GROUPE DE TRAVAIL "PROBLÈMES SPECTRAUX ET PHYSIQUE MATHÉMATIQUE"

A curious instability phenomenon for rounded corners in plasmonic metamaterials

Lucas Chesnel¹

Coll. with A.-S. Bonnet-Ben Dhia², P. Ciarlet², C. Carvalho², X. Claeys³, S.A. Nazarov⁴

¹Defi team, CMAP, École Polytechnique, France
 ²POems team, Ensta ParisTech, France
 ³LJLL, Paris VI, France
 ⁴FMM, St. Petersburg State University, Russia

LABORATOIRE DE MATHÉMATIQUES D'ORSAY, 11/02/2015

Introduction: general framework

► Scattering by a metal in electromagnetism in time-harmonic regime at optical frequency.

► For metals at optical frequency, $\Re e \varepsilon(\omega) < 0$ and $\Im m \varepsilon(\omega) << |\Re e \varepsilon(\omega)|$. ⇒ We neglect losses and study the ideal case $\varepsilon(\omega) \in (-\infty; 0)$.

Introduction: general framework

► Scattering by a metal in electromagnetism in time-harmonic regime at optical frequency.

► For metals at optical frequency, $\Re e \varepsilon(\omega) < 0$ and $\Im m \varepsilon(\omega) << |\Re e \varepsilon(\omega)|$. ⇒ We neglect losses and study the ideal case $\varepsilon(\omega) \in (-\infty; 0)$.

▶ Waves called Surface Plasmon Polaritons can propagate at the interface between a dielectric and a negative metal.

Introduction: applications

▶ Surface Plasmons Polaritons can propagate information. Physicists hope to exploit them to reduce the size of computer chips.

Figures from O'Connor et al., Appl. Phys. Lett. 95, 171112 (2009)

▶ In this context, physicists use singular geometries to focus energy. It allows to stock information.

• We study a scalar model problem set in a bounded domain $\Omega \subset \mathbb{R}^2$:

$$(\mathscr{P}) \ \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{s.t.:} \\ -\mathrm{div}(\sigma \nabla u) = f \ \mathrm{in} \ \Omega. \end{array} \right.$$

• We study a scalar model problem set in a bounded domain $\Omega \subset \mathbb{R}^2$:

$$(\mathscr{P}) \ \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{s.t.:} \\ -\mathrm{div}(\sigma \nabla u) = f \ \mathrm{in} \ \Omega. \end{array} \right.$$

- $\bullet \ \mathrm{H}^1_0(\Omega) = \{ v \in \mathrm{L}^2(\Omega) \, | \, \nabla v \in \mathrm{L}^2(\Omega); \, v |_{\partial \Omega} = 0 \}$
- f is the source term in $\mathbf{H}^{-1}(\Omega)$

• We study a scalar model problem set in a bounded domain $\Omega \subset \mathbb{R}^2$:

 $(\mathscr{P}) \ \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{s.t.}; \\ -\mathrm{div}(\sigma \nabla u) = f \ \mathrm{in} \ \Omega. \end{array} \right.$

- $\mathrm{H}^1_0(\Omega) = \{ v \in \mathrm{L}^2(\Omega) \, | \, \nabla v \in \mathrm{L}^2(\Omega); \, v|_{\partial\Omega} = 0 \}$
- f is the source term in $\mathrm{H}^{-1}(\Omega)$

• We study a scalar model problem set in a bounded domain $\Omega \subset \mathbb{R}^2$:

 $(\mathscr{P}) \ \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{s.t.:} \\ -\mathrm{div}(\sigma \nabla u) = f \ \mathrm{in} \ \Omega. \end{array} \right.$

- $\mathrm{H}^1_0(\Omega) = \{ v \in \mathrm{L}^2(\Omega) \, | \, \nabla v \in \mathrm{L}^2(\Omega); \, v |_{\partial \Omega} = 0 \}$
- f is the source term in $\mathrm{H}^{-1}(\Omega)$

$$\begin{array}{c}
\Omega_{1} \\
\Sigma \\
\Omega_{2} \\
 \\
\sigma|_{\Omega_{1}} = \sigma_{1} > 0 \\
\sigma|_{\Omega_{2}} = \sigma_{2} < 0 \\
 (\text{constant})
\end{array}$$

We slightly round the interface Σ :

 $\begin{array}{c} \Omega_{1}^{\delta} \\ \Sigma^{\delta} \\ \Omega_{2}^{\delta} \\ \sigma^{\delta}|_{\Omega_{1}} = \sigma_{1} > 0 \\ \sigma^{\delta}|_{\Omega_{2}} = \sigma_{2} < 0 \end{array}$

$$\left(\mathscr{P}^{\delta}\right) \left| \begin{array}{c} \operatorname{Find} \, u^{\delta} \in \mathrm{H}^{1}_{0}(\Omega) \, \operatorname{s.t.:} \\ -\operatorname{div}(\sigma^{\delta} \nabla u^{\delta}) = f \, \operatorname{in} \, \Omega. \end{array} \right.$$

 δ denotes the radius of curvature of the rounded interface at the origin.

• We study a scalar model problem set in a bounded domain $\Omega \subset \mathbb{R}^2$:

 $(\mathscr{P}) \ \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{s.t.:} \\ -\mathrm{div}(\sigma \nabla u) = f \ \mathrm{in} \ \Omega. \end{array} \right.$

- $\mathrm{H}^1_0(\Omega) = \{ v \in \mathrm{L}^2(\Omega) \, | \, \nabla v \in \mathrm{L}^2(\Omega); \, v |_{\partial \Omega} = 0 \}$
- f is the source term in $\mathrm{H}^{-1}(\Omega)$

$$\begin{array}{c} \Omega_{1} \\ \Sigma \\ \Omega_{2} \\ \\ \sigma|_{\Omega_{1}} = \sigma_{1} > 0 \\ \sigma|_{\Omega_{2}} = \sigma_{2} < 0 \\ (\text{constant}) \end{array}$$

We slightly round the interface Σ :

 $\begin{array}{c} \Omega_1^{\delta} \\ \Sigma^{\delta} \\ \Omega_2^{\delta} \\ \sigma^{\delta}|_{\Omega_1} = \sigma_1 > 0 \\ \sigma^{\delta}|_{\Omega_2} = \sigma_2 < 0 \end{array}$

$$\left(\mathscr{P}^{\delta}\right) \mid \begin{array}{l} \text{Find } u^{\delta} \in \mathrm{H}^{1}_{0}(\Omega) \text{ s.t.:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = f \text{ in } \Omega. \end{array}$$

 δ denotes the radius of curvature of the rounded interface at the origin.

What is the behaviour of the sequence $(u^{\delta})_{\delta}$ when δ tends to zero?

4

Outline of the talk

1 Numerical experiments

To get an intuition, we discretize (\mathscr{P}^{δ}) and observe what happens when $\delta \to 0$.

Outline of the talk

1 Numerical experiments

To get an intuition, we discretize (\mathscr{P}^{δ}) and observe what happens when $\delta \to 0$.

2 Properties of the limit problem

We present the properties of the limit problem in the geometry with the real corner ($\delta = 0$). Since σ changes sign, original phenomena appear.

Outline of the talk

1 Numerical experiments

To get an intuition, we discretize (\mathscr{P}^{δ}) and observe what happens when $\delta \to 0$.

2 Properties of the limit problem

We present the properties of the limit problem in the geometry with the real corner ($\delta = 0$). Since σ changes sign, original phenomena appear.

3 Asymptotic analysis

We prove a curious instability phenomenon: for certain configurations, (\mathscr{P}^{δ}) critically depends on δ .

2 Properties of the limit problem

3 Asymptotic analysis

▶ For the numerical experiments, we round the corner in a particular way

▶ For the numerical experiments, we round the corner in a particular way

▶ For the numerical experiments, we round the corner in a particular way

► For the numerical experiments, we round the corner in a particular way

 δ is the rounding parameter

► For the numerical experiments, we round the corner in a particular way (in this domain, we can separate variables).

► For the numerical experiments, we round the corner in a particular way (in this domain, we can separate variables).

• Our goal is to study the behaviour of the solution, *if it is well-defined*, of

$$\left(\mathscr{P}^{\delta}\right) \left| \begin{array}{c} \operatorname{Find} u^{\delta} \in \mathrm{H}^{1}_{0}(\Omega^{\delta}) \text{ such that:} \\ -\operatorname{div}(\sigma^{\delta} \nabla u^{\delta}) = f \quad \text{in } \Omega^{\delta}. \end{array} \right.$$

► For the numerical experiments, we round the corner in a particular way (in this domain, we can separate variables).

Our goal is to study the behaviour of the solution, if it is well-defined, of

$$\left(\mathscr{P}^{\delta}\right) \left| \begin{array}{c} \operatorname{Find} u^{\delta} \in \operatorname{H}_{0}^{1}(\Omega^{\delta}) \text{ such that:} \\ -\operatorname{div}(\sigma^{\delta} \nabla u^{\delta}) = f \quad \text{ in } \Omega^{\delta}. \end{array} \right.$$

• We approximate u^{δ} , assuming it is well-defined, by a usual P1 Finite Element Method. We compute the solution u_h^{δ} of the discretized problem with *FreeFem++*.

We display the behaviour of u_h^{δ} as $\delta \to 0$.

Numerical experiments 1/2

$$\sigma_1 = 1$$
 and $\sigma_2 = 1$ (positive materials)

Numerical experiments 1/2

• For positive materials, it is well-known that $(u^{\delta})_{\delta}$ converges to u, the solution in the limit geometry.

- The rate of convergence depends on the regularity of u.
- To avoid to mesh Ω^{δ} , we can approximate u^{δ} by u_h .

Numerical experiments 2/2

... and what about for a sign-changing σ ???

$$\sigma_1 = 1 \text{ and } \sigma_2 = -0.9999$$

• For this configuration, u^{δ} seems to depend critically on δ .

In this talk, our goal is to explain this behaviour.

2 Properties of the limit problem

3 Asymptotic analysis

Mathematical difficulty

• Classical case $\sigma > 0$ everywhere:

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \ge \min(\sigma) \|u\|_{\mathrm{H}^1_0(\Omega)}^2$$
 coercivity

Lax-Milgram theorem \Rightarrow (\mathscr{P}) well-posed.

Mathematical difficulty

• Classical case $\sigma > 0$ everywhere:

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \ge \min(\sigma) \|u\|_{\mathrm{H}^1_0(\Omega)}^2$$
 coercivity

----- VS. -----

Lax-Milgram theorem \Rightarrow (\mathscr{P}) well-posed.

• The case σ changes sign:

Mathematical difficulty

• Classical case $\sigma > 0$ everywhere:

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \ge \min(\sigma) \|u\|_{\mathrm{H}^1_0(\Omega)}^2$$
 coercivity

----- VS. -----

Lax-Milgram theorem \Rightarrow (\mathscr{P}) well-posed.

• The case σ changes sign:

▶ When $\sigma_2 = -\sigma_1$, (\mathscr{P}) is always ill-posed (Costabel-Stephan 85). For a symmetric domain (w.r.t. Σ) we can build a kernel of infinite dimension.

Problems with a sign changing coefficient

$$(\mathscr{P}) \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{such} \ \mathrm{that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \mathrm{in} \ \Omega. \end{array} \right.$$

▶ We have the following properties (see Costabel and Stephan 85, Dauge and Texier 97, Bonnet-Ben Dhia *et al.* 99,10,12,13):

Problems with a sign changing coefficient

$$(\mathscr{P}) \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{such} \ \mathrm{that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \mathrm{in} \ \Omega. \end{array} \right.$$

▶ We have the following properties (see Costabel and Stephan 85, Dauge and Texier 97, Bonnet-Ben Dhia *et al.* 99,10,12,13):

Well-posedness depends on the smoothness of Σ and on σ .

$$(\mathscr{P}) \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{such} \ \mathrm{that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \mathrm{in} \ \Omega. \end{array} \right.$$

▶ When the interface has a corner, (\mathscr{P}) is well-posed in the Fredholm sense iff $\kappa_{\sigma} \notin I_c$ (the critical interval).

$$(\mathscr{P}) \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{such} \ \mathrm{that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \mathrm{in} \ \Omega. \end{array} \right.$$

▶ When the interface has a corner, (\mathscr{P}) is well-posed in the Fredholm sense iff $\kappa_{\sigma} \notin I_c$ (the critical interval).

• When the interface is smooth, (\mathscr{P}) is well-posed in the Fredholm sense iff $\kappa_{\sigma} \neq -1$.

$$(\mathscr{P}) \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{such} \ \mathrm{that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \mathrm{in} \ \Omega. \end{array} \right.$$

▶ When the interface has a corner, (\mathscr{P}) is well-posed in the Fredholm sense iff $\kappa_{\sigma} \notin I_c$ (the critical interval).

▶ When the interface is smooth, (\mathscr{P}) is well-posed in the Fredholm sense iff $\kappa_{\sigma} \neq -1$.

What happens for a slightly rounded corner when $\kappa_{\sigma} \in I_c \setminus \{-1\}$?

$$(\mathscr{P}) \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{such} \ \mathrm{that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \mathrm{in} \ \Omega. \end{array} \right.$$

▶ When the interface has a corner, (\mathscr{P}) is well-posed in the Fredholm sense iff $\kappa_{\sigma} \notin I_c$ (the critical interval).

What happens for a slightly rounded corner when $\kappa_{\sigma} \in I_c \setminus \{-1\}$?

• We need to clarify the properties of (\mathscr{P}) when the interface has a corner in the case $\kappa_{\sigma} \in I_c \setminus \{-1\}$.

Properties of the limit problem inside the critical interval

$$(\mathscr{P}) \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}^{1}_{0}(\Omega) \text{ such that:} \\ -\operatorname{div}(\sigma \nabla u) = f \quad \text{in } \Omega. \end{array} \right.$$

• To simplify the presentation, we work on a particular configuration.

Properties of the limit problem inside the critical interval

$$(\mathscr{P}) \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ -\operatorname{div}(\sigma \nabla u) = f \quad \text{ in } \Omega. \end{array} \right.$$

• To simplify the presentation, we work on a particular configuration.

Properties of the limit problem inside the critical interval

$$(\mathscr{P}) \left| \begin{array}{c} \operatorname{Find} u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \text{in } \Omega. \end{array} \right.$$

• To simplify the presentation, we work on a particular configuration.

Properties of the limit problem inside the critical interval

$$(\mathscr{P}) \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{such} \ \mathrm{that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \mathrm{in} \ \Omega. \end{array} \right.$$

• To simplify the presentation, we work on a particular configuration.

· Using the variational method of the T-coercivity, we prove the

PROPOSITION. The problem (\mathscr{P}) is well-posed as soon as the contrast $\kappa_{\sigma} = \sigma_2/\sigma_1$ satisfies $\kappa_{\sigma} \notin I_c = [-1; -1/3]$.

Properties of the limit problem inside the critical interval

$$(\mathscr{P}) \left| \begin{array}{c} \mathrm{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \mathrm{such} \ \mathrm{that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \mathrm{in} \ \Omega. \end{array} \right.$$

• To simplify the presentation, we work on a particular configuration.

Using the variational method of the T-coercivity, we prove the

PROPOSITION. The problem (\mathscr{P}) is well-posed as soon as the contrast $\kappa_{\sigma} = \sigma_2/\sigma_1$ satisfies $\kappa_{\sigma} \notin I_c = [-1; -1/3]$.

What happens when $\kappa_{\sigma} \in (-1; -1/3]$?

• Bounded sector Ω

• Equation:

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$$

• Bounded sector Ω

• Equation:

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta\sigma\partial_\theta)u} = f$$

• Singularities in the sector

$$s(r,\theta) = r^{\lambda}\varphi(\theta)$$

We compute the singularities $s(r, \theta) = r^{\lambda} \varphi(\theta)$ and we observe two cases:

We compute the singularities $s(r, \theta) = r^{\lambda} \varphi(\theta)$ and we observe two cases: Outside the critical interval $1 \stackrel{\uparrow}{\uparrow} \quad r \mapsto r^{\lambda_1}$ $\kappa_{\sigma} = -1/4 \frac{1}{1}$ $-\lambda_2 \quad -\lambda_1 \quad \lambda_1 \quad \lambda_2$ -2 -1 1 2 0 not $H^1 = -1$ \mathbf{H}^1 -1^{+} Inside the critical interval $r \mapsto \Re e r^{\lambda_1}$ λ_2 -2 -1 $-\lambda_1$ -1 -1 -1 -1 -1 -10 not H^1 not H^1 H^1

For a contrast κ_{σ} inside the critical interval, there are singularities of the form $s(r, \theta) = r^{\pm i\eta} \varphi(\theta)$ with $\eta \in \mathbb{R} \setminus \{0\}$.

▶ Using these singularities, we can show that the following *a priori* estimate does not hold

$$\|u\|_{\mathrm{H}_{0}^{1}(\Omega)} \leq C(\|Lu\|_{\mathrm{H}_{0}^{1}(\Omega)} + \|u\|_{L^{2}(\Omega)}), \quad \forall u \in \mathrm{H}_{0}^{1}(\Omega),$$

where $L: \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{1}_{0}(\Omega)$ is the operator such that

 $(Lu, v)_{\mathrm{H}^{1}_{0}(\Omega)} = (\sigma \nabla u, \nabla v)_{\Omega}, \qquad \forall u, v \in \mathrm{H}^{1}_{0}(\Omega).$

For a contrast κ_{σ} inside the critical interval, there are singularities of the form $s(r, \theta) = r^{\pm i\eta} \varphi(\theta)$ with $\eta \in \mathbb{R} \setminus \{0\}$.

 \blacktriangleright Using these singularities, we can show that the following *a priori* estimate does not hold

$$\|u\|_{\mathrm{H}_{0}^{1}(\Omega)} \leq C(\|Lu\|_{\mathrm{H}_{0}^{1}(\Omega)} + \|u\|_{L^{2}(\Omega)}), \quad \forall u \in \mathrm{H}_{0}^{1}(\Omega),$$

where $L: \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{1}_{0}(\Omega)$ is the operator such that

 $(Lu, v)_{\mathrm{H}^{1}_{0}(\Omega)} = (\sigma \nabla u, \nabla v)_{\Omega}, \qquad \forall u, v \in \mathrm{H}^{1}_{0}(\Omega).$

We deduce the following result:

PROPOSITION. For $\kappa_{\sigma} \in (-1; -1/3)$, the operator L is not of Fredholm type $(\Im m L \text{ is not closed in } H^1_0(\Omega))$.

For a contrast κ_{σ} inside the critical interval, there are singularities of the form $s(r, \theta) = r^{\pm i\eta} \varphi(\theta)$ with $\eta \in \mathbb{R} \setminus \{0\}$.

 \blacktriangleright Using these singularities, we can show that the following *a priori* estimate does not hold

$$\|u\|_{\mathrm{H}^{1}_{0}(\Omega)} \leq C(\|Lu\|_{\mathrm{H}^{1}_{0}(\Omega)} + \|u\|_{L^{2}(\Omega)}), \quad \forall u \in \mathrm{H}^{1}_{0}(\Omega),$$

where $L: \mathrm{H}^{1}_{0}(\Omega) \to \mathrm{H}^{1}_{0}(\Omega)$ is the operator such that

 $(Lu, v)_{\mathrm{H}^{1}_{0}(\Omega)} = (\sigma \nabla u, \nabla v)_{\Omega}, \qquad \forall u, v \in \mathrm{H}^{1}_{0}(\Omega).$

We deduce the following result:

PROPOSITION. For $\kappa_{\sigma} \in (-1; -1/3)$, the operator L is not of Fredholm type ($\Im m L$ is not closed in $\mathrm{H}_{0}^{1}(\Omega)$).

Let's see how to change the functional framework to recover a well-posed problem ...

We compute the singularities $s(r, \theta) = r^{\lambda} \varphi(\theta)$ and we observe two cases: Outside the critical interval $1 \stackrel{\uparrow}{\uparrow} \quad r \mapsto r^{\lambda_1}$ $\kappa_{\sigma} = -1/4 \frac{1}{1}$ $-\lambda_2$ $-\lambda_1$ λ_1 λ_2 -2 -1 1 2 0 not $H^1 - 1$ \mathbf{H}^1 -1+Inside the critical interval $r \mapsto \Re e r^{\lambda_1}$ $\kappa_{\sigma} = -1/2 \qquad 1 \qquad \bullet \qquad \lambda_1$ 1 λ_2 $\begin{array}{c} -2 & -1 \\ -\lambda_1 & \bullet \\ \mathbf{not} & \mathbf{H}^1 \end{array} \begin{array}{c} 1 \\ \bullet \\ -1 \end{array}$ 0 2 not H^1 \mathbf{H}^{1}

• Bounded sector Ω

• Equation:

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$$

• Singularities in the sector

 $s(r,\theta)=r^\lambda\varphi(\theta)$

• Bounded sector Ω

• Half-strip \mathcal{B}

• Equation:

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$$

• Singularities in the sector

 $s(r,\theta)=r^\lambda\varphi(\theta)$

- Bounded sector Ω Half-strip \mathcal{B} $(z,\theta) = (-\ln r,\theta)$ ſθ $\pi/4$ \mathcal{B}_1 Ω_1 Ω_2 $\theta = \pi/4$ Bo $(r, \theta) = (e^{-z}, \theta)$ 2 0 (r, θ) Equation: Equation: $-\operatorname{div}(\sigma \nabla u)$ $-\operatorname{div}(\sigma \nabla u) = e^{-2z} f$ = f $-(\sigma \partial_z^2 + \partial_\theta \sigma \partial_\theta) u$ $-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta\sigma\partial_\theta)u$
- Singularities in the sector

 $s(r,\theta) = r^{\lambda}\varphi(\theta)$

• Bounded sector Ω

- Equation: $\underbrace{-\operatorname{div}(\sigma \nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$
- Singularities in the sector $s(r, \theta) = r^{\lambda} \varphi(\theta)$

- Equation: $\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-(\sigma\partial_x^2 + \partial_\theta\sigma\partial_\theta)u} = e^{-2z}f$
- Modes in the strip $m(z,\theta) = e^{-\lambda z} \varphi(\theta)$

• Singularities in the sector $s(r, \theta) = r^{\lambda} \varphi(\theta)$

• Modes in the strip $m(z,\theta) = e^{-\lambda z} \varphi(\theta)$

 $s \in \mathrm{H}^1(\Omega)$ $\Re e \, \lambda'_{\mathsf{l}} > 0$ m is evanescent

17 / 34

Modal analysis in the waveguide

Modal analysis in the waveguide

Modal analysis in the waveguide

There is a functional framework, different from $H_0^1(\Omega)$, involving one singularity, where existence and uniqueness of the solution holds.

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define $W_{-\beta} = \{v \mid e^{\beta z} v \in H_0^1(\mathcal{B})\}$ space of exponentially decaying functions

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define $W_{-\beta} = \{v \mid e^{\beta z} v \in H_0^1(\mathcal{B})\}$ space of exponentially decaying functions

 $W_{\beta} = \{ v \mid e^{-\beta z} v \in H_0^1(\mathcal{B}) \}$ space of exponentially growing functions

Consider $0<\beta<2,\,\zeta$ a cut-off function (equal to 1 in $+\infty)$ and define

$$\begin{split} \mathbf{W}_{-\beta} &= \{ v \mid e^{\beta z} v \in \mathbf{H}_{0}^{1}(\mathcal{B}) \} \\ \mathbf{W}^{+} &= \operatorname{span}(\zeta \varphi_{1} \; e^{\lambda_{1} z}) \oplus \mathbf{W}_{-\beta} \\ \mathbf{W}_{\beta} &= \{ v \mid e^{-\beta z} v \in \mathbf{H}_{0}^{1}(\mathcal{B}) \} \end{split}$$

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

Consider $0<\beta<2,\,\zeta$ a cut-off function (equal to 1 in $+\infty)$ and define

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

THEOREM. Let $\kappa_{\sigma} \in (-1; -1/3)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\sigma \nabla \cdot)$ from W⁺ to W_{\beta}^{*} is an isomorphism.

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

$$\begin{split} & \underset{\bigcap}{\mathbb{W}_{-\beta}} = \{ v \mid e^{\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B}) \} \\ & \underset{\bigcap}{\mathbb{W}^{+}} = \mathrm{span}(\zeta \varphi_{1} \; e^{\lambda_{1} z}) \oplus \mathrm{W}_{-\beta} \\ & \underset{\bigcap}{\mathbb{W}_{\beta}} = \{ v \mid e^{-\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B}) \} \end{split}$$

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

THEOREM. Let $\kappa_{\sigma} \in (-1; -1/3)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\sigma \nabla \cdot)$ from W⁺ to W_{\beta}^{*} is an isomorphism.

IDEAS OF THE PROOF:

• $A_{-\beta}$: div $(\sigma \nabla \cdot)$ from $W_{-\beta}$ to W_{β}^* is injective but not surjective.

Consider $0 < \beta < 2, \zeta$ a cut-off function (equal to 1 in $+\infty$) and define

$$\begin{split} \mathbb{W}_{-\beta} &= \{ v \mid e^{\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B}) \} \\ \mathbb{W}^{+} &= \mathrm{span}(\zeta \varphi_{1} \; e^{\lambda_{1} z}) \oplus \mathrm{W}_{-\beta} \\ \mathbb{W}_{\beta} &= \{ v \mid e^{-\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B}) \} \end{split}$$

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

THEOREM. Let $\kappa_{\sigma} \in (-1; -1/3)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\sigma \nabla \cdot)$ from W^+ to W_{β}^* is an isomorphism.

IDEAS OF THE PROOF:

- $A_{-\beta}$: div $(\sigma \nabla \cdot)$ from $W_{-\beta}$ to W_{β}^* is injective but not surjective.
- **2** A_{β} : div $(\sigma \nabla \cdot)$ from W_{β} to $W_{-\beta}^*$ is surjective but not injective.

Consider $0 < \beta < 2, \zeta$ a cut-off function (equal to 1 in $+\infty$) and define

$$\begin{split} \mathbb{W}_{-\beta} &= \{ v \mid e^{\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B}) \} \\ \mathbb{W}^{+} &= \mathrm{span}(\zeta \varphi_{1} \; e^{\lambda_{1} z}) \oplus \mathrm{W}_{-\beta} \\ \mathbb{W}_{\beta} &= \{ v \mid e^{-\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B}) \} \end{split}$$

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

THEOREM. Let $\kappa_{\sigma} \in (-1; -1/3)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\sigma \nabla \cdot)$ from W⁺ to W_{\beta}^{*} is an isomorphism.

IDEAS OF THE PROOF:

- $A_{-\beta}$: div $(\sigma \nabla \cdot)$ from $W_{-\beta}$ to W_{β}^* is injective but not surjective.
- 2 A_{β} : div $(\sigma \nabla \cdot)$ from W_{β} to $W_{-\beta}^*$ is surjective but not injective.
- **③** The intermediate operator A^+ : W⁺ → W_β^{*} is injective (energy integral) and surjective (residue theorem).

Consider $0 < \beta < 2, \zeta$ a cut-off function (equal to 1 in $+\infty$) and define

$$\begin{split} & \underset{\bigcap}{\mathbb{W}_{-\beta}} = \{ v \mid e^{\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B}) \} \\ & \underset{\bigcap}{\mathbb{W}^{+}} = \mathrm{span}(\zeta \varphi_{1} \; e^{\lambda_{1} z}) \oplus \mathrm{W}_{-\beta} \\ & \underset{\bigcap}{\mathbb{W}_{\beta}} = \{ v \mid e^{-\beta z} v \in \mathrm{H}_{0}^{1}(\mathcal{B}) \} \end{split}$$

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

THEOREM. Let $\kappa_{\sigma} \in (-1; -1/3)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\sigma \nabla \cdot)$ from W⁺ to W_{\beta}^{*} is an isomorphism.

IDEAS OF THE PROOF:

- $A_{-\beta}$: div $(\sigma \nabla \cdot)$ from $W_{-\beta}$ to W_{β}^* is injective but not surjective.
- 2 A_{β} : div $(\sigma \nabla \cdot)$ from W_{β} to $W_{-\beta}^*$ is surjective but not injective.
- ³ The intermediate operator A^+ : W⁺ → W_β^{*} is injective (energy integral) and surjective (residue theorem).
- **①** Limiting absorption principle to select the **outgoing mode**.

How to numerically approximate the solution in this new framework

Naive approximation

▶ Let us try a usual Finite Element Method (P1 Lagrange Finite Element). We solve the problem

Find
$$u_h \in \mathcal{V}_h$$
 s.t.:
$$\int_{\Omega} \sigma \nabla u_h \cdot \nabla v_h = \int_{\Omega} f v_h, \quad \forall v \in \mathcal{V}_h,$$

where V_h approximates $H_0^1(\Omega)$ as $h \to 0$ (*h* is the mesh size).

Naive approximation

▶ Let us try a usual Finite Element Method (P1 Lagrange Finite Element). We solve the problem

Find
$$u_h \in \mathcal{V}_h$$
 s.t.:
$$\int_{\Omega} \sigma \nabla u_h \cdot \nabla v_h = \int_{\Omega} f v_h, \quad \forall v \in \mathcal{V}_h,$$

where V_h approximates $H_0^1(\Omega)$ as $h \to 0$ (*h* is the mesh size).

• We display
$$u_h$$
 as $h \to 0$.

Naive approximation

Contrast
$$\kappa_{\sigma} = -0.999 \in (-1; -1/3).$$

Remark

• Outside the critical interval, for the classical approximation method, the sequence (u_h) converges.

Contrast
$$\kappa_{\sigma} = -1.001 \notin (-1; -1/3).$$
How to approximate the solution?

• We use a PML (*Perfectly Matched Layer*) to bound the domain \mathcal{B} + finite elements in the truncated strip ($\kappa_{\sigma} = -0.999 \in (-1; -1/3)$).

How to approximate the solution?

• We use a PML (*Perfectly Matched Layer*) to bound the domain \mathcal{B} + finite elements in the truncated strip ($\kappa_{\sigma} = -0.999 \in (-1; -1/3)$).

A curious black hole phenomenon

► For the Helmholtz equation div $(\sigma \nabla u) + \omega^2 u = f$, analogously, it is necessary to modify the functional framework to have a well-posed problem.

▶ In time domain, the solution adopts a curious behaviour.

$$(\boldsymbol{x}, t) \mapsto \Re e\left(u(\boldsymbol{x})e^{-i\omega t}\right) \text{ for } \kappa_{\sigma} = -1/1.3$$

• Everything happens like if a waves was absorbed by the corner point.

► Analogous phenomena occur in cuspidal domains in the theory of water-waves and in elasticity (Cardone, Nazarov, Taskinen).

2 Properties of the limit problem

• The behaviour of $(u^{\delta})_{\delta}$ depends on the properties of the limit problem.

• The behaviour of $(u^{\delta})_{\delta}$ depends on the properties of the limit problem.

If (\mathscr{P}) well-posed (in $\mathrm{H}_{0}^{1}(\Omega)$), then u^{δ} is uniquely defined for δ small enough and $(u^{\delta})_{\delta}$ converges to u (as for positive materials).

• The behaviour of $(u^{\delta})_{\delta}$ depends on the properties of the limit problem.

If (\mathscr{P}) well-posed (in $\mathrm{H}_{0}^{1}(\Omega)$), then u^{δ} is uniquely defined for δ small enough and $(u^{\delta})_{\delta}$ converges to u (as for positive materials).

If the limit problem is well-posed only in the exotic framework, then (\mathscr{P}^{δ}) critically depends on the value of the rounding parameter δ .

IDEA OF THE APPROACH:

1 We prove the *a priori* estimate $||u^{\delta}||_{H_0^1(\Omega)} \leq c |\ln \delta|^{1/2} ||f||_{\Omega}$ for all δ in some set \mathscr{S} which excludes a discrete set accumulating in zero (\blacklozenge hard part of the proof, Nazarov's technique).

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\$$

The behaviour of $(u^{\delta})_{\delta}$ depends on the properties of the limit problem.

If (\mathscr{P}) well-posed (in $\mathrm{H}_0^1(\Omega)$), then u^{δ} is uniquely defined for δ small enough and $(u^{\delta})_{\delta}$ converges to u (as for positive materials).

If the limit problem is well-posed only in the exotic framework, then (ε critically depends on the value of the rounding parameter δ .

IDEA OF THE APPROACH:

1 We prove the *a priori* estimate $||u^{\delta}||_{H_0^1(\Omega)} \leq c |\ln \delta|^{1/2} ||f||_{\Omega}$ for all δ in some set \mathscr{S} which excludes a discrete set accumulating in zero (\blacklozenge hard part of the proof, Nazarov's technique).

$$\ln \mathscr{S} = \{\ln \delta, \delta \in \mathscr{S}\}$$

2 We provide an asymptotic expansion of u^{δ} , denoted \hat{u}^{δ} with the error estimate, for some $\beta > 0$,

$$\|u^{\delta} - \hat{u}^{\delta}\|_{\mathrm{H}^{1}_{0}(\Omega)} \leq \ c \, \delta^{\beta} \|f\|_{\Omega}, \qquad \forall \delta \in \mathscr{S}.$$

f (\mathscr{P}) well-posed (in $\mathrm{H}^{1}_{0}(\Omega)$), then u^{a} is uniquely defined for δ small enough nd $(u^{\delta})_{\delta}$ converges to u (as for positive materials).

If the limit problem is well-posed only in the exotic framework, then (critically depends on the value of the rounding parameter δ .

IDEA OF THE APPROACH:

1 We prove the *a priori* estimate $||u^{\delta}||_{H_0^1(\Omega)} \leq c |\ln \delta|^{1/2} ||f||_{\Omega}$ for all δ in some set \mathscr{S} which excludes a discrete set accumulating in zero (\blacklozenge hard part of the proof, Nazarov's technique).

$$\begin{array}{c} & & & \\ & & & \\$$

2 We provide an asymptotic expansion of u^{δ} , denoted \hat{u}^{δ} with the error estimate, for some $\beta > 0$,

 $\|u^{\delta} - \hat{u}^{\delta}\|_{\mathrm{H}^{1}_{0}(\Omega)} \leq \ c \, \delta^{\beta} \|f\|_{\Omega}, \qquad \forall \delta \in \mathscr{S}.$

3 The behaviour of $(\hat{u}^{\delta})_{\delta}$ can be explicitly examined as $\delta \to 0$. The sequence $(\hat{u}^{\delta})_{\delta}$ does not converge, even for the L²-norm!

f the limit problem is well-posed only in the exotic framework, then (, ritically depends on the value of the rounding parameter δ .

IDEA OF THE APPROACH:

1 We prove the *a priori* estimate $||u^{\delta}||_{H_0^1(\Omega)} \leq c |\ln \delta|^{1/2} ||f||_{\Omega}$ for all δ in some set \mathscr{S} which excludes a discrete set accumulating in zero (\blacklozenge hard part of the proof, Nazarov's technique).

$$\begin{array}{c} & & & \\ & & & \\$$

2 We provide an asymptotic expansion of u^{δ} , denoted \hat{u}^{δ} with the error estimate, for some $\beta > 0$,

$$\|u^{\delta}-\hat{u}^{\delta}\|_{\mathrm{H}^{1}_{0}(\Omega)}\leq \ c\,\delta^{\beta}\|f\|_{\Omega}, \qquad \forall \delta\in\mathscr{S}.$$

3 The behaviour of $(\hat{u}^{\delta})_{\delta}$ can be explicitly examined as $\delta \to 0$. The sequence $(\hat{u}^{\delta})_{\delta}$ does not converge, even for the L²-norm!

4 Conclusion.

The sequence $(u^{\delta})_{\delta}$ does not converge, even for the L²-norm!

• The behaviour of $(u^{\delta})_{\delta}$ depends on the properties of the limit problem.

If (\mathscr{P}) well-posed (in $\mathrm{H}_{0}^{1}(\Omega)$), then u^{δ} is uniquely defined for δ small enough and $(u^{\delta})_{\delta}$ converges to u (as for positive materials).

If the limit problem is well-posed only in the exotic framework, then (\mathscr{P}^{δ}) critically depends on the value of the rounding parameter δ .

• In the geometry with a rounded corner, we consider the spectral problem

$$\left| \begin{array}{l} \mathrm{Find} \ (\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times (\mathrm{H}^{1}_{0}(\Omega) \setminus \{0\}) \ \mathrm{s.t.:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta} \quad \mathrm{in} \ \Omega. \end{array} \right.$$

• We define the operator $A^{\delta} : D(A^{\delta}) \to L^2(\Omega)$ such that

$$D(\mathbf{A}^{\delta}) = \{ u \in \mathbf{H}_{0}^{1}(\Omega) \, | \, \operatorname{div}(\sigma^{\delta} \nabla u) \in \mathbf{L}^{2}(\Omega) \}$$
$$\mathbf{A}^{\delta} u = \operatorname{div}(\sigma^{\delta} \nabla u).$$

• In the geometry with a rounded corner, we consider the spectral problem

$$\left| \begin{array}{l} \text{Find } (\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times (\mathrm{H}^{1}_{0}(\Omega) \setminus \{0\}) \text{ s.t.:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta} \quad \text{ in } \Omega. \end{array} \right|$$

• We define the operator $A^{\delta} : D(A^{\delta}) \to L^2(\Omega)$ such that

$$D(\mathbf{A}^{\delta}) = \{ u \in \mathbf{H}_{0}^{1}(\Omega) \, | \, \operatorname{div}(\sigma^{\delta} \nabla u) \in \mathbf{L}^{2}(\Omega) \}$$
$$\mathbf{A}^{\delta} u = \operatorname{div}(\sigma^{\delta} \nabla u).$$

PROPOSITION. Assume that $\kappa_{\sigma} \neq -1$. For $\delta > 0$ (in this case the interface is "smooth"), the operator A^{δ} is selfadjoint and has compact resolvent. Its spectrum $\mathfrak{S}(A^{\delta})$ consists in two sequences of isolated eigenvalues:

$$-\infty \underset{n \to +\infty}{\leftarrow} \dots \lambda_{-n}^{\delta} \le \dots \le \lambda_{-1}^{\delta} < 0 \le \lambda_1^{\delta} \le \lambda_2^{\delta} \le \dots \le \lambda_n^{\delta} \dots \xrightarrow[n \to +\infty]{} +\infty.$$

• In the geometry with a rounded corner, we consider the spectral problem

$$\left| \begin{array}{l} \mathrm{Find} \ (\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times (\mathrm{H}^{1}_{0}(\Omega) \setminus \{0\}) \ \mathrm{s.t.:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta} \quad \mathrm{in} \ \Omega. \end{array} \right|$$

• We define the operator $A^{\delta} : D(A^{\delta}) \to L^2(\Omega)$ such that

$$D(\mathbf{A}^{\delta}) = \{ u \in \mathbf{H}_{0}^{1}(\Omega) \, | \, \operatorname{div}(\sigma^{\delta} \nabla u) \in \mathbf{L}^{2}(\Omega) \}$$
$$\mathbf{A}^{\delta} u = \operatorname{div}(\sigma^{\delta} \nabla u).$$

PROPOSITION. Assume that $\kappa_{\sigma} \neq -1$. For $\delta > 0$ (in this case the interface is "smooth"), the operator A^{δ} is selfadjoint and has compact resolvent. Its spectrum $\mathfrak{S}(A^{\delta})$ consists in two sequences of isolated eigenvalues:

$$-\infty \underset{n \to +\infty}{\leftarrow} \dots \lambda_{-n}^{\delta} \leq \dots \leq \lambda_{-1}^{\delta} < 0 \leq \lambda_1^{\delta} \leq \lambda_2^{\delta} \leq \dots \leq \lambda_n^{\delta} \dots \xrightarrow[n \to +\infty]{} +\infty.$$

For $n \in \mathbb{Z}^*$, what is the behaviour of λ_n^{δ} when δ tends to zero?

• In the geometry with a rounded corner, we consider the spectral problem

$$\left| \begin{array}{l} \mathrm{Find} \ (\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times (\mathrm{H}^{1}_{0}(\Omega) \setminus \{0\}) \ \mathrm{s.t.:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta} \quad \mathrm{in} \ \Omega. \end{array} \right|$$

• We define the operator $A^{\delta} : D(A^{\delta}) \to L^2(\Omega)$ such that

$$D(\mathbf{A}^{\delta}) = \{ u \in \mathbf{H}_{0}^{1}(\Omega) \, | \, \operatorname{div}(\sigma^{\delta} \nabla u) \in \mathbf{L}^{2}(\Omega) \}$$
$$\mathbf{A}^{\delta} u = \operatorname{div}(\sigma^{\delta} \nabla u).$$

PROPOSITION. Assume that $\kappa_{\sigma} \neq -1$. For $\delta > 0$ (in this case the interface is "smooth"), the operator A^{δ} is selfadjoint and has compact resolvent. Its spectrum $\mathfrak{S}(A^{\delta})$ consists in two sequences of isolated eigenvalues:

$$-\infty \underset{n \to +\infty}{\leftarrow} \dots \lambda_{-n}^{\delta} \leq \dots \leq \lambda_{-1}^{\delta} < 0 \leq \lambda_{1}^{\delta} \leq \lambda_{2}^{\delta} \leq \dots \leq \lambda_{n}^{\delta} \dots \xrightarrow[n \to +\infty]{} +\infty.$$

For $n \in \mathbb{Z}^*$, what is the behaviour of λ_n^{δ} when δ tends to zero?

 \Rightarrow This depends on the features of the limit operator for $\delta=0...$

► Let $A : D(A) \to L^2(\Omega)$ denote the limit operator $(\delta = 0)$ such that $\begin{aligned}
D(A) &= \{u \in H^1_0(\Omega) \mid \operatorname{div}(\sigma \nabla u) \in L^2(\Omega)\} \\
Au &= \operatorname{div}(\sigma \nabla u).
\end{aligned}$

► For $\delta = 0$, the interface is no longer "smooth" and the properties of A depend on the values of κ_{σ} :

► Let $A : D(A) \to L^2(\Omega)$ denote the limit operator $(\delta = 0)$ such that $D(A) = \{u \in H^1_0(\Omega) | \operatorname{div}(\sigma \nabla u) \in L^2(\Omega)\}$ $Au = \operatorname{div}(\sigma \nabla u).$

► For $\delta = 0$, the interface is no longer "smooth" and the properties of A depend on the values of κ_{σ} :

♣ When $\kappa_{\sigma} \notin I_c$, A is selfadjoint and has compact resolvent. Its spectrum $\mathfrak{S}(A)$ consists in two sequences of isolated eigenvalues: $-\infty \underset{n \to +\infty}{\leftarrow} \dots \lambda_{-n} \leq \dots \leq \lambda_{-1} < 0 \leq \lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n \dots \xrightarrow[n \to +\infty]{} +\infty.$ In this case, there holds $\mathfrak{S}(A^{\delta}) \underset{\delta \to 0}{\to} \mathfrak{S}(A).$

► Let $A : D(A) \to L^2(\Omega)$ denote the limit operator $(\delta = 0)$ such that $D(A) = \{u \in H^1_0(\Omega) | \operatorname{div}(\sigma \nabla u) \in L^2(\Omega)\}$ $Au = \operatorname{div}(\sigma \nabla u).$

► For $\delta = 0$, the interface is no longer "smooth" and the properties of A depend on the values of κ_{σ} :

♣ When $\kappa_{\sigma} \notin I_c$, A is selfadjoint and has compact resolvent. Its spectrum $\mathfrak{S}(A)$ consists in two sequences of isolated eigenvalues:

$$-\infty \underset{n \to +\infty}{\leftarrow} \dots \lambda_{-n} \leq \dots \leq \lambda_{-1} < 0 \leq \lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n \dots \xrightarrow[n \to +\infty]{} +\infty.$$

In this case, there holds $\mathfrak{S}(\mathbf{A}^{\delta}) \xrightarrow[\delta \to 0]{} \mathfrak{S}(\mathbf{A})$.

♣ When $\kappa_{\sigma} \in I_c \setminus \{-1\}$, there holds $D(\mathbf{A}^*) = D(\mathbf{A}) \oplus \operatorname{span}(s_+, s_-)$ where $s_{\pm} = \zeta r^{\pm i\eta} \varphi(\theta)$ (in particular A is not selfadjoint). Moreover, $\mathfrak{S}(\mathbf{A}) = \mathbb{C}$.

INSIDE THE CRITICAL INTERVAL: 1 The selfadjoint extensions of A are the operators $A(\tau) : D(A(\tau)) \to L^2(\Omega), \tau \in \mathbb{R}$, such that $D(A(\tau)) = D(A) \oplus \operatorname{span}(s_+ + e^{i\tau}s_-)$ $A(\tau)u = \operatorname{div}(\sigma \nabla u).$

4 When $\kappa_{\sigma} \notin I_{c}$, A is selfadjoint and has compact resolvent. Its spectrum $\mathfrak{S}(\mathbf{A})$ consists in two sequences of isolated eigenvalues:

$$-\infty \underset{n \to +\infty}{\leftarrow} \dots \lambda_{-n} \leq \dots \leq \lambda_{-1} < 0 \leq \lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n \dots \xrightarrow[n \to +\infty]{} +\infty$$

In this case, there holds $\mathfrak{S}(A^{\delta}) \xrightarrow[\delta \to \infty]{} \mathfrak{S}(A)$.

♣ When $\kappa_{\sigma} \in I_c \setminus \{-1\}$, there holds $D(A^*) = D(A) \oplus \text{span}(s_+, s_-)$ where $s_{\pm} = \zeta r^{\pm i\eta} \varphi(\theta)$ (in particular A is not selfadjoint). Moreover, $\mathfrak{S}(A) = \mathbb{C}$.

INSIDE THE CRITICAL INTERVAL:

1 The selfadjoint extensions of A are the operators $A(\tau): D(A(\tau)) \to L^2(\Omega), \tau \in \mathbb{R}$, such that

 $\begin{aligned} D(\mathbf{A}(\tau)) &= D(\mathbf{A}) \oplus \operatorname{span}(s_{+} + e^{i\tau}s_{-}) \\ \mathbf{A}(\tau)u &= \operatorname{div}(\sigma \nabla u). \end{aligned}$

2 Matched asymptotic expansions techniques lead to the

CONJECTURE. Assume that $\kappa_{\sigma} \in I_c \setminus \{-1\}$. There are $a \neq 0, b \in \mathbb{R}$, such that $\operatorname{dist}(\mathfrak{S}(A^{\delta}), \mathfrak{S}(A(a \ln \delta + b))) \to 0$ on each compact set of \mathbb{R} as $\delta \to 0$.

In this case, there holds $\mathfrak{S}(\mathbf{A}^o) \xrightarrow{\sim} \mathfrak{S}(\mathbf{A})$.

♣ When $\kappa_{\sigma} \in I_c \setminus \{-1\}$, there holds $D(A^*) = D(A) \oplus \text{span}(s_+, s_-)$ where $s_{\pm} = \zeta r^{\pm i\eta} \varphi(\theta)$ (in particular A is not selfadjoint). Moreover, $\mathfrak{S}(A) = \mathbb{C}$.

Inside the critical interval:

1 The selfadjoint extensions of A are the operators $A(\tau): D(A(\tau)) \to L^2(\Omega), \tau \in \mathbb{R}$, such that

 $\begin{vmatrix} D(\mathbf{A}(\tau)) = D(\mathbf{A}) \oplus \operatorname{span}(s_{+} + e^{i\tau}s_{-}) \\ \mathbf{A}(\tau)u = \operatorname{div}(\sigma \nabla u). \end{aligned}$

2 Matched asymptotic expansions techniques lead to the

CONJECTURE. Assume that $\kappa_{\sigma} \in I_c \setminus \{-1\}$. There are $a \neq 0, b \in \mathbb{R}$, such that $\operatorname{dist}(\mathfrak{S}(A^{\delta}), \mathfrak{S}(A(a \ln \delta + b))) \to 0$ on each compact set of \mathbb{R} as $\delta \to 0$.

3 Conclusion (conjecture).

The spectrum of A^{δ} does not converge when $\delta \to 0$. Asymptotically, $\mathfrak{S}(A^{\delta})$ is $2\pi/a$ -periodic in $\ln \delta$ -scale.

► Let $A : D(A) \to L^2(\Omega)$ denote the limit operator $(\delta = 0)$ such that $D(A) = \{u \in H^1_0(\Omega) | \operatorname{div}(\sigma \nabla u) \in L^2(\Omega)\}$ $Au = \operatorname{div}(\sigma \nabla u).$

► For $\delta = 0$, the interface is no longer "smooth" and the properties of A depend on the values of κ_{σ} :

♣ When $\kappa_{\sigma} \notin I_c$, A is selfadjoint and has compact resolvent. Its spectrum $\mathfrak{S}(A)$ consists in two sequences of isolated eigenvalues:

$$-\infty \underset{n \to +\infty}{\leftarrow} \dots \lambda_{-n} \leq \dots \leq \lambda_{-1} < 0 \leq \lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n \dots \xrightarrow[n \to +\infty]{} +\infty.$$

In this case, there holds $\mathfrak{S}(\mathbf{A}^{\delta}) \xrightarrow[\delta \to 0]{} \mathfrak{S}(\mathbf{A})$.

♣ When $\kappa_{\sigma} \in I_c \setminus \{-1\}$, the spectrum of A^δ does not converge when $\delta \to 0$. Asymptotically, $\mathfrak{S}(A^{\delta})$ seems $2\pi/a$ -periodic in ln δ-scale.

Spectral problem: numerical experiments 3/4

• $\mathfrak{S}(\mathbf{A}^{\delta})$ converges to $\mathfrak{S}(\mathbf{A})$ (A is the limit operator) when $\delta \to 0$.

Spectral problem: numerical experiments 4/4

• Asymptotically, $\mathfrak{S}(\mathbf{A}^{\delta})$ seems periodic in $\ln \delta$ -scale as $\delta \to 0$.

Spectral problem: numerical experiments 4/4

• Asymptotically, $\mathfrak{S}(\mathbf{A}^{\delta})$ seems periodic in $\ln \delta$ -scale as $\delta \to 0$.

Spectral problem: numerical experiments 4/4

• Asymptotically, $\mathfrak{S}(\mathbf{A}^{\delta})$ seems periodic in $\ln \delta$ -scale as $\delta \to 0$.

2 Properties of the limit problem

3 Asymptotic analysis

What is the **behaviour** of $(u^{\delta})_{\delta}$ when δ tends to zero?

Future directions

Spectral problem in presence of doubly negative materials:

Find
$$(\lambda, u) \in \mathbb{C} \times \mathrm{H}^{1}(\Omega) \setminus \{0\}$$
 such that
 $-\mathrm{div}(\mu^{-1} \nabla u) = \lambda \varepsilon u \quad \text{in } \Omega;$
 $u = 0 \quad \text{on } \partial\Omega.$

 \Rightarrow What can we say when both ε and μ change sign (non selfadjoint pb)?

Future directions

Frequency and time dependent models for negative materials

▶ The physical parameters ε and μ depend on the frequency. For metals at optical frequencies, the Drude model gives

$$\varepsilon(\omega) \approx \varepsilon_0 \left(1 - \frac{\omega_p^2}{\omega^2}\right)$$

where ε_0 and ω_p are given.

 \Rightarrow What can we say of the non linear spectral problem

Find
$$(\omega, u) \in \mathbb{C} \times \mathrm{H}^{1}(\Omega) \setminus \{0\}$$
 such that
 $-\operatorname{div}(\varepsilon^{-1}(\omega) \nabla u) = \omega^{2} u$ in $\Omega;$
 $\vec{n} \cdot \varepsilon^{-1}(\omega) \nabla u = 0$ on $\partial \Omega$?

➤ First results have been obtained in time domain for a flat interface.
⇒ Can we prove the limiting amplitude principle for the black-hole?

Thank you for your attention!!!

- ANR project Metamath coordinated by S. Fliss.
- A.-S. Bonnet-Ben Dhia, L. Chesnel, P. Ciarlet Jr., *T*-coercivity for scalar interface problems between dielectrics and metamaterials, M2AN, 46, 1363–1387, 2012.
- A.-S. Bonnet-Ben Dhia, L. Chesnel, X. Claeys, Radiation condition for a non-smooth interface between a dielectric and a metamaterial, M3AS, 23, 9:1629–1662, 2013.

L. Chesnel, X. Claeys, S.A. Nazarov, A curious instability phenomenon for a rounded corner in presence of a negative material, Asymp. Anal., 88, 1-2:43–74, 2014.

Spectrum for a small inclusion: setting

- Let Ω , Ξ be smooth domains of \mathbb{R}^3 such that $O \in \Xi$, $\overline{\Xi} \subset \Omega$.
- For $\delta \in (0; 1]$, we consider the spectral problem

Find
$$(\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times (\mathrm{H}^{1}_{0}(\Omega) \setminus \{0\})$$
 s.t.:
 $-\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta}$ in Ω ,

where
$$\sigma^{\delta} = \begin{vmatrix} \sigma_1 > 0 & \text{in} & \Omega_1^{\delta} := \Omega \setminus \overline{\delta \Xi} \\ \sigma_2 < 0 & \text{in} & \Omega_2^{\delta} := \delta \Xi. \end{vmatrix}$$

Spectrum for a small inclusion: setting

- Let Ω , Ξ be smooth domains of \mathbb{R}^3 such that $O \in \Xi$, $\overline{\Xi} \subset \Omega$.
- For $\delta \in (0; 1]$, we consider the spectral problem
 - Find $(\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times (\mathrm{H}^{1}_{0}(\Omega) \setminus \{0\})$ s.t.: $-\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta}$ in Ω ,

where
$$\sigma^{\delta} = \begin{vmatrix} \sigma_1 > 0 & \text{in} & \Omega_1^{\delta} := \Omega \setminus \overline{\delta \Xi} \\ \sigma_2 < 0 & \text{in} & \Omega_2^{\delta} := \delta \Xi. \end{vmatrix}$$

• We define the operator $A^{\delta} : D(A^{\delta}) \to L^2(\Omega)$ such that

$$\begin{aligned} D(\mathbf{A}^{\delta}) &= \{ u \in \mathbf{H}_{0}^{1}(\Omega) \, | \, \operatorname{div}(\sigma^{\delta} \nabla u) \in \mathbf{L}^{2}(\Omega) \} \\ \mathbf{A}^{\delta} u &= \operatorname{div}(\sigma^{\delta} \nabla u). \end{aligned}$$

Spectrum for a small inclusion: setting

- Let Ω , Ξ be smooth domains of \mathbb{R}^3 such that $O \in \Xi$, $\overline{\Xi} \subset \Omega$.
- For $\delta \in (0; 1]$, we consider the spectral problem

$$\begin{vmatrix} \operatorname{Find} (\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times (\mathrm{H}^{1}_{0}(\Omega) \setminus \{0\}) \text{ s.t.:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta} \quad \text{in } \Omega, \end{vmatrix}$$

where
$$\sigma^{\delta} = \begin{vmatrix} \sigma_1 > 0 & \text{in} & \Omega_1^{\delta} := \Omega \setminus \overline{\delta \Xi} \\ \sigma_2 < 0 & \text{in} & \Omega_2^{\delta} := \delta \Xi. \end{vmatrix}$$

We define the operator $\mathbf{A}^{\delta} : D(\mathbf{A}^{\delta}) \to \mathbf{L}^{2}(\Omega)$ such that

$$D(\mathbf{A}^{\delta}) = \{ u \in \mathbf{H}_0^1(\Omega) \, | \, \operatorname{div}(\sigma^{\delta} \nabla u) \in \mathbf{L}^2(\Omega) \}$$
$$\mathbf{A}^{\delta} u = \operatorname{div}(\sigma^{\delta} \nabla u).$$

PROPOSITION. Assume that $\kappa_{\sigma} \neq -1$. For $\delta > 0$, the operator A^{δ} is selfadjoint and has compact resolvent. Its spectrum $\mathfrak{S}(A^{\delta})$ consists in two sequences of isolated eigenvalues:

$$-\infty \underset{n \to +\infty}{\leftarrow} \dots \lambda_{-n}^{\delta} \leq \dots \leq \lambda_{-1}^{\delta} < 0 \leq \lambda_1^{\delta} \leq \lambda_2^{\delta} \leq \dots \leq \lambda_n^{\delta} \dots \xrightarrow[n \to +\infty]{} +\infty.$$

36
Spectrum for a small inclusion: setting

- Let Ω , Ξ be smooth domains of \mathbb{R}^3 such that $O \in \Xi$, $\overline{\Xi} \subset \Omega$.
- For $\delta \in (0; 1]$, we consider the spectral problem
 - $\begin{vmatrix} \operatorname{Find} (\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times (\mathrm{H}^{1}_{0}(\Omega) \setminus \{0\}) \text{ s.t.:} \\ -\operatorname{div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta} \quad \text{in } \Omega, \end{aligned}$

where
$$\sigma^{\delta} = \begin{vmatrix} \sigma_1 > 0 & \text{in} & \Omega_1^{\delta} := \Omega \setminus \overline{\delta \Xi} \\ \sigma_2 < 0 & \text{in} & \Omega_2^{\delta} := \delta \Xi. \end{vmatrix}$$

We define the operator $A^{\delta} : D(A^{\delta}) \to L^2(\Omega)$ such that

$$D(\mathbf{A}^{\delta}) = \{ u \in \mathbf{H}_{0}^{1}(\Omega) \, | \, \operatorname{div}(\sigma^{\delta} \nabla u) \in \mathbf{L}^{2}(\Omega) \}$$
$$\mathbf{A}^{\delta} u = \operatorname{div}(\sigma^{\delta} \nabla u).$$

▶ For all $\delta \in (0; 1]$, A^{δ} has negative spectrum. At the limit $\delta = 0$, the inclusion of negative material vanishes and σ is strictly positive.

Spectrum for a small inclusion: setting

- Let Ω , Ξ be smooth domains of \mathbb{R}^3 such that $O \in \Xi$, $\overline{\Xi} \subset \Omega$.
- For $\delta \in (0; 1]$, we consider the spectral problem

$$\begin{vmatrix} \operatorname{Find} (\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times (\mathrm{H}^{1}_{0}(\Omega) \setminus \{0\}) \text{ s.t.:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta} \quad \text{in } \Omega, \end{vmatrix}$$

where
$$\sigma^{\delta} = \begin{vmatrix} \sigma_1 > 0 & \text{in} & \Omega_1^{\delta} := \Omega \setminus \overline{\delta \Xi} \\ \sigma_2 < 0 & \text{in} & \Omega_2^{\delta} := \delta \Xi. \end{vmatrix}$$

We define the operator $A^{\delta} : D(A^{\delta}) \to L^2(\Omega)$ such that

$$D(\mathbf{A}^{\delta}) = \{ u \in \mathbf{H}_0^1(\Omega) \, | \, \operatorname{div}(\sigma^{\delta} \nabla u) \in \mathbf{L}^2(\Omega) \}$$
$$\mathbf{A}^{\delta} u = \operatorname{div}(\sigma^{\delta} \nabla u).$$

► For all $\delta \in (0; 1]$, A^{δ} has negative spectrum. At the limit $\delta = 0$, the inclusion of negative material vanishes and σ is strictly positive.

What happens to the negative spectrum when δ tends to zero?

Limit operators

▶ As $\delta \to 0$, the small inclusion of negative material disappears. We introduce the far field operator A^0 such that

$$D(\mathbf{A}^0) = \{ v \in \mathbf{H}^1_0(\Omega) \, | \, \Delta v \in \mathbf{L}^2(\Omega) \}$$

$$\mathbf{A}^0 v = -\sigma_1 \Delta v.$$

There holds $\mathfrak{S}(A^0) = {\mu_n}_{n\geq 1}$ with $0 < \mu_1 < \mu_2 \leq \cdots \leq \mu_n \dots \xrightarrow[n \to +\infty]{} +\infty$.

Limit operators

▶ As $\delta \rightarrow 0$, the small inclusion of negative material disappears. We introduce the far field operator A^0 such that

$$D(\mathbf{A}^0) = \{ v \in \mathbf{H}^1_0(\Omega) \, | \, \Delta v \in \mathbf{L}^2(\Omega) \}$$
$$\mathbf{A}^0 v = -\sigma_1 \Delta v.$$

There holds $\mathfrak{S}(\mathbf{A}^0) = {\mu_n}_{n\geq 1}$ with $0 < \mu_1 < \mu_2 \leq \cdots \leq \mu_n \dots \xrightarrow[n \to +\infty]{} +\infty$.

• Introduce the rapid coordinate $\boldsymbol{\xi} := \delta^{-1} \boldsymbol{x}$ and let $\delta \to 0$. Define the near field operator \mathbf{B}^{∞} such that

$$D(\mathbf{B}^{\infty}) := \{ w \in \mathrm{H}^{1}(\mathbb{R}^{3}) \mid \operatorname{div} (\sigma^{\infty} \nabla w) \in \mathrm{L}^{2}(\mathbb{R}^{3}) \}$$

$$\mathbf{B}^{\infty} w = -\operatorname{div} (\sigma^{\infty} \nabla w).$$

$$\sigma^{\infty} = \sigma^{\infty}$$

Limit operators

▶ As $\delta \to 0$, the small inclusion of negative material disappears. We introduce the far field operator A^0 such that

$$D(\mathbf{A}^0) = \{ v \in \mathbf{H}^1_0(\Omega) \, | \, \Delta v \in \mathbf{L}^2(\Omega) \}$$
$$\mathbf{A}^0 v = -\sigma_1 \Delta v.$$

There holds $\mathfrak{S}(\mathbf{A}^0) = {\mu_n}_{n\geq 1}$ with $0 < \mu_1 < \mu_2 \leq \cdots \leq \mu_n \dots \xrightarrow[n \to +\infty]{} +\infty$.

• Introduce the rapid coordinate $\boldsymbol{\xi} := \delta^{-1} \boldsymbol{x}$ and let $\delta \to 0$. Define the near field operator \mathbf{B}^{∞} such that

$$D(\mathbf{B}^{\infty}) := \{ w \in \mathrm{H}^{1}(\mathbb{R}^{3}) \mid \operatorname{div} (\sigma^{\infty} \nabla w) \in \mathrm{L}^{2}(\mathbb{R}^{3}) \} \qquad \sigma^{\infty} = \sigma_{1}$$
$$\mathbf{B}^{\infty} w = -\operatorname{div} (\sigma^{\infty} \nabla w). \qquad \sigma^{\infty} = \sigma_{1}$$

PROPOSITION. Assume that $\kappa_{\sigma} \neq -1$. The continuous spectrum of \mathbf{B}^{∞} is equal to $[0; +\infty)$ while its discrete spectrum is a sequence of eigenvalues: $\mathfrak{S}(\mathbf{B}^{\infty}) \setminus \overline{\mathbb{R}_{+}} = \{\mu_{-n}\}_{n \geq 1}$ with $0 > \mu_{-1} \geq \cdots \geq \mu_{-n} \cdots \xrightarrow[n \to +\infty]{n \to +\infty} -\infty$.

Assume that $\kappa_{\sigma} \neq -1$ and that \mathbb{B}^{∞} is injective. For $n \in \mathbb{N}^*$, we denote $\lambda_{\pm n}^{\delta}$, μ_n^{δ} , μ_{-n}^{δ} the eigenvalues of \mathcal{A}^{δ} , \mathcal{A}^0 , \mathcal{B}^{∞} as in the previous slides.

THEOREM. (POSITIVE SPECTRUM) For all $n \in \mathbb{N}^*$, $\varepsilon \in (0; 1)$, there exist constants $C, \delta_0 > 0$ depending on n, ε but independent of δ , such that

 $|\lambda_n^{\delta} - \mu_n| \le C \, \delta^{3/2 - \varepsilon}, \qquad \forall \delta \in (0; \delta_0].$

Assume that $\kappa_{\sigma} \neq -1$ and that \mathbf{B}^{∞} is injective. For $n \in \mathbb{N}^*$, we denote $\lambda_{\pm n}^{\delta}$, μ_n^{δ} , μ_{-n}^{δ} the eigenvalues of \mathbf{A}^{δ} , \mathbf{A}^0 , \mathbf{B}^{∞} as in the previous slides.

THEOREM. (POSITIVE SPECTRUM) For all $n \in \mathbb{N}^*$, $\varepsilon \in (0; 1)$, there exist constants $C, \delta_0 > 0$ depending on n, ε but independent of δ , such that

 $|\lambda_n^{\delta} - \mu_n| \le C \,\delta^{3/2 - \varepsilon}, \qquad \forall \delta \in (0; \delta_0].$

THEOREM. (NEGATIVE SPECTRUM) For all $n \in \mathbb{N}^*$, there exist constants $C, \gamma, \delta_0 > 0$, depending on n but independent of δ , such that

$$|\lambda_{-n}^{\delta} - \delta^{-2} \mu_{-n}| \le C \exp(-\gamma/\delta), \qquad \forall \delta \in (0; \delta_0].$$

Assume that $\kappa_{\sigma} \neq -1$ and that \mathbb{B}^{∞} is injective. For $n \in \mathbb{N}^*$, we denote $\lambda_{\pm n}^{\delta}$, μ_n^{δ} , μ_{-n}^{δ} the eigenvalues of \mathcal{A}^{δ} , \mathcal{A}^0 , \mathcal{B}^{∞} as in the previous slides.

Assume that $\kappa_{\sigma} \neq -1$ and that \mathbf{B}^{∞} is injective. For $n \in \mathbb{N}^*$, we denote $\lambda_{\pm n}^{\delta}$, μ_n^{δ} , μ_{-n}^{δ} the eigenvalues of \mathbf{A}^{δ} , \mathbf{A}^0 , \mathbf{B}^{∞} as in the previous slides.

THEOREM. (POSITIVE SPECTRUM) For all $n \in \mathbb{N}^*$, $\varepsilon \in (0; 1)$, there exist constants $C, \delta_0 > 0$ depending on n, ε but independent of δ , such that

 $|\lambda_n^{\delta} - \mu_n| \le C \,\delta^{3/2 - \varepsilon}, \qquad \forall \delta \in (0; \delta_0].$

THEOREM. (NEGATIVE SPECTRUM) For all $n \in \mathbb{N}^*$, there exist constants $C, \gamma, \delta_0 > 0$, depending on n but independent of δ , such that

$$|\lambda_{-n}^{\delta} - \delta^{-2} \mu_{-n}| \le C \exp(-\gamma/\delta), \qquad \forall \delta \in (0; \delta_0].$$

Assume that $\kappa_{\sigma} \neq -1$ and that \mathbb{B}^{∞} is injective. For $n \in \mathbb{N}^*$, we denote $\lambda_{\pm n}^{\delta}$, μ_n^{δ} , μ_{-n}^{δ} the eigenvalues of \mathcal{A}^{δ} , \mathcal{A}^0 , \mathcal{B}^{∞} as in the previous slides.

THEOREM. (POSITIVE SPECTRUM) For all $n \in \mathbb{N}^*$, $\varepsilon \in (0; 1)$, there exist constants $C, \delta_0 > 0$ depending on n, ε but independent of δ , such that

 $|\lambda_n^{\delta} - \mu_n| \le C \, \delta^{3/2 - \varepsilon}, \qquad \forall \delta \in (0; \delta_0].$

THEOREM. (NEGATIVE SPECTRUM) For all $n \in \mathbb{N}^*$, there exist constants $C, \gamma, \delta_0 > 0$, depending on n but independent of δ , such that

$$|\lambda_{-n}^{\delta} - \delta^{-2} \mu_{-n}| \le C \exp(-\gamma/\delta), \qquad \forall \delta \in (0; \delta_0].$$

PROPOSITION. (LOCALIZATION EFFECT) For all $n \in \mathbb{N}^*$, let u_{-n}^{δ} be an eigenfunction corresponding to the negative eigenvalue λ_{-n}^{δ} . There exist constants $C, \gamma, \delta_0 > 0$, depending on n but independent of δ , such that

$$\int_{\Omega} (|u_{-n}^{\delta}|^2 + |\nabla u_{-n}^{\delta}|^2) e^{\gamma x/\delta} d\boldsymbol{x} \le C \, \|u_{-n}^{\delta}\|_{\Omega}, \qquad \forall \delta \in (0; \delta_0].$$

• We approximate numerically the spectrum of A^{δ} using a usual P1 Finite Element Method and we make δ goes to zero.

• We consider the following 2D geometry:

• The positive part of $\mathfrak{S}(\mathbf{A}^{\delta})$ converges to $\mathfrak{S}(\mathbf{A}^{0})$ when $\delta \to 0$.

• The negative part of $\mathfrak{S}(A^{\delta})$ is asymptotically equivalent to the negative part of $\delta^{-2}\mathfrak{S}(B^{\infty})$ when $\delta \to 0$.

Contrast $\kappa_{\sigma} = -2.5$

► The negative part of $\mathfrak{S}(A^{\delta})$ is asymptotically equivalent to the negative part of $\delta^{-2}\mathfrak{S}(B^{\infty})$ when $\delta \to 0$.

Localization effect

Eigenfunction associated to the first negative eigenvalue

Eigenfunction associated to the first positive eigenvalue

• The eigenfunctions corresponding to the negative eigenvalues are localized around the small inclusion. Here, $\kappa_{\sigma} = -2.5$.