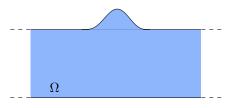
Invisibility and complete reflectivity in waveguides with finite length branches

Lucas Chesnel¹

Coll. with S.A. Nazarov² and V. Pagneux³.

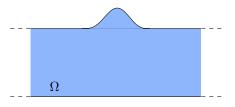
¹Defi team, CMAP, École Polytechnique, France ²FMM, St. Petersburg State University, Russia ³LAUM, Université du Maine, France

Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x,y) \in \mathbb{R} \times (0;1)\}$ outside a compact region.



$$\left| \begin{array}{ll} \text{Find } v = v_{\rm i} + v_{\rm s} \text{ s. t.} \\ -\Delta v &= k^2 v \quad \text{in } \Omega, \\ \partial_n v &= 0 \quad \text{on } \partial \Omega, \\ v_{\rm s} \text{ is outgoing.} \end{array} \right|$$

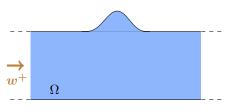
Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x,y) \in \mathbb{R} \times (0;1)\}$ outside a compact region.



$$\left| \begin{array}{ll} \text{Find } v = v_{\rm i} + v_{\rm s} \text{ s. t.} \\ -\Delta v &= k^2 v \quad \text{in } \Omega, \\ \partial_n v &= 0 \quad \text{on } \partial \Omega, \\ v_{\rm s} \text{ is outgoing.} \end{array} \right|$$

For $k \in (0; \pi)$, only 2 propagating modes $w^{\pm} = e^{\pm ikx}/\sqrt{2k}$.

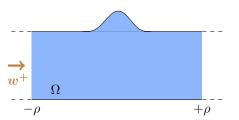
Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x,y) \in \mathbb{R} \times (0,1)\}$ outside a compact region.



$$\left| \begin{array}{ll} \text{Find } v = v_{\rm i} + v_{\rm s} \text{ s. t.} \\ -\Delta v &= k^2 v \quad \text{in } \Omega, \\ \partial_n v &= 0 \quad \text{on } \partial \Omega, \\ v_{\rm s} \text{ is outgoing.} \end{array} \right|$$

For $k \in (0; \pi)$, only 2 propagating modes $w^{\pm} = e^{\pm ikx}/\sqrt{2k}$. Set $v_i = w^{+}$.

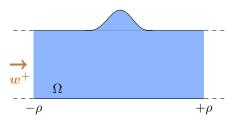
Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x,y) \in \mathbb{R} \times (0,1)\}$ outside a compact region.



$$\left| \begin{array}{ll} \text{Find } v = v_{\rm i} + v_{\rm s} \text{ s. t.} \\ -\Delta v &= k^2 v \quad \text{in } \Omega, \\ \partial_n v &= 0 \quad \text{on } \partial \Omega, \\ v_{\rm s} \text{ is outgoing.} \end{array} \right|$$

- For $k \in (0; \pi)$, only 2 propagating modes $w^{\pm} = e^{\pm ikx}/\sqrt{2k}$. Set $v_i = w^{+}$.
- ▶ v_s is outgoing \Leftrightarrow $v_s = s^{\pm}w^{\pm} + \tilde{v}_s$ for $\pm x \ge \rho$, with $s^{\pm} \in \mathbb{C}$, \tilde{v}_s exponentially decaying at $\pm \infty$.

Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x,y) \in \mathbb{R} \times (0,1)\}$ outside a compact region.



$$\left| \begin{array}{ll} \text{Find } v = v_{\rm i} + v_{\rm s} \text{ s. t.} \\ -\Delta v &= k^2 v \quad \text{in } \Omega, \\ \partial_n v &= 0 \quad \text{on } \partial \Omega, \\ v_{\rm s} \text{ is outgoing.} \end{array} \right|$$

- For $k \in (0, \pi)$, only 2 propagating modes $w^{\pm} = e^{\pm ikx}/\sqrt{2k}$. Set $v_i = w^{+}$.
- $v_{\rm s}$ is outgoing \Leftrightarrow $v_{\rm s} = s^{\pm}w^{\pm} + \tilde{v}_{\rm s}$ for $\pm x \ge \rho$,

with $s^{\pm} \in \mathbb{C}$, \tilde{v}_{s} exponentially decaying at $\pm \infty$.

Definition:
$$\begin{vmatrix} v_{\rm i} = {
m incident} \ v = {
m total} \ {
m field} \ v_{
m s} = {
m scattered} \ {
m field}.$$

- At infinity, one measures the reflection coefficient $R = s^-$ and/or the transmission coefficient $T = 1 + s^+$ (other terms are too small).
- ► From conservation of energy, one has

$$|R|^2 + |T|^2 = 1.$$

- At infinity, one measures the reflection coefficient $R = s^-$ and/or the transmission coefficient $T = 1 + s^+$ (other terms are too small).
- ► From conservation of energy, one has

$$|R|^2 + |T|^2 = 1.$$

Definition: Defect is said non reflecting if R = 0 (|T| = 1) perfectly invisible if T = 1 (R = 0)

• For T=1, defect cannot be detected from far field measurements.

- At infinity, one measures the reflection coefficient $R = s^-$ and/or the transmission coefficient $T = 1 + s^+$ (other terms are too small).
- ► From conservation of energy, one has

$$|R|^2 + |T|^2 = 1.$$

Definition: Defect is said $\begin{vmatrix} \text{non reflecting if } R = 0 \ (|T| = 1) \\ \text{perfectly invisible if } T = 1 \ (R = 0) \\ \text{completely reflecting if } T = 0 \ (|R| = 1). \end{vmatrix}$

- For T=1, defect cannot be detected from far field measurements.
- For T = 0, defect is like a mirror.

- At infinity, one measures the reflection coefficient $R = s^-$ and/or the transmission coefficient $T = 1 + s^+$ (other terms are too small).
- ► From conservation of energy, one has

$$|R|^2 + |T|^2 = 1.$$

Definition: Defect is said

non reflecting if R=0 (|T|=1) perfectly invisible if T=1 (R=0) completely reflecting if T=0 (|R|=1).

- For T=1, defect cannot be detected from far field measurements.
- For T=0, defect is like a mirror.

GOAL

We explain how to construct waveguides such that

$$R = 0 (|T| = 1), T = 1 (R = 0) \text{ or } T = 0 (|R| = 1).$$

- At infinity, one measures the reflection coefficient $R = s^-$ and/or the transmission coefficient $T = 1 + s^+$ (other terms are too small).
- ► From conservation of energy, one has

$$|R|^2 + |T|^2 = 1.$$

Definition: Defect is said $\begin{vmatrix} \text{non reflecting if } R = 0 \ (|T| = 1) \\ \text{perfectly invisible if } T = 1 \ (R = 0) \\ \text{completely reflecting if } T = 0 \ (|R| = 1). \end{vmatrix}$

- For T=1, defect cannot be detected from far field measurements.
- For T = 0, defect is like a mirror.

GOAL

We explain how to construct waveguides such that

$$R = 0 \ (|T| = 1), \ T = 1 \ (R = 0) \ \text{or} \ T = 0 \ (|R| = 1).$$

▶ We assume that k is given (\neq A.-S. Bonnet-Ben Dhia's talk last Mond.).

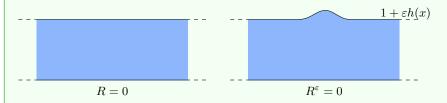
First idea

▶ Perturbative technique: we can construct small non reflecting defects using the implicit functions theorem.

 \Rightarrow We obtain small defects such that R=0 (harder to get T=1). Biblio.: Bonnet-Nazarov 13, Bonnet et al. 16.

First idea

▶ Perturbative technique: we can construct small non reflecting defects using the implicit functions theorem.

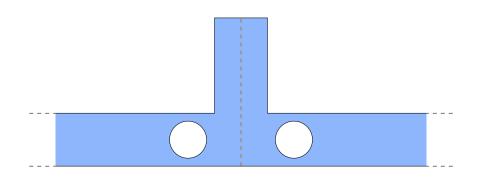


 \Rightarrow We obtain small defects such that R=0 (harder to get T=1). Biblio.: Bonnet-Nazarov 13, Bonnet et al. 16.

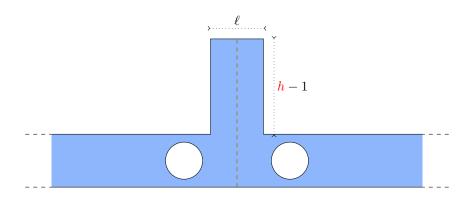
TALK

We propose another mechanism to get **large defects** s. t. R = 0 (|T| = 1), T = 1 (R = 0) or T = 0 (|R| = 1).

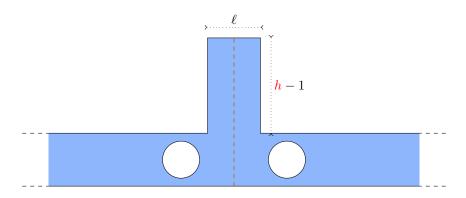
 \blacktriangleright We work in waveguides which are symmetric with respect to (Oy) and which contain a branch of finite height.



 \blacktriangleright We work in waveguides which are symmetric with respect to (Oy) and which contain a branch of finite height.



 \blacktriangleright We work in waveguides which are symmetric with respect to (Oy) and which contain a branch of finite height.



 \blacktriangleright We work in waveguides which are symmetric with respect to (Oy) and which contain a branch of finite height.



We work in waveguides which $\frac{\text{metric}}{\text{metric}}$ with respect to (Oy) and which contain a branch of finite h h-1

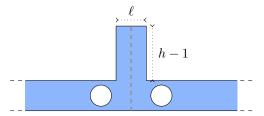
Geometrical setting We work in waveguides which metric with respect to (Oy) and which contain a branch of finite h h-1

Outline of the talk

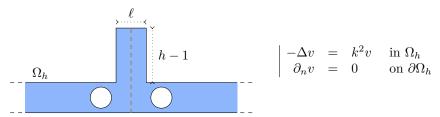
- Main analysis
- 2 Numerical results
- 3 Variants and extensions

- Main analysis
- 2 Numerical results
- 3 Variants and extensions

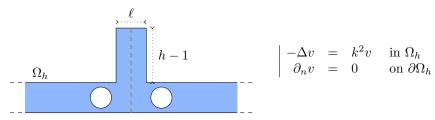
ightharpoonup Consider a waveguide which is symmetric with respect (Oy) and which contains a branch of finite height.



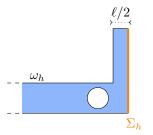
ightharpoonup Consider a waveguide which is symmetric with respect (Oy) and which contains a branch of finite height.



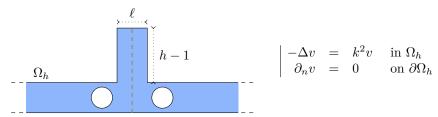
ightharpoonup Consider a waveguide which is symmetric with respect (Oy) and which contains a branch of finite height.



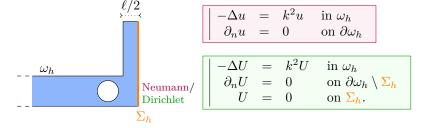
► Introduce the two half-waveguide problems



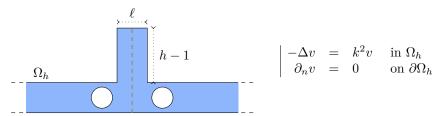
ightharpoonup Consider a waveguide which is symmetric with respect (Oy) and which contains a branch of finite height.



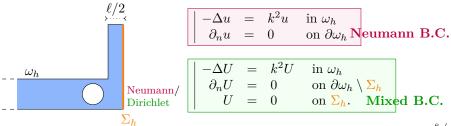
▶ Introduce the two half-waveguide problems



ightharpoonup Consider a waveguide which is symmetric with respect (Oy) and which contains a branch of finite height.



► Introduce the two half-waveguide problems



▶ Half-waveguide problems admit the solutions

$$u = w^+ + R^N w^- + \tilde{u}, \quad \text{with } \tilde{u} \in H^1(\omega_h)$$
 $U = w^+ + R^D w^- + \tilde{U}, \quad \text{with } \tilde{U} \in H^1(\omega_h).$

▶ Half-waveguide problems admit the solutions

$$u = w^+ + \mathbb{R}^N w^- + \tilde{u}, \quad \text{with } \tilde{u} \in H^1(\omega_h)$$
 $U = w^+ + \mathbb{R}^D w^- + \tilde{U}, \quad \text{with } \tilde{U} \in H^1(\omega_h).$

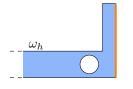
▶ Due to conservation of energy, one has

$$|R^N| = |R^D| = 1.$$

▶ Half-waveguide problems admit the solutions

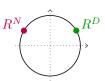
$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in H^{1}(\omega_{h})$$

$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in H^{1}(\omega_{h}).$$



▶ Due to conservation of energy, one has

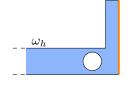
$$|R^N| = |R^D| = 1.$$



Half-waveguide problems admit the solutions

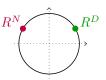
$$u = w^+ + \mathbb{R}^N w^- + \tilde{u}, \quad \text{with } \tilde{u} \in H^1(\omega_h)$$

 $U = w^+ + \mathbb{R}^D w^- + \tilde{U}, \quad \text{with } \tilde{U} \in H^1(\omega_h).$



Due to conservation of energy, one has

$$|\mathbf{R}^N| = |R^D| = 1.$$



• Using that $v = \frac{u+U}{2}$ in ω_h , $v(x,y) = \frac{u(-x,y)-U(-x,y)}{2}$ in $\Omega_h \setminus \overline{\omega_h}$,

$$R = \frac{R^N + R^D}{2}$$

we deduce that
$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$.

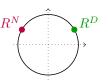
Half-waveguide problems admit the solutions

$$u = w^+ + \mathbb{R}^{\mathbb{N}} w^- + \tilde{u}, \quad \text{with } \tilde{u} \in H^1(\omega_h)$$

 $U = w^+ + \mathbb{R}^D w^- + \tilde{U}, \quad \text{with } \tilde{U} \in H^1(\omega_h).$

Due to conservation of energy, one has

$$|\mathbf{R}^N| = |R^D| = 1.$$



• Using that $v = \frac{u+U}{2}$ in ω_h , $v(x,y) = \frac{u(-x,y)-U(-x,y)}{2}$ in $\Omega_h \setminus \overline{\omega_h}$,

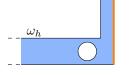
$$R = \frac{R^N + R^D}{2}$$

$$T = \frac{R^N - R^D}{2}.$$

we deduce that
$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$. Non reflectivity $\Rightarrow R^N = -R^D$

Half-waveguide problems admit the solutions

$$\begin{split} u &= w^+ + {\color{red}R^N} \, w^- + \tilde{u}, \qquad \text{with } \tilde{u} \in \mathrm{H}^1(\omega_h) \\ U &= w^+ + {\color{blue}R^D} \, w^- + \tilde{U}, \qquad \text{with } \tilde{U} \in \mathrm{H}^1(\omega_h). \end{split}$$



Due to conservation of energy, one has

$$|R^N| = |R^D| = 1.$$

Using that $v = \frac{u+U}{2}$ in ω_h , $v(x,y) = \frac{u(-x,y)-U(-x,y)}{2}$ in $\Omega_h \setminus \overline{\omega_h}$,

$$R = \frac{R^N + R^D}{2}$$

and
$$T = \frac{R^N}{T}$$

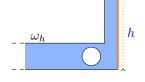
$$T = \frac{R^N - R^D}{2}.$$

we deduce that
$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$. Non reflectivity $\Rightarrow R^N = -R^D$

Half-waveguide problems admit the solutions

$$u = w^+ + \mathbb{R}^N w^- + \tilde{u}, \quad \text{with } \tilde{u} \in H^1(\omega_h)$$

 $U = w^+ + \mathbb{R}^D w^- + \tilde{U}, \quad \text{with } \tilde{U} \in H^1(\omega_h).$



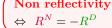
Due to conservation of energy, one has

$$|R^N| = |R^D| = 1.$$

• Using that $v = \frac{u+U}{2}$ in ω_h , $v(x,y) = \frac{u(-x,y)-U(-x,y)}{2}$ in $\Omega_h \setminus \overline{\omega_h}$,

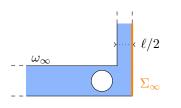
we deduce that
$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$. $\left(\begin{array}{c} \text{Non reflectivity} \\ \Leftrightarrow R^N = -R^D \end{array}\right)$

$$d T = \frac{R^N - R^D}{2}.$$



 \rightarrow Now, we study the behaviour of $R^N = R^N(h)$, $R^D = R^D(h)$ as $h \rightarrow +\infty$.

Depend on the nb. of propagating modes in the vertical branch of ω_{∞}



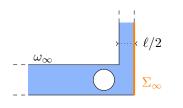
$$\ell/2$$

$$(\mathscr{P}^{N})\begin{vmatrix} -\Delta\varphi &=& k^{2}\varphi & \text{in } \omega_{\infty} \\ \partial_{n}\varphi &=& 0 & \text{on } \partial\omega_{\infty} \end{vmatrix}$$

$$\Sigma_{\infty}$$

$$(\mathscr{P}^{D})\begin{vmatrix} -\Delta\varphi &=& k^{2}\varphi & \text{in } \omega_{\infty} \\ \partial_{n}\varphi &=& 0 & \text{on } \partial\omega_{\infty} \setminus \Sigma_{\infty} \\ \varphi &=& 0 & \text{on } \Sigma_{\infty}.$$

Depend on the nb. of propagating modes in the vertical branch of ω_{∞}



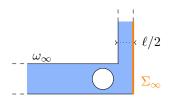
$$\ell/2$$

$$(\mathscr{P}^N) \begin{vmatrix} -\Delta \varphi &= k^2 \varphi & \text{in } \omega_{\infty} \\ \partial_n \varphi &= 0 & \text{on } \partial \omega_{\infty} \end{vmatrix}$$

$$\Sigma_{\infty} \begin{vmatrix} -\Delta \varphi &= k^2 \varphi & \text{in } \omega_{\infty} \\ \partial_n \varphi &= 0 & \text{on } \partial \omega_{\infty} \setminus \Sigma_{\infty} \\ \varphi &= 0 & \text{on } \Sigma_{\infty}.$$

- $\blacktriangleright \quad \text{Analysis for } R^D$
- For $\ell \in (0; \pi/k)$, no prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^D) .

Depend on the nb. of propagating modes in the vertical branch of ω_{∞}



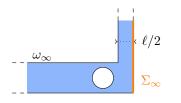
$$\ell/2$$

$$\sum_{\infty} \left| \begin{array}{cccc} -\Delta \varphi & = & k^2 \varphi & \text{in } \omega_{\infty} \\ \partial_n \varphi & = & 0 & \text{on } \partial \omega_{\infty} \end{array} \right|$$

$$\sum_{\infty} \left| \begin{array}{cccc} -\Delta \varphi & = & k^2 \varphi & \text{in } \omega_{\infty} \\ \partial_n \varphi & = & 0 & \text{on } \partial \omega_{\infty} \setminus \Sigma_{\infty} \\ \varphi & = & 0 & \text{on } \Sigma_{\infty}. \end{array} \right|$$

- Analysis for \mathbb{R}^D
- For $\ell \in (0; \pi/k)$, no prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^D) .
- (\mathscr{P}^D) admits the solution

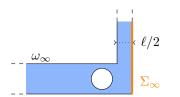
$$U_{\infty} = w_1^- + R_{\infty}^D w_1^+ + \tilde{U}_{\infty}, \quad \text{with } \tilde{U}_{\infty} \in H^1(\omega_{\infty}), |R_{\infty}^D| = 1.$$



- Analysis for \mathbb{R}^D
- For $\ell \in (0; \pi/k)$, no prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^D) .
- (\mathscr{P}^D) admits the solution

$$U_{\infty} = w_1^- + R_{\infty}^D w_1^+ + \tilde{U}_{\infty}, \quad \text{with } \tilde{U}_{\infty} \in H^1(\omega_{\infty}), |R_{\infty}^D| = 1.$$

 $(w_1^{\pm} = \chi_l w^{\mp} \text{ where } \chi_l \text{ is a cut-off function s.t. } \chi_l = 1 \text{ for } x \leq -2\ell, \chi_l = 0 \text{ for } x \geq -\ell)$



$$\ell/2$$

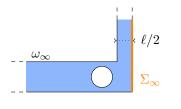
$$\sum_{\infty} \ell/2$$

$$(\mathscr{P}^{N}) \begin{vmatrix} -\Delta \varphi &= k^{2} \varphi & \text{in } \omega_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \end{vmatrix}$$

$$(\mathscr{P}^{D}) \begin{vmatrix} -\Delta \varphi &= k^{2} \varphi & \text{in } \omega_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \setminus \Sigma_{\infty} \\ \varphi &= 0 & \text{on } \Sigma_{\infty}.$$

- Analysis for \mathbb{R}^D
- For $\ell \in (0; \pi/k)$, no prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^D) .
- (\mathscr{P}^D) admits the solution

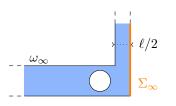
$$U_{\infty} = w_1^- + R_{\infty}^D w_1^+ + \tilde{U}_{\infty}, \quad \text{with } \tilde{U}_{\infty} \in H^1(\omega_{\infty}), |R_{\infty}^D| = 1.$$



- lacktriangle Analysis for R^D
- For $\ell \in (0; \pi/k)$, no prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^{D}) .
- (\mathscr{P}^D) admits the solution

$$U_{\infty} = w_1^- + R_{\infty}^D w_1^+ + \tilde{U}_{\infty}, \quad \text{with } \tilde{U}_{\infty} \in H^1(\omega_{\infty}), |R_{\infty}^D| = 1.$$

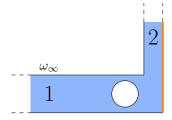
• As $h \to +\infty$, we have $U = U_{\infty} + \dots$ which implies $|R^D - R_{\infty}^D| \le C e^{-\beta h}$.



▶ Analysis for R^D

For $\ell \in (0; \pi/k)$, $h \mapsto R^D(h)$ tends to a constant on $\mathscr{C} := \{z \in \mathbb{C}, |z| = 1\}$.

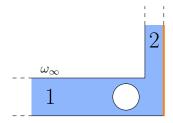
- Analysis for \mathbb{R}^N
- For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N) $w_2^{\pm} = \chi_t \, e^{\pm iky}/\sqrt{k\ell}$



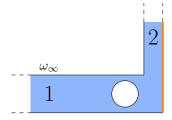
- \blacktriangleright Analysis for \mathbb{R}^N
- For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

 $(\chi_t \text{ is a cut-off function such that } \chi_t = 1 \text{ for } y \geq 2, \ \chi_t = 0 \text{ for } y \leq 1)$



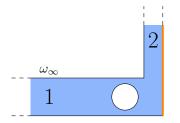
- Analysis for \mathbb{R}^N
- For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N) $w_2^{\pm} = \chi_t \, e^{\pm iky}/\sqrt{k\ell}$



- \blacktriangleright Analysis for \mathbb{R}^N
- For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N) $w_2^{\pm} = \chi_t e^{\pm iky}/\sqrt{k\ell}$
- (\mathscr{P}^N) admits the solutions

$$u_{\infty}^{1} = w_{1}^{-} + s_{11} w_{1}^{+} + s_{12} w_{2}^{+} + \tilde{u}_{\infty}^{1}, \quad \text{with } \tilde{u}_{\infty}^{1} \in H^{1}(\omega_{\infty})$$

$$u_{\infty}^{2} = w_{2}^{-} + s_{21} w_{1}^{+} + s_{22} w_{2}^{+} + \tilde{u}_{\infty}^{2}, \quad \text{with } \tilde{u}_{\infty}^{2} \in H^{1}(\omega_{\infty}).$$



The scattering matrix

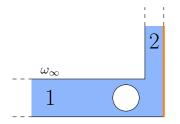
$$\left(\begin{array}{cc} s_{11} & s_{12} \\ s_{21} & s_{22} \end{array}\right) \text{ is unitary.}$$

- \blacktriangleright Analysis for \mathbb{R}^N
- For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N) $w_{\alpha}^{\pm} = \gamma_t e^{\pm iky}/\sqrt{k\ell}$
- (\mathscr{P}^N) admits the solutions

$$u_{\infty}^{1} = w_{1}^{-} + s_{11} w_{1}^{+} + s_{12} w_{2}^{+} + \tilde{u}_{\infty}^{1}, \quad \text{with } \tilde{u}_{\infty}^{1} \in H^{1}(\omega_{\infty})$$

$$u_{\infty}^{2} = w_{2}^{-} + s_{21} w_{1}^{+} + s_{22} w_{2}^{+} + \tilde{u}_{\infty}^{2}, \quad \text{with } \tilde{u}_{\infty}^{2} \in H^{1}(\omega_{\infty}).$$

• If $s_{12} \neq 0$, we make the ansatz $u = u_{\infty}^1 + a(h) u_{\infty}^2 + \dots$



The scattering matrix

$$\begin{pmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{pmatrix} \text{ is unitary.}$$

- \blacktriangleright Analysis for \mathbb{R}^N
- For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

• (\mathscr{P}^N) admits the solutions

$$u_{\infty}^{1} = w_{1}^{-} + s_{11} w_{1}^{+} + s_{12} w_{2}^{+} + \tilde{u}_{\infty}^{1}, \quad \text{with } \tilde{u}_{\infty}^{1} \in H^{1}(\omega_{\infty})$$

$$u_{\infty}^{2} = w_{2}^{-} + s_{21} w_{1}^{+} + s_{22} w_{2}^{+} + \tilde{u}_{\infty}^{2}, \quad \text{with } \tilde{u}_{\infty}^{2} \in H^{1}(\omega_{\infty}).$$

• If $s_{12} \neq 0$, we make the ansatz $u = u_{\infty}^1 + a(h) u_{\infty}^2 + \dots$

On
$$\Gamma_h$$
 $0 = \partial_n u = C\left(s_{12}e^{ikh} + a(h)\left(-e^{-ikh} + s_{22}e^{ikh}\right)\right) + \dots$

$$\Gamma_h$$

- Analysis for \mathbb{R}^N
- For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

• (\mathscr{P}^N) admits the solutions

$$u_{\infty}^{1} = w_{1}^{-} + s_{11} w_{1}^{+} + s_{12} w_{2}^{+} + \tilde{u}_{\infty}^{1}, \quad \text{with } \tilde{u}_{\infty}^{1} \in H^{1}(\omega_{\infty})$$

$$u_{\infty}^{2} = w_{2}^{-} + s_{21} w_{1}^{+} + s_{22} w_{2}^{+} + \tilde{u}_{\infty}^{2}, \quad \text{with } \tilde{u}_{\infty}^{2} \in H^{1}(\omega_{\infty}).$$

• If $s_{12} \neq 0$, we make the ansatz $u = u_{\infty}^1 + a(h) u_{\infty}^2 + \dots$

On
$$\Gamma_h$$
 $0 = \partial_n u = C \left(s_{12} e^{ikh} + \frac{a(h)}{(-e^{-ikh} + s_{22} e^{ikh})} \right) + \dots$

- Analysis for \mathbb{R}^N
- For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N) $w_2^{\pm} = \chi_t e^{\pm iky}/\sqrt{k\ell}$

•
$$(\mathscr{P}^N)$$
 admits the solutions

$$u_{\infty}^{1} = w_{1}^{-} + s_{11} w_{1}^{+} + s_{12} w_{2}^{+} + \tilde{u}_{\infty}^{1}, \quad \text{with } \tilde{u}_{\infty}^{1} \in H^{1}(\omega_{\infty})$$

$$u_{\infty}^{2} = w_{2}^{-} + s_{21} w_{1}^{+} + s_{22} w_{2}^{+} + \tilde{u}_{\infty}^{2}, \quad \text{with } \tilde{u}_{\infty}^{2} \in H^{1}(\omega_{\infty}).$$

 \bullet If $s_{12} \neq 0,$ we make the ansatz $u = u_{\infty}^1 + a(h)\,u_{\infty}^2 + \ldots$

On
$$\Gamma_h$$
 $0 = \partial_n u = C (s_{12}e^{ikh} + a(h)(-e^{-ikh} + s_{22}e^{ikh})) + \dots$

• This gives a(h) and implies, as $h \to +\infty$,

$$|R^N - R_{\text{asy}}^N(h)| \le C e^{-\beta h}$$
 with $R_{\text{asy}}^N(h) = s_{11} + \frac{s_{12} s_{21}}{e^{-2ikh} - s_{22}}$.

- ightharpoonup Analysis for \mathbb{R}^N
- For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N) $w_2^{\pm} = \chi_t e^{\pm iky}/\sqrt{k\ell}$
- (\mathscr{P}^N) admits the solutions

$$u_{\infty}^{1} = w_{1}^{-} + s_{11} w_{1}^{+} + s_{12} w_{2}^{+} + \tilde{u}_{\infty}^{1}, \quad \text{with } \tilde{u}_{\infty}^{1} \in H^{1}(\omega_{\infty})$$

$$u_{\infty}^{2} = w_{2}^{-} + s_{21} w_{1}^{+} + s_{22} w_{2}^{+} + \tilde{u}_{\infty}^{2}, \quad \text{with } \tilde{u}_{\infty}^{2} \in H^{1}(\omega_{\infty}).$$

• If $s_{12} \neq 0$, we make the ansatz $u = u_{\infty}^1 + a(h) u_{\infty}^2 + \dots$

On
$$\Gamma_h$$
 $0 = \partial_n u = C \left(s_{12} e^{ikh} + a(h) \left(-e^{-ikh} + s_{22} e^{ikh} \right) \right) + \dots$

• This gives a(h) and implies, as $h \to +\infty$,

$$|R^N - R_{\text{asy}}^N(h)| \le C e^{-\beta h}$$
 with $R_{\text{asy}}^N(h) = s_{11} + \frac{s_{12} s_{21}}{e^{-2ikh} - s_{22}}$.

• Unitarity of $\begin{pmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{pmatrix} \Rightarrow h \mapsto R_{\text{asy}}^N(h)$ runs periodically on \mathscr{C} .

 $\blacktriangleright \quad \text{Analysis for } \mathbb{R}^N$

For $\ell \in (0; 2\pi/k)$, $h \mapsto R^N(h)$ runs continuously and almost period. on \mathscr{C} .

Conclusions for $\ell \in (0; \pi/k), s_{12} \neq 0$

Reminder:
$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$.

PROPOSITION: Asympt. as $h \to +\infty$, R and T run on circles of radius 1/2.

Conclusions for $\ell \in (0; \pi/k), s_{12} \neq 0$

$$R = \frac{R^N + R^D}{2}$$

Reminder:
$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$.

PROPOSITION: Asympt. as $h \to +\infty$, R and T run on circles of radius 1/2.

PROPOSITION: There is an unbounded sequence (h_n) such that for $h = h_n$, $R^N = -R^D$ and so R = 0 (non reflectivity).

Conclusions for $\ell \in (0; \pi/k), s_{12} \neq 0$

• Reminder: $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N - R^D}{2}$.

PROPOSITION: Asympt. as $h \to +\infty$, R and T run on circles of radius 1/2.

PROPOSITION: There is an unbounded sequence (h_n) such that for $h = h_n$, $R^N = -R^D$ and so R = 0 (non reflectivity).

PROPOSITION: There is an unbounded sequence (\mathcal{H}_n) such that for $h = \mathcal{H}_n$, $\mathbb{R}^N = \mathbb{R}^D$ and so $\mathbb{T} = 0$ (complete reflectivity).

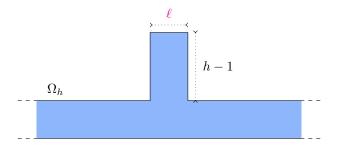
▶ Sequences (h_n) and (\mathcal{H}_n) are almost periodic. As $n \to +\infty$, we have

$$h_{n+1} - h_n = \pi/k + \dots$$
 and $\mathcal{H}_{n+1} - \mathcal{H}_n = \pi/k + \dots$

- 1 Main analysis
- 2 Numerical results
- 3 Variants and extensions

Setting

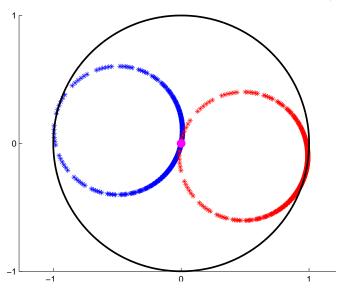
• We compute numerically R, T for $h \in (2; 10)$ in the geometry Ω_h



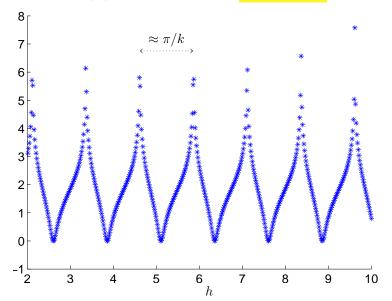
- ▶ We use a P2 finite element method with Dirichlet-to-Neumann maps.
- We set $k = 0.8\pi$ and $\ell = 1 \in (0; \pi/k)$.

Numerical results

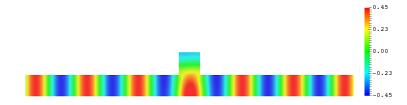
▶ Reflection coefficient R and transmission coefficient T for $h \in (2; 10)$.



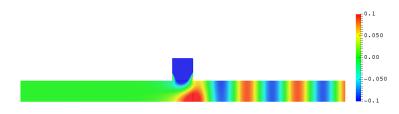
• Curve $h \mapsto -\ln |R|$. Peaks correspond to non reflectivity.



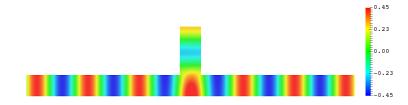
Total field v for h such that R = 0.



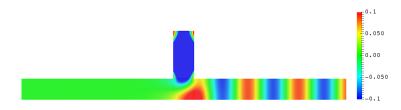
ightharpoonup Scattered field $v_{\rm s}$.



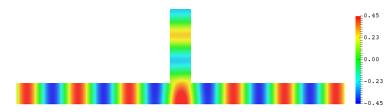
Total field v for h such that R = 0.



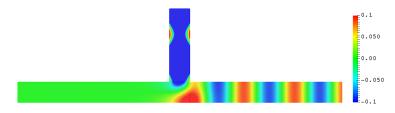
ightharpoonup Scattered field $v_{\rm s}$.



Total field v for h such that R = 0.

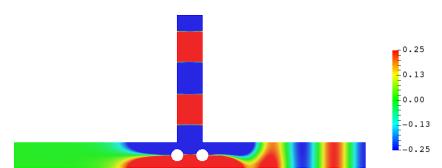


ightharpoonup Scattered field $v_{\rm s}$.

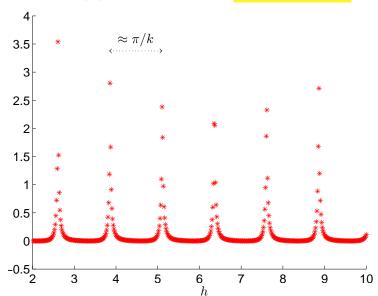


Other non reflecting geometry

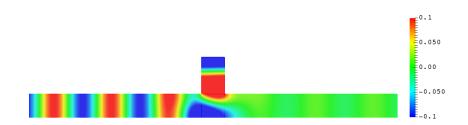
ightharpoonup Scattered field $v_{\rm s}$



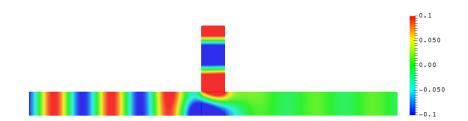
• Curve $h \mapsto -\ln |T|$. Peaks correspond to complete reflectivity.



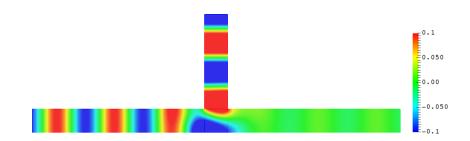
▶ Total field v for h such that T = 0.



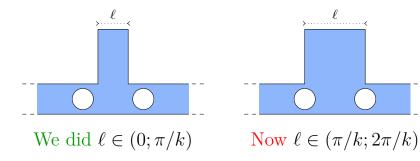
▶ Total field v for h such that T = 0.



▶ Total field v for h such that T = 0.



- 1 Main analysis
- 2 Numerical results
- 3 Variants and extensions



$$a = \frac{R + R}{2}$$
 and

We still have
$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$.

Now 2 prop. modes exist in the vertical branch of ω_{∞} for (\mathscr{P}^D) .

$$R = \frac{R^N + R^D}{2}$$

• We still have
$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$.

- Now 2 prop. modes exist in the vertical branch of ω_{∞} for (\mathscr{P}^D) .
- As before, we can show, with $\alpha = \sqrt{k^2 (\pi/\ell)^2}$,

$$|R^D - R_{\text{asy}}^D(h)| \le C e^{-\beta h}$$
 with $R_{\text{asy}}^D(h) = S_{11} + \frac{S_{12} S_{21}}{e^{-2i\alpha h} - S_{22}}$.

$$R = \frac{R^N + R^D}{2}$$

• We still have
$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$.

- Now 2 prop. modes exist in the vertical branch of ω_{∞} for (\mathscr{P}^D) .
- As before, we can show, with $\alpha = \sqrt{k^2 (\pi/\ell)^2}$,

$$|R^D - R_{\text{asy}}^D(h)| \le C e^{-\beta h}$$
 with $R_{\text{asy}}^D(h) = S_{11} + \frac{S_{12} S_{21}}{e^{-2i\alpha h} - S_{22}}$.

$$h \mapsto R_{\text{asy}}^N(h), h \mapsto R_{\text{asy}}^D(h)$$
 run period. on $\mathscr C$ with periods $\pi/k, \pi/\alpha$.

• We still have
$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$.

- Now 2 prop. modes exist in the vertical branch of ω_{∞} for (\mathscr{P}^D) .
- As before, we can show, with $\alpha = \sqrt{k^2 (\pi/\ell)^2}$,

$$|R^D - R_{\text{asy}}^D(h)| \le C e^{-\beta h}$$
 with $R_{\text{asy}}^D(h) = S_{11} + \frac{S_{12} S_{21}}{e^{-2i\alpha h} - S_{22}}$.

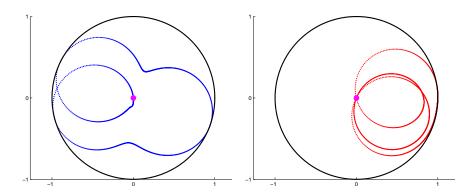
$$h \mapsto R_{\text{asy}}^N(h), h \mapsto R_{\text{asy}}^D(h)$$
 run period. on $\mathscr C$ with periods $\pi/k, \pi/\alpha$.

- * The curves $h \mapsto R(h)$, T(h) still pass through zero an infinite nb. of times.
- * Behaviours of $h \mapsto R(h)$, T(h) can be much more complex than before...

Numerical results for $\ell \in (\pi/k; 2\pi/k)$

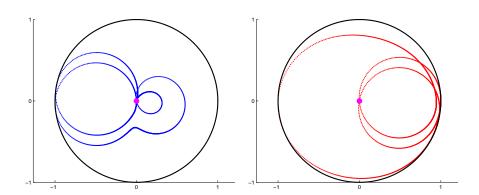
▶ Asympt. curves of $h \mapsto R(h)$, T(h) for $h \in (0; +\infty)$ and ℓ such that

$$\frac{\pi/\alpha}{\pi/k} = \frac{k}{\sqrt{k^2 - (\pi/\ell)^2}} = 2.$$



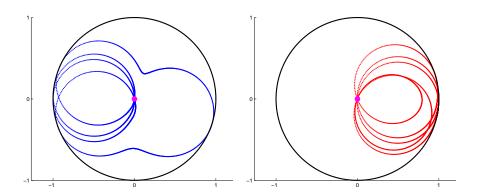
▶ Asympt. curves of $h \mapsto R(h)$, T(h) for $h \in (0; +\infty)$ and ℓ such that

$$\frac{\pi/\alpha}{\pi/k} = \frac{k}{\sqrt{k^2 - (\pi/\ell)^2}} = 3.$$



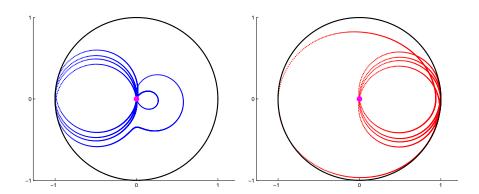
▶ Asympt. curves of $h \mapsto R(h)$, T(h) for $h \in (0; +\infty)$ and ℓ such that

$$\frac{\pi/\alpha}{\pi/k} = \frac{k}{\sqrt{k^2 - (\pi/\ell)^2}} = 4.$$



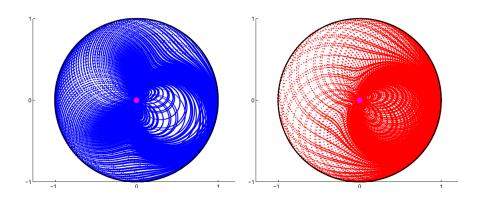
▶ Asympt. curves of $h \mapsto R(h)$, T(h) for $h \in (0; +\infty)$ and ℓ such that

$$\frac{\pi/\alpha}{\pi/k} = \frac{k}{\sqrt{k^2 - (\pi/\ell)^2}} = 5.$$



▶ Asympt. curves of $h \mapsto R(h)$, T(h) for $h \in (0, 100)$ and ℓ such that

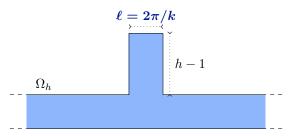
$$\frac{\pi/\alpha}{\pi/k} = \frac{k}{\sqrt{k^2 - (\pi/\ell)^2}} \notin \mathbb{Q}.$$



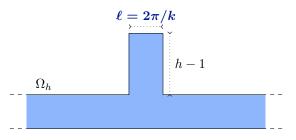
Non reflecting geometry $(t \mapsto \Re e(v(x,y)e^{-i\omega t}))$.

► Completely reflecting geometry ($t \mapsto \Re e(v(x,y)e^{-i\omega t})$).

Now set $\ell = 2\pi/k$ in the geometry

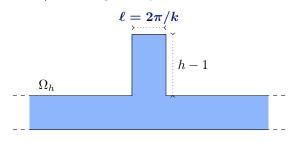


Now set $\ell = 2\pi/k$ in the geometry



We still have
$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$.

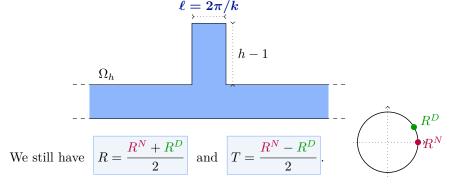
Now set $\ell = 2\pi/k$ in the geometry



• We still have
$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$.

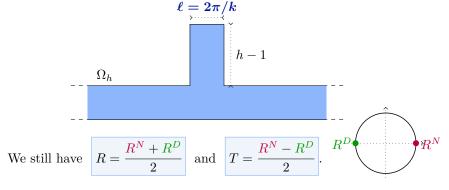
$$\star u = w^+ + w^- = C \cos(kx)$$
 solves the Neum. pb. in ω_h

Now set $\ell = 2\pi/k$ in the geometry



 $\star u = w^+ + w^- = C \cos(kx)$ solves the Neum. pb. in $\omega_h \Rightarrow \mathbb{R}^N = 1, \forall h > 1$.

Now set $\ell = 2\pi/k$ in the geometry



$$\star u = w^+ + w^- = C \cos(kx)$$
 solves the Neum. pb. in $\omega_h \Rightarrow \mathbb{R}^N = 1, \forall h > 1$.

 $\star h \mapsto R^D(h)$ still runs on the unit circle and goes through -1.

Now set $\ell = 2\pi/k$ in the geometry

$$R = \frac{R^N + R^D}{2} \quad \text{and} \quad T = \frac{R^N - R^D}{2}.$$
 We still have

*
$$u = w^+ + w^- = C \cos(kx)$$
 solves the Neum. pb. in $\omega_h \Rightarrow \mathbb{R}^N = 1, \forall h > 1$.
* $h \mapsto \mathbb{R}^D(h)$ still runs on the unit circle and goes through -1 .

 $\ell=2\pi/k$

There is a sequence (h_n) such that T=1 (perfect invisibility)

The special case $\ell = 2\pi/k$ - perfect invisibility

- ▶ Works also in the geometry below (h is the height of the central branch).
- ▶ Perfectly invisible defect $(t \mapsto \Re e(v(x,y)e^{-i\omega t}))$.

► Reference waveguide $(t \mapsto \Re e(v(x,y)e^{-i\omega t}))$.

Set
$$\gamma = \sqrt{\pi^2 - k^2}$$
, $w_1^{\pm} = \frac{e^{\mp ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \mp ie^{\gamma x}}{\sqrt{2\gamma}}\cos(\pi y)$.

▶ The Neumann problem in ω_h admits the solutions

$$\begin{split} u_1 &= w_1^- + \mathfrak{s}_{11} \, w_1^+ + \mathfrak{s}_{12} \, w_2^+ + \tilde{u}_1, \\ u_2 &= w_2^- + \mathfrak{s}_{21} \, w_1^+ + \, \mathfrak{s}_{22} \, w_2^+ + \tilde{u}_2, \end{split} \qquad \text{with \tilde{u}_1 fastly expo. decaying.}$$

- Set $\gamma = \sqrt{\pi^2 k^2}$, $w_1^{\pm} = \frac{e^{\mp ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \mp ie^{\gamma x}}{\sqrt{2\gamma}}\cos(\pi y)$.
- The Neumann problem in ω_h admits the solutions $u_1 = w_1^- + \mathfrak{s}_{11} w_1^+ + \mathfrak{s}_{12} w_2^+ + \tilde{u}_1$, with \tilde{u}_1 fastly expo. decaying $u_2 = w_2^- + \mathfrak{s}_{21} w_1^+ + \mathfrak{s}_{22} w_2^+ + \tilde{u}_2$, with \tilde{u}_2 fastly expo. decaying.
- ▶ The augmented scattering matrix $\mathbb{S} = \begin{pmatrix} \mathfrak{s}_{11} & \mathfrak{s}_{12} \\ \mathfrak{s}_{21} & \mathfrak{s}_{22} \end{pmatrix}$ is unitary.

Set
$$\gamma = \sqrt{\pi^2 - k^2}$$
, $w_1^{\pm} = \frac{e^{\mp ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \mp ie^{\gamma x}}{\sqrt{2\gamma}} \cos(\pi y)$.

- The Neumann problem in ω_h admits the solutions $u_1 = w_1^- + \mathfrak{s}_{11} w_1^+ + \mathfrak{s}_{12} w_2^+ + \tilde{u}_1$, with \tilde{u}_1 fastly expo. decaying $u_2 = w_2^- + \mathfrak{s}_{21} w_1^+ + \mathfrak{s}_{22} w_2^+ + \tilde{u}_2$, with \tilde{u}_2 fastly expo. decaying.
- ▶ The augmented scattering matrix $\mathbb{S} = \begin{pmatrix} \mathfrak{s}_{11} & \mathfrak{s}_{12} \\ \mathfrak{s}_{21} & \mathfrak{s}_{22} \end{pmatrix}$ is unitary.

LEMMA: If $\mathfrak{s}_{22} = -1$, the Neumann problems in ω_h admits trapped modes.

Proof: $\mathfrak{s}_{22} = -1 \Rightarrow \mathfrak{s}_{21} = 0$ (S is unitary) and $u_2 \in H^1(\omega_h)$ is a trapped mode.

- Set $\gamma = \sqrt{\pi^2 k^2}$, $w_1^{\pm} = \frac{e^{\mp ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \mp ie^{\gamma x}}{\sqrt{2\gamma}}\cos(\pi y)$.
- The Neumann problem in ω_h admits the solutions $u_1 = w_1^- + \mathfrak{s}_{11} w_1^+ + \mathfrak{s}_{12} w_2^+ + \tilde{u}_1$, with \tilde{u}_1 fastly expo. decaying $u_2 = w_2^- + \mathfrak{s}_{21} w_1^+ + \mathfrak{s}_{22} w_2^+ + \tilde{u}_2$, with \tilde{u}_2 fastly expo. decaying.
- ▶ The augmented scattering matrix $\mathbb{S} = \begin{pmatrix} \mathfrak{s}_{11} & \mathfrak{s}_{12} \\ \mathfrak{s}_{21} & \mathfrak{s}_{22} \end{pmatrix}$ is unitary.

LEMMA: If $\mathfrak{s}_{22} = -1$, the Neumann problems in ω_h admits trapped modes.

Proof: $\mathfrak{s}_{22} = -1 \Rightarrow \mathfrak{s}_{21} = 0$ (S is unitary) and $u_2 \in H^1(\omega_h)$ is a trapped mode.

 $\star u = w_1^- + w_1^+$ solves the Neum. pb. in ω_h as in the previous slide

- Set $\gamma = \sqrt{\pi^2 k^2}$, $w_1^{\pm} = \frac{e^{\mp ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \mp ie^{\gamma x}}{\sqrt{2\gamma}} \cos(\pi y)$.
- The Neumann problem in ω_h admits the solutions $u_1 = w_1^- + \mathfrak{s}_{11} w_1^+ + \mathfrak{s}_{12} w_2^+ + \tilde{u}_1$, with \tilde{u}_1 fastly expo. decaying $u_2 = w_2^- + \mathfrak{s}_{21} w_1^+ + \mathfrak{s}_{22} w_2^+ + \tilde{u}_2$, with \tilde{u}_2 fastly expo. decaying.
- ▶ The augmented scattering matrix $\mathbb{S} = \begin{pmatrix} \mathfrak{s}_{11} & \mathfrak{s}_{12} \\ \mathfrak{s}_{21} & \mathfrak{s}_{22} \end{pmatrix}$ is unitary.

LEMMA: If $\mathfrak{s}_{22} = -1$, the Neumann problems in ω_h admits trapped modes.

Proof: $\mathfrak{s}_{22} = -1 \Rightarrow \mathfrak{s}_{21} = 0$ (S is unitary) and $u_2 \in H^1(\omega_h)$ is a trapped mode.

$$\star u = w_1^- + w_1^+$$
 solves the Neum. pb. in ω_h as in the previous slide $\Rightarrow \mathfrak{s}_{11} = 1 \qquad \Rightarrow |\mathfrak{s}_{22}| = 1, \qquad \forall h > 1.$

Set
$$\gamma = \sqrt{\pi^2 - k^2}$$
, $w_1^{\pm} = \frac{e^{\mp ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \mp ie^{\gamma x}}{\sqrt{2\gamma}} \cos(\pi y)$.

- The Neumann problem in ω_h admits the solutions $u_1 = w_1^- + \mathfrak{s}_{11} w_1^+ + \mathfrak{s}_{12} w_2^+ + \tilde{u}_1$, with \tilde{u}_1 fastly expo. decaying $u_2 = w_2^- + \mathfrak{s}_{21} w_1^+ + \mathfrak{s}_{22} w_2^+ + \tilde{u}_2$, with \tilde{u}_2 fastly expo. decaying.
- ▶ The augmented scattering matrix $\mathbb{S} = \begin{pmatrix} \mathfrak{s}_{11} & \mathfrak{s}_{12} \\ \mathfrak{s}_{21} & \mathfrak{s}_{22} \end{pmatrix}$ is unitary.

LEMMA: If $\mathfrak{s}_{22} = -1$, the Neumann problems in ω_h admits trapped modes.

Proof: $\mathfrak{s}_{22} = -1 \Rightarrow \mathfrak{s}_{21} = 0$ (S is unitary) and $u_2 \in H^1(\omega_h)$ is a trapped mode.

- $\star~u=w_1^-+w_1^+$ solves the Neum. pb. in ω_h as in the previous slide $\Rightarrow \mathfrak{s}_{11}=1 \qquad \Rightarrow |\mathfrak{s}_{22}|=1, \qquad \forall h>1.$
- \star As previously, $h \mapsto \mathfrak{s}_{22}(h)$ runs on the unit circle and goes through -1.

Set
$$\gamma = \sqrt{\pi^2 - k^2}$$
, $w_1^{\pm} = \frac{e^{\mp ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \mp ie^{\gamma x}}{\sqrt{2\gamma}}\cos(\pi y)$.

The Neumann problem in ω_h admits the solutions

$$u_1 = w_1^- + \mathfrak{s}_{11} w_1^+ + \mathfrak{s}_{12} w_2^+ + \tilde{u}_1,$$
 with \tilde{u}_1 fastly expo. decaying $u_2 = w_2^- + \mathfrak{s}_{21} w_1^+ + \mathfrak{s}_{22} w_2^+ + \tilde{u}_2,$ with \tilde{u}_2 fastly expo. decaying.

The augmented scattering matrix $\mathbb{S} = \begin{pmatrix} \mathfrak{s}_{11} & \mathfrak{s}_{12} \\ \mathfrak{s}_{21} & \mathfrak{s}_{22} \end{pmatrix}$ is unitary.

LEMMA: If $\mathfrak{s}_{22} = -1$, the Neumann problems in ω_h admits trapped modes.

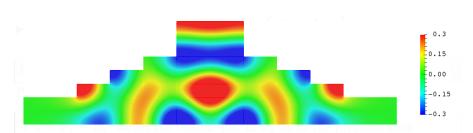
Proof: $\mathfrak{s}_{22} = -1 \Rightarrow \mathfrak{s}_{21} = 0$ (S is unitary) and $u_2 \in H^1(\omega_h)$ is a trapped mode.

$$\star u = w_1^- + w_1^+$$
 solves the Neum. pb. in ω_h as in the previous slide $\Rightarrow \mathfrak{s}_{11} = 1 \qquad \Rightarrow |\mathfrak{s}_{22}| = 1, \qquad \forall h > 1.$

* As previously, $h \mapsto \mathfrak{s}_{22}(h)$ runs on the unit circle and goes through -1.

There is a sequence (h_n) such that trapped modes exist in ω_h .

Symmetry argument w.r.t. $(Oy) \Rightarrow$ existence of trapped modes in Ω_h . It works also in the geometry below (h is the height of the central branch).



Non zero $v \in H^1(\Omega_h)$ satisfying $\Delta v + k^2 v = 0$ in Ω_h , $\partial_n v = 0$ on $\partial \Omega_h$.

- Main analysis
- 2 Numerical results
- 3 Variants and extensions

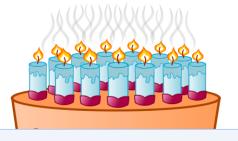
Conclusion

What we did

- We explained how to construct waveguides such that R = 0, T = 0 (the method works also for the Dirichlet problem) or T = 1.
- ♦ We showed how to construct waveguides supporting trapped modes.

Future work

- 1) When the symmetry is broken, we can still do things...
- 2) Can we work at higher frequencies (several propagating modes)?
- 3) Can we deal with multi-channel waveguides?
- 4) For a given perturbation, can we study the frequencies such that invisibility holds? ⇒ A.-S. Bonnet-Ben Dhia's talk last Monday.



Thank you for your attention and happy birthday to you Patrick!!!

