Thematic day PLASMON 2023

An introduction to transmission problems in presence of negative materials

Lucas Chesnel¹

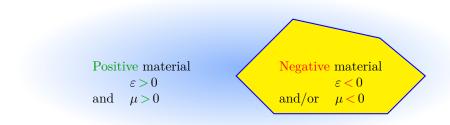
Coll. with A.-S. Bonnet-Ben Dhia², P. Ciarlet² and X. Claeys³.

¹Idefix team, Inria/Ensta Paris, France
 ²Poems team, Ensta, France
 ³LJLL, Université Pierre et Marie Curie, France

Marseille, 5/12/2023

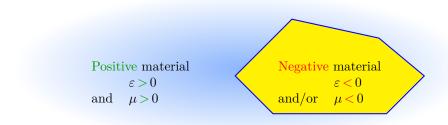
Scattering by a negative material in electromagnetism in time-harmonic regime (at a given frequency):

Scattering by a negative material in electromagnetism in time-harmonic regime (at a given frequency):



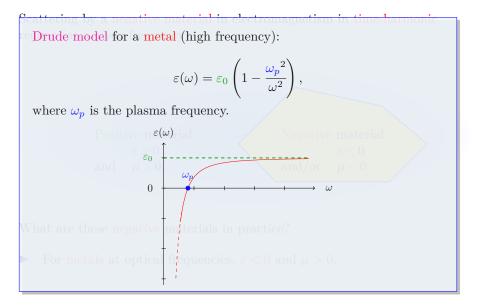
What are these negative materials in practice?

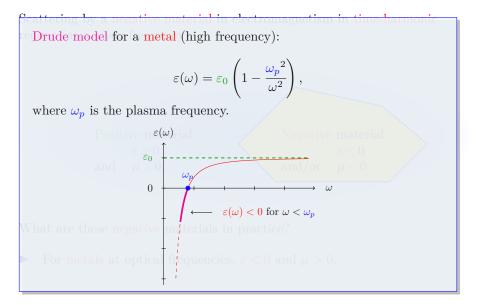
Scattering by a negative material in electromagnetism in time-harmonic regime (at a given frequency):



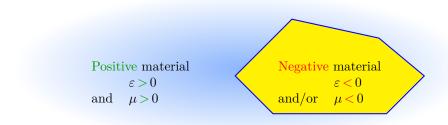
What are these negative materials in practice?

For metals at optical frequencies, $\varepsilon < 0$ and $\mu > 0$.





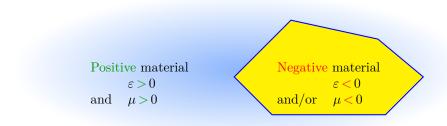
Scattering by a negative material in electromagnetism in time-harmonic regime (at a given frequency):



What are these negative materials in practice?

For metals at optical frequencies, $\varepsilon < 0$ and $\mu > 0$.

Scattering by a negative material in electromagnetism in time-harmonic regime (at a given frequency):

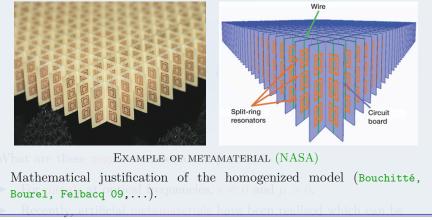


What are these negative materials in practice?

• For metals at optical frequencies, $\varepsilon < 0$ and $\mu > 0$.

▶ Recently, artificial metamaterials have been realized which can be modelled (at some frequency of interest) by $\varepsilon < 0$ and $\mu < 0$.

Zoom on a metamaterial: practical realizations of metamaterials are achieved by a periodic assembly of small resonators.



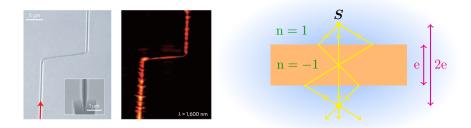
modelled (at some frequency of interest) by $\varepsilon < 0$ and $\mu < 0$.

Introduction: applications

▶ Surface Plasmons Polaritons that propagate at the interface between a metal and a dielectric can help reducing the size of computer chips.

Introduction: applications

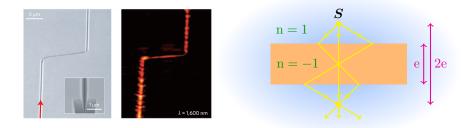
▶ Surface Plasmons Polaritons that propagate at the interface between a metal and a dielectric can help reducing the size of computer chips.



▶ The negative refraction at the interface metamaterial/dielectric could allow the realization of perfect lenses (Pendry 00), photonic traps...

Introduction: applications

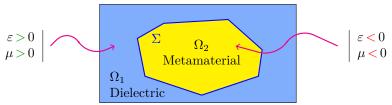
▶ Surface Plasmons Polaritons that propagate at the interface between a metal and a dielectric can help reducing the size of computer chips.



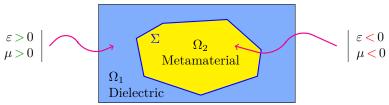
▶ The negative refraction at the interface metamaterial/dielectric could allow the realization of perfect lenses (Pendry 00), photonic traps...

Interfaces between negative materials and dielectrics occur in all (exciting) applications...

Problem set in a bounded domain Ω :

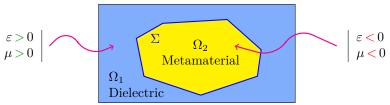


Problem set in a bounded domain Ω :



• Unusual transmission problem because the sign of the coefficients ε and μ changes through the interface Σ .

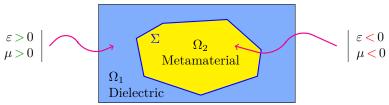
Problem set in a bounded domain Ω :



• Unusual transmission problem because the sign of the coefficients ε and μ changes through the interface Σ .

• Well-posedness is recovered by the presence of dissipation: $\Im m \varepsilon$, $\mu > 0$.

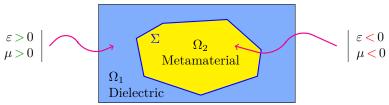
Problem set in a bounded domain Ω :



• Unusual transmission problem because the sign of the coefficients ε and μ changes through the interface Σ .

▶ Well-posedness is recovered by the presence of dissipation: $\Im m \varepsilon$, $\mu > 0$. But interesting phenomena occur for almost dissipationless materials.

Problem set in a **bounded** domain Ω :

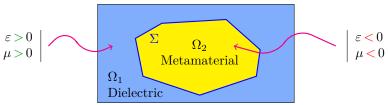


• Unusual transmission problem because the sign of the coefficients ε and μ changes through the interface Σ .

• Well-posedness is recovered by the presence of dissipation: $\Im m \varepsilon$, $\mu > 0$. But interesting phenomena occur for almost dissipationless materials.

The relevant question is then: what happens if dissipation is neglected?

Problem set in a **bounded** domain Ω :



• Unusual transmission problem because the sign of the coefficients ε and μ changes through the interface Σ .

• Well-posedness is recovered by the presence of dissipation: $\Im m \varepsilon$, $\mu > 0$. But interesting phenomena occur for almost dissipationless materials.

The relevant question is then: what happens if dissipation is neglected?

- Does well-posedness still hold?
- What is the appropriate functional framework?
- What about the convergence of approximation methods?

1 Scalar problem: variational techniques

We develop a **T-coercivity approach** based on geometrical transformations to study the operator $\operatorname{div}(\mu^{-1}\nabla \cdot) : \operatorname{H}_0^1(\Omega) \to \operatorname{H}^{-1}(\Omega)$.

1 Scalar problem: variational techniques

We develop a **T-coercivity approach** based on geometrical transformations to study the operator $\operatorname{div}(\mu^{-1}\nabla \cdot) : \operatorname{H}_0^1(\Omega) \to \operatorname{H}^{-1}(\Omega)$.

2 Scalar problem: a new functional framework in the critical interval

We propose a new functional framework for the scalar problem when $\operatorname{div}(\mu^{-1}\nabla \cdot) : \operatorname{H}_0^1(\Omega) \to \operatorname{H}^{-1}(\Omega)$ is not Fredholm.

1 Scalar problem: variational techniques

We develop a **T-coercivity approach** based on geometrical transformations to study the operator $\operatorname{div}(\mu^{-1}\nabla \cdot) : \operatorname{H}^{1}_{0}(\Omega) \to \operatorname{H}^{-1}(\Omega)$.

2 Scalar problem: a new functional framework in the critical interval

We propose a new functional framework for the scalar problem when $\operatorname{div}(\mu^{-1}\nabla \cdot) : \operatorname{H}_0^1(\Omega) \to \operatorname{H}^{-1}(\Omega)$ is not Fredholm.

3 Maxwell's equations

We develop a T-coercivity approach to study the Maxwell's operator $\operatorname{curl}(\mu^{-1}\operatorname{curl} \cdot) : \mathbf{X}_N(\varepsilon) \to \mathbf{X}_N(\varepsilon)^*$.

1 Scalar problem: variational techniques

We develop a **T-coercivity approach** based on geometrical transformations to study the operator $\operatorname{div}(\mu^{-1}\nabla \cdot) : \operatorname{H}_0^1(\Omega) \to \operatorname{H}^{-1}(\Omega)$.

2 Scalar problem: a new functional framework in the critical interval

We propose a new functional framework for the scalar problem when $\operatorname{div}(\mu^{-1}\nabla \cdot) : \operatorname{H}_0^1(\Omega) \to \operatorname{H}^{-1}(\Omega)$ is not Fredholm.

³ Maxwell's equations

We develop a T-coercivity approach to study the Maxwell's operator $\operatorname{curl}(\mu^{-1}\operatorname{curl}\cdot): \mathbf{X}_N(\varepsilon) \to \mathbf{X}_N(\varepsilon)^*$.

The Interior Transmission Eigenvalue Problem

We study the operator $\Delta(\sigma \Delta \cdot) : \mathrm{H}^2_0(\Omega) \to \mathrm{H}^{-2}(\Omega)$.

1 Scalar problem: variational techniques

2 Scalar problem: a new functional framework in the critical interval

3 Maxwell's equations

Interior Transmission Eigenvalue Problem

Problem for E_z in 2D in case of an invariance with respect to z:

 $\begin{vmatrix} \operatorname{Find} E_z \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ -\operatorname{div}(\mu^{-1} \nabla E_z) - \omega^2 \varepsilon E_z = f & \operatorname{in} \Omega. \end{vmatrix}$

Problem for E_z in 2D in case of an invariance with respect to z:

 $\begin{vmatrix} \operatorname{Find} E_z \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ -\operatorname{div}(\mu^{-1} \nabla E_z) - \omega^2 \varepsilon E_z = f \quad \text{ in } \Omega. \end{vmatrix}$

- $\mathrm{H}^1_0(\Omega) = \{ v \in \mathrm{L}^2(\Omega) \, | \, \nabla v \in \mathrm{L}^2(\Omega); \, v |_{\partial \Omega} = 0 \}$
- f is the source term in $\mathbf{H}^{-1}(\Omega)$

Problem for E_z in 2D in case of an invariance with respect to z:

Find $E_z \in \mathrm{H}^1_0(\Omega)$ such that: $-\mathrm{div}(\mu^{-1}\nabla E_z) - \omega^2 \varepsilon E_z = f$ in Ω .

- $\mathrm{H}^1_0(\Omega) = \{ v \in \mathrm{L}^2(\Omega) \, | \, \nabla v \in \mathrm{L}^2(\Omega); \, v |_{\partial \Omega} = 0 \}$
- f is the source term in $\mathbf{H}^{-1}(\Omega)$

Since $H_0^1(\Omega) \subset L^2(\Omega)$, we focus on the principal part.

 $(\mathscr{P}) \mid \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{s.t.:} \\ -\mathrm{div}(\sigma \nabla u) = f \ \mathrm{in} \ \Omega. \end{array}$

Problem for E_z in 2D in case of an invariance with respect to z:

Find $E_z \in \mathrm{H}^1_0(\Omega)$ such that: $-\mathrm{div}(\mu^{-1} \nabla E_z) - \omega^2 \varepsilon E_z = f$ in Ω .

- $\mathbf{H}_0^1(\Omega) = \{ v \in \mathbf{L}^2(\Omega) \, | \, \nabla v \in \mathbf{L}^2(\Omega); \, v |_{\partial \Omega} = 0 \}$
- f is the source term in $\mathrm{H}^{-1}(\Omega)$

Since $H_0^1(\Omega) \subset L^2(\Omega)$, we focus on the principal part.

 $(\mathscr{P}) \ \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{s.t.:} \\ -\mathrm{div}(\sigma \nabla u) = f \ \mathrm{in} \ \Omega. \end{array} \right.$

Problem for E_z in 2D in case of an invariance with respect to z:

Find $E_z \in \mathrm{H}^1_0(\Omega)$ such that: $-\mathrm{div}(\mu^{-1} \nabla E_z) - \omega^2 \varepsilon E_z = f$ in Ω .

•
$$\mathrm{H}_{0}^{1}(\Omega) = \{ v \in \mathrm{L}^{2}(\Omega) \mid \nabla v \in \mathrm{L}^{2}(\Omega); v \mid_{\partial \Omega} = 0 \}$$

• f is the source term in $\mathrm{H}^{-1}(\Omega)$

$$\begin{array}{c} \Sigma\\ \Omega_{1}\\ \sigma_{1} = \sigma|_{\Omega_{1}} > 0\\ \sigma_{2} = \sigma|_{\Omega_{2}} < 0\\ (\text{constant}) \end{array}$$

Since $H_0^1(\Omega) \subset L^2(\Omega)$, we focus on the principal part.

 $(\mathscr{P}) \ \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{s.t.:} \\ -\mathrm{div}(\sigma \nabla u) = f \ \mathrm{in} \ \Omega. \end{array} \right.$

Problem for E_z in 2D in case of an invariance with respect to z:

 $\begin{vmatrix} \operatorname{Find} E_z \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ -\operatorname{div}(\mu^{-1} \nabla E_z) - \omega^2 \varepsilon E_z = f & \operatorname{in} \Omega. \end{vmatrix}$

•
$$\mathrm{H}^1_0(\Omega) = \{ v \in \mathrm{L}^2(\Omega) \, | \, \nabla v \in \mathrm{L}^2(\Omega); \, v |_{\partial \Omega} = 0 \}$$

• f is the source term in $H^{-1}(\Omega)$

$$\begin{array}{c} \Sigma\\ \Omega_{1}\\ \\ \sigma_{1} = \sigma|_{\Omega_{1}} > 0\\ \\ \sigma_{2} = \sigma|_{\Omega_{2}} < 0\\ (\text{constant}) \end{array}$$

Since $H_0^1(\Omega) \subset L^2(\Omega)$, we focus on the principal part.

$$\begin{aligned} (\mathscr{P}) & \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}_{0}^{1}(\Omega) \text{ s.t.:} \\ -\operatorname{div}(\sigma \nabla u) = f \text{ in } \Omega. \end{array} \right| \Leftrightarrow \quad \left(\mathscr{P}_{V} \right) \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}_{0}^{1}(\Omega) \text{ s.t.:} \\ a(u,v) = \ell(v), \, \forall v \in \mathrm{H}_{0}^{1}(\Omega). \end{array} \right. \end{aligned} \\ \text{with } a(u,v) = \int_{\Omega} \sigma \nabla u \cdot \nabla v \quad \text{and} \quad \ell(v) = \langle f, v \rangle_{\Omega}. \end{aligned}$$

Problem for E_z in 2D in case of an invariance with respect to z:

Find $E_z \in \mathrm{H}^1_0(\Omega)$ such that: $-\mathrm{div}(\mu^{-1} \nabla E_z) - \omega^2 \varepsilon E_z = f$ in Ω .

•
$$\mathrm{H}^{1}_{0}(\Omega) = \{ v \in \mathrm{L}^{2}(\Omega) \, | \, \nabla v \in \mathrm{L}^{2}(\Omega); \, v |_{\partial \Omega} = 0 \}$$

• f is the source term in $H^{-1}(\Omega)$

$$\begin{array}{c} \Sigma\\ \Omega_{1}\\ \\ \sigma_{1} = \sigma|_{\Omega_{1}} > 0\\ \\ \sigma_{2} = \sigma|_{\Omega_{2}} < 0\\ (\text{constant}) \end{array}$$

Since $H_0^1(\Omega) \subset L^2(\Omega)$, we focus on the principal part.

$$\begin{aligned} (\mathscr{P}) & \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}_{0}^{1}(\Omega) \text{ s.t.:} \\ -\operatorname{div}(\sigma \nabla u) = f \text{ in } \Omega. \end{array} \right| \Leftrightarrow \quad \left(\mathscr{P}_{V} \right) \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}_{0}^{1}(\Omega) \text{ s.t.:} \\ a(u,v) = \ell(v), \, \forall v \in \mathrm{H}_{0}^{1}(\Omega). \end{array} \right. \end{aligned} \\ \text{with } a(u,v) = \int_{\Omega} \sigma \nabla u \cdot \nabla v \quad \text{and} \quad \ell(v) = \langle f, v \rangle_{\Omega}. \end{aligned}$$

DEFINITION. We will say that the problem (\mathscr{P}) is well-posed if the operator $\operatorname{div}(\sigma\nabla \cdot)$ is an isomorphism from $\operatorname{H}^{1}_{0}(\Omega)$ to $\operatorname{H}^{-1}(\Omega)$.

Mathematical difficulty

• Classical case $\sigma > 0$ everywhere:

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \ge \min(\sigma) \|u\|^2_{\mathrm{H}^1_0(\Omega)}$$
 coercivity

Lax-Milgram theorem \Rightarrow (\mathscr{P}) well-posed.

Mathematical difficulty

• Classical case $\sigma > 0$ everywhere:

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \ge \min(\sigma) \|u\|_{\mathrm{H}^1_0(\Omega)}^2$$
 coercivity

----- VS. -----

Lax-Milgram theorem \Rightarrow (\mathscr{P}) well-posed.

• The case σ changes sign:

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \ge C \, \|u\|_{\mathrm{H}^1_0(\Omega)}^2 \qquad \text{loss of coercivity}$$

Mathematical difficulty

• Classical case $\sigma > 0$ everywhere:

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \ge \min(\sigma) \|u\|_{\mathrm{H}^1_0(\Omega)}^2$$
 coercivity

----- VS -----

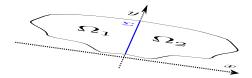
Lax-Milgram theorem \Rightarrow (\mathscr{P}) well-posed.

• The case σ changes sign:

▶ When $\sigma_2 = -\sigma_1$, (\mathscr{P}) is always ill-posed (Costabel-Stephan 85). For a symmetric domain (w.r.t. Σ), we can build a kernel of infinite dimension.

The symmetric case with $\sigma_2 = -\sigma_1$

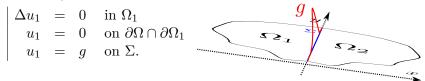
Consider the case where Ω is symmetric and $\sigma_2 = -\sigma_1$.



The symmetric case with $\sigma_2 = -\sigma_1$

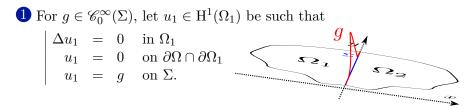
Consider the case where Ω is symmetric and $\sigma_2 = -\sigma_1$.

1 For $g \in \mathscr{C}_0^{\infty}(\Sigma)$, let $u_1 \in \mathrm{H}^1(\Omega_1)$ be such that



The symmetric case with $\sigma_2 = -\sigma_1$

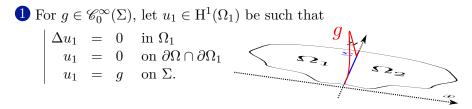
Consider the case where Ω is symmetric and $\sigma_2 = -\sigma_1$.



2 Define u_2 such that $u_2(x,y) = u_1(-x,y)$.

The symmetric case with $\sigma_2 = -\sigma_1$

Consider the case where Ω is symmetric and $\sigma_2 = -\sigma_1$.

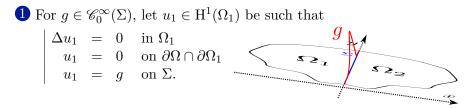


2 Define u_2 such that $u_2(x, y) = u_1(-x, y)$.

 \Rightarrow We have $\sigma_1 \partial_x u_1 = \sigma_2 \partial_x u_2$ on Σ .

The symmetric case with $\sigma_2 = -\sigma_1$

Consider the case where Ω is symmetric and $\sigma_2 = -\sigma_1$.



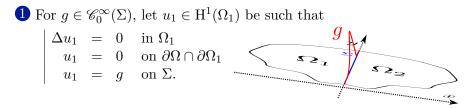
2 Define u_2 such that $u_2(x,y) = u_1(-x,y)$.

 $\Rightarrow \text{We have} \quad \sigma_1 \, \partial_x u_1 = \sigma_2 \, \partial_x u_2 \ \text{ on } \Sigma.$

3 The function $u \in H_0^1(\Omega)$ s.t. $u|_{\Omega_k} = u_k$ solves $\operatorname{div}(\sigma \nabla u) = 0$ in Ω .

The symmetric case with $\sigma_2 = -\sigma_1$

Consider the case where Ω is symmetric and $\sigma_2 = -\sigma_1$.



2 Define u_2 such that $u_2(x,y) = u_1(-x,y)$.

 $\Rightarrow \text{We have} \quad \sigma_1 \, \partial_x u_1 = \sigma_2 \, \partial_x u_2 \ \text{on} \ \Sigma.$

3 The function $u \in H_0^1(\Omega)$ s.t. $u|_{\Omega_k} = u_k$ solves $\operatorname{div}(\sigma \nabla u) = 0$ in Ω .

PROPOSITION. In the symmetric geometry, for $\sigma_2 = -\sigma_1$, (\mathscr{P}) has a kernel of infinite dimension.

Let **T** be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \middle| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ a(u,v) = l(v), \, \forall v \in \mathrm{H}^1_0(\Omega). \end{array}$$

Let T be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \operatorname{Find} u \in \mathrm{H}^1_0(\Omega) \text{ such that:} a(u, \mathsf{T}v) = l(\mathsf{T}v), \, \forall v \in \mathrm{H}^1_0(\Omega).$$

Let T be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \operatorname{Find} u \in \mathrm{H}^1_0(\Omega) \text{ such that:} a(u, \mathsf{T}v) = l(\mathsf{T}v), \forall v \in \mathrm{H}^1_0(\Omega).$$

Goal: Find **T** such that *a* is **T**-coercive: $\int_{\Omega} \sigma \nabla u \cdot \nabla(\mathbf{T}u) \geq C \|u\|_{\mathbf{H}_{0}^{1}(\Omega)}^{2}.$ In this case, Lax-Milgram $\Rightarrow (\mathscr{P}_{V}^{T})$ (and so (\mathscr{P}_{V})) is well-posed.

Let **T** be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ a(u, \mathsf{T}v) = l(\mathsf{T}v), \, \forall v \in \mathrm{H}^1_0(\Omega). \end{array}$$

Goal: Find T such that *a* is T-coercive: $\int_{\Omega} \sigma \, \nabla u \cdot \nabla(\mathsf{T} u) \geq C \, \|u\|_{\mathrm{H}^{1}_{0}(\Omega)}^{2}.$ In this case, Lax-Milgram $\Rightarrow (\mathscr{P}_{V}^{\mathrm{T}})$ (and so (\mathscr{P}_{V})) is well-posed.

1 Define
$$T_1 u = \begin{vmatrix} u & & \text{in } \Omega_1 \\ -u + \dots & & \text{in } \Omega_2 \end{vmatrix}$$

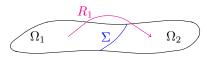
Let **T** be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ a(u, \mathsf{T}v) = l(\mathsf{T}v), \, \forall v \in \mathrm{H}^1_0(\Omega). \end{array}$$

Goal: Find T such that *a* is T-coercive: $\int_{\Omega} \sigma \nabla u \cdot \nabla(\mathsf{T} u) \geq C \|u\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2}.$ In this case, Lax-Milgram $\Rightarrow (\mathscr{P}_{V}^{\mathrm{T}})$ (and so (\mathscr{P}_{V})) is well-posed.

1 Define
$$T_1 u = \begin{vmatrix} u & \text{in } \Omega_1 \\ -u + 2R_1(u|_{\Omega_1}) & \text{in } \Omega_2 \end{vmatrix}$$
, with

 R_1 transfer/extension operator



Let **T** be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \operatorname{Find} u \in \mathrm{H}^1_0(\Omega) \text{ such that:} a(u, \mathsf{T}v) = l(\mathsf{T}v), \forall v \in \mathrm{H}^1_0(\Omega).$$

Goal: Find **T** such that *a* is **T**-coercive: $\int_{\Omega} \sigma \nabla u \cdot \nabla(\mathbf{T}u) \ge C \|u\|_{\mathbf{H}_{0}^{1}(\Omega)}^{2}.$ In this case, Lax-Milgram $\Rightarrow (\mathscr{P}_V^{\mathsf{T}})$ (and so (\mathscr{P}_V)) is well-posed.

1 Define $T_1 u = \begin{vmatrix} u & & \text{in } \Omega_1 \\ -u + 2R_1(u|_{\Omega_1}) & & \text{in } \Omega_2 \end{vmatrix}$, with

 R_1 transfer/extension operator continuous from Ω_1 to Ω_2

$$\begin{array}{c|c} R_1 \\ \hline \Omega_1 \\ \hline \Sigma \\ \hline \Omega_2 \end{array} \quad \begin{vmatrix} R_1(u|_{\Omega_1}) = u & \text{on } \Sigma \\ R_1(u|_{\Omega_1}) = 0 & \text{on } \partial\Omega_2 \setminus \Sigma \end{vmatrix}$$

Let T be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \operatorname{Find} u \in \mathrm{H}^1_0(\Omega) \text{ such that:} a(u, \mathsf{T}v) = l(\mathsf{T}v), \forall v \in \mathrm{H}^1_0(\Omega).$$

Goal: Find T such that *a* is T-coercive: $\int_{\Omega} \sigma \nabla u \cdot \nabla(\mathsf{T}u) \geq C \|u\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2}.$ In this case, Lax-Milgram $\Rightarrow (\mathscr{P}_{V}^{\mathrm{T}})$ (and so (\mathscr{P}_{V})) is well-posed.

1 Define
$$T_1 u = \begin{vmatrix} u & & \text{in } \Omega_1 \\ -u + 2R_1(u|_{\Omega_1}) & & \text{in } \Omega_2 \end{vmatrix}$$
, with

 R_1 transfer/extension operator continuous from Ω_1 to Ω_2

$$\begin{array}{c|c} R_1 \\ \hline \Omega_1 \\ \hline \Sigma \\ \hline \Omega_2 \\ \hline \end{array} \begin{array}{c} R_1(u|_{\Omega_1}) = u & \text{on } \Sigma \\ \hline R_1(u|_{\Omega_1}) = 0 & \text{on } \partial\Omega_2 \setminus \Sigma \end{array}$$

2 $T_1 \circ T_1 = Id$ which ensures that T_1 is an isomorphism of $H_0^1(\Omega)$

We find
$$a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| \, |\nabla u|^2 - 2 \int_{\Omega_2} \sigma_2 \, \nabla u \cdot \nabla (R_1(u|_{\Omega_1})) \, .$$

3 We find
$$a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla(R_1(u|_{\Omega_1}))$$

Young's inequality: $\forall \eta > 0$, we have

$$|2xy| \le \eta \, x^2 + \frac{y^2}{\eta}$$

$$\Rightarrow \left| \frac{2\int_{\Omega_2} \sigma_2 \, \nabla u \cdot \nabla (R_1(u|_{\Omega_1}))}{\eta} \right| \leq \eta \, |\sigma_2| \int_{\Omega_2} |\nabla u|^2 + \frac{\|R_1\|^2 \, |\sigma_2|}{\eta} \int_{\Omega_1} |\nabla u|^2$$

3 We find
$$a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla(R_1(u|_{\Omega_1}))$$

Young's inequality: $\forall \eta > 0$, we have

$$|2xy| \le \eta \, x^2 + \frac{y^2}{\eta}$$

$$\Rightarrow \left| 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla (R_1(u|_{\Omega_1})) \right| \le \eta |\sigma_2| \int_{\Omega_2} |\nabla u|^2 + \frac{\|R_1\|^2 |\sigma_2|}{\eta} \int_{\Omega_1} |\nabla u|^2$$

$$\Rightarrow |a(u, \mathsf{T}_1 u)| \ge |\sigma_2|(1-\eta) \int_{\Omega_2} |\nabla u|^2 + (\sigma_1 - \eta^{-1} ||R_1||^2 |\sigma_2|) \int_{\Omega_1} |\nabla u|^2$$

3 We find
$$a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla(R_1(u|_{\Omega_1}))$$

Young's inequality: $\forall \eta > 0$, we have

$$|2xy| \le \eta \, x^2 + \frac{y^2}{\eta}$$

$$\Rightarrow \left| 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla (R_1(u|_{\Omega_1})) \right| \le \eta |\sigma_2| \int_{\Omega_2} |\nabla u|^2 + \frac{\|R_1\|^2 |\sigma_2|}{\eta} \int_{\Omega_1} |\nabla u|^2$$
$$\Rightarrow |a(u, \mathsf{T}_1 u)| \ge |\sigma_2|(1-\eta)| \int_{\Omega_2} |\nabla u|^2 + \frac{|(\sigma_1 - \eta^{-1})||R_1||^2 |\sigma_2||}{\Omega_1} \int_{\Omega_1} |\nabla u|^2$$

Conclusion : *a* is **T-coercive** when $\sigma_1 > ||R_1||^2 |\sigma_2|$

3 We find
$$a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla (R_1(u|_{\Omega_1})).$$

Young's inequality: $\Rightarrow a$ is **T-coercive** when $\sigma_1 > ||R_1||^2 |\sigma_2|$.

3 We find
$$a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla (R_1(u|_{\Omega_1}))$$
.
Young's inequality: \Rightarrow *a* is **T-coercive** when $\sigma_1 > ||R_1||^2 |\sigma_2|$.

4 Working with
$$T_2 u = \begin{vmatrix} u - 2R_2(u|_{\Omega_2}) & \text{in } \Omega_1 \\ -u & \text{in } \Omega_2 \end{vmatrix}$$
, where $R_2 : \Omega_2 \to \Omega_1$, one proves that a is **T-coercive** when $|\sigma_2| > ||R_2||^2 \sigma_1$.

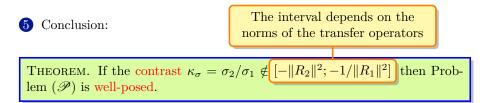
3 We find
$$a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla (R_1(u|_{\Omega_1}))$$
.
Young's inequality: \Rightarrow *a* is **T-coercive** when $\sigma_1 > ||R_1||^2 |\sigma_2|$.

4 Working with
$$T_2 u = \begin{vmatrix} u - 2R_2(u|_{\Omega_2}) & \text{in } \Omega_1 \\ -u & \text{in } \Omega_2 \end{vmatrix}$$
, where $R_2 : \Omega_2 \to \Omega_1$, one proves that a is **T-coercive** when $|\sigma_2| > ||R_2||^2 \sigma_1$.

THEOREM. If the contrast $\kappa_{\sigma} = \sigma_2/\sigma_1 \notin [-\|R_2\|^2; -1/\|R_1\|^2]$, then Problem (\mathscr{P}) is well-posed.

3 We find
$$a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla (R_1(u|_{\Omega_1}))$$
.
Young's inequality: \Rightarrow *a* is **T-coercive** when $\sigma_1 > ||R_1||^2 |\sigma_2|$.

4 Working with
$$T_2 u = \begin{vmatrix} u - 2R_2(u|_{\Omega_2}) & \text{in } \Omega_1 \\ -u & \text{in } \Omega_2 \end{vmatrix}$$
, where $R_2 : \Omega_2 \to \Omega_1$, one proves that a is **T-coercive** when $|\sigma_2| > ||R_2||^2 \sigma_1$.



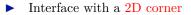
► A simple case: the symmetric domain

• A simple case: the symmetric domain

 $\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{One checks that } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed} \Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$

A simple case: the symmetric domain

 $\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{One checks that } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed} \Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$



A simple case: the symmetric domain

 $\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{One checks that } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed} \Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$

• Interface with a 2D corner

Action of R_1 :

A simple case: the symmetric domain

 $\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{One checks that } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed} \Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$

• Interface with a 2D corner

Action of R_1 :

A simple case: the symmetric domain

 $\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{One checks that } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed} \Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$

▶ Interface with a 2D corner

Action of R_1 : symmetry

A simple case: the symmetric domain

 $\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{One checks that } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed} \Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$

• Interface with a 2D corner

Action of R_1 : symmetry + dilatation in θ

A simple case: the symmetric domain

 $\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{One checks that } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed} \Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$

• Interface with a 2D corner

Action of R_1 : symmetry + dilatation in θ $\|R_1\|^2 = \mathcal{R}_{\gamma} := (2\pi - \gamma)/\gamma$

A simple case: the symmetric domain

 $\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{One checks that } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed} \Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$

• Interface with a 2D corner

Action of R_1 : symmetry + dilatation in θ Action of R_2 : symmetry + contraction in θ $||R_1||^2 = ||R_2||^2 = \mathcal{R}_{\gamma} := (2\pi - \gamma)/\gamma$

A simple case: the symmetric domain

 $\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{One checks that } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed} \Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$

• Interface with a 2D corner

Action of R_1 : symmetry + dilatation in θ Action of R_2 : symmetry + contraction in θ $\|R_1\|^2 = \|R_2\|^2 = \mathcal{R}_{\gamma} := (2\pi - \gamma)/\gamma$ (\mathscr{P}) well-posedness $\Leftarrow \kappa_{\sigma} \notin [-\mathcal{R}_{\gamma}; -1/\mathcal{R}_{\gamma}]$

A simple case: the symmetric domain

 $\begin{aligned} R_1 &= R_2 = S_{\Sigma} \\ \text{One checks that } \|R_1\| &= \|R_2\| = 1 \\ (\mathscr{P}) \text{ well-posed} \Leftrightarrow \kappa_{\sigma} \neq -1 \end{aligned}$

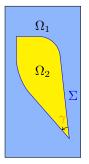
• Interface with a 2D corner

Action of R_1 : symmetry + dilatation in θ Action of R_2 : symmetry + contraction in θ $\|R_1\|^2 = \|R_2\|^2 = \mathcal{R}_{\gamma} := (2\pi - \gamma)/\gamma$ (\mathscr{P}) well-posedness $\Leftrightarrow \kappa_{\sigma} \notin [-\mathcal{R}_{\gamma}; -1/\mathcal{R}_{\gamma}]$

Idea: work by localisation

▶ With Riesz, define the operator $A : H_0^1(\Omega) \to H_0^1(\Omega)$ such that

$$(Au, v)_{\mathrm{H}^{1}_{0}(\Omega)} = \int_{\Omega} \sigma \nabla u \cdot \nabla v, \qquad \forall u, v \in \mathrm{H}^{1}_{0}(\Omega).$$



Idea: work by localisation

▶ With Riesz, define the operator $A : H_0^1(\Omega) \to H_0^1(\Omega)$ such that

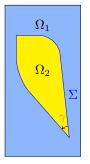
$$(Au, v)_{\mathrm{H}^{1}_{0}(\Omega)} = \int_{\Omega} \sigma \nabla u \cdot \nabla v, \qquad \forall u, v \in \mathrm{H}^{1}_{0}(\Omega).$$

Partition of unity.

Idea: work by localisation

• With Riesz, define the operator $A: \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{1}_{0}(\Omega)$ such that

$$(Au, v)_{\mathrm{H}^{1}_{0}(\Omega)} = \int_{\Omega} \sigma \nabla u \cdot \nabla v, \qquad \forall u, v \in \mathrm{H}^{1}_{0}(\Omega).$$

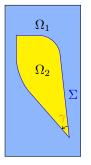


- Partition of unity.
- One constructs an isomorphism T by using the local operators.

Idea: work by localisation

• With Riesz, define the operator $A: \mathrm{H}^1_0(\Omega) \to \mathrm{H}^1_0(\Omega)$ such that

$$(Au, v)_{\mathrm{H}^{1}_{0}(\Omega)} = \int_{\Omega} \sigma \nabla u \cdot \nabla v, \qquad \forall u, v \in \mathrm{H}^{1}_{0}(\Omega).$$



Partition of unity.

One constructs an isomorphism T by using the local operators.

③ One shows the identity

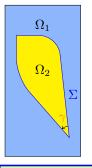
$$A\circ \mathbf{T}=I+K$$

where I is an isomorphism, K is compact, when the contrast and the geometry are such that one has local invertibility.

Idea: work by localisation

• With Riesz, define the operator $A: \mathrm{H}^1_0(\Omega) \to \mathrm{H}^1_0(\Omega)$ such that

$$(Au, v)_{\mathrm{H}^{1}_{0}(\Omega)} = \int_{\Omega} \sigma \nabla u \cdot \nabla v, \qquad \forall u, v \in \mathrm{H}^{1}_{0}(\Omega).$$



- Partition of unity.
- One constructs an isomorphism T by using the local operators.

③ One shows the identity

$$A\circ \mathbf{T}=I+K$$

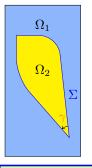
where I is an isomorphism, K is compact, when the contrast and the geometry are such that one has local invertibility.

PROPOSITION. For a curvilinear polygonal interface, (\mathscr{P}) is well-posed in the Fredholm sense when $\kappa_{\sigma} \notin [-\mathcal{R}_{\gamma}; -1/\mathcal{R}_{\gamma}]$ where γ is the smallest angle.

Idea: work by localisation

• With Riesz, define the operator $A: \mathrm{H}^1_0(\Omega) \to \mathrm{H}^1_0(\Omega)$ such that

$$(Au, v)_{\mathrm{H}^{1}_{0}(\Omega)} = \int_{\Omega} \sigma \nabla u \cdot \nabla v, \qquad \forall u, v \in \mathrm{H}^{1}_{0}(\Omega).$$



Partition of unity.

One constructs an isomorphism T by using the local operators.

3 One shows the identity

$$A\circ \mathbf{T}=I+K$$

where I is an isomorphism, K is compact, when the contrast and the geometry are such that one has local invertibility.

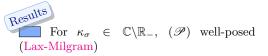
PROPOSITION. For a curvilinear polygonal interface, (\mathscr{P}) is well-posed in the Fredholm sense when $\kappa_{\sigma} \notin [-\mathcal{R}_{\gamma}; -1/\mathcal{R}_{\gamma}]$ where γ is the smallest angle.

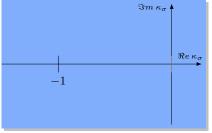
 \Rightarrow If Σ is smooth, (\mathscr{P}) is well-posed in the Fredholm sense when $\kappa_{\sigma} \neq -1$.

Summary of the results for the 2D cavity Problem

 $(\mathscr{P}) \mid \begin{array}{c} \text{Find } u \in \mathrm{H}_0^1(\Omega) \text{ s.t.:} \\ -\mathrm{div} \left(\sigma \nabla u \right) = f \quad \text{in } \Omega. \end{array}$

$$\begin{array}{|c|c|c|} & \Omega_1 & \Sigma & \Omega_2 \\ \hline \sigma_1 > 0 & \sigma_2 < 0 \\ \hline -a & b \end{array}$$



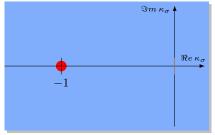


Summary of the results for the 2D cavity Problem

 $(\mathscr{P}) \begin{vmatrix} \operatorname{Find} u \in \mathrm{H}_0^1(\Omega) \text{ s.t.:} \\ -\operatorname{div} (\sigma \nabla u) = f \quad \text{in } \Omega. \end{vmatrix}$

$$\begin{array}{|c|c|c|} & \Omega_1 & \Sigma & \Omega_2 \\ \hline & \sigma_1 > 0 & \sigma_2 < 0 \\ \hline & -a & b \end{array}$$

$$\kappa_{\sigma} = -1, (\mathscr{P}) \text{ ill-posed in } \mathrm{H}_{0}^{1}(\Omega)$$



Summary of the results for the 2D cavity

 $(\mathscr{P}) \mid \begin{array}{c} \operatorname{Find} u \in \operatorname{H}_{0}^{1}(\Omega) \text{ s.t.:} \\ -\operatorname{div} (\sigma \nabla u) = f \quad \text{in } \Omega. \end{array} \qquad \qquad \begin{array}{c} \Omega_{1} \quad \Sigma \quad \Omega_{2} \\ \sigma_{1} > 0 \quad \sigma_{2} < 0 \end{array}$

PROPOSITION. The operator $A = \operatorname{div}(\sigma \nabla \cdot) : \operatorname{H}_0^1(\Omega) \to \operatorname{H}^{-1}(\Omega)$ is an isomorphism if and only $\kappa_{\sigma} \in \mathbb{C}^* \setminus \mathscr{S}$ with $\mathscr{S} = \{-\tanh(n\pi b)/\tanh(n\pi a), n \in \mathbb{N}^*\} \cup \{-1\}$. For $\kappa_{\sigma} = -\tanh(n\pi b)/\tanh(n\pi a)$, we have ker $A = \operatorname{span} \varphi_n$ with

$$\varphi_n(x,y) = \begin{cases} \sinh(n\pi(x+a))\sin(n\pi y) & \text{on } \Omega_1 \\ -\frac{\sinh(n\pi a)}{\sinh(n\pi b)}\sinh(n\pi(x-b))\sin(n\pi y) & \text{on } \Omega_2 \end{cases}$$

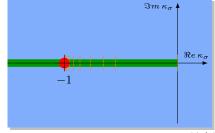
Results

For $\kappa_{\sigma} \in \mathbb{C} \setminus \mathbb{R}_{-}$, (\mathscr{P}) well-posed (Lax-Milgram)

For $\kappa_{\sigma} \in \mathbb{R}^*_{-} \backslash \mathscr{S}$, (\mathscr{P}) well-posed

For $\kappa_{\sigma} \in \mathscr{S} \setminus \{-1\}$, (\mathscr{P}) is well-posed in the Fredholm sense with a one dimension kernel

•
$$\kappa_{\sigma} = -1, (\mathscr{P})$$
 ill-posed in $\mathrm{H}_{0}^{1}(\Omega)$



▶ Poincaré question (1897):

Let u_g be the potential for an electrostatic charge g distributed on Σ . If we normalize the total energy in Ω , what is the minimum of energy in Ω_2 ?

▶ Poincaré question (1897):

Let u_g be the potential for an electrostatic charge g distributed on Σ . If we normalize the total energy in Ω , what is the minimum of energy in Ω_2 ?

• With our notation:

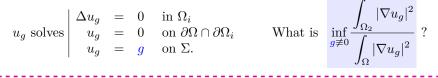
$$u_g \text{ solves} \begin{vmatrix} \Delta u_g &= 0 & \text{in } \Omega_i \\ u_g &= 0 & \text{on } \partial\Omega \cap \partial\Omega_i \\ u_g &= g & \text{on } \Sigma. \end{vmatrix} \text{ What is } \inf_{\substack{g \neq 0 \\ g \neq 0}} \frac{\int_{\Omega_2} |\nabla u_g|^2}{\int_{\Omega} |\nabla u_g|^2}$$

ſ

• Poincaré question (1897):

Let u_g be the potential for an electrostatic charge g distributed on Σ . If we normalize the total energy in Ω , what is the minimum of energy in Ω_2 ?

• With our notation:



For Σ smooth, the inf, equal to $\lambda \in (0; 1)$, is attained for $g = \varphi$. We have

$$\int_{\Omega_2} \nabla u_{\varphi} \cdot \nabla v = \lambda \int_{\Omega} \nabla u_{\varphi} \cdot \nabla v$$

for all $v \in \mathrm{H}_0^1(\Omega)$

• Poincaré question (1897):

Let u_g be the potential for an electrostatic charge g distributed on Σ . If we normalize the total energy in Ω , what is the minimum of energy in Ω_2 ?

• With our notation:

 $u_g \text{ solves } \begin{vmatrix} \Delta u_g &= 0 & \text{in } \Omega_i \\ u_g &= 0 & \text{on } \partial \Omega \cap \partial \Omega_i \\ u_g &= g & \text{on } \Sigma. \end{vmatrix} \text{ What is } \inf_{\substack{g \neq 0 \\ \int_{\Omega} |\nabla u_g|^2}} \frac{\int_{\Omega_2} |\nabla u_g|^2}{\int_{\Omega} |\nabla u_g|^2} ?$

For Σ smooth, the inf, equal to $\lambda \in (0; 1)$, is attained for $g = \varphi$. We have

$$\int_{\Omega_1} \nabla u_{\varphi} \cdot \nabla v + (1 - \lambda^{-1}) \int_{\Omega_2} \nabla u_{\varphi} \cdot \nabla v = 0$$

for all $v \in \mathrm{H}_0^1(\Omega)$

▶ Poincaré question (1897):

Let u_g be the potential for an electrostatic charge g distributed on Σ . If we normalize the total energy in Ω , what is the minimum of energy in Ω_2 ?

• With our notation:

$$u_g \text{ solves} \begin{vmatrix} \Delta u_g &= 0 & \text{in } \Omega_i \\ u_g &= 0 & \text{on } \partial\Omega \cap \partial\Omega_i \\ u_g &= g & \text{on } \Sigma. \end{vmatrix} \quad \text{What is} \quad \inf_{\substack{g \neq 0 \\ g \neq 0}} \frac{\int_{\Omega_2} |\nabla u_g|^2}{\int_{\Omega} |\nabla u_g|^2} ?$$

For Σ smooth, the inf, equal to $\lambda \in (0, 1)$, is attained for $g = \varphi$. We have

$$\int_{\Omega_1} \nabla u_{\varphi} \cdot \nabla v + (1 - \lambda^{-1}) \int_{\Omega_2} \nabla u_{\varphi} \cdot \nabla v = 0$$

for all $v \in \mathrm{H}_0^1(\Omega)$, i.e. $\operatorname{div}(\sigma \nabla u_{\varphi}) = 0$ in Ω with $\kappa_{\sigma} = 1 - \lambda^{-1} < 0$.

r

• Poincaré question (1897):

Let u_g be the potential for an electrostatic charge g distributed on Σ . If we normalize the total energy in Ω , what is the minimum of energy in Ω_2 ?

• With our notation:

$$u_g \text{ solves} \begin{vmatrix} \Delta u_g &= 0 & \text{in } \Omega_i \\ u_g &= 0 & \text{on } \partial\Omega \cap \partial\Omega_i \\ u_g &= g & \text{on } \Sigma. \end{vmatrix} \quad \text{What is} \quad \inf_{\substack{g \neq 0 \\ f_\Omega}} \frac{\int_{\Omega_2} |\nabla u_g|^2}{\int_{\Omega} |\nabla u_g|^2} ?$$

• For Σ smooth, the inf, equal to $\lambda \in (0; 1)$, is attained for $g = \varphi$. We have

$$\int_{\Omega_1} \nabla u_{\varphi} \cdot \nabla v + (1 - \lambda^{-1}) \int_{\Omega_2} \nabla u_{\varphi} \cdot \nabla v = 0$$

for all $v \in \mathrm{H}_0^1(\Omega)$, i.e. $\operatorname{div}(\sigma \nabla u_{\varphi}) = 0$ in Ω with $\kappa_{\sigma} = 1 - \lambda^{-1} < 0$.

Solving the Poincaré problem gives the **contrasts** for which our problem has a **non zero kernel**.

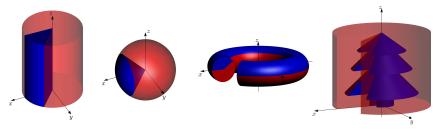
Extensions for the scalar case

• T-coercivity can be used to deal with non constant σ_1 , σ_2 and with the Neumann problem.

Extensions for the scalar case

▶ T-coercivity can be used to deal with non constant σ_1 , σ_2 and with the Neumann problem.

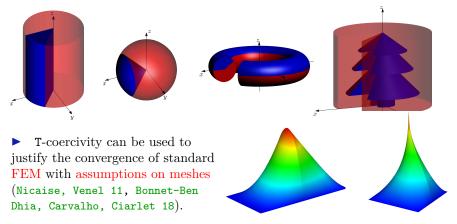
▶ 3D geometries can be handled in the same way.



Extensions for the scalar case

• T-coercivity can be used to deal with non constant σ_1 , σ_2 and with the Neumann problem.

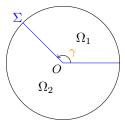
• 3D geometries can be handled in the same way.



 \rightarrow for other methods without mesh assumption based on optimization techniques, see Abdulle, Lemaire 23, Ciarlet, Lassounon, Rihani 22.

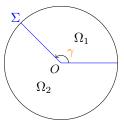
Transition: from variational methods to Fourier/Mellin techniques

For the corner case, what happens when the contrast lies inside the criticial interval, *i.e.* when $\kappa_{\sigma} \in [-\mathcal{R}_{\gamma}; -1/\mathcal{R}_{\gamma}]$?



Transition: from variational methods to Fourier/Mellin techniques

For the corner case, what happens when the contrast lies inside the criticial interval, *i.e.* when $\kappa_{\sigma} \in [-\mathcal{R}_{\gamma}; -1/\mathcal{R}_{\gamma}]$?



Idea: let us study the regularity of the "solutions" using the Kondratiev's tools, *i.e.* the Fourier/Mellin transform (Dauge, Texier 97, Nazarov, Plamenevsky 94).

2 Scalar problem: a new functional framework in the critical interval

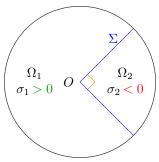
3 Maxwell's equations

Interior Transmission Eigenvalue Problem

• We recall the problem under consideration

$$(\mathscr{P}) \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}^{1}_{0}(\Omega) \text{ such that:} \\ -\operatorname{div}(\sigma \nabla u) = f \quad \text{ in } \Omega. \end{array} \right.$$

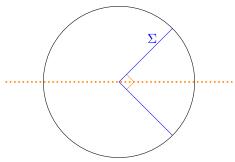
• To simplify the presentation, we work on a particular configuration.



• We recall the problem under consideration

$$(\mathscr{P}) \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}^{1}_{0}(\Omega) \text{ such that:} \\ -\operatorname{div}(\sigma \nabla u) = f \quad \text{ in } \Omega. \end{array} \right.$$

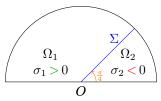
• To simplify the presentation, we work on a particular configuration.



• We recall the problem under consideration

$$(\mathscr{P}) \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}^{1}_{0}(\Omega) \text{ such that:} \\ -\operatorname{div}(\sigma \nabla u) = f \quad \text{ in } \Omega. \end{array} \right.$$

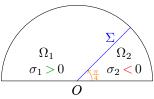
• To simplify the presentation, we work on a particular configuration.



• We recall the problem under consideration

$$(\mathscr{P}) \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}^{1}_{0}(\Omega) \text{ such that:} \\ -\operatorname{div}(\sigma \nabla u) = f \quad \text{ in } \Omega. \end{array} \right.$$

• To simplify the presentation, we work on a particular configuration.



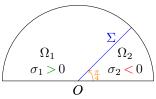
• Using the variational method of the T-coercivity, we prove the

PROPOSITION. The problem (\mathscr{P}) is well-posed as soon as the contrast $\kappa_{\sigma} = \sigma_2/\sigma_1$ satisfies $\kappa_{\sigma} \notin I_c = [-1; -1/3]$.

• We recall the problem under consideration

$$(\mathscr{P}) \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}^{1}_{0}(\Omega) \text{ such that:} \\ -\operatorname{div}(\sigma \nabla u) = f \quad \text{ in } \Omega. \end{array} \right.$$

• To simplify the presentation, we work on a particular configuration.

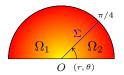


· Using the variational method of the T-coercivity, we prove the

PROPOSITION. The problem (\mathscr{P}) is well-posed as soon as the contrast $\kappa_{\sigma} = \sigma_2/\sigma_1$ satisfies $\kappa_{\sigma} \notin I_c = [-1; -1/3]$.

What happens when $\kappa_{\sigma} \in (-1; -1/3]$?

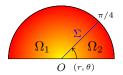
• Bounded sector Ω



• Equation:

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$$

• Bounded sector Ω

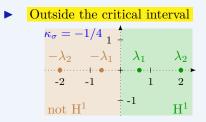


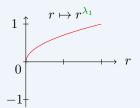
• Equation:

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$$

• Singularities in the sector

We compute the singularities $s(r,\theta)=r^\lambda\varphi(\theta)$ and we observe two cases:





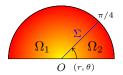
We compute the singularities $s(r, \theta) = r^{\lambda} \varphi(\theta)$ and we observe two cases: Outside the critical interval $1 \stackrel{\uparrow}{\uparrow} \quad r \mapsto r^{\lambda_1}$ $\kappa_{\sigma} = -1/4 \frac{1}{1}$ $-\lambda_2$ $-\lambda_1$ λ_1 λ_2 -2 -1 1 2 0 not $H^1 - 1$ \mathbf{H}^1 -1+Inside the critical interval $r \mapsto \Re e r^{\lambda_1}$ 1 λ_2 0 -2 $-1 \rightarrow 1$ 2 not H^1 not H^1 H^1

For κ_{σ} inside the critical interval, there are singularities of the form $s(r,\theta) = r^{\pm i\eta} \varphi(\theta)$ with $\eta \in \mathbb{R} \setminus \{0\}$. By using these singularities, one breaks the *a priori* estimate $\forall u \in \mathrm{H}_{0}^{1}(\Omega).$ $\|u\|_{\mathrm{H}^{1}_{0}(\Omega)} \leq C \left(\|Au\|_{\mathrm{H}^{1}_{0}(\Omega)} + \|u\|_{\mathrm{L}^{2}(\Omega)}\right)$ This shows that one cannot have A = I + K where I is an isomorphism of $\mathrm{H}^{1}_{0}(\Omega)$ and K is a compact operator of $\mathrm{H}^{1}_{0}(\Omega)$. PROPOSITION. For $\kappa_{\sigma} \in (-1; -1/3)$, div $(\sigma \nabla \cdot) : \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{-1}(\Omega)$ is not of Fredholm type.

For κ_{σ} inside the critical interval, there are singularities of the form $s(r,\theta) = r^{\pm i\eta}\varphi(\theta)$ with $\eta \in \mathbb{R} \setminus \{0\}$. By using these singularities, one breaks the *a priori* estimate $\|u\|_{\mathrm{H}^{1}_{0}(\Omega)} \leq C \left(\|Au\|_{\mathrm{H}^{1}_{0}(\Omega)} + \|u\|_{\mathrm{L}^{2}(\Omega)} \right)$ $\forall u \in \mathrm{H}_{0}^{1}(\Omega).$ This shows that one cannot have A = I + K where I is an isomorphism of $\mathrm{H}^{1}_{0}(\Omega)$ and K is a compact operator of $\mathrm{H}^{1}_{0}(\Omega)$. PROPOSITION. For $\kappa_{\sigma} \in (-1; -1/3)$, div $(\sigma \nabla \cdot) : \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{-1}(\Omega)$ is not of Fredholm type.

Let us see how to modify the functional framework to recover Fredholmness.

• Bounded sector Ω

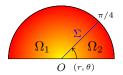


• Equation:

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$$

• Singularities in the sector

• Bounded sector Ω

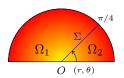


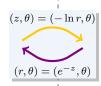
• Equation:

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$$

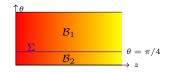
• Singularities in the sector

• Bounded sector Ω





• Half-strip \mathcal{B}



• Equation:

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$$

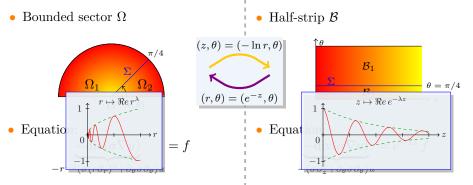
• Singularities in the sector

- Bounded sector Ω Half-strip \mathcal{B} $(z,\theta) = (-\ln r,\theta)$ ſθ $\pi/4$ \mathcal{B}_1 Ω_1 Ω_2 $\theta = \pi/4$ Bo $(r, \theta) = (e^{-z}, \theta)$ O (r, θ) Equation: Equation: $-\operatorname{div}(\sigma \nabla u)$ $-\operatorname{div}(\sigma \nabla u) = e^{-2z} f$ = f $-(\sigma \partial_z^2 + \partial_\theta \sigma \partial_\theta)u$ $-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta\sigma\partial_\theta)u$
- Singularities in the sector

Bounded sector Ω Half-strip \mathcal{B} $(z,\theta) = (-\ln r,\theta)$ ſθ $\pi/4$ \mathcal{B}_1 Ω_1 Ω_2 $\theta = \pi/4$ Bo $(r, \theta) = (e^{-z}, \theta)$ (r, θ) OEquation: Equation: $-\operatorname{div}(\sigma \nabla u)$ $-\operatorname{div}(\sigma \nabla u) = e^{-2z} f$ = f $-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta\sigma\partial_\theta)u$ $-(\sigma \partial_z^2 + \partial_\theta \sigma \partial_\theta)u$ Singularities in the sector • Modes in the strip

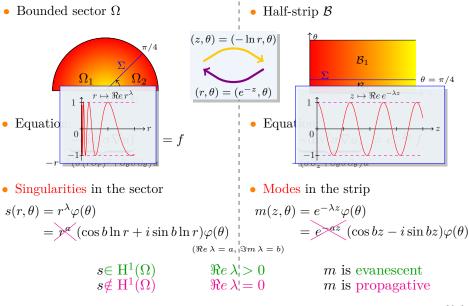
$$s(r,\theta) = r^{\lambda}\varphi(\theta)$$

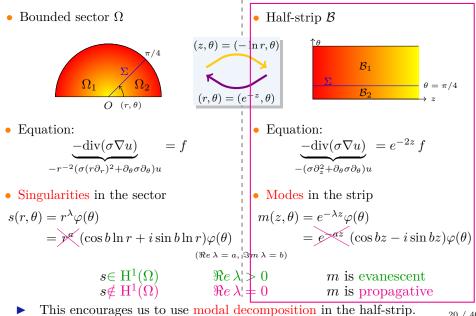
 $m(z,\theta)=e^{-\lambda z}\varphi(\theta)$



• Singularities in the sector $s(r, \theta) = r^{\lambda} \varphi(\theta)$

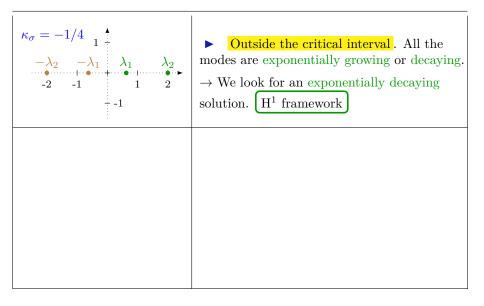
• Modes in the strip $m(z,\theta) = e^{-\lambda z} \varphi(\theta)$



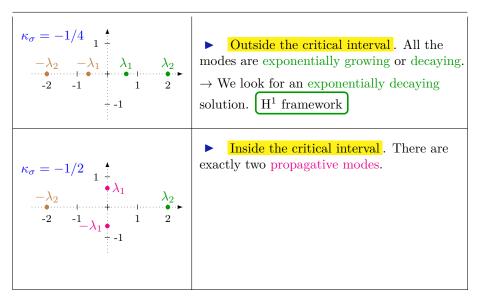


20 / 40

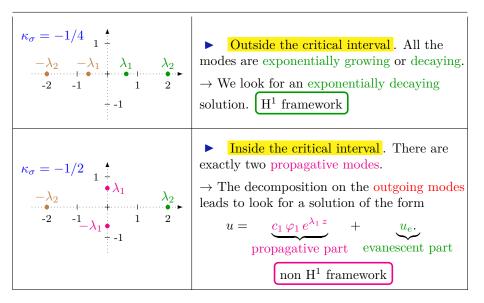
Modal analysis in the waveguide



Modal analysis in the waveguide



Modal analysis in the waveguide



Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define $W_{-\beta} = \{v \mid e^{\beta z} v \in H_0^1(\mathcal{B})\}$ space of exponentially decaying functions

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define $W_{-\beta} = \{v \mid e^{\beta z}v \in H_0^1(\mathcal{B})\}$ space of exponentially decaying functions

 $W_{\beta} = \{ v \mid e^{-\beta z} v \in H_0^1(\mathcal{B}) \}$ space of exponentially growing functions

Consider $0<\beta<2,\,\zeta$ a cut-off function (equal to 1 in $+\infty)$ and define

$$\begin{split} \mathbf{W}_{-\beta} &= \{ v \,|\, e^{\beta z} v \in \mathbf{H}_{0}^{1}(\mathcal{B}) \} \\ \mathbf{W}^{+} &= \operatorname{span}(\zeta \varphi_{1} \, e^{\lambda_{1} z}) \oplus \mathbf{W}_{-\beta} \\ \mathbf{W}_{\beta} &= \{ v \,|\, e^{-\beta z} v \in \mathbf{H}_{0}^{1}(\mathcal{B}) \} \end{split}$$

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

Consider $0<\beta<2,\,\zeta$ a cut-off function (equal to 1 in $+\infty)$ and define

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

THEOREM. Let $\kappa_{\sigma} \in (-1; -1/3)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\sigma \nabla \cdot)$ from W⁺ to W_{\beta}^{*} is an isomorphism.

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

$$\begin{split} & \mathbb{W}_{-\beta} = \{ v \,|\, e^{\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B}) \} \\ & \mathbb{W}^{+} = \mathrm{span}(\zeta \varphi_{1} \,e^{\lambda_{1} z}) \oplus \mathrm{W}_{-\beta} \\ & \mathbb{W}_{\beta} = \{ v \,|\, e^{-\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B}) \} \end{split}$$

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

THEOREM. Let $\kappa_{\sigma} \in (-1; -1/3)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\sigma \nabla \cdot)$ from W⁺ to W_{\beta}^{*} is an isomorphism.

IDEAS OF THE PROOF:

• $A_{-\beta}$: div $(\sigma \nabla \cdot)$ from $W_{-\beta}$ to W_{β}^* is injective but not surjective.

Consider $0 < \beta < 2, \zeta$ a cut-off function (equal to 1 in $+\infty$) and define

$$\begin{split} \mathbb{W}_{-\beta} &= \{ v \,|\, e^{\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B}) \} \\ \mathbb{W}^{+} &= \mathrm{span}(\zeta \varphi_{1} \,e^{\lambda_{1} z}) \oplus \mathrm{W}_{-\beta} \\ \mathbb{W}_{\beta} &= \{ v \,|\, e^{-\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B}) \} \end{split}$$

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

THEOREM. Let $\kappa_{\sigma} \in (-1; -1/3)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\sigma \nabla \cdot)$ from W^+ to W_{β}^* is an isomorphism.

IDEAS OF THE PROOF:

- $A_{-\beta}$: div $(\sigma \nabla \cdot)$ from $W_{-\beta}$ to W_{β}^* is injective but not surjective.
- **2** A_{β} : div $(\sigma \nabla \cdot)$ from W_{β} to $W_{-\beta}^*$ is surjective but not injective.

Consider $0 < \beta < 2, \zeta$ a cut-off function (equal to 1 in $+\infty$) and define

$$\begin{split} \mathbb{W}_{-\beta} &= \{ v \,|\, e^{\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B}) \} \\ \mathbb{W}^{+} &= \mathrm{span}(\zeta \varphi_{1} \,e^{\lambda_{1} z}) \oplus \mathrm{W}_{-\beta} \\ \mathbb{W}_{\beta} &= \{ v \,|\, e^{-\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B}) \} \end{split}$$

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

THEOREM. Let $\kappa_{\sigma} \in (-1; -1/3)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\sigma \nabla \cdot)$ from W⁺ to W_{\beta}^{*} is an isomorphism.

IDEAS OF THE PROOF:

- $A_{-\beta}$: div $(\sigma \nabla \cdot)$ from $W_{-\beta}$ to W_{β}^* is injective but not surjective.
- 2 A_{β} : div $(\sigma \nabla \cdot)$ from W_{β} to $W_{-\beta}^*$ is surjective but not injective.
- **③** The intermediate operator A^+ : W⁺ → W_β^{*} is injective (energy integral) and surjective (residue theorem).

Consider $0 < \beta < 2, \zeta$ a cut-off function (equal to 1 in $+\infty$) and define

$$\begin{split} & \mathbb{W}_{-\beta} = \{ v \,|\, e^{\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B}) \} \\ & \mathbb{W}^{+} = \mathrm{span}(\zeta \varphi_{1} \,e^{\lambda_{1} z}) \oplus \mathrm{W}_{-\beta} \\ & \mathbb{W}_{\beta} = \{ v \,|\, e^{-\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B}) \} \end{split}$$

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

THEOREM. Let $\kappa_{\sigma} \in (-1; -1/3)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\sigma \nabla \cdot)$ from W⁺ to W_{\beta}^{*} is an isomorphism.

IDEAS OF THE PROOF:

- $A_{-\beta}$: div $(\sigma \nabla \cdot)$ from $W_{-\beta}$ to W_{β}^* is injective but not surjective.
- **2** A_{β} : div $(\sigma \nabla \cdot)$ from W_{β} to $W_{-\beta}^*$ is surjective but not injective.
- ³ The intermediate operator A^+ : W⁺ → W_β^{*} is injective (energy integral) and surjective (residue theorem).
- **①** Limiting absorption principle to select the **outgoing mode**.

Naive approximation

▶ Let us try a usual Finite Element Method (P1 Lagrange Finite Element). We solve the problem

Find
$$u_h \in \mathcal{V}_h$$
 s.t.:
$$\int_{\Omega} \sigma \nabla u_h \cdot \nabla v_h = \int_{\Omega} f v_h, \quad \forall v \in \mathcal{V}_h,$$

where V_h approximates $H_0^1(\Omega)$ as $h \to 0$ (*h* is the mesh size).

Naive approximation

▶ Let us try a usual Finite Element Method (P1 Lagrange Finite Element). We solve the problem

Find
$$u_h \in \mathcal{V}_h$$
 s.t.:
$$\int_{\Omega} \sigma \nabla u_h \cdot \nabla v_h = \int_{\Omega} f v_h, \quad \forall v \in \mathcal{V}_h,$$

where V_h approximates $H_0^1(\Omega)$ as $h \to 0$ (*h* is the mesh size).

• We display u_h as $h \to 0$.

Naive approximation

• Let us try a usual Finite Element Method (P1 Lagre AS $h \rightarrow 0!!!$ Element). We solve the problem

Find
$$u_{t}$$
 (u_h) $DOES NOT$
THE SEQUENCE (u_h) $\nabla v_{h} = \int_{\Omega} fv_{h}, \quad \forall v \in V_{h},$

where V_h approximates $H_0^1(\Omega)$ as $h \to 0$ (*h* is the mesh size).

• We display u_h as $h \to 0$.

 (\dots)

Contrast
$$\kappa_{\sigma} = -0.999 \in (-1; -1/3).$$

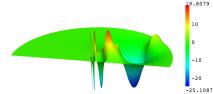
• Outside the critical interval, the sequence (u_h) converges with the naive approximation.

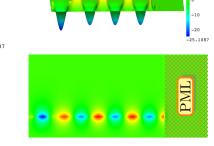
 (\dots)

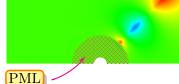
Contrast
$$\kappa_{\sigma} = -1.001 \notin (-1; -1/3).$$

How to approximate the solution?

• We use a PML (*Perfectly Matched Layer*) to bound the domain \mathcal{B} + finite elements in the truncated strip ($\kappa_{\sigma} = -0.999 \in (-1; -1/3)$) (Bonnet-Ben Dhia, Carvalho, Chesnel, Ciarlet 16).





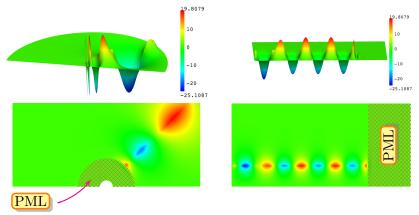


19.8079

10

How to approximate the solution?

• We use a PML (*Perfectly Matched Layer*) to bound the domain \mathcal{B} + finite elements in the truncated strip ($\kappa_{\sigma} = -0.999 \in (-1; -1/3)$) (Bonnet-Ben Dhia, Carvalho, Chesnel, Ciarlet 16).



Without the PML, the solution in the truncated strip of length L does not converge when $L \to \infty$.

A black hole phenomenon

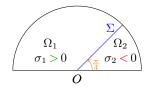
• The same phenomenon occurs for the problem with a non zero ω .

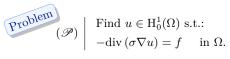
$$(\boldsymbol{x},t) \mapsto \Re e\left(u(\boldsymbol{x})e^{-i\omega t}\right) \text{ for } \kappa_{\sigma} = -1/1.3$$

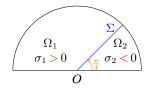
The corner point is like infinite: it is necessary to impose a radiation condition to select the outgoing behaviour.

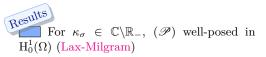
► Analogous phenomena occur in cuspidal domains in the theory of water-waves and in elasticity (Cardone, Nazarov, Taskinen 11).

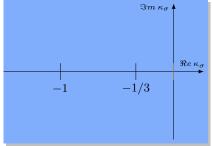
Find
$$u \in \mathrm{H}^1_0(\Omega)$$
 s.t.:
-div $(\sigma \nabla u) = f$ in Ω .



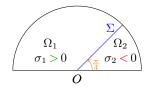


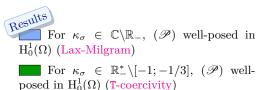


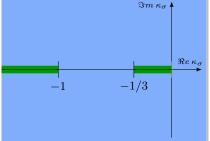




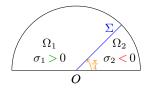
Find
$$u \in \mathrm{H}_0^1(\Omega)$$
 s.t.:
-div $(\sigma \nabla u) = f$ in Ω .







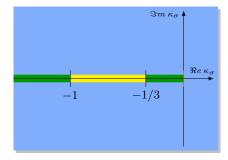
Find
$$u \in \mathrm{H}^{1}_{0}(\Omega)$$
 s.t.:
-div $(\sigma \nabla u) = f$ in Ω .



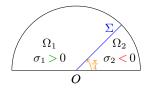
Results For $\kappa_{\sigma} \in \mathbb{C} \setminus \mathbb{R}_{-}$, (\mathscr{P}) well-posed in $H_0^1(\Omega)$ (Lax-Milgram)

For $\kappa_{\sigma} \in \mathbb{R}^* \setminus [-1; -1/3]$, (\mathscr{P}) wellposed in $\mathrm{H}^1_0(\Omega)$ (**T**-coercivity)

For $\kappa_{\sigma} \in (-1; -1/3)$, (\mathscr{P}) is not well-posed in the Fredholm sense in $\mathrm{H}_{0}^{1}(\Omega)$ but well-posed in V^{+} (PMLs)



Find
$$u \in H_0^1(\Omega)$$
 s.t.:
-div $(\sigma \nabla u) = f$ in Ω .

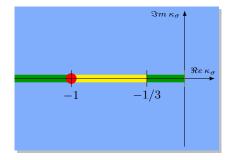


Results For $\kappa_{\sigma} \in \mathbb{C} \setminus \mathbb{R}_{-}$, (\mathscr{P}) well-posed in $H_0^1(\Omega)$ (Lax-Milgram)

For $\kappa_{\sigma} \in \mathbb{R}^* \setminus [-1; -1/3]$, (\mathscr{P}) wellposed in $\mathrm{H}^1_0(\Omega)$ (T-coercivity)

For $\kappa_{\sigma} \in (-1; -1/3)$, (\mathscr{P}) is not well-posed in the Fredholm sense in $\mathrm{H}_{0}^{1}(\Omega)$ but well-posed in V^{+} (PMLs)

•
$$\kappa_{\sigma} = -1, (\mathscr{P}) \text{ ill-posed in } \mathrm{H}_{0}^{1}(\Omega)$$



2 Scalar problem: a new functional framework in the critical interval

3 Maxwell's equations

4 The Interior Transmission Eigenvalue Problem

Problem formulation

For $F \in \mathbf{L}^2(\Omega)$ s.t. div F = 0, consider the problem for the electric field E

Find
$$\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$$
 such that for all $\boldsymbol{E}' \in \mathbf{X}_N(\varepsilon)$:

$$\underbrace{\int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \overline{\boldsymbol{E}'}}_{a(\boldsymbol{E}, \boldsymbol{E}')} - \omega^2 \underbrace{\int_{\Omega} \varepsilon \boldsymbol{E} \cdot \overline{\boldsymbol{E}'}}_{c(\boldsymbol{E}, \boldsymbol{E}')} = \underbrace{\int_{\Omega} \boldsymbol{F} \cdot \overline{\boldsymbol{E}'}}_{\ell(\boldsymbol{E}')},$$

with $\mathbf{X}_N(\varepsilon) := \{ \boldsymbol{u} \in \mathbf{H}(\mathbf{curl}) | \operatorname{div}(\varepsilon \boldsymbol{u}) = 0 \text{ in } \Omega, \, \boldsymbol{u} \times \boldsymbol{n} = 0 \text{ on } \partial \Omega \}.$

Difficulties:

When μ changes sign, $a(\cdot, \cdot)$ is not coercive.

When ε changes sign, is the embedding $\mathbf{X}_N(\varepsilon) \subset \mathbf{L}^2(\Omega)$ compact?

$\mathbb{T}\text{-}\mathrm{coercivity}$ for Maxwell

If
$$\mathbb{T}$$
 is an isomorphism of $\mathbf{X}_N(\varepsilon)$, we have
 $a(\mathbf{E}, \mathbf{E}') - \omega^2 c(\mathbf{E}, \mathbf{E}') = \ell(\mathbf{E}'), \quad \forall \mathbf{E}' \in \mathbf{X}_N(\varepsilon)$
 $\Leftrightarrow a(\mathbf{E}, \mathbb{T}\mathbf{E}') - \omega^2 c(\mathbf{E}, \mathbb{T}\mathbf{E}') = \ell(\mathbb{T}\mathbf{E}'), \quad \forall \mathbf{E}' \in \mathbf{X}_N(\varepsilon).$

Goal: to construct \mathbb{T} such that

$$a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}') = \int_{\Omega} \mu^{-1} \mathbf{curl} \, \boldsymbol{E} \cdot \mathbf{curl} \, (\overline{\mathbb{T}\boldsymbol{E}'})^{-1}$$

is coercive in $\mathbf{X}_N(\varepsilon)$.

$\mathbb{T}\text{-}\mathrm{coercivity}$ for Maxwell

If
$$\mathbb{T}$$
 is an isomorphism of $\mathbf{X}_N(\varepsilon)$, we have
 $a(\mathbf{E}, \mathbf{E}') - \omega^2 c(\mathbf{E}, \mathbf{E}') = \ell(\mathbf{E}'), \quad \forall \mathbf{E}' \in \mathbf{X}_N(\varepsilon)$
 $\Leftrightarrow a(\mathbf{E}, \mathbb{T}\mathbf{E}') - \omega^2 c(\mathbf{E}, \mathbb{T}\mathbf{E}') = \ell(\mathbb{T}\mathbf{E}'), \quad \forall \mathbf{E}' \in \mathbf{X}_N(\varepsilon).$

Goal: to construct \mathbb{T} such that

$$a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}') = \int_{\Omega} \mu^{-1} \mathbf{curl} \, \boldsymbol{E} \cdot \mathbf{curl} \, (\overline{\mathbb{T}\boldsymbol{E}'})$$

is coercive in $\mathbf{X}_N(\varepsilon)$.

Scalar approach

1/2

If
$$\mathbb{T}$$
 is an isomorphism of $\mathbf{X}_N(\varepsilon)$, we have
 $a(\mathbf{E}, \mathbf{E}') - \omega^2 c(\mathbf{E}, \mathbf{E}') = \ell(\mathbf{E}'), \quad \forall \mathbf{E}' \in \mathbf{X}_N(\varepsilon)$
 $\Leftrightarrow a(\mathbf{E}, \mathbb{T}\mathbf{E}') - \omega^2 c(\mathbf{E}, \mathbb{T}\mathbf{E}') = \ell(\mathbb{T}\mathbf{E}'), \quad \forall \mathbf{E}' \in \mathbf{X}_N(\varepsilon).$

Goal: to construct \mathbb{T} such that

$$a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}') = \int_{\Omega} \mu^{-1} \mathbf{curl} \, \boldsymbol{E} \cdot \mathbf{curl} \, (\overline{\mathbb{T}\boldsymbol{E}'})$$

is coercive in $\mathbf{X}_N(\varepsilon)$.

Scalar approach

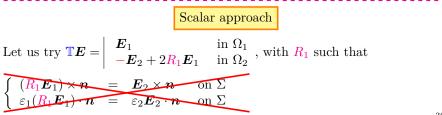
Let us try $\mathbb{T}\boldsymbol{E} = \begin{vmatrix} \boldsymbol{E}_1 & \text{in } \Omega_1 \\ -\boldsymbol{E}_2 + 2\boldsymbol{R}_1\boldsymbol{E}_1 & \text{in } \Omega_2 \end{vmatrix}$,

If
$$\mathbb{T}$$
 is an isomorphism of $\mathbf{X}_N(\varepsilon)$, we have
 $a(\mathbf{E}, \mathbf{E}') - \omega^2 c(\mathbf{E}, \mathbf{E}') = \ell(\mathbf{E}'), \quad \forall \mathbf{E}' \in \mathbf{X}_N(\varepsilon)$
 $\Leftrightarrow a(\mathbf{E}, \mathbb{T}\mathbf{E}') - \omega^2 c(\mathbf{E}, \mathbb{T}\mathbf{E}') = \ell(\mathbb{T}\mathbf{E}'), \quad \forall \mathbf{E}' \in \mathbf{X}_N(\varepsilon).$

Goal: to construct \mathbb{T} such that

$$a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}') = \int_{\Omega} \mu^{-1} \mathbf{curl} \, \boldsymbol{E} \cdot \mathbf{curl} \, (\overline{\mathbb{T}\boldsymbol{E}'})$$

is coercive in $\mathbf{X}_N(\varepsilon)$.

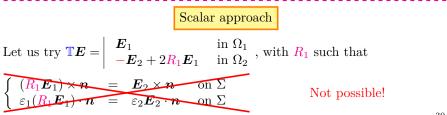


If
$$\mathbb{T}$$
 is an isomorphism of $\mathbf{X}_N(\varepsilon)$, we have
 $a(\mathbf{E}, \mathbf{E}') - \omega^2 c(\mathbf{E}, \mathbf{E}') = \ell(\mathbf{E}'), \quad \forall \mathbf{E}' \in \mathbf{X}_N(\varepsilon)$
 $\Leftrightarrow a(\mathbf{E}, \mathbb{T}\mathbf{E}') - \omega^2 c(\mathbf{E}, \mathbb{T}\mathbf{E}') = \ell(\mathbb{T}\mathbf{E}'), \quad \forall \mathbf{E}' \in \mathbf{X}_N(\varepsilon).$

Goal: to construct \mathbb{T} such that

$$a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}') = \int_{\Omega} \mu^{-1} \mathbf{curl} \, \boldsymbol{E} \cdot \mathbf{curl} \, (\overline{\mathbb{T}\boldsymbol{E}'})$$

is coercive in $\mathbf{X}_N(\varepsilon)$.



$\mathbb{T}\text{-}\mathrm{coercivity}$ for Maxwell

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$. We would like to have

 $\mathbf{curl}\,(\mathbb{T}\boldsymbol{E})=\mu\mathbf{curl}\,\boldsymbol{E}$

to get
$$a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}) = \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} (\overline{\mathbb{T}\boldsymbol{E}}) \, dx = \int_{\Omega} |\operatorname{curl} \boldsymbol{E}|^2 \, dx.$$

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$. We would like to have

 $\mathbf{curl}\,(\mathbb{T}\boldsymbol{E})=\mu\mathbf{curl}\,\boldsymbol{E}$

to get
$$a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}) = \int_{\Omega} \mu^{-1} \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \operatorname{\mathbf{curl}} (\overline{\mathbb{T}\boldsymbol{E}}) \, dx = \int_{\Omega} |\operatorname{\mathbf{curl}} \boldsymbol{E}|^2 \, dx.$$

But impossible in general (take the divergence)!

Consider $E \in \mathbf{X}_N(\varepsilon)$. We would like to have

 $\operatorname{curl}(\mathbb{T}E) = \mu \operatorname{curl} E$

to get $a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}) = \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} (\overline{\mathbb{T}\boldsymbol{E}}) dx = \int_{\Omega} |\operatorname{curl} \boldsymbol{E}|^2 dx.$

But impossible in general (take the divergence)!

Consider $E \in \mathbf{X}_N(\varepsilon)$. We would like to have

 $\operatorname{curl}(\mathbb{T}E) = \mu \operatorname{curl} E$

to get
$$a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}) = \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} (\overline{\mathbb{T}\boldsymbol{E}}) \, dx = \int_{\Omega} |\operatorname{curl} \boldsymbol{E}|^2 \, dx.$$

But impossible in general (take the divergence)!

To present the construction, define the scalar operators A_{ε} : $\mathrm{H}_{0}^{1}(\Omega) \rightarrow$ $\mathrm{H}^{1}_{0}(\Omega), A_{\mu} : \mathrm{H}^{1}_{\#}(\Omega) \to \mathrm{H}^{1}_{\#}(\Omega)$ such that

$$(A_{\varepsilon}\varphi,\varphi')_{\mathrm{H}^{1}_{0}(\Omega)} = \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \overline{\varphi'} \, dx, \qquad \forall \varphi, \varphi' \in \mathrm{H}^{1}_{0}(\Omega).$$

$$(A_{\mu}\varphi,\varphi')_{\mathrm{H}^{1}_{\#}(\Omega)} = \int_{\Omega} \mu \nabla \varphi \cdot \nabla \overline{\varphi'} \, dx, \qquad \forall \varphi, \varphi' \in \mathrm{H}^{1}_{\#}(\Omega)$$

where $\mathrm{H}^{1}_{\#}(\Omega) := \{ \varphi \in \mathrm{H}^{1}(\Omega) \mid \int_{\Omega} \varphi \, dx = 0 \}.$

2/2

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$.

$\mathbb{T}\text{-}\mathrm{coercivity}$ for Maxwell

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$. **1** Introduce $\boldsymbol{\psi} \in \mathrm{H}^1_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \in \mathbf{X}_T(\mu)$. To proceed, solve

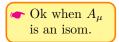
$$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

$\mathbb{T}\text{-}\mathrm{coercivity}$ for Maxwell

2/2

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$. **1** Introduce $\boldsymbol{\psi} \in \mathrm{H}^1_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \in \mathbf{X}_T(\mu)$. To proceed, solve

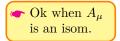
$$\int_{\Omega} \mu \nabla \boldsymbol{\psi} \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$



2/2

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$. **1** Introduce $\boldsymbol{\psi} \in \mathrm{H}^1_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \in \mathbf{X}_T(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \boldsymbol{\psi} \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \mathbf{curl} \, \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

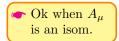


2 Since div $(\mu(\operatorname{curl} \boldsymbol{E} - \nabla \psi)) = 0$, there is $\boldsymbol{u} \in \mathbf{X}_N(1)$ such that

 $\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{in } \Omega.$

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$. **1** Introduce $\boldsymbol{\psi} \in \mathrm{H}^1_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \in \mathbf{X}_T(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$



2 Since div $(\mu(\operatorname{curl} E - \nabla \psi)) = 0$, there is $u \in \mathbf{X}_N(1)$ such that

$$\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{in } \Omega.$$

3 Introduce $\varphi \in H_0^1(\Omega)$ such that $\boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N(\varepsilon)$. To proceed, solve

$$\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \, dx = \int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi' \, dx, \quad \forall \varphi' \in \mathrm{H}^{1}_{0}(\Omega).$$

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$. **1** Introduce $\boldsymbol{\psi} \in \mathrm{H}^1_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \in \mathbf{X}_T(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

• Ok when A_{μ} is an isom.

2 Since div $(\mu(\operatorname{curl} E - \nabla \psi)) = 0$, there is $\boldsymbol{u} \in \mathbf{X}_N(1)$ such that

$$\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{in } \Omega.$$

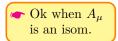
3 Introduce $\varphi \in H_0^1(\Omega)$ such that $\boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N(\varepsilon)$. To proceed, solve

$$\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \, dx = \int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi' \, dx, \quad \forall \varphi' \in \mathrm{H}^{1}_{0}(\Omega).$$

• Ok when A_{ε} is an isom.

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$. **1** Introduce $\boldsymbol{\psi} \in \mathrm{H}^1_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \in \mathbf{X}_T(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$



2 Since div $(\mu(\operatorname{curl} E - \nabla \psi)) = 0$, there is $\boldsymbol{u} \in \mathbf{X}_N(1)$ such that

$$\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{in } \Omega.$$

3 Introduce $\varphi \in H_0^1(\Omega)$ such that $\boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N(\varepsilon)$. To proceed, solve

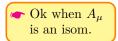
$$\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \, dx = \int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi' \, dx, \quad \forall \varphi' \in \mathrm{H}_{0}^{1}(\Omega).$$

• Ok when A_{ε} is an isom.

$$I \quad \text{Finally, define } \mathbb{T}E := \boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N(\varepsilon).$$

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$. **1** Introduce $\boldsymbol{\psi} \in \mathrm{H}^1_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \in \mathbf{X}_T(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$



2 Since div $(\mu(\operatorname{curl} E - \nabla \psi)) = 0$, there is $u \in \mathbf{X}_N(1)$ such that

$$\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{in } \Omega.$$

3 Introduce $\varphi \in H_0^1(\Omega)$ such that $\boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N(\varepsilon)$. To proceed, solve

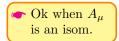
$$\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \, dx = \int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi' \, dx, \quad \forall \varphi' \in \mathrm{H}^{1}_{0}(\Omega).$$

• Ok when A_{ε} is an isom.

$$a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}) = \int_{\Omega} \mu^{-1} \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \operatorname{\mathbf{curl}} \left(\overline{\mathbb{T}\boldsymbol{E}}\right) dx$$

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$. **1** Introduce $\boldsymbol{\psi} \in \mathrm{H}^1_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \in \mathbf{X}_T(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$



2 Since div $(\mu(\operatorname{curl} E - \nabla \psi)) = 0$, there is $u \in \mathbf{X}_N(1)$ such that

$$\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{in } \Omega.$$

3 Introduce $\varphi \in H_0^1(\Omega)$ such that $\boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N(\varepsilon)$. To proceed, solve

$$\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \, dx = \int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi' \, dx, \quad \forall \varphi' \in \mathrm{H}^{1}_{0}(\Omega).$$

• Ok when A_{ε} is an isom.

$$a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}) = \int_{\Omega} \mu^{-1} \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \operatorname{\mathbf{curl}} \overline{\boldsymbol{u}} \, dx$$

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$. **1** Introduce $\boldsymbol{\psi} \in \mathrm{H}^1_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \in \mathbf{X}_T(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

• Ok when A_{μ} is an isom.

2 Since div $(\mu(\operatorname{curl} E - \nabla \psi)) = 0$, there is $u \in \mathbf{X}_N(1)$ such that

$$\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{in } \Omega.$$

3 Introduce $\varphi \in H_0^1(\Omega)$ such that $\boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N(\varepsilon)$. To proceed, solve

$$\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \, dx = \int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi' \, dx, \quad \forall \varphi' \in \mathrm{H}^{1}_{0}(\Omega).$$

• Ok when A_{ε} is an isom.

$$a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}) = \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \overline{\boldsymbol{u}} \, dx = \int_{\Omega} \operatorname{curl} \boldsymbol{E} \cdot (\overline{\operatorname{curl} \boldsymbol{E} - \nabla \psi}) \, dx$$

Consider $\boldsymbol{E} \in \mathbf{X}_N(\varepsilon)$. **1** Introduce $\boldsymbol{\psi} \in \mathrm{H}^1_{\#}(\Omega)$ such that $\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \in \mathbf{X}_T(\mu)$. To proceed, solve

$$\int_{\Omega} \mu \nabla \psi \cdot \nabla \psi' \, dx = \int_{\Omega} \mu \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \nabla \psi' \, dx, \quad \forall \psi' \in \mathrm{H}^{1}_{\#}(\Omega).$$

• Ok when A_{μ} is an isom.

2 Since div $(\mu(\operatorname{curl} E - \nabla \psi)) = 0$, there is $\boldsymbol{u} \in \mathbf{X}_N(1)$ such that

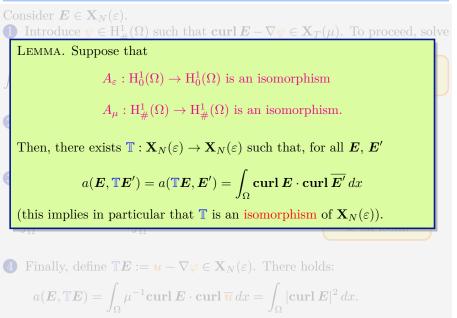
$$\operatorname{curl} \boldsymbol{u} = \mu \left(\operatorname{curl} \boldsymbol{E} - \nabla \boldsymbol{\psi} \right) \quad \text{in } \Omega.$$

3 Introduce $\varphi \in H_0^1(\Omega)$ such that $\boldsymbol{u} - \nabla \varphi \in \mathbf{X}_N(\varepsilon)$. To proceed, solve

$$\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \varphi' \, dx = \int_{\Omega} \varepsilon \boldsymbol{u} \cdot \nabla \varphi' \, dx, \quad \forall \varphi' \in \mathrm{H}^{1}_{0}(\Omega).$$

• Ok when A_{ε} is an isom.

$$a(\boldsymbol{E}, \mathbb{T}\boldsymbol{E}) = \int_{\Omega} \mu^{-1} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \overline{\boldsymbol{u}} \, dx = \int_{\Omega} |\operatorname{curl} \boldsymbol{E}|^2 \, dx.$$



Compact embedding and final result

Using a similar construction, we prove the

THEOREM. If $A_{\varepsilon} : \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{1}_{0}(\Omega)$ is an isomorphism, then $\mathbf{X}_{N}(\varepsilon)$ is compactly embedded in $\mathbf{L}^{2}(\Omega)$ and $(\mathbf{curl} \cdot, \mathbf{curl} \cdot)$ is a inner product in $\mathbf{X}_{N}(\varepsilon)$.

Compact embedding and final result

Using a similar construction, we prove the

THEOREM. If $A_{\varepsilon} : \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{1}_{0}(\Omega)$ is an isomorphism, then $\mathbf{X}_{N}(\varepsilon)$ is compactly embedded in $\mathbf{L}^{2}(\Omega)$ and $(\mathbf{curl} \cdot, \mathbf{curl} \cdot)$ is a inner product in $\mathbf{X}_{N}(\varepsilon)$.

• This yields the final result (Bonnet-BenDhia, Chesnel, Ciarlet 14'):

THEOREM. Assume that

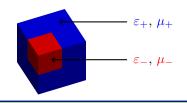
 $A_{\varepsilon}: \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{1}_{0}(\Omega)$ is an isomorphism

 $A_{\mu}: \mathrm{H}^{1}_{\#}(\Omega) \to \mathrm{H}^{1}_{\#}(\Omega)$ is an isomorphism.

Then, the problem for the electric field is well-posed for all $\omega \in \mathbb{C} \setminus \mathscr{S}$ where \mathscr{S} is a discrete (or empty) set of \mathbb{C} .

Comments and example

- We have a similar result for the magnetic problem.
- These results extend to:
- situations where A_{ε} , A_{μ} are Fredholm of index zero with a non zero kernel;
- situations where Ω is not simply connected/ $\partial \Omega$ is not connected.



EXAMPLE OF THE FICHERA'S CUBE:

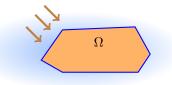
PROPOSITION. Assume that $\frac{\varepsilon_{-}}{\varepsilon_{+}} \notin [-7; -\frac{1}{7}] \quad \text{and} \quad \frac{\mu_{-}}{\mu_{+}} \notin [-7; -\frac{1}{7}]. \quad \bigstar$ Then, the problems for the electric and magnetic fields are well-posed for all $\omega \in \mathbb{C} \setminus \mathscr{S}$ where \mathscr{S} is a discrete (or empty) set of \mathbb{C} .

1 Scalar problem: variational techniques

2 Scalar problem: a new functional framework in the critical interval

3 Maxwell's equations

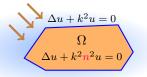
4 The Interior Transmission Eigenvalue Problem



• We want to determine the support of an inclusion Ω embedded in a reference medium (\mathbb{R}^2) using the Linear Sampling Method.

 $\Delta u + k^2 u = 0$ $\Delta u + k^2 n^2 u = 0$

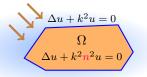
• We want to determine the support of an inclusion Ω embedded in a reference medium (\mathbb{R}^2) using the Linear Sampling Method.



• We want to determine the support of an inclusion Ω embedded in a reference medium (\mathbb{R}^2) using the Linear Sampling Method.

• We can use the method when k is not an eigenvalue of the Interior Transmission Eigenvalue Problem:

$$\begin{vmatrix} \text{Find } (k,v) \in \mathbb{C} \times \mathrm{H}_{0}^{2}(\Omega) \setminus \{0\} \text{ such that:} \\ \int_{\Omega} \frac{1}{1-n^{2}} (\Delta v + k^{2}n^{2}v)(\Delta v' + k^{2}v') = 0, \quad \forall v' \in \mathrm{H}_{0}^{2}(\Omega). \end{aligned}$$

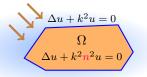


• We want to determine the support of an inclusion Ω embedded in a reference medium (\mathbb{R}^2) using the Linear Sampling Method.

 \blacktriangleright We can use the method when k is not an eigenvalue of the Interior Transmission Eigenvalue Problem:

$$\left| \begin{array}{l} \text{Find } (k,v) \in \mathbb{C} \times \mathrm{H}_{0}^{2}(\Omega) \setminus \{0\} \text{ such that:} \\ \int_{\Omega} \frac{1}{1-n^{2}} (\Delta v + k^{2}n^{2}v)(\Delta v' + k^{2}v') = 0, \quad \forall v' \in \mathrm{H}_{0}^{2}(\Omega). \end{array} \right|$$

• One of the goals is to prove that the set of transmission eigenvalues is at most discrete.



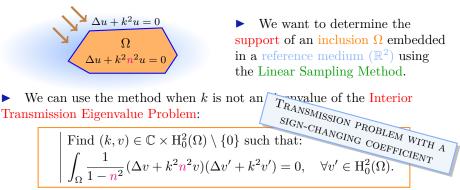
• We want to determine the support of an inclusion Ω embedded in a reference medium (\mathbb{R}^2) using the Linear Sampling Method.

 \blacktriangleright We can use the method when k is not an eigenvalue of the Interior Transmission Eigenvalue Problem:

$$\left| \begin{array}{l} \text{Find } (k,v) \in \mathbb{C} \times \mathrm{H}_{0}^{2}(\Omega) \setminus \{0\} \text{ such that:} \\ \int_{\Omega} \frac{1}{1-n^{2}} (\Delta v + k^{2}n^{2}v)(\Delta v' + k^{2}v') = 0, \quad \forall v' \in \mathrm{H}_{0}^{2}(\Omega). \end{array} \right.$$

• One of the goals is to prove that the set of transmission eigenvalues is at most discrete.

▶ This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Païvärinta, Rynne, Sleeman, Sylvester...) when n > 1 on Ω or n < 1 on Ω .



• One of the goals is to prove that the set of transmission eigenvalues is at most discrete.

▶ This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Païvärinta, Rynne, Sleeman, Sylvester...) when n > 1 on Ω or n < 1 on Ω .

What happens when $1 - n^2$ changes sign?

• We define $\sigma = (1 - n^2)^{-1}$ and we focus on the principal part:

$$(\mathscr{F}_V) \mid \underbrace{ \begin{array}{l} \text{Find } v \in \mathrm{H}^2_0(\Omega) \text{ such that:} \\ \underbrace{\int_{\Omega} \sigma \Delta v \Delta v'}_{a(v,v')} = \underbrace{\langle f, v' \rangle_{\Omega}}_{\ell(v')}, \quad \forall v' \in \mathrm{H}^2_0(\Omega). \end{array} }_{\ell(v')}$$

• We define $\sigma = (1 - n^2)^{-1}$ and we focus on the principal part:

$$(\mathscr{F}_V) \mid \underbrace{ \begin{array}{l} \text{Find } v \in \mathrm{H}^2_0(\Omega) \text{ such that:} \\ \underbrace{\int_{\Omega} \sigma \Delta v \Delta v'}_{a(v,v')} = \underbrace{\langle f, v' \rangle_{\Omega}}_{\ell(v')}, \quad \forall v' \in \mathrm{H}^2_0(\Omega). \end{array} }_{\ell(v')}$$

 \succ

Message: The operators $\Delta(\sigma\Delta \cdot) : \mathrm{H}_{0}^{2}(\Omega) \to \mathrm{H}^{-2}(\Omega)$ and $\operatorname{div}(\sigma\nabla \cdot) : \mathrm{H}_{0}^{1}(\Omega) \to \mathrm{H}^{-1}(\Omega)$ have very different properties.

• We define $\sigma = (1 - n^2)^{-1}$ and we focus on the principal part:

$$(\mathscr{F}_V) \mid \underbrace{ \begin{array}{l} \text{Find } v \in \mathrm{H}^2_0(\Omega) \text{ such that:} \\ \underbrace{\int_{\Omega} \sigma \Delta v \Delta v'}_{a(v,v')} = \underbrace{\langle f, v' \rangle_{\Omega}}_{\ell(v')}, \quad \forall v' \in \mathrm{H}^2_0(\Omega). \end{array} }_{\ell(v')}$$

 \succ

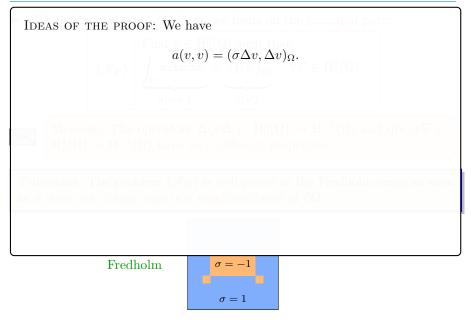
Message: The operators $\Delta(\sigma\Delta\cdot) : \mathrm{H}_0^2(\Omega) \to \mathrm{H}^{-2}(\Omega)$ and $\operatorname{div}(\sigma\nabla\cdot) : \mathrm{H}_0^1(\Omega) \to \mathrm{H}^{-1}(\Omega)$ have very different properties.

THEOREM. The problem (\mathscr{F}_V) is well-posed in the Fredholm sense as soon as σ does not change sign in a neighbourhood of $\partial\Omega$.

Fredholm

$$\sigma = -1$$

 $\sigma = 1$



IDEAS OF THE PROOF: We have

$$a(v,v) = (\sigma \Delta v, \Delta v)_{\Omega}.$$

We would like to build $T: H_0^2(\Omega) \to H_0^2(\Omega)$ such that $\Delta(Tv) = \sigma^{-1} \Delta v$

Message: The operators $\Delta(\sigma \Delta \cdot) : \mathrm{H}^{2}_{0}(\Omega) \to \mathrm{H}^{-2}(\Omega)$ and div $(\sigma \nabla \cdot) : \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{-1}(\Omega)$ have very different properties.

THEOREM. The problem (\mathscr{F}_V) is well-posed in the Fredholm sense as soon as σ does not change sign in a neighbourhood of $\partial\Omega$.

Fredholm

IDEAS OF THE PROOF: We have

$$a(v,v) = (\sigma \Delta v, \Delta v)_{\Omega}.$$

We would like to build $\mathbf{T}: \mathrm{H}^{2}_{0}(\Omega) \to \mathrm{H}^{2}_{0}(\Omega)$ such that $\Delta(\mathbf{T}v) = \sigma^{-1}\Delta v$

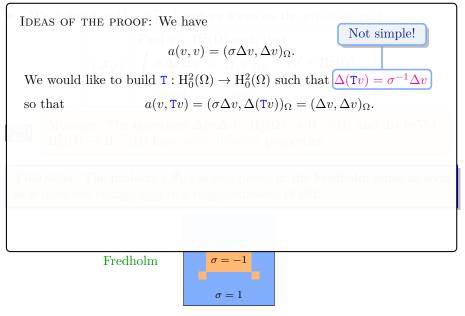
so that
$$a(v, \mathbf{T}v) = (\sigma \Delta v, \Delta(\mathbf{T}v))_{\Omega} = (\Delta v, \Delta v)_{\Omega}.$$

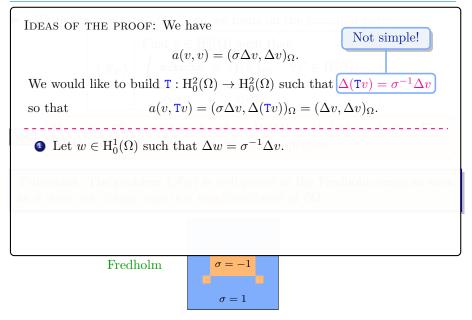
Message: The operators $\Delta(\sigma \Delta \cdot) : \mathrm{H}^{2}_{0}(\Omega) \to \mathrm{H}^{-2}(\Omega)$ and div $(\sigma \nabla \cdot) = \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{-1}(\Omega)$ have very different properties.

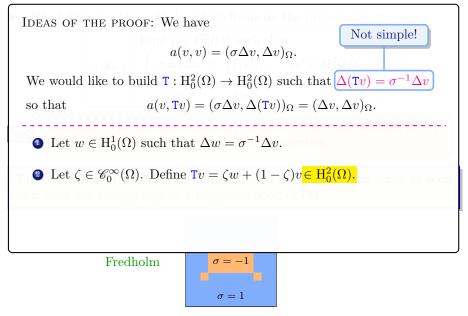
THEOREM. The problem (\mathcal{F}_V) is well-posed in the Fredholm sense as soon as σ does not change sign in a neighbourhood of $\partial\Omega$.

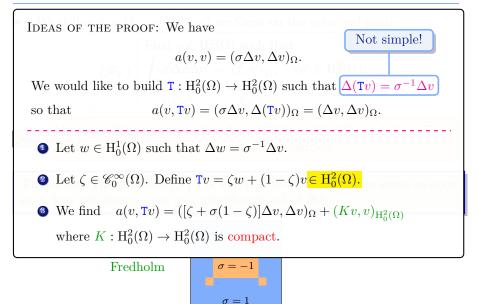
Fredholm

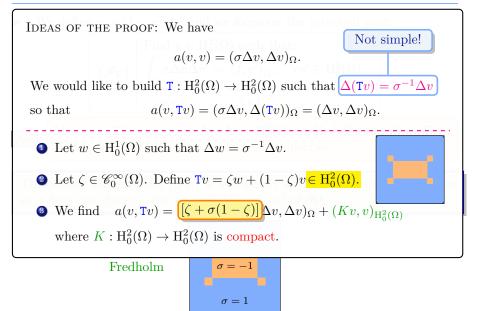
$$\sigma = -1$$
$$\sigma = 1$$

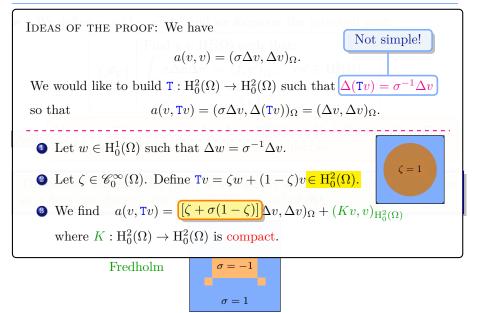












• We define $\sigma = (1 - n^2)^{-1}$ and we focus on the principal part:

$$(\mathscr{F}_V) \mid \underbrace{ \begin{array}{l} \text{Find } v \in \mathrm{H}^2_0(\Omega) \text{ such that:} \\ \underbrace{\int_{\Omega} \sigma \Delta v \Delta v'}_{a(v,v')} = \underbrace{\langle f, v' \rangle_{\Omega}}_{\ell(v')}, \quad \forall v' \in \mathrm{H}^2_0(\Omega). \end{array} }_{\ell(v')}$$

 \succ

Message: The operators $\Delta(\sigma\Delta\cdot) : \mathrm{H}_{0}^{2}(\Omega) \to \mathrm{H}^{-2}(\Omega)$ and $\operatorname{div}(\sigma\nabla\cdot) : \mathrm{H}_{0}^{1}(\Omega) \to \mathrm{H}^{-1}(\Omega)$ have very different properties.

THEOREM. The problem (\mathscr{F}_V) is well-posed in the Fredholm sense as soon as σ does not change sign in a neighbourhood of $\partial\Omega$.

Fredholm

$$\sigma = -1$$

 $\sigma = 1$

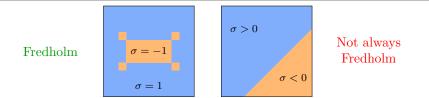
• We define $\sigma = (1 - n^2)^{-1}$ and we focus on the principal part:

$$(\mathscr{F}_V) \mid \underbrace{ \begin{array}{l} \text{Find } v \in \mathrm{H}^2_0(\Omega) \text{ such that:} \\ \underbrace{\int_{\Omega} \sigma \Delta v \Delta v'}_{a(v,v')} = \underbrace{\langle f, v' \rangle_{\Omega}}_{\ell(v')}, \quad \forall v' \in \mathrm{H}^2_0(\Omega). \end{array} }_{\ell(v')}$$

 \succ

Message: The operators $\Delta(\sigma\Delta\cdot) : \mathrm{H}_{0}^{2}(\Omega) \to \mathrm{H}^{-2}(\Omega)$ and $\operatorname{div}(\sigma\nabla\cdot) : \mathrm{H}_{0}^{1}(\Omega) \to \mathrm{H}^{-1}(\Omega)$ have very different properties.

... but (\mathscr{F}_V) can be ill-posed (not Fredholm) when σ changes sign "on $\partial \Omega$ ".

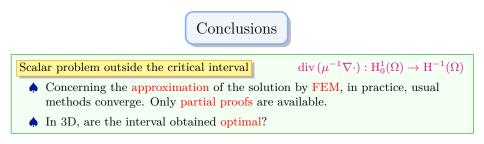


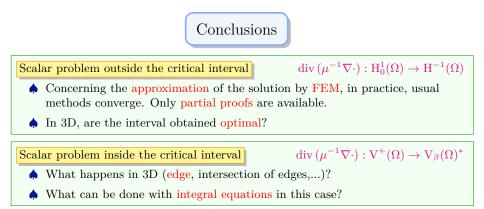
1 Scalar problem: variational techniques

2 Scalar problem: a new functional framework in the critical interval

3 Maxwell's equations

Interior Transmission Eigenvalue Problem





Conclusions

Scalar problem outside the critical interval

 $\operatorname{div}\left(\mu^{-1}\nabla\cdot\right):\operatorname{H}^{1}_{0}(\Omega)\to\operatorname{H}^{-1}(\Omega)$

♠ Concerning the approximation of the solution by FEM, in practice, usual methods converge. Only partial proofs are available.

 $\blacklozenge~$ In 3D, are the interval obtained optimal?

Scalar problem inside the critical interval

$$\operatorname{div}(\mu^{-1}\nabla\cdot): \operatorname{V}^+(\Omega) \to \operatorname{V}_\beta(\Omega)^*$$

♦ What happens in 3D (edge, intersection of edges,...)?

♠ What can be done with integral equations in this case?

Maxwell's equations

$$\operatorname{curl}(\mu^{-1}\operatorname{curl}\cdot): \mathbf{X}_N(\varepsilon) \to \mathbf{X}_N(\varepsilon)^*$$

Convergence of an edge element method has to be studied.

• We also have developed new functional frameworks inside the critical interval. How to approximate the solution in that cases?

Conclusions

Scalar problem outside the critical interval

 $\operatorname{div}\left(\mu^{-1}\nabla\cdot\right):\operatorname{H}^1_0(\Omega)\to\operatorname{H}^{-1}(\Omega)$

♠ Concerning the approximation of the solution by FEM, in practice, usual methods converge. Only partial proofs are available.

 $\blacklozenge~$ In 3D, are the interval obtained optimal?

Scalar problem inside the critical interval

$$\operatorname{div}(\mu^{-1}\nabla\cdot): \operatorname{V}^+(\Omega) \to \operatorname{V}_\beta(\Omega)^*$$

♦ What happens in 3D (edge, intersection of edges,...)?

♠ What can be done with integral equations in this case?

Maxwell's equations

$$\operatorname{\mathbf{curl}}(\mu^{-1}\operatorname{\mathbf{curl}}\cdot):\mathbf{X}_N(\varepsilon)\to\mathbf{X}_N(\varepsilon)^*$$

• Convergence of an edge element method has to be studied.

• We also have developed new functional frameworks inside the critical interval. How to approximate the solution in that cases?

Interior Transmission Eigenvalue Problem

 $\Delta(\sigma\Delta\cdot):\mathrm{H}^2_0(\Omega)\to\mathrm{H}^{-2}(\Omega)$

♠ How to compute the transmission eigenvalues when there are oscillating singularities? (coll. with F. Monteghetti).

38 / 40

• The new model in the critical interval raises many questions related to the physics of plasmonics and metamaterials.

Can we observe this black-hole effect in practice? For rounded corners, we showed that the solution is unstable with respect to the rounding parameter...

♦ The case $\kappa_{\sigma} = -1$ (the graal for applications) has still to be studied. New frameworks have been proposed (Joly-Vinoles, Nguyen, Benhellal-Pankrashkin,...): ⇒ how to approximate the solutions?

For metamaterials, can we reconsider the homogenization process to take into account interfacial phenomena?

 \Rightarrow See the work of Claeys-Fliss-Vinoles.

• In practice ε and μ depend on ω .

What happens for the spectral problems? in time-domain regime? Is the limiting amplitude principle still valid?

 \Rightarrow See the works of Hazard-Paolantoni, Cassier-Joly-Kachanovska.

Thank you for your attention!!!