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Introduction: general framework
I Scattering by a metal in electromagnetism in time-harmonic regime at
optical frequency.
I For metals at optical frequency, <e ε(ω) < 0 and =mε(ω) << |<e ε(ω)|.

⇒ We neglect losses and study the ideal case ε(ω) ∈ (−∞; 0).

Negative metal
ε< 0

and µ> 0

Positive material
ε> 0

and µ> 0

I Waves called Surface Plasmon Polaritons can propagate at the interface
between a dielectric and a negative metal.

2 / 29



Introduction: general framework
I Scattering by a metal in electromagnetism in time-harmonic regime at
optical frequency.
I For metals at optical frequency, <e ε(ω) < 0 and =mε(ω) << |<e ε(ω)|.

⇒ We neglect losses and study the ideal case ε(ω) ∈ (−∞; 0).

Negative metal
ε< 0

and µ> 0

Positive material
ε> 0

and µ> 0

I Waves called Surface Plasmon Polaritons can propagate at the interface
between a dielectric and a negative metal.

2 / 29



Introduction: applications
I Surface Plasmons Polaritons can propagate information. Physicists hope
to exploit them to reduce the size of computer chips.

Figures from O’Connor et al., Appl. Phys. Lett. 95, 171112 (2009)

I In this context, physicists use singular geometries to focus energy. It
allows to stock information.

Metal

Dielectric
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Original motivation: source term problem
I We study a scalar model problem set in a bounded domain Ω ⊂ R2:

Ω−

Ω+ Σ

σ|Ω+ = σ+ >0
σ|Ω− = σ− <0
(constant)

(P) Find u ∈ H1
0(Ω) s.t.:

−div(σ∇u) = f in Ω.

H1
0(Ω) = {v ∈ L2(Ω) | ∇v ∈ L2(Ω); v|∂Ω = 0}

f is the source term in H−1(Ω)

I We slightly round the interface Σ:

Ωδ−

Ωδ+ Σδ

σδ|Ω+ = σ+ >0
σδ|Ω− = σ− <0

(
Pδ
) Find uδ ∈ H1

0(Ω) s.t.:
−div(σδ∇uδ) = f in Ω.

δ denotes the radius of curvature of the
rounded interface at the origin.

What is the behaviour of the sequence (uδ)δ when δ tends to zero?
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Numerical experiments: setting

δ is the rounding
parameter

I For the numerical experiments, we round the corner in a particular way

(in this domain, we can separate variables).

Σ

Ω+
σ+> 0

Ω−
σ−< 0O

I Our goal is to study the behaviour of the solution, if it is well-defined, of

(
Pδ
) Find uδ ∈ H1

0(Ωδ) such that:
−div(σδ∇uδ) = f in Ωδ.

I We approximate uδ, assuming it is well-defined, by a usual P1 Finite
Element Method. We compute the solution uδh of the discretized problem
with FreeFem++.

We display the behaviour of uδh as δ → 0.
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Numerical experiments: results 1/2

σ+ = 1 and σ− = 1 (positive materials)

0.75 0.8 0.85 0.9 0.95 1
0

2

4

6

8

10

uδh w.r.t. δ ‖∇uδh‖Ωδ w.r.t. 1− δ

I For positive materials, it is well-known that (uδ)δ converges to u, the
solution in the limit geometry.
I The rate of convergence depends on the regularity of u.
I To avoid to mesh Ωδ, we can approximate uδ by uh.
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Numerical experiments: results 2/2
... and what about for a sign-changing σ???

σ+ = 1 and σ− = −0.9999

0.75 0.8 0.85 0.9 0.95 1
0

50

100

150

200

250

300

uδh w.r.t. δ ‖∇uδh‖Ωδ w.r.t. 1− δ

I For this configuration, uδ seems to depend critically on δ.

In this talk, our goal is to explain the presence of these peaks.
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Outline of the talk

1 Spectral problem in the geometry with a rounded corner

2 Asymptotic analysis

3 Numerical experiments for the spectral problem
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Setting
I For ease of exposition, we consider a half rounded corner

Ωδ−
Ωδ+

δ

O

Ω−
Ω+

O

I We are interested in the spectral problem

Find (λδ, uδ) ∈ C× (H1
0(Ω) \ {0}) s.t.:

−div(σδ∇uδ) = λδuδ in Ω.

I We define the operator Aδ : D(Aδ)→ L2(Ω) such that
D(Aδ) = {u ∈ H1

0(Ω) |div(σδ∇u) ∈ L2(Ω)}
Aδu = div(σδ∇u).
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Known results
I We define the operator A : D(A)→ L2(Ω) such that

D(A) = {u ∈ H1
0(Ω) |div(σ∇u) ∈ L2(Ω)}

Au = div(σ∇u).

I We have the following properties (see Costabel & Stephan 85, Dauge
& Texier 97, Hussein 13, Bonnet-Ben Dhia et al. 99,10,12,13):

Smooth interface Σ Interface Σ with a corner

σ− < 0

σ+ > 0

ϑσ− < 0

σ+ > 0

4 A selfadjoint when
κσ = σ−/σ+ 6= −1.

4 Set ` = (2π − ϑ)/ϑ. A selfadjoint
when κσ /∈ Ic = [−`;−1/`].

Results depend on the smoothness of Σ and on σ.
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Spectral problem for δ > 0

D(Aδ) = {u ∈ H1
0(Ω) |div(σδ∇u) ∈ L2(Ω)}

Aδu = div(σδ∇u).

I For δ > 0, the interface is smooth ⇒ Aδ selfadjoint iff κσ 6= −1.

Proposition. If κσ 6= −1, δ > 0, Aδ is selfadjoint with compact resolvent.
Its spectrum S(Aδ) consists in two sequences of isolated eigenvalues:

−∞ ←
n→+∞

. . . λδ−n ≤ · · · ≤ λδ−1 < 0 ≤ λδ1 ≤ λδ2 ≤ · · · ≤ λδn . . . →
n→+∞

+∞.

Proof: We can construct (u±n ) supported in Ωδ± such that ‖u±n ‖L2(Ω) = 1 and

(Aδu±n , u
±
n )Ω =

∫
Ω±

σ±|∇u±n |2 dx −→
n→+∞

±∞.

We deduce inf S(Aδ) = −∞ and supS(Aδ) = +∞.

For n ∈ Z∗, what is the behaviour of λδn when δ tends to zero?

→ This depends on the features of the limit operator...
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Spectral problem at the limit δ = 0
I Let A denote the limit operator (δ = 0) such that

D(A) = {u ∈ H1
0(Ω) |div(σ∇u) ∈ L2(Ω)}

Au = div(σ∇u).

ϑ

I For δ = 0, the interface is no longer “smooth” and the properties of A
depend on the values of κσ.

Here, Ic = [−1;−1/`] with ` = (π − ϑ)/ϑ.

♣ When κσ /∈ Ic, A is selfadjoint and has compact resolvent. Its spectrum
S(A) consists in two sequences of isolated eigenvalues:

−∞ ←
n→+∞

. . . λ−n ≤ · · · ≤ λ−1 < 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn . . . →
n→+∞

+∞.

In this case, there holds S(Aδ) →
δ→0

S(A).

Proof: As when δ > 0.

♣ When κσ ∈ Ic \ {−1}, A is not selfadjoint. Let us clarify this...
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Spectral problem at the limit δ = 0 inside Ic

θ
r

O

r0

r 7→ <e r±iµ = <e (e±iµ ln r)
= cos(µ ln r)

1

−1

I When κσ ∈ (−1;−1/`), there are singularities r±iµφ(θ) with µ ∈ R∗,
φ(0) = φ(π) = 0, satisfying div (σ∇(r±iµφ(θ)) = 0 in a neighbour. of O.

Set

s±(x) = ζ(r)r±iµφ(θ) ∈ L2(Ω) \H1(Ω)

(ζ is a cut-off function such that ζ = 1 near O and s±|∂Ω = 0)

♣ When κσ ∈ (−1;−1/`), there holds D(A∗) = D(A) ⊕ span(s+, s−) (in
particular A is not selfadjoint). Moreover, S(A) = C.
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(ζ is a cut-off function such that ζ = 1 near O and s±|∂Ω = 0)

♣ When κσ ∈ (−1;−1/`), there holds D(A∗) = D(A) ⊕ span(s+, s−) (in
particular A is not selfadjoint). Moreover, S(A) = C.
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Selfadjoint extensions of A inside Ic
I The selfadjoint extensions of A are the operators A(τ), τ ∈ R, such that

D(A(τ)) = D(A)⊕ span(s+ + eiτs−)
A(τ)u = div(σ∇u).

Proof: Pick two ui = λi(c+s+ + c−s−) + ũi with λi ∈ C, ũi ∈ D(A). We find

(A∗u1, u2)Ω − (u1,A∗u2)Ω = 2iµλ1λ2 (|c+|2 − |c−|2).

Therefore, we must impose |c+| = |c−|. We take c+ = 1, c− = eiτ with τ ∈ R.

For all τ ∈ R, A(τ) has compact resolvent. Its spectrum S(A(τ)) consists
in two sequences of isolated eigenvalues:

−∞ ←
n→+∞

. . . η−n(τ) ≤ . . .≤ η−1(τ) < 0 ≤ η1(τ) ≤ . . .≤ ηn(τ) . . . →
n→+∞

+∞.

Proof: As for Aδ when δ > 0.

Maybe S(Aδ)→ S(A(τ)) for some τ as δ → 0. But for which τ?
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1 Spectral problem in the geometry with a rounded corner

2 Asymptotic analysis

3 Numerical experiments for the spectral problem
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Asymptotic expansion
I From now, we assume that κσ ∈ (−1;−1/`).

I Consider (λδ, uδ) an eigenpair of the original spectral problem.

Find (λδ, uδ) ∈ C× (H1
0(Ω) \ {0}) s.t.:

−div(σδ∇uδ) = λδuδ in Ω.

I To compute an asymptotic expansion of (λδ, uδ), we make the ansatz

λδ = ηδ + . . .

uδ(x) = vδ(x) + . . . far from O

uδ(x) = V δ(x/δ) + . . . near O

where ηδ, vδ, V δ have to be determined (. . . stand for lower order terms).

I Note that ηδ, vδ, V δ will be defined as solutions of problems set in
geometries independent of δ.
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Far field
I The far field is defined in the geometry obtained taking δ = 0.

I We find that the pair (ηδ, vδ) must verify

−div(σ0∇vδ) = ηδvδ in Ω
vδ = 0 on ∂Ω.

Ω−
Ω+

O

I Since we do not know which behaviour to prescribe at O, we allow
decomposition on the two singularities s± and search for vδ under the form

vδ = cδ+ s+ + cδ− s− + ṽδ

= cδ+ r
iµφ(θ) + cδ− r

−iµφ(θ) + ṽδ,

where the jauge functions cδ± and ṽδ ∈ D(A) have to be determined.
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Near field
I Introduce the rapid coordinate ξ := x/δ and let δ → 0.

Set Uδ(ξ) = uδ(δξ). We have

uδ(x) = V δ(x/δ) + . . .

⇔ Uδ(ξ) = V δ(ξ) + . . . .

I Letting δ → 0 in −div(σδ∇Uδ) = δ2λδUδ, we find that V δ must satisfy

−div(σ∞∇V δ) = 0 in Ξ := R× (0; +∞)
V δ = 0 on ∂Ξ.

I There is V δ solution of this problem admitting the expansion

V δ(ξ) = |ξ|iµφ(θ) + α |ξ|−iµφ(θ) + Ṽ δ(ξ), with α ∈ C, Ṽ δ ∈ H1(Ξ).

Important: there holds |α| = 1.

From
−div(σ∞∇V δ) = 0 in Ξ, V δ = 0 on ∂Ξ,

multiplying by V δ and integrating by parts on {ξ ∈ Ξ | |ξ| < R}, we find

0 = =m
∫

Ξ∩{|ξ|=R}
σ∞∂rV

δV δ dθ

= 1− |α|2 +O(R−γ), for some γ > 0.

Taking the limit R→ +∞ gives |α| = 1.
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Matching procedure
I We match the far field and near field expansions in some intermediate

region where r → 0 and r/δ → +∞ (for example where r ∼
√
δ).

Far field: vδ(x) = cδ+ r
iµφ(θ) + cδ− r

−iµφ(θ) + . . .

Near field: V δ(x/δ) = (r/δ)iµφ(θ) + α(r/δ)−iµφ(θ) + . . .

I Since r 7→ riµ and r 7→ r−iµ are linearly independent, we impose

cδ+ = δ−iµ and cδ− = α δiµ

⇒ cδ−/c
δ
+ = α δ2iµ.

This suggests that the eigenpairs of Aδ behave as the eigenpairs
of the model operator M (δ) such that

D(M (δ)) = D(A)⊕ span(s+ + α δ2iµs−)
M (δ)u = div(σ∇u).

I The model operator at first order depends and δ. Moreover, for δ > 0,
we have |α δ2iµ| = 1. ⇒ M (δ) is selfadjoint.
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Main result

Theorem. For κσ ∈ (−1;−1/`), on each compact set of R, we have

dist(S(Aδ),S(M (δ)) ) −→
δ→0

0.

(Asymptotically, the spectrum of Aδ behaves as the one of M (δ) as δ → 0.)

I D(M (δ)) = D(A)⊕ span(s+ +α δ2iµs−). Since δ2iµ = e2iµ ln δ, if δ2, δ1 s.t.

ln δ2 = ln δ1 + kπ/µ, k ∈ Z then M (δ2) = M (δ1).

The spectrum of Aδ does not converge when δ → 0. Asymptoti-
cally, S(Aδ) is π/µ–periodic in ln δ–scale.

Comments

• As κσ → −1+, we have µ→ +∞ (period becomes shorter).
• There is z satisfying div(σ∇z) = 0 in Ω and z|∂Ω = 0 with

z = s+ + β s− + z̃, β ∈ C, z̃ ∈ D(A).

Important: there holds |β| = 1 ⇒ for δ s.t. α δ2iµ = β, z ∈ D(M (δ)).

β

1
α δ2iµ

0.75 0.8 0.85 0.9 0.95 1
0

50

100

150

200

250

300

‖∇uδh‖Ωδ w.r.t. 1− δ
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Comments concerning the proof
I For the source term problem, we proved the estimate, for some β > 0,

‖(Aδ)−1f − (M (δ))−1f‖L2(Ω) ≤ C δβ‖f‖L2(Ω) (1)

for all δ in some set S excluding a neighbourhood of {δ | kerM (δ) 6= {0}}.

ln δ

ln S = {ln δ, δ ∈ S }
But {δ | kerM (δ) 6= {0}} accumulates in zero ⇒ This is not enough! We
want some uniform estimate w.r.t to δ → 0.

Go in the complex plane!

I We proved the estimate, for some β > 0,

‖(Aδ + iId)−1f − (M (δ) + iId)−1f‖L2(Ω) ≤ C δβ‖f‖L2(Ω) (2)

for δ small enough. This implies that the spectra are closed to each other.

♠ Proving (1), (2) is not straightforward due to the change of sign of σ.
This aspect is interesting in itself (S.A. Nazarov’s technique).
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Outside the critical interval

κσ = −1.0001 /∈ [−1;−1/3]
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I S(Aδ) converges to S(A) (A is the limit operator) when δ → 0.
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Inside the critical interval

κσ = −0.9999 ∈ [−1;−1/3]
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I Asymptotically, S(Aδ) is periodic in ln δ–scale as δ → 0.
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Conclusion 1/2

Let us remind the initial question:

What is the behaviour of S(Aδ)δ when δ tends to zero?

This depends on the features of the limit problem.
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κσ /∈ Ic κσ ∈ (−1;−1/`)

? S(Aδ) tends to S(A) where A
is the limit operator for δ = 0.

? S(Aδ) behaves as S(M (δ)),
which is periodic in ln δ-scale.
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Conclusion 2/2

And concerning the source term problem?

What is the behaviour of (uδ)δ when δ tends to zero?

This depends on the features of the limit problem.

κσ = −1.0001 /∈ Ic κσ = −0.9999 ∈ Ic

When κσ ∈ Ic, (uδ)δ does not converge, even for the L2-norm!

In this case, it is impossible to simulate the fields since it is impossible
to measure exactly δ. ⇒ What happens physically?
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Thank you for your attention!

Related works:

I ANR project Metamath coordinated by S. Fliss.

L. Chesnel, X. Claeys, S.A. Nazarov, A curious instability phenomenon for a
rounded corner in presence of a negative material, Asymp. Anal., vol. 88,
1-2:43-74, 2014.

L. Chesnel, X. Claeys, S.A. Nazarov, Asymptotics of the eigenvalues for a
rounded corner in presence of a negative material, to come, 2015.
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