Invisibility in acoustic waveguides

Lucas Chesnel ${ }^{1}$

Coll. with A.-S. Bonnet-BenDhia ${ }^{2}$, J. Heleine ${ }^{3}$, S.A. Nazarov ${ }^{4}$, V. Pagneux ${ }^{5}$
${ }^{1}$ Idefix team, Inria/Institut Polytechnique de Paris/EDF, France
${ }^{2}$ Poems team, Inria/Ensta Paris, France
${ }^{3}$ IMT, Univ. Paul Sabatier, France
${ }^{4}$ FMM, St. Petersburg State University, Russia
${ }^{5}$ LAUM, Univ. du Maine, France

CAEN, 25/10/2022

Introduction

- We consider the propagation of waves in a 2D acoustic waveguide with an obstacle (also relevant in optics, microwaves, water-waves theory,...).

$$
(\mathscr{P}) \left\lvert\, \begin{array}{rll}
\Delta u+k^{2} u & =0 & \text { in } \Omega, \\
\partial_{n} u & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

- We fix $k \in(0 ; \pi)$ so that only the plane waves $e^{ \pm i k x}$ can propagate.

Introduction

- We consider the propagation of waves in a 2D acoustic waveguide with an obstacle (also relevant in optics, microwaves, water-waves theory,...).

$$
(\mathscr{P}) \left\lvert\, \begin{aligned}
\Delta u+k^{2} u & =0 \quad \text { in } \Omega, \\
\partial_{n} u & =0 \quad \text { on } \partial \Omega
\end{aligned}\right.
$$

- We fix $k \in(0 ; \pi)$ so that only the plane waves $e^{ \pm i k x}$ can propagate.
- The scattering of these waves leads us to consider the solutions of (\mathscr{P}) with the decomposition
$u_{+}=\left|\begin{array}{r}e^{i k x}+R_{+} e^{-i k x}+\ldots \\ T \\ e^{+i k x}+\ldots\end{array} \quad u_{-}=\right| \begin{aligned} T & e^{-i k x}+\ldots\end{aligned} \quad x \rightarrow-\infty, \begin{aligned} & \\ & e^{-i k x}+R_{-} e^{+i k x}+\ldots x \rightarrow+\infty\end{aligned}$
$R_{ \pm}, T \in \mathbb{C}$ are the scattering coefficients, the \ldots are expon. decaying terms.

Introduction

- We have the relations of conservation of energy $\left|R_{ \pm}\right|^{2}+|T|^{2}=1$.
- Without obstacle, $u_{+}=e^{i k x}$ so that $\left(R_{+}, T\right)=(0,1)$.
- With an obstacle, in general $\left(R_{+}, T\right) \neq(0,1)$.

Introduction

- We have the relations of conservation of energy $\left|R_{ \pm}\right|^{2}+|T|^{2}=1$.
- Without obstacle, $u_{+}=e^{i k x}$ so that $\left(R_{+}, T\right)=(0,1)$.

- With an obstacle, in general $\left(R_{+}, T\right) \neq(0,1)$.

Goal of the talk
We wish to identify situations (geometries, k) where $R_{ \pm}=0$ and/or $T=1$ (as if there were no obstacle) \Rightarrow cloaking at "infinity".

Introduction

Difficulty: the scattering coefficients have a non explicit and non linear dependence wrt the geometry and k.

> Remark: different from the usual cloaking picture (Pendry et al. 06, Leonhardt 06, Greenleaf et al. 09) because we wish to control only the scattering coef..
> \rightarrow Less ambitious but doable without fancy materials (and relevant in practice).

Outline of the talk

We present two different points of view on these questions of invisibility:
(1) Cloaking of obstacles

```
Asymptotic anAlysis:
k and \Omega are given, we explain how to perturb the geometry using thin resonant ligaments to get \(T \approx 1\).
```

(2) A spectral approach to determine non reflecting wavenumbers

Spectral theory:

Ω is given, we explain how to find non reflecting k by solving an unusual spectral problem.

Outline of the talk

We present two different points of view on these questions of invisibility:
(1) Cloaking of obstacles

```
AsYmptotic Analysis:
\(k\) and \(\Omega\) are given, we explain how to perturb the geometry using
thin resonant ligaments to get \(T \approx 1\).
```

(2) A spectral approach to determine non reflecting wavenumbers SPECTRAL THEORY:
Ω is given, we explain how to find non reflecting k by solving an unusual spectral problem.

Setting

-

Main ingredient of our approach: outer resonators of width $\varepsilon \ll 1$.

$$
\left(\mathscr{P}^{\varepsilon}\right) \left\lvert\, \begin{aligned}
\Delta u+k^{2} u=0 & \text { in } \Omega^{\varepsilon}, \\
\partial_{n} u=0 & \text { on } \partial \Omega^{\varepsilon}
\end{aligned}\right.
$$

- In this geometry, we have the scattering solutions

$$
u_{+}^{\varepsilon}=\left|\begin{array}{rr}
e^{i k x}+R_{+}^{\varepsilon} e^{-i k x}+\ldots \\
T^{\varepsilon} e^{+i k x}+\ldots
\end{array} \quad u_{-}^{\varepsilon}=\right| \begin{aligned}
T^{\varepsilon} e^{-i k x}+\ldots & x \rightarrow-\infty \\
e^{-i k x}+R_{-}^{\varepsilon} e^{+i k x}+\ldots & x \rightarrow+\infty
\end{aligned}
$$

Setting

-

Main ingredient of our approach: outer resonators of width $\varepsilon \ll 1$.

$$
\left(\mathscr{P}^{\varepsilon}\right) \left\lvert\, \begin{aligned}
\Delta u+k^{2} u=0 & \text { in } \Omega^{\varepsilon}, \\
\partial_{n} u=0 & \text { on } \partial \Omega^{\varepsilon}
\end{aligned}\right.
$$

- In this geometry, we have the scattering solutions

$$
u_{+}^{\varepsilon}=\left|\begin{array}{rr}
e^{i k x}+R_{+}^{\varepsilon} e^{-i k x}+\ldots \\
T^{\varepsilon} e^{+i k x}+\ldots
\end{array} \quad u_{-}^{\varepsilon}=\right| \begin{aligned}
T^{\varepsilon} e^{-i k x}+\ldots & x \rightarrow-\infty \\
e^{-i k x}+R_{-}^{\varepsilon} e^{+i k x}+\ldots & x \rightarrow+\infty
\end{aligned}
$$

In general, the thin ligament has only a weak influence on the scattering coefficients: $R_{ \pm}^{\varepsilon} \approx R_{ \pm}, T^{\varepsilon} \approx T$. But not always ...

Numerical experiment

- We vary the length of the ligament:

Numerical experiment

- For one particular length of the ligament, we get a standing mode (zero transmission):

Asymptotic analysis

To understand the phenomenon, we compute an asymptotic expansion of $u_{+}^{\varepsilon}, R_{+}^{\varepsilon}, T^{\varepsilon}$ as $\varepsilon \rightarrow 0$.

$$
\left(\mathscr{P}^{\varepsilon}\right) \left\lvert\, \begin{aligned}
\Delta u_{+}^{\varepsilon}+k^{2} u_{+}^{\varepsilon}=0 & \text { in } \Omega^{\varepsilon}, \\
\partial_{n} u_{+}^{\varepsilon}=0 & \text { on } \partial \Omega^{\varepsilon}
\end{aligned}\right.
$$

$$
u_{+}^{\varepsilon}=\left\lvert\, \begin{array}{r}
e^{i k x}+R_{+}^{\varepsilon} e^{-i k x}+\ldots \\
T^{\varepsilon} e^{+i k x}+\ldots
\end{array}\right.
$$

- To proceed we use techniques of matched asymptotic expansions (see Beale 73, Gadyl'shin 93, Kozlov et al. 94, Nazarov 96, Maz'ya et al. 00, Joly \& Tordeux 06, Lin \& Zhang 17, 18, Brandao, Holley, Schnitzer 20, ...).

Asymptotic analysis

- We work with the outer expansions

$$
\begin{array}{ll}
u_{+}^{\varepsilon}(x, y)=u^{0}(x, y)+\ldots & \\
u_{+}^{\varepsilon}(x, y)=\varepsilon^{-1} v^{-1}(y)+v^{0}(y)+\ldots & \\
\text { in the resonator. }
\end{array}
$$

- Considering the restriction of $\left(\mathscr{P}^{\varepsilon}\right)$ to the thin resonator, when ε tends to zero, we find that v^{-1} must solve the homogeneous 1D problem

$$
\left(\mathscr{P}_{1 \mathrm{D}}\right) \left\lvert\, \begin{aligned}
& \partial_{y}^{2} v+k^{2} v=0 \quad \text { in }(1 ; 1+\ell) \\
& v(1)=\partial_{y} v(1+\ell)=0
\end{aligned}\right.
$$

Asymptotic analysis

- We work with the outer expansions

$$
\begin{array}{ll}
u_{+}^{\varepsilon}(x, y)=u^{0}(x, y)+\ldots & \\
\text { in }^{\varepsilon} \Omega \\
u_{+}^{\varepsilon}(x, y)=\varepsilon^{-1} v^{-1}(y)+v^{0}(y)+\ldots & \\
\text { in the resonator. }
\end{array}
$$

- Considering the restriction of $\left(\mathscr{P}^{\varepsilon}\right)$ to the thin resonator, when ε tends to zero, we find that v^{-1} must solve the homogeneous 1D problem

$$
\left(\mathscr{P}_{1 \mathrm{D}}\right) \left\lvert\, \begin{aligned}
& \partial_{y}^{2} v+k^{2} v=0 \quad \text { in }(1 ; 1+\ell) \\
& v(1)=\partial_{y} v(1+\ell)=0
\end{aligned}\right.
$$

The features of $\left(\mathscr{P}_{1 \mathrm{D}}\right)$ play a key role in the physical phenomena and in the asymptotic analysis.

Asymptotic analysis

- We work with the outer expansions

$$
\begin{array}{ll}
u_{+}^{\varepsilon}(x, y)=u^{0}(x, y)+\ldots & \\
\text { in }^{\varepsilon} \Omega \\
u_{+}^{\varepsilon}(x, y)=\varepsilon^{-1} v^{-1}(y)+v^{0}(y)+\ldots & \\
\text { in the resonator. }
\end{array}
$$

- Considering the restriction of $\left(\mathscr{P}^{\varepsilon}\right)$ to the thin resonator, when ε tends to zero, we find that v^{-1} must solve the homogeneous 1D problem

$$
\left(\begin{array}{l|l}
\left(\mathscr{P}_{1 \mathrm{D}}\right) & \begin{array}{l}
\partial_{y}^{2} v+k^{2} v=0 \quad \text { in }(1 ; 1+\ell) \\
v(1)=\partial_{y} v(1+\ell)=0
\end{array}
\end{array}\right.
$$

The features of $\left(\mathscr{P}_{1 \mathrm{D}}\right)$ play a key role in the physical phenomena and in the asymptotic analysis.

- We denote by $\ell_{\text {res }}$ (resonance lengths) the values of ℓ, given by

$$
\ell_{\mathrm{res}}:=\pi(m+1 / 2) / k, \quad m \in \mathbb{N},
$$

such that $\left(\mathscr{P}_{1 \mathrm{D}}\right)$ admits the non zero solution $v(y)=\sin (k(y-1))$.

Asymptotic analysis - Non resonant case

- Assume that $\ell \neq \ell_{\text {res }}$. Then we find $v^{-1}=0$ and when $\varepsilon \rightarrow 0$, we get

$$
\begin{array}{ll}
u_{ \pm}^{\varepsilon}(x, y)=u_{ \pm}+o(1) & \text { in } \Omega \\
u_{ \pm}^{\varepsilon}(x, y)=u_{ \pm}(A) v_{0}(y)+o(1) & \text { in the resonator } \\
R_{ \pm}^{\varepsilon}=R_{ \pm}+o(1), & T^{\varepsilon}=T+o(1)
\end{array}
$$

Here $v_{0}(y)=\cos (k(y-1)+\tan (k(y-\ell) \sin (k(y-1)$.

Asymptotic analysis - Non resonant case

- Assume that $\ell \neq \ell_{\text {res }}$. Then we find $v^{-1}=0$ and when $\varepsilon \rightarrow 0$, we get

$$
\begin{array}{ll}
u_{ \pm}^{\varepsilon}(x, y)=u_{ \pm}+o(1) & \text { in } \Omega \\
u_{ \pm}^{\varepsilon}(x, y)=u_{ \pm}(A) v_{0}(y)+o(1) & \text { in the resonator } \\
R_{ \pm}^{\varepsilon}=R_{ \pm}+o(1), & T^{\varepsilon}=T+o(1)
\end{array}
$$

Here $v_{0}(y)=\cos (k(y-1)+\tan (k(y-\ell) \sin (k(y-1)$.

$$
\text { The thin resonator has no influence at order } \varepsilon^{0} \text {. }
$$

\rightarrow Not interesting for our purpose because we want $\left\lvert\, \begin{gathered}R_{ \pm}^{\varepsilon}=0+\ldots \\ T^{\varepsilon}=1+\ldots\end{gathered}\right.$

Asymptotic analysis - Resonant case

- For $\ell=\ell_{\text {res }}$, when $\varepsilon \rightarrow 0$, we obtain

$$
\begin{aligned}
& u_{+}^{\varepsilon}(x, y)=u_{+}(x, y)+a k \gamma(x, y)+o(1) \quad \text { in } \Omega \\
& u_{+}^{\varepsilon}(x, y)=\varepsilon^{-1} a \sin (k(y-1))+O(1) \quad \text { in the resonator, } \\
& R_{+}^{\varepsilon}=R_{+}+i a u_{+}(A) / 2+o(1), \quad T^{\varepsilon}=T+i a u_{-}(A) / 2+o(1)
\end{aligned}
$$

Here γ is the outgoing Green function such that $\left\lvert\, \begin{aligned} & \Delta \gamma+k^{2} \gamma=0 \text { in } \Omega \\ & \partial_{n} \gamma=\delta_{A} \text { on } \partial \Omega\end{aligned}\right.$ and

$$
a k=-\frac{u_{+}(A)}{\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}} .
$$

Asymptotic analysis - Resonant case

- For $\ell=\ell_{\text {res }}$, when $\varepsilon \rightarrow 0$, we obtain

$$
\begin{aligned}
& u_{+}^{\varepsilon}(x, y)=u_{+}(x, y)+a k \gamma(x, y)+o(1) \quad \text { in } \Omega \\
& u_{+}^{\varepsilon}(x, y)=\varepsilon^{-1} a \sin (k(y-1))+O(1) \quad \text { in the resonator, } \\
& R_{+}^{\varepsilon}=R_{+}+i a u_{+}(A) / 2+o(1), \quad T^{\varepsilon}=T+i a u_{-}(A) / 2+o(1)
\end{aligned}
$$

Here γ is the outgoing Green function such that $\left\lvert\, \begin{aligned} & \Delta \gamma+k^{2} \gamma=0 \text { in } \Omega \\ & \partial_{n} \gamma=\delta_{A} \text { on } \partial \Omega\end{aligned}\right.$ and

$$
a k=-\frac{u_{+}(A)}{\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}}
$$

This time the thin resonator has an influence at order ε^{0}

Asymptotic analysis - Resonant case

- For $\ell=\ell_{\text {res }}+\varepsilon \eta$ with $\eta \in \mathbb{R}$ fixed, when $\varepsilon \rightarrow 0$, we obtain

$$
\begin{aligned}
& u_{+}^{\varepsilon}(x, y)=u_{+}(x, y)+a(\eta) k \gamma(x, y)+o(1) \quad \text { in } \Omega \\
& u_{+}^{\varepsilon}(x, y)=\varepsilon^{-1} a(\eta) \sin (k(y-1))+O(1) \quad \text { in the resonator, } \\
& R_{+}^{\varepsilon}=R_{+}+i a(\eta) u_{+}(A) / 2+o(1), \quad T^{\varepsilon}=T+i a(\eta) u_{-}(A) / 2+o(1) .
\end{aligned}
$$

Here γ is the outgoing Green function such that $\left\lvert\, \begin{aligned} & \Delta \gamma+k^{2} \gamma=0 \text { in } \Omega \\ & \partial_{n} \gamma=\delta_{A} \text { on } \partial \Omega\end{aligned}\right.$ and

$$
a(\eta) k=-\frac{u_{+}(A)}{\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}+\eta} .
$$

Asymptotic analysis - Resonant case

- For $\ell=\ell_{\text {res }}+\varepsilon \eta$ with $\eta \in \mathbb{R}$ fixed, when $\varepsilon \rightarrow 0$, we obtain

$$
\begin{aligned}
& u_{+}^{\varepsilon}(x, y)=u_{+}(x, y)+a(\eta) k \gamma(x, y)+o(1) \quad \text { in } \Omega \\
& u_{+}^{\varepsilon}(x, y)=\varepsilon^{-1} a(\eta) \sin (k(y-1))+O(1) \quad \text { in the resonator, } \\
& R_{+}^{\varepsilon}=R_{+}+i a(\eta) u_{+}(A) / 2+o(1), \quad T^{\varepsilon}=T+i a(\eta) u_{-}(A) / 2+o(1) .
\end{aligned}
$$

Here γ is the outgoing Green function such that $\left\lvert\, \begin{aligned} & \Delta \gamma+k^{2} \gamma=0 \text { in } \Omega \\ & \partial_{n} \gamma=\delta_{A} \text { on } \partial \Omega\end{aligned}\right.$ and

$$
a(\eta) k=-\frac{u_{+}(A)}{\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}+\eta} .
$$

This time the thin resonator has an influence at order ε^{0} and it depends on the choice of η !

Almost zero reflection

From this expansion, we find that asymptotically, when the length of the resonator is perturbed around $\ell_{\text {res }}, R_{+}^{\varepsilon}, T^{\varepsilon}$ run on circles whose features depend on the choice for A.

Almost zero reflection

From this expansion, we find that asymptotically, when the length of the resonator is perturbed around $\ell_{\text {res }}, R_{+}^{\varepsilon}, T^{\varepsilon}$ run on circles whose features depend on the choice for A.

- Using the expansions of $u_{ \pm}(A)$ far from the obstacle, one shows:

Proposition: There are positions of the resonator A such that the circle $\left\{R_{+}^{0}(\eta) \mid \eta \in \mathbb{R}\right\}$ passes through zero.

Almost zero reflection

From this expansion, we find that asymptotically, when the length of the resonator is perturbed around $\ell_{\text {res }}, R_{+}^{\varepsilon}, T^{\varepsilon}$ run on circles whose features depend on the choice for A.

- Using the expansions of $u_{ \pm}(A)$ far from the obstacle, one shows:

Proposition: There are positions of the resonator A such that the circle $\left\{R_{+}^{0}(\eta) \mid \eta \in \mathbb{R}\right\}$ passes through zero. $\Rightarrow \exists$ situations s.t. $R_{+}^{\varepsilon}=0+o(1)$.

Almost zero reflection

- Example of situation where we have almost zero reflection $(\varepsilon=\mathbf{0 . 3})$.

Simulations realized with the Freefem++ library.

Almost zero reflection

- Example of situation where we have almost zero reflection $(\varepsilon=\mathbf{0 . 0 1})$.

Simulations realized with the Freefem++ library.

Almost zero reflection

- Example of situation where we have almost zero reflection $(\varepsilon=\mathbf{0 . 0 1})$.

Simulations realized with the Freefem++ library.
Conservation of energy guarantees that when $R_{+}^{\varepsilon}=0,\left|T^{\varepsilon}\right|=1$. \rightarrow To cloak the object, it remains to compensate the phase shift!

Phase shifter

- Working with two resonators, we can create phase shifters, that is devices with almost zero reflection and any desired phase.

- Here the device is designed to obtain a phase shift approx. equal to $\pi / 4$.

Cloaking with three resonators

- Now working in two steps, we can approximately cloak any object with three resonators:

1) With one resonant ligament, first we get almost zero reflection;
2) With two additional resonant ligaments, we compensate the phase shift.

$\Re e u_{+}$

$\Re e u_{+}^{\varepsilon}$

$\Re e\left(u_{+}^{\varepsilon}-e^{i k x}\right)$

Cloaking with two resonators

- Working a bit more, one can show that two resonators are enough to cloak any object.

$t \mapsto \Re e\left(e^{i k(x-t)}\right)$

Outline of the talk

We present two different points of view on these questions of invisibility:

(1) Cloaking of obstacles

thin resonant ligaments to get $T \approx 1$.
(2) A spectral approach to determine non reflecting wavenumbers

SPECTRAL THEORY:
Ω is given, we explain how to find non reflecting k by solving an unusual spectral problem.

Scattering problem

- Consider the scattering problem with $k \in((N-1) \pi ; N \pi), N \in \mathbb{N}^{*}$

Find $v=v_{i}+v_{s}$ s. t.
$\Delta v+k^{2} v=0 \quad$ in Ω,
$\partial_{n} v=0 \quad$ on $\partial \Omega$,
v_{s} is outgoing.

Scattering problem

- Consider the scattering problem with $k \in((N-1) \pi ; N \pi), N \in \mathbb{N}^{*}$

Find $v=v_{i}+v_{s} \mathrm{~s} . \mathrm{t}$.
$\Delta v+k^{2} v=0 \quad$ in Ω, $\partial_{n} v=0 \quad$ on $\partial \Omega$, v_{s} is outgoing.

- For this problem, the modes are

Propagating $w_{n}^{ \pm}(x, y)=e^{ \pm i \beta_{n} x} \cos (n \pi y), \beta_{n}=\sqrt{k^{2}-n^{2} \pi^{2}}, n \in \llbracket 0, N-1 \rrbracket$
Evanescent $w_{n}^{ \pm}(x, y)=e^{\mp \beta_{n} x} \cos (n \pi y), \beta_{n}=\sqrt{n^{2} \pi^{2}-k^{2}}, n \geq N$.

Scattering problem

- Consider the scattering problem with $k \in((N-1) \pi ; N \pi), N \in \mathbb{N}^{*}$

Find $v=v_{i}+v_{s} \mathrm{~s} . \mathrm{t}$.

$$
\begin{aligned}
& \Delta v+k^{2} v=0 \quad \text { in } \Omega \\
& \partial_{n} v=0 \quad \text { on } \partial \Omega \\
& v_{s} \text { is outgoing. }
\end{aligned}
$$

- For this problem, the modes are

Propagating $w_{n}^{ \pm}(x, y)=e^{ \pm i \beta_{n} x} \cos (n \pi y), \beta_{n}=\sqrt{k^{2}-n^{2} \pi^{2}}, n \in \llbracket 0, N-1 \rrbracket$
Evanescent $\quad w_{n}^{ \pm}(x, y)=e^{\mp \beta_{n} x} \cos (n \pi y), \beta_{n}=\sqrt{n^{2} \pi^{2}-k^{2}}, n \geq N$.

- Set $v_{i}=\sum_{n=0}^{N-1} \alpha_{n} w_{n}^{+}$for some given $\left(\alpha_{n}\right)_{n=0}^{N-1} \in \mathbb{C}^{N}$.

Scattering problem

- Consider the scattering problem with $k \in((N-1) \pi ; N \pi), N \in \mathbb{N}^{*}$

Find $v=v_{i}+v_{s}$ s. t.
$\Delta v+k^{2} v=0 \quad$ in Ω, $\partial_{n} v=0 \quad$ on $\partial \Omega$, v_{s} is outgoing.

- For this problem, the modes are

Propagating $w_{n}^{ \pm}(x, y)=e^{ \pm i \beta_{n} x} \cos (n \pi y), \beta_{n}=\sqrt{k^{2}-n^{2} \pi^{2}}, n \in \llbracket 0, N-1 \rrbracket$
Evanescent $\quad w_{n}^{ \pm}(x, y)=e^{\mp \beta_{n} x} \cos (n \pi y), \beta_{n}=\sqrt{n^{2} \pi^{2}-k^{2}}, n \geq N$.

- Set $v_{i}=\sum_{n=0}^{N-1} \alpha_{n} w_{n}^{+}$for some given $\left(\alpha_{n}\right)_{n=0}^{N-1} \in \mathbb{C}^{N}$.

Goal of the section

Definition: v is a non reflecting mode if v_{s} is expo. decaying for $x \leq-L$ $\Leftrightarrow \quad \gamma_{n}^{-}=0, n \in \llbracket 0, N-1 \rrbracket \quad \Leftrightarrow \quad$ energy is completely transmitted.

GOAL
For a given geometry, we present a method to find values of k such that there is a non reflecting mode v.

Goal of the section

DEFINITION: v is a non reflecting mode if v_{s} is expo. decaying for $x \leq-L$ $\Leftrightarrow \quad \gamma_{n}^{-}=0, n \in \llbracket 0, N-1 \rrbracket \quad \Leftrightarrow \quad$ energy is completely transmitted.

GOAL

For a given geometry, we present a method to find values of k such that there is a non reflecting mode v.
\rightarrow Note that non reflection occurs for particular $\boldsymbol{v}_{\boldsymbol{i}}$ to be computed.

Classical complex scaling to compute v_{s}

REMINDER: $v_{s}=\sum_{n=0}^{N-1} \gamma_{n}^{ \pm} e^{ \pm i \beta_{n} x} \cos (n \pi y)+\sum_{n=N}^{+\infty} \gamma_{n}^{ \pm} e^{\mp \beta_{n} x} \cos (n \pi y), \pm x \geq L$.

Modal exponents for $v_{s}(x \leq-L)$

Classical complex scaling to compute v_{s}

REMINDER: $v_{s}=\sum_{n=0}^{N-1} \gamma_{n}^{ \pm} e^{ \pm i \beta_{n} x} \cos (n \pi y)+\sum_{n=N}^{+\infty} \gamma_{n}^{ \pm} e^{\mp \beta_{n} x} \cos (n \pi y), \pm x \geq L$.

- For $\theta \in(0 ; \pi / 2)$, consider the complex change of variables (Aguilar, Combes 73)

$$
\mathcal{I}_{\theta}(x)=\left\lvert\, \begin{array}{cl}
-L+(x+L) e^{i \theta} & \text { for } x \leq-L \\
x & \text { for }|x|<L \\
+L+(x-L) e^{i \theta} & \text { for } x \geq L
\end{array}\right.
$$

Classical complex scaling to compute v_{s}

REMINDER: $v_{s}=\sum_{n=0}^{N-1} \gamma_{n}^{ \pm} e^{ \pm i \beta_{n} x} \cos (n \pi y)+\sum_{n=N}^{+\infty} \gamma_{n}^{ \pm} e^{\mp \beta_{n} x} \cos (n \pi y), \pm x \geq L$.

- For $\theta \in(0 ; \pi / 2)$, consider the complex change of variables (Aguilar, Combes 73)

$$
\mathcal{I}_{\theta}(x)=\left\lvert\, \begin{array}{cl}
-L+(x+L) e^{i \theta} & \text { for } x \leq-L \\
x & \text { for }|x|<L \\
+L+(x-L) e^{i \theta} & \text { for } x \geq L
\end{array}\right.
$$

- Set $v_{\theta}:=v_{s} \circ\left(\mathcal{I}_{\theta}(x), y\right)$.

$$
\begin{aligned}
& \text { 1) } v_{\theta}=v_{s} \text { for }|x|<L \\
& \text { 2) } v_{\theta} \text { is exp. decaying at infinity. }
\end{aligned}
$$

Classical complex scaling to compute v_{s}

REMINDER: $v_{s}=\sum_{n=0}^{N-1} \gamma_{n}^{ \pm} e^{ \pm i \beta_{n} x} \cos (n \pi y)+\sum_{n=N}^{+\infty} \gamma_{n}^{ \pm} e^{\mp \beta_{n} x} \cos (n \pi y), \pm x \geq L$.

1) $v_{\theta}=v_{s}$ for $|x|<L$.
2) v_{θ} is exp. decaying at infinity.

Classical complex scaling to compute v_{s}

Modal exponents for $v_{s}(x \leq-L)$
Modal exponents for $v_{\theta}(x \leq-L)$

$$
v_{\theta}=\sum_{n=0}^{N-1} \tilde{\gamma}_{n}^{ \pm} e^{ \pm i \tilde{\beta}_{n} x} \cos (n \pi y)+\sum_{n=N}^{+\infty} \tilde{\gamma}_{n}^{ \pm} e^{\mp \tilde{\beta}_{n} x} \cos (n \pi y), \pm x \geq \sim_{n}=\tilde{\beta}_{n} e^{i \theta}
$$

1) $v_{\theta}=v_{s}$ for $|x|<L$.
2) v_{θ} is exp. decaying at infinity.

Classical complex scaling to compute v_{s}

- v_{θ} solves $(*) \left\lvert\, \alpha_{\theta} \frac{\partial}{\partial x}\left(\alpha_{\theta} \frac{\partial v_{\theta}}{\partial x}\right)+\frac{\partial^{2} v_{\theta}}{\partial y^{2}}+k^{2} v_{\theta}=\begin{array}{cl}0 & \text { in } \Omega \\ \partial_{n} v_{\theta} & =-\partial_{n} v_{i}\end{array} \quad\right.$ on $\partial \Omega$.

Classical complex scaling to compute v_{s}

$\rightarrow v_{\theta}$ solves $\begin{array}{r}(*) \left\lvert\, \alpha_{\theta} \frac{\partial}{\partial x}\left(\alpha_{\theta} \frac{\partial v_{\theta}}{\partial x}\right)+\frac{\partial^{2} v_{\theta}}{\partial y^{2}}+\begin{array}{r}k^{2} v_{\theta}= \\ \partial_{n} v_{\theta}=-\partial_{n} v_{i}\end{array} \quad\right. \text { on } \partial \Omega .\end{array}$

Classical complex scaling to compute v_{s}

$\rightarrow v_{\theta}$ solves $\begin{array}{r}(*) \left\lvert\, \alpha_{\theta} \frac{\partial}{\partial x}\left(\alpha_{\theta} \frac{\partial v_{\theta}}{\partial x}\right)+\frac{\partial^{2} v_{\theta}}{\partial y^{2}}+\begin{array}{r}k^{2} v_{\theta}= \\ \partial_{n} v_{\theta}=-\partial_{n} v_{i}\end{array} \quad\right. \text { on } \partial \Omega .\end{array}$

- Numerically we solve $(*)$ in the truncated domain

\Rightarrow We obtain a good approximation of v_{s} for $|x|<L$.
- This is the method of Perfectly Matched Layers (PMLs), Berenger 94.

Spectral analysis

- Define the operators A, A_{θ} of $\mathrm{L}^{2}(\Omega)$ such that

$$
A v=-\Delta v, \quad A_{\theta} v=-\left(\alpha_{\theta} \frac{\partial}{\partial x}\left(\alpha_{\theta} \frac{\partial v}{\partial x}\right)+\frac{\partial^{2} v}{\partial y^{2}}\right) \quad+\partial_{n} v=0 \text { on } \partial \Omega .
$$

- A is selfadjoint and positive.
- $\sigma(A)=\sigma_{\text {ess }}(A)=[0 ;+\infty)$.
- $\sigma(A)$ may contain embedded eigenvalues in the essential spectrum.
- ess. spectrum
- embedded eig.

- A_{θ} is not selfadjoint. $\sigma\left(A_{\theta}\right) \subset\left\{\rho e^{i \gamma}, \rho \geq 0, \gamma \in[-2 \theta ; 0]\right\}$.
- $\sigma_{\text {ess }}\left(A_{\theta}\right)=\cup_{n \in \mathbb{N}}\left\{n^{2} \pi^{2}+t e^{-2 i \theta}, t \geq 0\right\}$.
- real eigenvalues of $A_{\theta}=$ real eigenvalues of A.
- ess. spectrum
- embedded eig.
- complex res.

Numerical results

- We work in the geometry

Numerical results

- Discretized spectrum of A_{θ} in k (not in k^{2}). We take $\theta=\pi / 4$.

Numerical results

- Discretized spectrum of A_{θ} in k (not in k^{2}). We take $\theta=\pi / 4$.

A new complex spectrum for non reflecting v

- Usual complex scaling selects scattered fields which are

$$
\text { outgoing at }-\infty \quad \text { and } \quad \text { outgoing at }+\infty
$$

Important remark: general v decompose as

$$
v=v_{i}+\sum_{n=0}^{N-1} \gamma_{n}^{-} w_{n}^{-}+\sum_{n=N}^{+\infty} \gamma_{n}^{-} w_{n}^{-} \quad x \leq-L, \quad v=\sum_{n=0}^{+\infty} \gamma_{n}^{+} w_{n}^{+} \quad x \geq L
$$

A new complex spectrum for non reflecting v

- Usual complex scaling selects scattered fields which are

$$
\text { outgoing at }-\infty \quad \text { and } \quad \text { outgoing at }+\infty
$$

Important remark: non reflecting v decompose as

$$
v=v_{i}+\sum_{=0}^{1} w_{n}^{-}+\sum_{n=N}^{+\infty} \gamma_{n}^{-} w_{n}^{-} \quad x \leq-L, \quad v=\sum_{n=0}^{+\infty} \gamma_{n}^{+} w_{n}^{+} \quad x \geq L
$$

A new complex spectrum for non reflecting v

- Usual complex scaling selects scattered fields which are

$$
\text { outgoing at }-\infty \quad \text { and } \quad \text { outgoing at }+\infty
$$

Important remark: non reflecting v decompose as

$$
v=\sum_{n=0}^{N-1} \alpha_{n} w_{n}^{+}+\sum_{n=N}^{+\infty} \gamma_{n}^{-} w_{n}^{-} \quad x \leq-L, \quad v=\sum_{n=0}^{+\infty} \gamma_{n}^{+} w_{n}^{+} \quad x \geq L .
$$

- In other words, non reflecting v are

$$
\text { ingoing at }-\infty \quad \text { and } \quad \text { outgoing at }+\infty \text {. }
$$

A new complex spectrum for non reflecting v

- Usual complex scaling selects scattered fields which are

$$
\text { outgoing at }-\infty \quad \text { and } \quad \text { outgoing at }+\infty
$$

Important remark: non reflecting v decompose as

$$
v=\sum_{n=0}^{N-1} \alpha_{n} w_{n}^{+}+\sum_{n=N}^{+\infty} \gamma_{n}^{-} w_{n}^{-} \quad x \leq-L, \quad v=\sum_{n=0}^{+\infty} \gamma_{n}^{+} w_{n}^{+} \quad x \geq L .
$$

- In other words, non reflecting v are

$$
\text { ingoing at }-\infty \text { and outgoing at }+\infty \text {. }
$$

Let us change the sign of the complex scaling at $-\infty$!

A new complex spectrum for non reflecting v

- For $\theta \in(0 ; \pi / 2)$, consider the complex change of variables

$$
\mathcal{J}_{\theta}(x)=\left\lvert\, \begin{array}{cl}
-L+(x+L) e^{-i \theta} & \text { for } x \leq-L \\
x & \text { for }|x|<L \\
+L+(x-L) e^{+i \theta} & \text { for } x \geq L
\end{array}\right.
$$

A new complex spectrum for non reflecting v

- For $\theta \in(0 ; \pi / 2)$, consider the complex change of variables

$$
\mathcal{J}_{\theta}(x)=\left\lvert\, \begin{array}{cl}
-L+(x+L) e^{-i \theta} & \text { for } x \leq-L \\
x & \text { for }|x|<L \\
+L+(x-L) e^{+i \theta} & \text { for } x \geq L
\end{array}\right.
$$

- Set $u_{\theta}:=v \circ\left(\mathcal{J}_{\theta}(x), y\right)$.

1) $u_{\theta}=v$ for $|x|<L$.
2) u_{θ} is exp. decaying at infinity.

A new complex spectrum for non reflecting v

- For $\theta \in(0 ; \pi / 2)$, consider the complex change of variables

$$
\mathcal{J}_{\theta}(x)=\left\lvert\, \begin{array}{cl}
-L+(x+L) e^{-i \theta} & \text { for } x \leq-L \\
x & \text { for }|x|<L \\
+L+(x-L) e^{+i \theta} & \text { for } x \geq L
\end{array}\right.
$$

- Set $u_{\theta}:=v \circ\left(\mathcal{J}_{\theta}(x), y\right)$.

1) $u_{\theta}=v$ for $|x|<L$.
2) u_{θ} is exp. decaying at infinity.

Modal exponents for $v(x \leq-L)$

$\rightarrow u_{\theta}$ solves $(*) \beta_{\theta} \frac{\partial}{\partial x}\left(\beta_{\theta} \frac{\partial u_{\theta}}{\partial x}\right)+\frac{\partial^{2} u_{\theta}}{\partial y^{2}}+k^{2} u_{\theta}=0 \quad$ in $\Omega, \begin{aligned} \partial_{n} u_{\theta}=0 & \text { on } \partial \Omega .\end{aligned}$

A new complex spectrum for non reflecting v

- For $\theta \in(0 ; \pi / 2)$, consider the complex change of variables

$$
\mathcal{J}_{\theta}(x)=\left\lvert\, \begin{array}{cl}
-L+(x+L) e^{-i \theta} & \text { for } x \leq-L \\
x & \text { for }|x|<L \\
+L+(x-L) e^{+i \theta} & \text { for } x \geq L
\end{array}\right.
$$

- Set $u_{\theta}:=v \circ\left(\mathcal{J}_{\theta}(x), y\right)$.

1) $u_{\theta}=v$ for $|x|<L$.
2) u_{θ} is exp. decaying at infinity.

Modal exponents for $v(x \leq-L)$

Modal exponents for $u_{\theta}(x \leq-L)$

$$
u_{\theta} \text { solves }(*) \quad \beta_{\theta} \frac{\partial}{\partial x}\left(\beta_{\theta} \frac{\partial u_{\theta}}{\partial x}\right)+\frac{\partial^{2} u_{\theta}}{\partial y^{2}}+k^{2} u_{\theta}=0 \quad \begin{array}{ll}
& \text { in } \Omega \\
\partial_{n} u_{\theta} & =0
\end{array} \quad \begin{aligned}
\text { on } \partial \Omega .
\end{aligned}
$$

$$
\beta_{\theta}(x)=1 \text { for }|x|<L, \quad \beta_{\theta}(x)=e^{i \theta} \text { for } x \leq-L, \quad \beta_{\theta}(x)=e^{-i \theta} \text { for } x \geq L
$$

Spectral analysis

- Define the operator B_{θ} of $\mathrm{L}^{2}(\Omega)$ such that

$$
B_{\theta} v=-\left(\beta_{\theta} \frac{\partial}{\partial x}\left(\beta_{\theta} \frac{\partial v}{\partial x}\right)+\frac{\partial^{2} v}{\partial y^{2}}\right) \quad+\partial_{n} v=0 \text { on } \partial \Omega .
$$

- B_{θ} is not selfadjoint. $\sigma\left(B_{\theta}\right) \subset\left\{\rho e^{i \gamma}, \rho \geq 0, \gamma \in[-2 \theta ; 2 \theta]\right\}$.
- $\sigma_{\text {ess }}\left(B_{\theta}\right)=\cup_{n \in \mathbb{N}}\left\{n^{2} \pi^{2}+t e^{-2 i \theta}, t \geq 0\right\} \cup\left\{n^{2} \pi^{2}+t e^{2 i \theta}, t \geq 0\right\}$.
- real eigenvalues of $B_{\theta}=$ real eigenvalues of $A+$ non reflecting k^{2}.
- essential spectrum
- embedded eig.
- non reflecting eig.
- ? eig.

Remarks

- essential spectrum
- embedded eig.
- non reflecting eig.
- ? eig.

1) • ? eig. correspond to solutions of the Helmholtz equation which are exp. growing at one side of Ω, exp. decaying at the other.

Different from complex resonances for which the eigenfunctions are exp. growing both at $\pm \infty \ldots$
2) It is not simple to prove that $\sigma\left(B_{\theta}\right) \backslash \sigma_{\mathrm{ess}}\left(B_{\theta}\right)$ is discrete.

Remarks

- essential spectrum
- embedded eig.
- non reflecting eig.
- ? eig.

1) • ? eig. correspond to solutions of the Helmholtz equation which are exp. growing at one side of Ω, exp. decaying at the other.

Different from complex resonances for which the eigenfunctions are exp. growing both at $\pm \infty \ldots$
2) It is not simple to prove that $\sigma\left(B_{\theta}\right) \backslash \sigma_{\text {ess }}\left(B_{\theta}\right)$ is discrete.

\rightarrow Not true in general!

$e^{i k x} \circ \mathcal{J}_{\theta}$ is an eigenfunction for all $k \in \mathscr{R}$.

Remarks

- essential spectrum
- embedded eig.
- non reflecting eig.
- ? eig.

1) • ? eig. correspond to solutions of the Helmholtz equation which are exp. growing at one side of Ω, exp. decaying at the other.

Different from complex resonances for which the eigenfunctions are exp. growing both at $\pm \infty$...
2) It is not simple to prove that $\sigma\left(B_{\theta}\right) \backslash \sigma_{\text {ess }}\left(B_{\theta}\right)$ is discrete.

\rightarrow Not true in general!

$e^{i k x} \circ \mathcal{J}_{\theta}$ is an eigenfunction for all $k \in \mathscr{R}$.

Remarks

- essential spectrum
- embedded eig.
- non reflecting eig.
- ? eig.

1) • ? eig. correspond to solutions of the Helmholtz equation which are exp. growing at one side of Ω, exp. decaying at the other.

Different from complex resonances for which the eigenfunctions are exp. growing both at $\pm \infty$...
2) It is not simple to prove that $\sigma\left(B_{\theta}\right) \backslash \sigma_{\text {ess }}\left(B_{\theta}\right)$ is discrete.

\rightarrow Not true in general!

$e^{i k x} \circ \mathcal{J}_{\theta}$ is an eigenfunction for all $k \in \mathscr{R}$.
$\rightarrow \mathbb{C} \backslash \sigma_{\text {ess }}\left(B_{\theta}\right)$ is not connected \Rightarrow we cannot apply simply the analytic Fredholm thm.

Remarks

$\Im m \lambda \uparrow$

Remarks

- essential spectrum
- embedded eig.
- non reflecting eig.
- ? eig.

1) • ? eig. correspond to solutions of the Helmholtz equation which are exp. growing at one side of Ω, exp. decaying at the other.

Different from complex resonances for which the eigenfunctions are exp. growing both at $\pm \infty$...
2) It is not simple to prove that $\sigma\left(B_{\theta}\right) \backslash \sigma_{\text {ess }}\left(B_{\theta}\right)$ is discrete.

\rightarrow Not true in general!

$e^{i k x} \circ \mathcal{J}_{\theta}$ is an eigenfunction for all $k \in \mathscr{R}$.
$\rightarrow \mathbb{C} \backslash \sigma_{\text {ess }}\left(B_{\theta}\right)$ is not connected \Rightarrow we cannot apply simply the analytic Fredholm thm.

Remarks

- essential spectrum
- embedded eig.
- non reflecting eig.
- ? eig.

1) • ? eig. correspond to solutions of the Helmholtz equation which are exp. growing at one side of Ω, exp. decaying at the other.

Different from complex resonances for which the eigenfunctions are exp. growing both at $\pm \infty$...
2) It is not simple to prove that $\sigma\left(B_{\theta}\right) \backslash \sigma_{\text {ess }}\left(B_{\theta}\right)$ is discrete.

\rightarrow Not true in general!
 $e^{i k x} \circ \mathcal{J}_{\theta}$ is an eigenfunction for all $k \in \mathscr{R}$.
$\rightarrow \mathbb{C} \backslash \sigma_{\text {ess }}\left(B_{\theta}\right)$ is not connected \Rightarrow we cannot apply simply the analytic Fredholm thm.
\rightarrow A compact perturbation can change drastically the $\operatorname{spectrum}$ (B_{θ} is not selfadjoint). Numerical consequences?

Numerical results

- Again we work in the geometry

- Define the operators \mathcal{P} (Parity), \mathcal{T} (Time reversal) such that

$$
\mathcal{P} v(x, y)=v(-x, y) \quad \text { and } \quad \mathcal{T} v(x, y)=\overline{v(x, y)} .
$$

Prop.: For symmetric $\Omega=\{(-x, y) \mid(x, y) \in \Omega\}, B_{\theta}$ is $\mathcal{P} \mathcal{T}$ symmetric:

$$
\mathcal{P T} B_{\theta} \mathcal{P} \mathcal{T}=B_{\theta} .
$$

As a consequence, $\sigma\left(B_{\theta}\right)=\overline{\sigma\left(B_{\theta}\right)}$.
\Rightarrow If λ is an "isolated" eigenvalue located close to the real axis, then $\lambda \in \mathbb{R}$!

Numerical results

- Discretized spectrum in k (not in k^{2}). We take $\theta=\pi / 4$.

Numerical results

- Discretized spectrum in k (not in k^{2}). We take $\theta=\pi / 4$.

Numerical results

- Discretized spectrum in k (not in k^{2}). We take $\theta=\pi / 4$.

Numerical results

- We display the eigenmodes for the ten first real eigenvalues in the whole computational domain (including PMLs).

Numerical results

- Let us focus on the eigenmodes such that $0<k<\pi$.

First trapped mode

$$
k=1.2355 \ldots
$$

Second trapped mode

$$
k=2.3897 \ldots
$$

Second non reflecting mode $k=2.8896 \ldots$

Numerical results

- To check our results, we compute $k \mapsto|R(k)|$ for $0<k<\pi$.

First non reflecting mode

$$
k=1.4513 \ldots
$$

Second non reflecting mode $k=2.8896 \ldots$

Numerical results

- To check our results, we compute $k \mapsto|R(k)|$ for $0<k<\pi$.

First non reflecting mode

$$
k=1.4513 \ldots \quad k=2.8896 \ldots
$$

Second non reflecting mode

There is perfect agreement!

Numerical results

- Now the geometry is not symmetric in x nor in y :

- The operator B_{θ} is no longer $\mathcal{P} \mathcal{T}$-symmetric and we expect:
- No trapped modes
- No invariance of the spectrum by complex conjugation.

Numerical results

- Discretized spectrum of B_{θ} in k (not in k^{2}). We take $\theta=\pi / 4$.

- Indeed, the spectrum is not symmetric w.r.t. the real axis.

Numerical results

- We compute $k \mapsto|R(k)|$ for $0<k<\pi$.

$k=1.28+0.0003 i$

$k=2.3866+0.0005 i$

$k=2.8647+0.0243 i$

Numerical results

- We compute $k \mapsto|R(k)|$ for $0<k<\pi$.

$k=1.28+0.0003 i$

$k=2.3866+0.0005 i$
$k=2.8647+0.0243 i$

Complex eigenvalues also contain information on almost no reflection.

Outline of the talk

We present two different points of view on these questions of invisibility:
(1) Cloaking of obstacles
\square thin resonant ligaments to get $T \approx 1$.
(2) A spectral approach to determine non reflecting wavenumbers

```
Spectral THEORY:
\Omega}\mathrm{ is given, we explain how to find non reflecting k by solving an
unusual spectral problem.
```


Conclusion

Part I

© Method to cloak any object in monomode regime using thin resonators. Two main ingredients:

- Around resonant lengths, effects of order ε^{0} with perturb. of width ε.
- Explicit dependence wrt to the geometry in the 1D limit resonator.

1) We can similarly hide penetrable obstacles or work in 3 D .
2) We can do cloaking at a finite number of wavenumbers (thin structures are resonant at one wavenumber otherwise act at order ε).
3) With Dirichlet BCs, other ideas must be found.

Part II

中 Spectral approach to compute non reflecting $k(R=0)$ for a given Ω.

1) Can we find a spectral approach to compute completely reflecting or completely invisible k ?
2) Can we prove existence of non reflecting k for the $\mathcal{\mathcal { T }} \mathcal{T}$-symmetric pb ?

Thank you for your attention!

L. Chesnel, J. Heleine and S.A. Nazarov. Acoustic passive cloaking using thin outer resonators. ZAMP, vol. 73, 98, 2022.
A.-S. Bonnet-Ben Dhia, L. Chesnel, V. Pagneux. Trapped modes and reflectionless modes as eigenfunctions of the same spectral problem. PRSA, vol. 474, 2018.H. Hernandez-Coronado, D. Krejčirík, P. Siegl. Perfect transmission scattering as a PT-symmetric spectral problem. Phys. Lett. A, 375(22):2149-2152, 2011.
W.R. Sweeney, C.W. Hsu, A.D. Stone. Theory of reflectionless scattering modes. Phys. Rev. A, vol. 102, 6:063511, 2020.

