A bilaplacian problem with a sign-changing coefficient

Lucas Chesnel†, Jérémy Firozaly‡

†Inverse Problems Research Group, Aalto University, Helsinki, Finland
‡POems team, Ensta, Paris, France

University of Helsinki, March 5th-7th, 2013
Introduction: the ITEP

- Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^2: we look for an incident wave that does not scatter.
Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^2: we look for an incident wave that does not scatter.

\[\Delta u + k^2 u = 0 \]

\[\Delta u + k^2 n^2 u = 0 \]
Introduce the ITEP

- Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^2: we look for an incident wave that does not scatter.

\[\Delta u + k^2 u = 0 \]

\[\Omega \]

\[\Delta u + k^2 n^2 u = 0 \]

- This leads to study the Interior Transmission Eigenvalue Problem:
 - u is the total field in Ω
 - $\Delta u + k^2 n^2 u = 0$ in Ω
Introduction: the ITEP

- Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^2: we look for an incident wave that does not scatter.

\[\Delta u + k^2 u = 0 \]
\[\Delta u + k^2 n^2 u = 0 \]

- This leads to study the **Interior Transmission Eigenvalue Problem**:
 - u is the total field in Ω
 - w is the incident field in Ω

\[
\begin{align*}
\Delta u + k^2 n^2 u &= 0 \quad \text{in } \Omega \\
\Delta w + k^2 w &= 0 \quad \text{in } \Omega
\end{align*}
\]
Introduction: the ITEP

- Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^2: we look for an incident wave that does not scatter.

\[\Delta u + k^2 u = 0 \]
\[\Delta u + k^2 n^2 u = 0 \]
\[\Delta w + k^2 w = 0 \]

- This leads to study the Interior Transmission Eigenvalue Problem:

\[u \text{ is the total field in } \Omega \]
\[w \text{ is the incident field in } \Omega \]

\[
\begin{align*}
\Delta u + k^2 n^2 u &= 0 \quad \text{in } \Omega \\
\Delta w + k^2 w &= 0 \quad \text{in } \Omega \\
[u] &= 0 \quad \text{on } \partial \Omega \\
[n \cdot \nabla u] &= 0 \quad \text{on } \partial \Omega \\
\end{align*}
\]

BCs?

\[u = w + 0 \text{ in } \mathbb{R}^2 \setminus \Omega. \]
Introduction: the ITEP

- Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^2: we look for an incident wave that does not scatter.

This leads to study the Interior Transmission Eigenvalue Problem:

- u is the total field in Ω
- w is the incident field in Ω

\[
\begin{align*}
\Delta u + k^2 u &= 0 & \text{in } \Omega \\
\Delta w + k^2 w &= 0 & \text{in } \Omega \\
u \cdot \nabla u &= w & \text{on } \partial \Omega \\
u \cdot \nabla w &= 0 & \text{on } \partial \Omega.
\end{align*}
\]

BCs?

\[
\begin{align*}
[u] &= 0 & \text{on } \partial \Omega \\
[\nu \cdot \nabla u] &= 0 & \text{on } \partial \Omega \\
\end{align*}
\]

$u = w + 0$ in $\mathbb{R}^2 \setminus \Omega$.
Introduction: the ITEP

- Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^2: we look for an incident wave that does not scatter.

This leads to study the Interior Transmission Eigenvalue Problem:

- u is the total field in Ω
- w is the incident field in Ω

\[
\begin{align*}
\Delta u + k^2 u &= 0 \quad \text{in } \Omega \\
\Delta w + k^2 w &= 0 \quad \text{in } \Omega \\
u \cdot \nabla u - \nu \cdot \nabla w &= 0 \quad \text{on } \partial \Omega.
\end{align*}
\]
Introduction: the ITEP

- Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^2: we look for an incident wave that does not scatter.

This leads to study the Interior Transmission Eigenvalue Problem:

- u is the total field in Ω
- w is the incident field in Ω

\[
\begin{align*}
\Delta u + k^2 u &= 0 \quad \text{in } \Omega \\
\Delta w + k^2 w &= 0 \quad \text{in } \Omega \\
u \cdot \nabla u - \nu \cdot \nabla w &= 0 \quad \text{on } \partial \Omega
\end{align*}
\]

Definition. Values of $k \in \mathbb{C}$ for which this problem has a nontrivial solution (u, w) are called transmission eigenvalues.
Introduction: the ITEP

- Scattering in time-harmonic regime by a penetrable inclusion Ω (coefficient n) in \mathbb{R}^2: we look for an incident wave that does not scatter.

\[\Delta u + k^2 n^2 u = 0 \quad \text{in } \Omega \]

- This leads to study the Interior Transmission Eigenvalue Problem:

 u is the total field in Ω \quad w is the incident field in Ω

\[
\begin{align*}
\Delta u + k^2 n^2 u &= 0 \quad \text{in } \Omega \\
\Delta w + k^2 w &= 0 \quad \text{in } \Omega \\
\quad u - w &= 0 \quad \text{on } \partial \Omega \\
\nu \cdot \nabla u - \nu \cdot \nabla w &= 0 \quad \text{on } \partial \Omega.
\end{align*}
\]

Definition. Values of $k \in \mathbb{C}$ for which this problem has a nontrivial solution (u, w) are called transmission eigenvalues.
Introduction: a bilaplacian problem

- Introducing \(v = u - w \) the scattered field inside \(\Omega \)

- One of the goals is to prove that the set of transmission eigenvalues is at most discrete.

- This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Païvärinta, Rynne, Sleeman, Sylvester...)

- What happens when \(1 - n^2 \) changes sign?

- Transmission problem with a sign-changing coefficient

- We define \(\sigma = (1 - n^2)^{-1} \) and we focus on the principal part:

\[
\int_{\Omega} \sigma \Delta v \Delta v' = \langle f, v' \rangle_{\Omega}, \quad \forall v' \in H_{20}(\Omega).
\]
Introducing $v = u - w$ the scattered field inside Ω

- There holds $\Delta u + k^2 n^2 u = 0$ and $\Delta w + k^2 w = 0$ in Ω.

One of the goals is to prove that the set of transmission eigenvalues is at most discrete.

This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Païvärinta, Rynne, Sleeman, Sylvester...)

What happens when $1 - n^2$ changes sign?

Transmission problem with a sign-changing coefficient

We define $\sigma = (1 - n^2)^{-1}$ and we focus on the principal part:

Find $v \in H^2_0(\Omega)$ such that:

$$\int_{\Omega} \sigma \Delta v \Delta v' = \langle f, v' \rangle_{\Omega}, \quad \forall \ v' \in H^2_0(\Omega).$$
Introduction: a bilaplacian problem

Introducing \(v = u - w \) the scattered field inside \(\Omega \)

- There holds \(\Delta u + k^2 n^2 u = 0 \) and \(\Delta w + k^2 w = 0 \) in \(\Omega \).
- We deduce \(\Delta v + k^2 n^2 v = k^2 (1 - n^2) w \) in \(\Omega \).

One of the goals is to prove that the set of transmission eigenvalues is at most discrete.

This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Païvärinta, Rynne, Sleeman, Sylvester...)

What happens when \(1 - n^2 \) changes sign?

Transmission problem with a sign-changing coefficient

We define \(\sigma = (1 - n^2)^{-1} \) and we focus on the principal part:

Find \(v \in H^2_0(\Omega) \) such that:

\[
\int_{\Omega} \sigma \Delta v \Delta v' = \langle f, v' \rangle_{\Omega}, \quad \forall v' \in H^2_0(\Omega).
\]
Introduction: a bilaplacian problem

- Introducing $v = u - w$ the scattered field inside Ω

- There holds $\Delta u + k^2 n^2 u = 0$ and $\Delta w + k^2 w = 0$ in Ω.
- We deduce $\Delta v + k^2 n^2 v = k^2 (1 - n^2) w$ in Ω.
- This implies

\[
(\Delta + k^2) \left(\frac{1}{1 - n^2} (\Delta v + k^2 n^2 v) \right) = 0 \quad \text{in } \Omega
\]
\[
v = \nu \cdot \nabla v = 0 \quad \text{on } \partial \Omega.
\]
Introducing \(v = u - w \) the scattered field inside \(\Omega \), we can write an equivalent formulation:

Find \((k, v) \in \mathbb{C} \times H^2_0(\Omega) \setminus \{0\}\) such that:

\[
\int_{\Omega} \frac{1}{1 - n^2} (\Delta v + k^2 n^2 v)(\Delta v' + k^2 v') = 0, \quad \forall v' \in H^2_0(\Omega).
\]
Introduction: a bilaplacian problem

Introducing \(v = u - w \) the scattered field inside \(\Omega \), we can write an equivalent formulation:

\[
\text{Find } (k, v) \in \mathbb{C} \times H^2_0(\Omega) \setminus \{0\} \text{ such that:}
\]

\[
\int_{\Omega} \frac{1}{1 - n^2} (\Delta v + k^2 n^2 v)(\Delta v' + k^2 v') = 0, \quad \forall v' \in H^2_0(\Omega).
\]

One of the goals is to prove that the set of transmission eigenvalues is at most discrete.
Introduction: a bilaplacian problem

- Introducing \(v = u - w \) the scattered field inside \(\Omega \), we can write an equivalent formulation:

\[
\int_{\Omega} \frac{1}{1 - n^2} (\Delta v + k^2 n^2 v) (\Delta v' + k^2 v') = 0, \quad \forall v' \in H_0^2(\Omega).
\]

- One of the goals is to prove that the set of transmission eigenvalues is at most discrete.
- This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Païvärinta, Rynne, Sleeman, Sylvester...) when \(n > 1 \) on \(\Omega \) or \(n < 1 \) on \(\Omega \).
Introduction: a bilaplacian problem

- Introducing \(v = u - w \) the scattered field inside \(\Omega \), we can write an equivalent formulation:

\[
\begin{align*}
\text{Find } (k, v) \in \mathbb{C} \times H^2_0(\Omega) \setminus \{0\} \text{ such that:} \\
\int_{\Omega} \frac{1}{1 - n^2} (\Delta v + k^2 n^2 v)(\Delta v' + k^2 v') = 0, \quad \forall v' \in H^2_0(\Omega).
\end{align*}
\]

- One of the goals is to prove that the set of transmission eigenvalues is at most discrete.

- This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Paivärinta, Rynne, Sleeman, Sylvester...) when \(n > 1 \) on \(\Omega \) or \(n < 1 \) on \(\Omega \).

What happens when \(1 - n^2 \) changes sign?
Introduction: a bilaplacian problem

- Introducing \(v = u - w \) the scattered field inside \(\Omega \), we can write an equivalent formulation:

\[
\begin{align*}
\text{Find} \ (k, v) \in \mathbb{C} \times H^2_0(\Omega) \setminus \{0\} \text{ such that:} \\
\int_{\Omega} \frac{1}{1 - n^2} (\Delta v + k^2 n^2 v)(\Delta v' + k^2 v') = 0, \quad \forall v' \in H^2_0(\Omega).
\end{align*}
\]

- One of the goals is to prove that the set of transmission eigenvalues is at most discrete.
- This problem has been widely studied since 1986-1988 (Bellis, Cakoni, Colton, Gintides, Guzina, Haddar, Kirsch, Kress, Monk, Païvärinta, Rynne, Sleeman, Sylvester...) when \(n > 1 \) on \(\Omega \) or \(n < 1 \) on \(\Omega \).

What happens when \(1 - n^2 \) changes sign?

- We define \(\sigma = (1 - n^2)^{-1} \) and we focus on the principal part:

\[
\begin{align*}
\text{Find} \ v \in H^2_0(\Omega) \text{ such that:} \\
\int_{\Omega} \sigma \Delta v \Delta v' = \langle f, v' \rangle_{\Omega}, \quad \forall v' \in H^2_0(\Omega).
\end{align*}
\]
... and more generally, we study the problem:

\[
(P) \quad \text{Find } v \in X \text{ such that: }
\begin{align*}
\int_{\Omega} \sigma \Delta v \Delta v' &= \langle f, v' \rangle_{\Omega}, \\
\underbrace{a(v,v')}_{a(v,v')} + l(v') &= \forall v' \in X.
\end{align*}
\]

The form \(a \) is not coercive. Does well-posedness hold for this problem?
... and more generally, we study the problem:

\[
\begin{align*}
\text{(P)} & \quad \text{Find } v \in X \text{ such that:} \\
& \quad \int_{\Omega} \sigma \Delta v \Delta v' = \langle f, v' \rangle_{\Omega}, \quad \forall v' \in X.
\end{align*}
\]

The form \(a \) is not coercive. Does well-posedness hold for this problem?

1. A bilaplacian problem with mixed boundary conditions I

We study \((P)\) with \(X = H^1_0(\Delta) := \{ v \in H^1_0(\Omega) \mid \Delta v \in L^2(\Omega) \} \).
... and more generally, we study the problem:

\[(P) \quad \text{Find } v \in X \text{ such that:} \]

\[
\int_{\Omega} \sigma \Delta v \Delta v' = \langle f, v' \rangle_{\Omega}, \quad \forall v' \in X.
\]

The form \(a\) is not coercive. Does well-posedness hold for this problem?

1. **A bilaplacian problem with mixed boundary conditions I**

 We study \((P)\) with \(X = \mathcal{H}^1_0(\Delta) := \{v \in \mathcal{H}^1_0(\Omega) \mid \Delta v \in L^2(\Omega)\}\).

2. **A bilaplacian problem with mixed boundary conditions II**

 We study \((P)\) with \(X = \mathcal{H}^1_0(\Omega) \cap \mathcal{H}^2(\Omega)\).
Outline of the talk

... and more generally, we study the problem:

\[\text{(P)} \quad \text{Find } v \in X \text{ such that:} \]
\[\int_{\Omega} \sigma \Delta v \Delta v' = \langle f, v' \rangle_{\Omega}, \quad \forall v' \in X. \]

The form \(a \) is not coercive. Does well-posedness hold for this problem?

1. A bilaplacian problem with mixed boundary conditions I
 We study (P) with \(X = H^1_0(\Delta) := \{ v \in H^1_0(\Omega) \mid \Delta v \in L^2(\Omega) \} \).

2. A bilaplacian problem with mixed boundary conditions II
 We study (P) with \(X = H^1_0(\Omega) \cap H^2(\Omega) \).

3. A bilaplacian problem with Dirichlet boundary conditions
 We study (P) with \(X = H^2_0(\Omega) \).
Reminder: properties of $\text{div}(\sigma \nabla \cdot)$

- In the fields of plasmonic and negative metamaterials, we study:

 $$\mathcal{F} \quad \text{Find } v \in H^1_0(\Omega) \text{ such that:}$$
 $$\int_{\Omega} \sigma \nabla v \cdot \nabla v' = \langle f, v' \rangle_\Omega, \quad \forall v' \in H^1_0(\Omega).$$

- Ω is partitioned into two domains Ω_1 and Ω_2. We assume that $\sigma_1 := \sigma|_{\Omega_1}$ and $\sigma_2 := \sigma|_{\Omega_2}$ are constants.
Reminder: properties of $\text{div} (\sigma \nabla \cdot)$

- In the fields of **plasmonic** and **negative metamaterials**, we study:

 (F) Find $v \in H^1_0(\Omega)$ such that:

 $$
 \int_{\Omega} \sigma \nabla v \cdot \nabla v' = \langle f, v' \rangle_{\Omega}, \quad \forall v' \in H^1_0(\Omega).
 $$

- Ω is partitioned into two domains Ω_1 and Ω_2. We assume that $\sigma_1 := \sigma|_{\Omega_1}$ and $\sigma_2 := \sigma|_{\Omega_2}$ are constants.

 ![Smooth interface](image1)

 ![Interface with a corner](image2)

 ✅ (F) well-posed in the Fredholm sense iff $\kappa_\sigma = \sigma_2/\sigma_1 \neq -1$.

 ✅ (F) well-posed in the Fredholm sense iff $\kappa_\sigma \notin [-I; -1/I]$, $I = (2\pi - \vartheta)/\vartheta$.

Well-posedness depends on the smoothness of the interface and on σ (c.f. talks given by X. Claeys and A.-S. Bonnet-Ben Dhia).
Reminder: properties of $\text{div} (\sigma \nabla \cdot)$

- In the fields of plasmonic and negative metamaterials, we study:

$$\text{Find } v \in H^1_0(\Omega) \text{ such that:}$$

$$\int_{\Omega} \sigma \nabla v \cdot \nabla v' = \langle f, v' \rangle_{\Omega}, \quad \forall v' \in H^1_0(\Omega).$$

- Ω is partitioned into two domains Ω_1 and Ω_2. We assume that $\sigma_1 := \sigma|_{\Omega_1}$ and $\sigma_2 := \sigma|_{\Omega_2}$ are constants.

Smooth interface

$$\sigma_2 < 0 \quad \sigma_1 > 0$$

Interface with a corner

$$\sigma_2 < 0 \quad \sigma_1 > 0$$

✓ \mathcal{F} well-posed in the Fredholm sense iff $\kappa_\sigma = \sigma_2/\sigma_1 \neq -1$.

✓ \mathcal{F} well-posed in the Fredholm sense iff $\kappa_\sigma \notin [-I; -1/I]$, $I = (2\pi - \theta)/\theta$.

Well-posedness depends on the smoothness of the interface and on σ (c.f. talks given by X. Claeys and A.-S. Bonnet-Ben Dhia).
1 A bilaplacian problem with mixed boundary conditions I

2 A bilaplacian problem with mixed boundary conditions II

3 A bilaplacian problem with Dirichlet boundary conditions
Mixed Boundary Conditions I

Let T be an isomorphism of X.

Find $u \in X$ such that:

\[
(P) \quad a(u, v) = l(v), \quad \forall v \in X.
\]

Theorem. Assume that $\sigma \in L^\infty(\Omega)$ is such that $\sigma^{-1} \in L^\infty(\Omega)$. Then, the operator $A: H_{10}(\Delta) \to H_{10}(\Delta)$ associated with (P) is an isomorphism.

The change of sign of σ is not a problem!
Mixed Boundary Conditions I

Let T be an isomorphism of X.

\[(P) \iff (P^T)\]

Find $u \in X$ such that:

$$a(u, Tv) = l(Tv), \ \forall v \in X.$$
Mixed Boundary Conditions I

Let T be an isomorphism of X.

\[(\mathcal{P}) \iff (\mathcal{P}^T) \mid \text{Find } u \in X \text{ such that: } a(u, Tv) = l(Tv), \forall v \in X.\]

Goal: Find T such that a is T-coercive: $\int_{\Omega} \sigma \Delta u \Delta (Tu) \geq C \| u \|^2_X$.

In this case, Lax-Milgram $\Rightarrow (\mathcal{P}^T)$ (and so (\mathcal{P})) well-posed.
Mixed Boundary Conditions I

Let T be an isomorphism of X.

\[(\mathcal{P}) \iff (\mathcal{P}^T)\mid \text{Find } u \in X \text{ such that: } a(u, T v) = l(T v), \forall v \in X.\]

Goal: Find T such that a is T-coercive:
\[\int_{\Omega} \sigma \Delta u \Delta (T u) \geq C \|u\|_X^2.\]

In this case, Lax-Milgram \Rightarrow (\mathcal{P}^T) (and so (\mathcal{P})) well-posed.

In this section, $X = H^1_0(\Delta)$.

1. Define $T u \in H^1_0(\Omega)$ the function such that $\Delta(T u) = \sigma^{-1}\Delta u$.

Mixed Boundary Conditions I

Let T be an isomorphism of X.

$$(P) \Leftrightarrow (P^T) \bigg| \begin{align*}
\text{Find } u \in X \text{ such that: } \\
a(u,Tv) &= l(Tv), \forall v \in X.
\end{align*}$$

Goal: Find T such that a is T-coercive:
$$\int_{\Omega} \sigma \Delta u \Delta (Tu) \geq C \|u\|^2_X.$$

In this case, Lax-Milgram $\Rightarrow (P^T)$ (and so (P)) well-posed.

In this section, $X = H^1_0(\Delta)$.

1. Define $Tu \in H^1_0(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}\Delta u$.
2. T is an isomorphism of $H^1_0(\Delta)$.
Mixed Boundary Conditions I

Let T be an isomorphism of X.

\[(\mathcal{P}) \iff (\mathcal{P}^T) \quad \text{Find } u \in X \text{ such that:} \]
\[a(u, Tv) = l(Tv), \forall v \in X.\]

Goal: Find T such that a is T-coercive:
\[
\int_{\Omega} \sigma \Delta u \Delta (Tu) \geq C \|u\|_X^2.
\]

In this case, Lax-Milgram $\Rightarrow (\mathcal{P}^T)$ (and so (\mathcal{P})) well-posed.

In this section, $X = H^1_0(\Delta)$.

1. Define $Tu \in H^1_0(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}\Delta u$.
2. T is an isomorphism of $H^1_0(\Delta)$.
3. One obtains $a(u, Tu) = \int_{\Omega} \sigma \Delta u \Delta (Tu)$.
Mixed Boundary Conditions I

Let T be an isomorphism of X.

$(\mathcal{P}) \iff (\mathcal{P}^T) \quad \text{Find } u \in X \text{ such that: } a(u, T v) = l(T v), \forall v \in X.$

Goal: Find T such that a is T-coercive: $\int_{\Omega} \sigma \Delta u \Delta(T u) \geq C \|u\|^2_X$.

In this case, Lax-Milgram $\Rightarrow (\mathcal{P}^T)$ (and so (\mathcal{P})) well-posed.

In this section, $X = H^1_0(\Delta)$.

1. Define $T u \in H^1_0(\Omega)$ the function such that $\Delta(T u) = \sigma^{-1} \Delta u$.
2. T is an isomorphism of $H^1_0(\Delta)$.
3. One obtains $a(u, T u) = \int_{\Omega} \sigma \Delta u \Delta(T u) = \|\Delta u\|^2_\Omega$.
Mixed Boundary Conditions I

Let T be an isomorphism of X.

$(P) \iff (P^T)$

Find $u \in X$ such that:

$$a(u, Tv) = l(Tv), \forall v \in X.$$

Goal: Find T such that a is T-coercive:

$$\int_{\Omega} \sigma \Delta u \Delta(Tu) \geq C \|u\|^2_X.$$

In this case, Lax-Milgram $\Rightarrow (P^T)$ (and so (P)) well-posed.

In this section, $X = H_0^1(\Delta)$.

1. Define $Tu \in H_0^1(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}\Delta u$.
2. T is an isomorphism of $H_0^1(\Delta)$.
3. One obtains $a(u, Tu) = \int_{\Omega} \sigma \Delta u \Delta(Tu) = \|\Delta u\|^2_{\Omega}$.

Theorem. Assume that $\sigma \in L^\infty(\Omega)$ is such that $\sigma^{-1} \in L^\infty(\Omega)$. Then, the operator $A : H_0^1(\Delta) \to H_0^1(\Delta)$ associated with (P) is an isomorphism.
Mixed Boundary Conditions I

Let T be an isomorphism of X.

$$(\mathcal{P}) \iff (\mathcal{P}^T) \quad\text{Find } u \in X \text{ such that: } a(u, Tv) = l(Tv), \forall v \in X.$$

Goal: Find T such that a is T-coercive:

$$\int_\Omega \sigma \Delta u \Delta (Tu) \geq C \|u\|_X^2.$$

In this case, Lax-Milgram $\Rightarrow (\mathcal{P}^T)$ (and so (\mathcal{P})) well-posed.

In this section, $X = H^1_0(\Delta)$.

1. Define $Tu \in H^1_0(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1} \Delta u$.

2. T is an isomorphism of $H^1_0(\Delta)$.

3. One obtains $a(u, Tu) = \int_\Omega \sigma \Delta u \Delta (Tu) = \|\Delta u\|_\Omega^2$.

Theorem. Assume that $\sigma \in L^\infty(\Omega)$ is such that $\sigma^{-1} \in L^\infty(\Omega)$. Then, the operator $A : H^1_0(\Delta) \to H^1_0(\Delta)$ associated with (\mathcal{P}) is an isomorphism.
1 A bilaplacian problem with mixed boundary conditions I

2 A bilaplacian problem with mixed boundary conditions II

3 A bilaplacian problem with Dirichlet boundary conditions
Mixed Boundary Conditions II

In this section, \(X = H_0^1(\Omega) \cap H^2(\Omega) \).

\[
(\mathcal{P}) \quad \text{Find } u \in H_0^1(\Omega) \cap H^2(\Omega) \text{ such that:}
\]

\[
\int_{\Omega} \sigma \Delta u \Delta v = l(v), \quad \forall v \in H_0^1(\Omega) \cap H^2(\Omega).
\]
Mixed Boundary Conditions II

In this section, $X = H^1_0(\Omega) \cap H^2(\Omega)$.

\[(\mathcal{P}) \iff (\mathcal{P}^T)\]

Find $u \in H^1_0(\Omega) \cap H^2(\Omega)$ such that:

$$\int_{\Omega} \sigma \Delta u \Delta(Tv) = l(Tv), \forall v \in H^1_0(\Omega) \cap H^2(\Omega).$$
Mixed Boundary Conditions II

In this section, \(X = H^1_0(\Omega) \cap H^2(\Omega) \).

\[
(P) \iff (P^T) \quad \text{Find } u \in H^1_0(\Omega) \cap H^2(\Omega) \text{ such that: }
\]
\[
\int_\Omega \sigma \Delta u \Delta (Tv) = l(Tv), \quad \forall v \in H^1_0(\Omega) \cap H^2(\Omega).
\]

1. Define \(Tu \in H^1_0(\Omega) \) the function such that \(\Delta(Tu) = \sigma^{-1} \Delta u \).
Mixed Boundary Conditions II

In this section, \(X = H^1_0(\Omega) \cap H^2(\Omega) \).

\[
(P) \iff (P^T) \quad \text{Find } u \in H^1_0(\Omega) \cap H^2(\Omega) \text{ such that: }
\int_{\Omega} \sigma \Delta u \Delta(Tv) = l(Tv), \forall v \in H^1_0(\Omega) \cap H^2(\Omega).
\]

1. Define \(Tu \in H^1_0(\Omega) \) the function such that \(\Delta(Tu) = \sigma^{-1}\Delta u \).

2. Assume that \(\Omega \) is convex or of class \(C^2 \).
Mixed Boundary Conditions II

In this section, \(X = H^1_0(\Omega) \cap H^2(\Omega) \).

\[(\mathcal{P}) \iff (\mathcal{P}^T) \quad \text{Find } u \in H^1_0(\Omega) \cap H^2(\Omega) \text{ such that:} \]

\[
\int_{\Omega} \sigma \Delta u \Delta(Tv) = l(Tv), \quad \forall v \in H^1_0(\Omega) \cap H^2(\Omega).
\]

1. Define \(Tu \in H^1_0(\Omega) \) the function such that \(\Delta(Tu) = \sigma^{-1} \Delta u \).
2. Assume that \(\Omega \) is convex or of class \(C^2 \). Then, \(T \) is an isomorphism of \(H^1_0(\Omega) \cap H^2(\Omega) \).
3. One obtains \(a(u, Tu) = \int_{\Omega} \sigma \Delta u \Delta(Tu) = \| \Delta u \|_{\Omega}^2 \).

Theorem. Assume that \(\sigma \in L^\infty(\Omega) \) is such that \(\sigma^{-1} \in L^\infty(\Omega) \). Assume that \(\Omega \) is convex or of class \(C^2 \). Then, the operator \(A : H^1_0(\Omega) \cap H^2(\Omega) \to H^1_0(\Omega) \cap H^2(\Omega) \) associated with \((\mathcal{P}) \) is an isomorphism.
Mixed Boundary Conditions II

In this section, \(X = H^1_0(\Omega) \cap H^2(\Omega) \).

\[
(\mathcal{P}) \iff (\mathcal{P}^T) \quad \text{Find } u \in H^1_0(\Omega) \cap H^2(\Omega) \text{ such that:} \\
\int_{\Omega} \sigma \Delta u \Delta(Tv) = l(Tv), \forall v \in H^1_0(\Omega) \cap H^2(\Omega).
\]

1. Define \(Tu \in H^1_0(\Omega) \) the function such that \(\Delta(Tu) = \sigma^{-1} \Delta u \).

2. Assume that \(\Omega \) is convex or of class \(\mathcal{C}^2 \). Then, \(T \) is an isomorphism of \(H^1_0(\Omega) \cap H^2(\Omega) \).

3. One obtains \(a(u, Tu) = \int_{\Omega} \sigma \Delta u \Delta(Tu) = \| \Delta u \|_2^2 \).

Theorem. Assume that \(\sigma \in L^\infty(\Omega) \) is such that \(\sigma^{-1} \in L^\infty(\Omega) \). Assume that \(\Omega \) is convex or of class \(\mathcal{C}^2 \). Then, the operator \(A : H^1_0(\Omega) \cap H^2(\Omega) \to H^1_0(\Omega) \cap H^2(\Omega) \) associated with \((\mathcal{P}) \) is an isomorphism.

What happens if \(\Omega \) has a reentrant corner?
i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ.

Remark 1

Define $T u \in H^1_0(\Omega)$ the function such that $\Delta(T u) = \sigma - 1 (\Delta u - a \zeta)$ with $a = (\sigma - 1 \Delta u, \zeta)_{\Omega} / (\sigma - 1 \zeta, \zeta)_{\Omega}$ (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers).

Remark 2

One can prove that T is an isomorphism of $H^1_0(\Omega) \setminus H^2(\Omega)$.

Remark 3

One obtains $a(u, Tu) = \int_\Omega \sigma \Delta u \Delta(T u) = \int_\Omega \Delta u (\Delta u - a \zeta) = \| \Delta u \|^2_{\Omega}$.

Theorem.

Assume that $\sigma \in L^\infty(\Omega)$ is such that $\sigma - 1 \in L^\infty(\Omega)$. Introduce $A : H^1_0(\Omega) \setminus H^2(\Omega) \to H^1_0(\Omega) \setminus H^2(\Omega)$ the operator associated with (P). If $(\sigma - 1 \zeta, \zeta)_{\Omega} \neq 0$, then A is an isomorphism. If $(\sigma - 1 \zeta, \zeta)_{\Omega} = 0$, then A is Fredholm of index zero and $\text{dim ker } A = 1$.

Remark 4

Polygonal $\partial \Omega$ with one reentrant corner.
i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ.

ii) $\varphi \in H^1_0(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_\Omega = 0$.

(Theorem)

Assume that $\sigma \in L^\infty(\Omega)$ is such that $\sigma - 1 \in L^\infty(\Omega)$. Introduce $A : H^1_0(\Omega) \setminus H^2(\Omega) \rightarrow H^1_0(\Omega) \setminus H^2(\Omega)$ the operator associated with (P).

If $(\sigma - 1 \zeta, \zeta)_\Omega \neq 0$, then A is an isomorphism.

If $(\sigma - 1 \zeta, \zeta)_\Omega = 0$, then A is Fredholm of index zero and $\dim \ker A = 1$.

Remark 1: Define $T u \in H^1_0(\Omega)$ the function such that $\Delta(T u) = \sigma - 1 (\Delta u - a \zeta)$ with $a = (\sigma - 1 \Delta u, \zeta)_\Omega / (\sigma - 1 \zeta, \zeta)_\Omega$.

(c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

Remark 2: One can prove that T is an isomorphism of $H^1_0(\Omega)$.

Remark 3: One obtains $a (u, T u) = \int_\Omega \sigma \Delta u \Delta(T u) = \int_\Omega \Delta u (\Delta u - a \zeta) = \|\Delta u\|_\Omega^2$.

Theorem.
i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ.

ii) $\varphi \in H^1_0(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_\Omega = 0$.

1 Define $Tu \in H^1_0(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1} \Delta u$
Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ.

ii) $\varphi \in H^1_0(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_\Omega = 0$.

1. Define $Tu \in H^1_0(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}(\Delta u - a\zeta)$ with $a = \ldots$

 (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)
Polygonal \(\partial \Omega \) with one reentrant corner

i) The space of functions \(\psi \in L^2(\Omega) \) s.t \(\Delta \psi = 0 \) in \(\Omega \) and \(\psi = 0 \) on \(\partial \Omega \), is of dimension 1, spanned by some \(\zeta \).

ii) \(\varphi \in H^1_0(\Omega) \) s.t. \(\Delta \varphi \in L^2(\Omega) \) is in \(H^2(\Omega) \) iff \((\Delta \varphi, \zeta)_\Omega = 0 \).

1 Define \(Tu \in H^1_0(\Omega) \) the function such that \(\Delta(Tu) = \sigma^{-1}(\Delta u - a\zeta) \) with \(a = \) (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

We want \(Tu \in H^2(\Omega) \)
Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ.

ii) $\varphi \in H^1_0(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_\Omega = 0$.

1 Define $Tu \in H^1_0(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}((\Delta u - a\zeta)$ with $a = (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)$

We want $Tu \in H^2(\Omega) \Leftrightarrow (\Delta(Tu), \zeta)_\Omega = 0$
Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in L^2(\Omega)$ s.t. $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ.

ii) $\varphi \in H^1_0(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_\Omega = 0$.

1. Define $Tu \in H^1_0(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}(\Delta u - a\zeta)$ with $a = (\sigma^{-1}(\Delta u - a\zeta), \zeta)_\Omega / (\sigma^{-1} \zeta, \zeta)_\Omega$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

We want $Tu \in H^2(\Omega) \iff (\Delta(Tu), \zeta)_\Omega = 0$

$\iff (\sigma^{-1}(\Delta u - a\zeta), \zeta)_\Omega = 0$
Polygonal $\partial \Omega$ with one reentrant corner

1. The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ.

2. $\varphi \in H^1_0(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_\Omega = 0$.

Define $Tu \in H^1_0(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}(\Delta u - a\zeta)$ with

$$a = \frac{(\sigma^{-1}\Delta u, \zeta)_\Omega}{(\sigma^{-1}\zeta, \zeta)_\Omega}.$$
Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ.

ii) $\varphi \in H^1_0(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_\Omega = 0$.

1 Define $Tu \in H^1_0(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}(\Delta u - a\zeta)$ with $a = (\sigma^{-1}\Delta u, \zeta)_\Omega / (\sigma^{-1}\zeta, \zeta)_\Omega$ (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

We want $Tu \in H^2(\Omega) \iff (\Delta(Tu), \zeta)_\Omega = 0$

$\iff (\sigma^{-1}(\Delta u - a\zeta), \zeta)_\Omega = 0$

$\iff a = (\sigma^{-1}\Delta u, \zeta)_\Omega / (\sigma^{-1}\zeta, \zeta)_\Omega$
Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ.

ii) $\varphi \in H^1_0(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_\Omega = 0$.

1 Define $T u \in H^1_0(\Omega)$ the function such that $\Delta(T u) = \sigma^{-1}(\Delta u - a\zeta)$ with $a = (\sigma^{-1}\Delta u, \zeta)_\Omega/ (\sigma^{-1}\zeta, \zeta)_\Omega$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)
 Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in L^2(\Omega)$ s.t. $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ.

ii) $\varphi \in H^1_0(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_\Omega = 0$.

1. Define $T u \in H^1_0(\Omega)$ the function such that $\Delta(T u) = \sigma^{-1}(\Delta u - a\zeta)$ with $a = (\sigma^{-1}\Delta u, \zeta)_\Omega / (\sigma^{-1}\zeta, \zeta)_\Omega$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

2. One can prove that T is an isomorphism of $H^1_0(\Omega) \cap H^2(\Omega)$.
Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ.

ii) $\varphi \in H^1_0(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_\Omega = 0$.

1 Define $Tu \in H^1_0(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}(\Delta u - a\zeta)$ with $a = (\sigma^{-1}\Delta u, \zeta)_\Omega / (\sigma^{-1}\zeta, \zeta)_\Omega$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

2 One can prove that T is an isomorphism of $H^1_0(\Omega) \cap H^2(\Omega)$.

3 One obtains $a(u, Tu) = \int_\Omega \sigma \Delta u \Delta(Tu)$
i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ.

ii) $\varphi \in H^1_0(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_\Omega = 0$.

1. Define $T u \in H^1_0(\Omega)$ the function such that $\Delta(T u) = \sigma^{-1}(\Delta u - a \zeta)$ with $a = (\sigma^{-1} \Delta u, \zeta)_\Omega / (\sigma^{-1} \zeta, \zeta)_\Omega$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

2. One can prove that T is an isomorphism of $H^1_0(\Omega) \cap H^2(\Omega)$.

3. One obtains $a(u, Tu) = \int_\Omega \sigma \Delta u \Delta(T u) = \int_\Omega \Delta u(\Delta u - a \zeta)$
Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ.

ii) $\varphi \in H^1_0(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_\Omega = 0$.

1. Define $Tu \in H^1_0(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}(\Delta u - a\zeta)$ with $a = (\sigma^{-1}\Delta u, \zeta)_\Omega / (\sigma^{-1}\zeta, \zeta)_\Omega$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

2. One can prove that T is an isomorphism of $H^1_0(\Omega) \cap H^2(\Omega)$.

3. One obtains $a(u, Tu) = \int_\Omega \sigma \Delta u \Delta(Tu) = \int_\Omega \Delta u(\Delta u - a\zeta) = \|\Delta u\|_\Omega^2$.

Polygonal $\partial \Omega$ with one reentrant corner

i) The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ.

ii) $\varphi \in H^1_0(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_\Omega = 0$.

1. Define $T u \in H^1_0(\Omega)$ the function such that $\Delta(Tu) = \sigma^{-1}(\Delta u - a \zeta)$ with $a = (\sigma^{-1}\Delta u, \zeta)_\Omega / (\sigma^{-1}\zeta, \zeta)_\Omega$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

2. One can prove that T is an isomorphism of $H^1_0(\Omega) \cap H^2(\Omega)$.

3. One obtains $a(u, Tu) = \int_\Omega \sigma \Delta u \Delta(Tu) = \int_\Omega \Delta u (\Delta u - a \zeta) = \|\Delta u\|_\Omega^2$.

Theorem. Assume that $\sigma \in L^\infty(\Omega)$ is such that $\sigma^{-1} \in L^\infty(\Omega)$. Introduce $A : H^1_0(\Omega) \cap H^2(\Omega) \to H^1_0(\Omega) \cap H^2(\Omega)$ the operator associated with (\mathcal{P}).

- If $(\sigma^{-1}\zeta, \zeta)_\Omega \neq 0$, then A is an isomorphism.
Polygonal $\partial \Omega$ with one reentrant corner

1. The space of functions $\psi \in L^2(\Omega)$ s.t $\Delta \psi = 0$ in Ω and $\psi = 0$ on $\partial \Omega$, is of dimension 1, spanned by some ζ.

2. $\varphi \in H^1_0(\Omega)$ s.t. $\Delta \varphi \in L^2(\Omega)$ is in $H^2(\Omega)$ iff $(\Delta \varphi, \zeta)_\Omega = 0$.

1. Define $T u \in H^1_0(\Omega)$ the function such that $\Delta(T u) = \sigma^{-1}(\Delta u - a\zeta)$ with $a = (\sigma^{-1}\Delta u, \zeta)_\Omega/(\sigma^{-1}\zeta, \zeta)_\Omega$. (c.f. Sapongyan paradox S.A. Nazarov, G. Sweers)

2. One can prove that T is an isomorphism of $H^1_0(\Omega) \cap H^2(\Omega)$.

3. One obtains $a(u, Tu) = \int_\Omega \sigma \Delta u \Delta(T u) = \int_\Omega \Delta u (\Delta u - a\zeta) = \|\Delta u\|^2_\Omega$.

Theorem
Assume that $\sigma \in L^\infty(\Omega)$ is such that $\sigma^{-1} \in L^\infty(\Omega)$. Introduce $A : H^1_0(\Omega) \cap H^2(\Omega) \to H^1_0(\Omega) \cap H^2(\Omega)$ the operator associated with \mathcal{P}.

- If $(\sigma^{-1}\zeta, \zeta)_\Omega \neq 0$, then A is an isomorphism.
- If $(\sigma^{-1}\zeta, \zeta)_\Omega = 0$, then A is Fredholm of index zero and $\dim \ker A = 1$.
Summary of the results when $X = H^1_0(\Omega) \cap H^2(\Omega)$

Find $u \in H^1_0(\Omega) \cap H^2(\Omega)$ such that:

$$\int_{\Omega} \sigma \Delta u \Delta v = l(v), \forall v \in H^1_0(\Omega) \cap H^2(\Omega).$$

We introduce the operator $A : H^1_0(\Omega) \cap H^2(\Omega) \to H^1_0(\Omega) \cap H^2(\Omega)$ such that $(\Delta(Au), \Delta v)_\Omega = (\sigma \Delta u, \Delta v)_\Omega$ for all $u, v \in H^1_0(\Omega) \cap H^2(\Omega)$.

- A is an isomorphism.
- A is an isomorphism.
- A is an isomorphism because $(\sigma^{-1} \zeta, \zeta)_\Omega \neq 0$.
- A is a Fredholm operator of index 0 and $\dim \ker A = 1$ because $(\sigma^{-1} \zeta, \zeta)_\Omega = 0$.

σ = 1
σ = −1
σ = 1
σ = −2
1. A bilaplacian problem with mixed boundary conditions I

2. A bilaplacian problem with mixed boundary conditions II

3. A bilaplacian problem with Dirichlet boundary conditions
A bilaplacian problem with Dirichlet boundary conditions

In this section, $X = H^2_0(\Omega)$.

Find $u \in H^2_0(\Omega)$ such that:

$$\int_{\Omega} \sigma \Delta u \Delta v = l(v), \quad \forall v \in H^2_0(\Omega).$$

Theorem. The problem (\mathcal{P}) is well-posed in the Fredholm sense as soon as σ does not change sign in a neighbourhood of $\partial \Omega$.

$\sigma = -1$ $\sigma = 1$

Fredholm... but (\mathcal{P}) can be ill-posed (not Fredholm) when σ changes sign "on $\partial \Omega$".

⇒ work with J. Firozaly.
In this section, \(X = H_0^2(\Omega) \).

\[
\begin{align*}
\mathcal{P} & \quad \text{Find } u \in H_0^2(\Omega) \text{ such that:} \\
& \int_{\Omega} \sigma \Delta u \Delta v = l(v), \quad \forall v \in H_0^2(\Omega).
\end{align*}
\]

Message: The operators \(\Delta(\sigma \Delta \cdot) : H_0^2(\Omega) \to H^{-2}(\Omega) \) and \(\text{div} (\sigma \nabla \cdot) : H_0^1(\Omega) \to H^{-1}(\Omega) \) have very different properties.
A bilaplacian problem with Dirichlet boundary conditions

▶ In this section, \(X = H_0^2(\Omega) \).

\[(\mathcal{P}) \quad \begin{array}{l}
\text{Find } u \in H_0^2(\Omega) \text{ such that:} \\
\int_{\Omega} \sigma \Delta u \Delta v = l(v), \quad \forall v \in H_0^2(\Omega).
\end{array}\]

Message: The operators \(\Delta(\sigma \Delta \cdot) : H_0^2(\Omega) \to H^{-2}(\Omega) \) and \(\text{div}(\sigma \nabla \cdot) : H_0^1(\Omega) \to H^{-1}(\Omega) \) have very different properties.

THEOREM. The problem \((\mathcal{P})\) is well-posed in the Fredholm sense as soon as \(\sigma \) does not change sign in a neighbourhood of \(\partial \Omega \).
A bilaplacian problem with Dirichlet boundary conditions

In this section, $X = H^2_0(\Omega)$.

Find $u \in H^2_0(\Omega)$ such that:

$$\int_{\Omega} \sigma \Delta u \Delta v = l(v), \quad \forall v \in H^2_0(\Omega).$$

Message: The operators $\Delta(\sigma \Delta \cdot) : H^2_0(\Omega) \to H^{-2}(\Omega)$ and $\text{div}(\sigma \nabla \cdot) : H^1_0(\Omega) \to H^{-1}(\Omega)$ have very different properties.

Theorem. The problem (\mathcal{P}) is well-posed in the Fredholm sense as soon as σ does not change sign in a neighbourhood of $\partial \Omega$.

Ideas of the proof: We have

$$a(v, u) = (\sigma \Delta u, \Delta u)_\Omega.$$

We would like to build $T : H^2_0(\Omega) \to H^2_0(\Omega)$ such that $\Delta(T v) = \sigma^{-1} \Delta v$

so that

$$a(v, T v) = (\sigma \Delta v, \Delta(T v))_\Omega = (\Delta v, \Delta v)_\Omega.$$

Theorem: The problem (\mathcal{P}) is well-posed in the Fredholm sense as soon as σ does not change sign in a neighbourhood of $\partial \Omega$.

Fredholm

$\sigma = 1$
A bilaplacian problem with Dirichlet boundary conditions

In this section, $X = H^2_0(\Omega)$.

Find $u \in H^2_0(\Omega)$ such that:

$$\int_{\Omega} \sigma \Delta u \Delta v = l(v), \quad \forall v \in H^2_0(\Omega).$$

Ideas of the proof: We have

$$a(v, u) = (\sigma \Delta v, \Delta v)_\Omega.$$

We would like to build $T : H^2_0(\Omega) \to H^2_0(\Omega)$ such that

$$\Delta(Tv) = \sigma^{-1} \Delta v$$

so that

$$a(v, Tv) = (\sigma \Delta v, \Delta(Tv))_\Omega = (\Delta v, \Delta v)_\Omega.$$

Theorem. The problem (\mathcal{P}) is well-posed in the Fredholm sense as soon as σ does not change sign in a neighbourhood of $\partial \Omega$.

Message: The operators $\Delta(\sigma \Delta \cdot) : H^2_0(\Omega) \to H^{-2}(\Omega)$ and $\text{div}(\sigma \nabla \cdot) : H^1_0(\Omega) \to H^{-1}(\Omega)$ have very different properties.

Not simple!
A bilaplacian problem with Dirichlet boundary conditions

In this section, \(X = H^2_0(\Omega) \).

Find \(u \in H^2_0(\Omega) \) such that:
\[
\int_{\Omega} \sigma \Delta u \Delta v = l(v), \quad \forall v \in H^2_0(\Omega).
\]

Message: The operators \(\Delta(\sigma \Delta \cdot) : H^2_0(\Omega) \to H^{-2}(\Omega) \) and \(\text{div}(\sigma \nabla \cdot) : H^1_0(\Omega) \to H^{-1}(\Omega) \) have very different properties.

Theorem. The problem \((P)\) is well-posed in the Fredholm sense as soon as \(\sigma \) does not change sign in a neighborhood of \(\partial \Omega \).

Ideas of the proof: We have
\[
a(v, v) = (\sigma \Delta v, \Delta v)_\Omega.
\]
We would like to build \(T : H^2_0(\Omega) \to H^2_0(\Omega) \) such that \(\Delta(Tv) = \sigma^{-1} \Delta v \)
so that
\[
a(v, Tv) = (\sigma \Delta v, \Delta(Tv))_\Omega = (\Delta v, \Delta v)_\Omega.
\]

Let \(w \in H^1_0(\Omega) \) such that \(\Delta w = \sigma^{-1} \Delta v \).

1. \(\sigma = 1 \)
A bilaplacian problem with Dirichlet boundary conditions

In this section, \(X = H^2_0(\Omega) \).

\((P)\)

Find \(u \in H^2_0(\Omega) \) such that:

\[
\int_{\Omega} \sigma \Delta u \Delta v = l(v), \quad \forall v \in H^2_0(\Omega).
\]

Message: The operators \(\Delta(\sigma \Delta \cdot) : H^2_0(\Omega) \to H^{-2}(\Omega) \) and \(\text{div}(\sigma \nabla \cdot) : H^1_0(\Omega) \to H^{-1}(\Omega) \) have very different properties.

Theorem. The problem \((P)\) is well-posed in the Fredholm sense as soon as \(\sigma \) does not change sign in a neighbourhood of \(\partial \Omega \).

Ideas of the proof: We have

\[
a(v, v) = (\sigma \Delta v, \Delta v)_\Omega.
\]

We would like to build \(T : H^2_0(\Omega) \to H^2_0(\Omega) \) such that \(\Delta(Tv) = \sigma^{-1} \Delta v \)

so that

\[
a(v, Tv) = (\sigma \Delta v, \Delta(Tv))_\Omega = (\Delta v, \Delta v)_\Omega.
\]

1. Let \(w \in H^1_0(\Omega) \) such that \(\Delta w = \sigma^{-1} \Delta v \).

2. Let \(\zeta \in C_\infty_0(\Omega) \). Define \(Tv = \zeta w + (1 - \zeta)v \in H^2_0(\Omega) \).

Fredholm

\[
\sigma = 1
\]

Not simple!
A bilaplacian problem with Dirichlet boundary conditions

In this section, \(X = H^2_0(\Omega) \).

\([P]\) Find \(u \in H^2_0(\Omega) \) such that:

\[
\int_\Omega \sigma \Delta u \Delta v = l(v), \quad \forall v \in H^2_0(\Omega).
\]

Message: The operators \(\Delta(\sigma \Delta \cdot) : H^2_0(\Omega) \to H^{-2}_0(\Omega) \) and \(\text{div}(\sigma \nabla \cdot) : H^1_0(\Omega) \to H^{-1}_0(\Omega) \) have very different properties.

Theorem. The problem \([P]\) is well-posed in the Fredholm sense as soon as \(\sigma \) does not change sign in a neighbourhood of \(\partial \Omega \).

1. Let \(w \in H^1_0(\Omega) \) such that \(\Delta w = \sigma^{-1}\Delta v \).

2. Let \(\zeta \in \mathcal{C}_0^\infty(\Omega) \). Define \(T v = \zeta w + (1 - \zeta)v \in H^2_0(\Omega) \).

3. We find

\[
a(v, T v) = ([\zeta + \sigma(1 - \zeta)]\Delta v, \Delta v)_\Omega + (Kv, v)_{H^2_0(\Omega)}
\]

where \(K : H^2_0(\Omega) \to H^2_0(\Omega) \) is compact.

Fredholm

\(\sigma = 1 \)
A bilaplacian problem with Dirichlet boundary conditions

In this section, $X = H^2_0(\Omega)$.

Find $u \in H^2_0(\Omega)$ such that:

$$\int_\Omega \sigma \Delta u \Delta v = l(v), \quad \forall v \in H^2_0(\Omega).$$

The operators $\Delta(\sigma \Delta \cdot) : H^2_0(\Omega) \to H^{-2}(\Omega)$ and $\text{div}(\sigma \nabla \cdot) : H^1_0(\Omega) \to H^{-1}(\Omega)$ have very different properties.

Theorem. The problem (P) is well-posed in the Fredholm sense as soon as σ does not change sign in a neighbourhood of $\partial \Omega$.

Ideas of the proof: We have

$$a(v, v) = (\sigma \Delta v, \Delta v)_\Omega.$$

We would like to build $T : H^2_0(\Omega) \to H^2_0(\Omega)$ such that $\Delta(Tv) = \sigma^{-1} \Delta v$ so that

$$a(v, Tv) = (\sigma \Delta v, \Delta(Tv))_\Omega = (\Delta v, \Delta v)_\Omega.$$

1. Let $w \in H^1_0(\Omega)$ such that $\Delta w = \sigma^{-1} \Delta v$.

2. Let $\zeta \in \mathcal{C}_0^\infty(\Omega)$. Define $Tv = \zeta w + (1 - \zeta)v \in H^2_0(\Omega)$.

3. We find

$$a(v, Tv) = (\zeta + \sigma(1 - \zeta)) \Delta v, \Delta v)_\Omega + (Kv, v)_{H^2_0(\Omega)}$$

where $K : H^2_0(\Omega) \to H^2_0(\Omega)$ is compact.

Fredholm

$$\sigma = 1$$

Not simple!
A bilaplacian problem with Dirichlet boundary conditions

In this section, $X = H^2_0(\Omega)$.

\[(\mathcal{P}) \quad \int_{\Omega} \sigma \Delta u \Delta v = l(v), \quad \forall v \in H^2_0(\Omega). \]

Message: The operators $\Delta(\sigma \Delta \cdot) : H^2_0(\Omega) \to H^{-2}(\Omega)$ and $\text{div}(\sigma \nabla \cdot) : H^1_0(\Omega) \to H^{-1}(\Omega)$ have very different properties.

THEOREM. The problem (\mathcal{P}) is well-posed in the Fredholm sense as soon as σ does not change sign in a neighbourhood of $\partial \Omega$.
A bilaplacian problem with Dirichlet boundary conditions

In this section, \(X = H_0^2(\Omega) \).

\[
\begin{align*}
\text{(P)} & \quad \text{Find } u \in H_0^2(\Omega) \text{ such that:} \\
& \quad \int_{\Omega} \sigma \Delta u \Delta v = l(v), \quad \forall v \in H_0^2(\Omega).
\end{align*}
\]

Message: The operators \(\Delta(\sigma \Delta \cdot) : H_0^2(\Omega) \to H^{-2}(\Omega) \) and \(\text{div} (\sigma \nabla \cdot) : H_0^1(\Omega) \to H^{-1}(\Omega) \) have very different properties.

Theorem. The problem \((\mathcal{P}) \) is well-posed in the Fredholm sense as soon as \(\sigma \) does not change sign in a neighbourhood of \(\partial \Omega \).
A bilaplacian problem with Dirichlet boundary conditions

In this section, $X = H^2_0(\Omega)$.

Find $u \in H^2_0(\Omega)$ such that:

$$\int_{\Omega} \sigma \Delta u \Delta v = l(v), \quad \forall v \in H^2_0(\Omega).$$

Message: The operators $\Delta (\sigma \Delta \cdot): H^2_0(\Omega) \to H^{-2}(\Omega)$ and $\text{div} (\sigma \nabla \cdot): H^1_0(\Omega) \to H^{-1}(\Omega)$ have very different properties.

... but (P) can be ill-posed (not Fredholm) when σ changes sign “on $\partial \Omega$”

\Rightarrow work with J. Firozaly.
1. A bilaplacian problem with mixed boundary conditions I

2. A bilaplacian problem with mixed boundary conditions II

3. A bilaplacian problem with Dirichlet boundary conditions
Find \(v \in H^1_0(\Omega) \) s.t., \(\forall v' \in H^1_0(\Omega), \)
\[
\int_{\Omega} \sigma \nabla v \cdot \nabla v' = \ell(v').
\]

\begin{itemize}
 \item Smooth interface
 \begin{itemize}
 \item \(\sigma_2 < 0 \)
 \item \(\sigma_1 > 0 \)
 \end{itemize}
 Well-posed in the Fredholm sense iff \(\kappa_\sigma = \sigma_2/\sigma_1 \neq -1 \).
 \begin{itemize}
 \item Interface with a corner
 \begin{itemize}
 \item \(\sigma_2 < 0 \)
 \item \(\sigma_1 > 0 \)
 \end{itemize}
 Well-posed in the Fredholm sense iff \(\kappa_\sigma \notin [-I; -1/I], I = (2\pi - \vartheta)/\vartheta \).
 \end{itemize}
\end{itemize}

Find \(v \in X \) s.t., \(\forall v' \in X, \)
\[
\int_{\Omega} \sigma \Delta v \Delta v' = \ell(v').
\]

We assume \(\sigma \in L^\infty(\Omega), \sigma^{-1} \in L^\infty(\Omega) \).

\begin{itemize}
 \item If \(X = H^1_0(\Delta) \): Well-posed.
 \item If \(X = H^1_0(\Omega) \cap H^2(\Omega) \):
 \begin{itemize}
 \item Well-posed when \(\Omega \) is convex or of class \(C^2 \).
 \item When \(\Omega \) has one reentrant corner, it can occur a kernel of dimension 1.
 \end{itemize}
 \item If \(X = H^2_0(\Omega) \):
 \begin{itemize}
 \item Well-posed in the Fredholm sense when \(\sigma \) does not change sign on a neighbourhood of \(\partial \Omega \).
 \item When \(\sigma \) changes sign on \(\partial \Omega \), Fredholmness can be lost.
 \end{itemize}
\end{itemize}
Thank you for your attention!!!