice for A.

▶ Using the expansions of $u_{\pm}(A)$ far from the obstacle, one shows:

PROPOSITION: There are **positions of the resonator** A such that the circle $\{R_+^0(\eta) \mid \eta \in \mathbb{R}\}$ passes **through zero**.

From this expansion, we find that asymptotically, when the length of the resonator is perturbed around ℓ_{res} , R_+^{ε} , T^{ε} run on circles whose features depend on the choice for A.

Using the expansions of $u_{\pm}(A)$ far from the obstacle, one shows:

PROPOSITION: There are **positions of the resonator** A such that the circle $\{R^0_{+}(\eta) \mid \eta \in \mathbb{R}\}$ passes **through zero**. $\Rightarrow \exists$ situations s.t. $R^{\varepsilon}_{+} = 0 + o(1)$.

Example of situation where we have almost zero reflection ($\varepsilon = 0.01$).

Simulations realized with the Freefem++ library.

Example of situation where we have almost zero reflection ($\varepsilon = 0.01$).

Simulations realized with the Freefem++ library.

Conservation of energy guarantees that when $R_+^{\varepsilon} = 0$, $|T^{\varepsilon}| = 1$.

 \rightarrow To cloak the object, it remains to compensate the phase shift!

Phase shifter

▶ Working with two resonators, we can create phase shifters, that is devices with almost zero reflection and any desired phase.

▶ Here the device is designed to obtain a phase shift approx. equal to $\pi/4$.

Cloaking with three resonators

- ▶ Now working in two steps, we can approximately cloak any object with three resonators:
- 1) With one resonant ligament, first we get almost zero reflection;
- 2) With two additional resonant ligaments, we compensate the phase shift.

Cloaking with two resonators

▶ Working a bit more, one can show that two resonators are enough to cloak any object.

$$t \mapsto \Re e\left(u_+(x,y)e^{-ikt}\right)$$

$$t\mapsto \Re e\,(u_+^\varepsilon(x,y)e^{-ikt})$$

$$t\mapsto \Re e\,(e^{i\,k\,(x\,-\,t\,)})$$

Outline of the talk

Smooth non reflecting perturbations of the reference strip.

2 Non reflecting clouds of small obstacles

3 Construction of large invisible defects

4 Cloaking of given large obstacles

Conclusion

What we did

- 1) We constructed small smooth non reflecting perturbations of the reference strip.
- 2) We explained how clouds of small obstacles can be non reflecting.
- 3) We constructed large obstacles which are perfectly invisible.
- 4) We showed how to hide approximately $(T \approx 1)$ given large obstacles.

Future work

- ♠ Can one hide given large obstacles at higher frequency?
- ♠ Can one hide exactly given large obstacles?
- ♠ Can we get for example small reflection for an interval of frequencies?
- ♠ What can be done for water-waves, electromagnetism,...?

Thank you for your attention!

- A.-S. Bonnet-Ben Dhia, S.A. Nazarov. Obstacles in acoustic waveguides becoming
- "invisible" at given frequencies. Acoust. Phys., vol. 59, 6, 2013.

 L. Chesnel, J. Heleine and S.A. Nazarov. Acoustic passive cloaking using thin outer resonators. ZAMP, vol. 73, 98, 2022.
- L. Chesnel, S.A. Nazarov. Team organization may help swarms of flies to become
 - invisible, Inverse Problens and Imaging, vol. 10, 4:977-1006, 2016.

 L. Chesnel, V. Pagneux. Simple examples of perfectly invisible and trapped modes in waveguides, Quart. J. Mech. Appl. Math., vol. 71, 3:297-315, 2018.