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» Scattering in time-harmonic regime by an inclusion D (coefficients A
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DEFINITION. Values of k € C for which this problem has a nontrivial solution
(u,w) are called transmission eigenvalues.

» The goal in this talk is to prove that the set of transmission eigenvalues
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/

; S (Idea 1: Analogy with another non standard transmission problem )
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p1 = Mlﬂl >0

» Eigenvalue problem for E, in 2D:

Find v € H}(Q) such that:
div(p= ! Vo) + k?cv =0 in Q.

> kis a transmission eigenvalue if and only if there exists v € H}(Q)\{0}
such that, for all v' € H{(Q2),

/ u1_1Vv'W—/ 2| "1V - Vol = k2 (/ slva—/ |52|v7>.
o o8 o 0

4/ 15



Equivalence DMTEP /ITEP

» DMTEP in the domain €:

€1 =
H1 =

S

pe = —1

5/ 15



Equivalence DMTEP /ITEP

» DMTEP in the domain €:

TRANSMISSION CONDITIONS ON X

€1 =
H1 =

b3S

pe = —1

5/ 15



Equivalence DMTEP /ITEP

» DMTEP in the domain €:

TRANSMISSION CONDITIONS ON X

62:—1
po = —1

€1 =
H1 =

S

[Symmetry with respect to the interface E]

5/ 15



Equivalence DMTEP /ITEP

» DMTEP in the domain €:

TRANSMISSION CONDITIONS ON X

82:—1
po = —1

€1 =
H1 =

b3S

[Symmetry with respect to the interface X ]

» We obtain a problem analogous to the ITEP in y:

z:—)I/

0

5/ 15



Equivalence DMTEP /ITEP

» DMTEP in the domain €:

TRANSMISSION CONDITIONS ON X

g1 = gg = —1

[Symmetry with respect to the interface X ]

» We obtain a problem analogous to the ITEP in y:

> v

0
TRANSMIISSION CONDITIONS ON X

5/ 15



Equivalence DMTEP /ITEP

» DMTEP in the domain €:

TRANSMISSION CONDITIONS ON X

82:—1
po = —1

€1 =
H1 =

b3S

[Symmetry with respect to the interface X ]

» We obtain a problem analogous to the ITEP in y:

> v

0
TRANSMIISSION CONDITIONS ON X

» The interface ¥ in the DMTEP plays the role of the boundary 0D in the
ITEP.
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Outline of the talk: three steps

@ An analogy between two transmission problems

© The T-coercivity method for the Dielectric/Metamaterial
Transmission Problem

© The T-coercivity method for the Interior Transmission Problem
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——
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DEFINITION. We will say that the problem (£ ) is well-posed if the operator
div (1=1V") is an isomorphism from H}(Q) to H~1(Q).

@ The form a is not coercive.

o For 115 = —p1, we can build a kernel of infinite dimension to (Zy).

L

- (Idea 2: Use the T-coercivity approach to deal with problem (WV))

=
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Idea of the T-coercivity 1/2

Let T be an isomorphism of H} ().

Find v € H}(Q) such that:

(Pv) S PV 0, 1) = I(T0), Yo' € HA(S).

Goal: Find T such that a is T-coercive: / p Vo V(Tv) > C ||’U||%Ié(ﬂ).
Q

In this case, Lax-Milgram = (227,) (and so (£y)) is well-posed.

c Define Ty v =

(%} in Ql
—v9 +2Sxww1  in Qy

Ss

e

9 Ty 0Ty = Id so Ty is an isomorphism of H{ ()

where Sy, is the symmetry.
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prove that div (u=! V) is of Fredholm type when

inf inf < -1 or su su > —1
Qlﬂvul/gznVHQ Qlﬁpvul/ﬂzmpVMQ

where V is a neighbourhood of X.

» This technique also allows to deal with non symmetric configurations.
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© The T-coercivity method for the Interior Transmission Problem
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» For k € Ri\{0}, A > Id and n > 1, one finds

Re a((u, w), T(w,w)) > C (lullfp ) + lwllE @),  V(u,w) € X.

» Using the analytic Fredholm theorem, one deduces the

PROPOSITION. Suppose that A > Id and n > 1. Then the set of transmis-
sion eigenvalues is discrete and countable.

» This result can be extended to situations where A — Id and n — 1
change sign in Q working with T(u,w) = (u — 2yw, w)).
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ITEP when A = Id

» When A = Id, the ITP is not of Fredholm type in X likewise the DMTP
is not of Fredholm type in H}(£2) when p; = —ps.
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0
(Fv) pl—n AvA = (f,0)p, o' € B3 (D Moy,
——

a(o") o

9:‘ (Idea 3: This transmission problem is very different from DMTP.)

THEOREM. The problem (%#y ) is well-posed in the Fredholm sense as soon
as 1 — n does not change sign in a neighbourhood of dD.

» Proof: T-coercivity or see J. Sylvester’s work for a more precise study. , s



Generalizations

v/ T-coercivity approach can be used for non-constant coefficients (L)
and other problems (Maxwell’s equations, elasticity, ...).

v/ It allows to justify the convergence of standard finite element methods.

& What happens when A — Id change sign in a neighbourhood of the
boundary?

@ For the equivalent DMTP, strong singularities appear at the
interface and H' is no longer the appropriate functional framework. We
observe a black hole phenomenon (joint work with X. Claeys).

#® We are not able to use the T-coercivity technique to prove existence of
transmission eigenvalues.
= T-coercivity gives positivity but operators are no longer symmetric.
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Thank you for your attention.
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