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Introduction: general framework
» Scattering by a metal in electromagnetism in time-harmonic regime at
optical frequency.

» For metals at optical frequency, Ree(w) < 0 and Sme(w) << |Ree(w)].
= We neglect losses and study the ideal case ¢(w) € (—00;0).

Positive material
e>0
and pu>0

Negative metal
e<0
and p>0
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» Scattering by a metal in electromagnetism in time-harmonic regime at
optical frequency.

» For metals at optical frequency, Ree(w) < 0 and Sme(w) << |Ree(w)].
= We neglect losses and study the ideal case ¢(w) € (—00;0).

Positive material
e>0
and pu>0

Negative metal
e<0
and p>0

» Waves called Surface Plasmon Polaritons can propagate at the interface
between a dielectric and a negative metal.
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Introduction: applications

» Surface Plasmons Polaritons can propagate information. Physicists hope
to exploit them to reduce the size of computer chips.

. 4 Out
Dielectric ﬁ’_’, .

Il

Figures from 0’Connor et al., Appl. Phys. Lett. 95, 171112 (2009)

» In this context, physicists use singular geometries to focus energy. It

allows to stock information. -



Introduction: in this talk

» We study a scalar model problem set in a bounded domain Q C R2:

(2)

Find u € H}(Q) s.t.:
—div(eVu) = f in Q.
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Introduction: in this talk

» We study a scalar model problem set in a bounded domain Q C R2:

Find u € H}(Q) s.t.: 0
() —div(eVu) = f in Q. z
> 92(—
o HY(©) = (v e 120) Vo e 120 oo =0} |y, >ﬂ
@ fis the source term in H=1(Q) ola, =02 <0
(constant)

» We slightly round the interface X:

5
U 0 (%) Find u’ € H}(Q) s.t.:
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[05 -0 0 @ ¢ denotes the radius of curvature of the
o 1>
o lo, =02 <0 rounded interface at the origin.
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» We slightly round the interface X:

5
U 0 (%) Find u’ € H}(Q) s.t.:
Q) —div(e’Vu’) = f in Q.

[05 -0 0 @ ¢ denotes the radius of curvature of the
o 1>
o lo, =02 <0 rounded interface at the origin.

( ? What is the behaviour of the sequence (u’)s when & tends to zero?)
4/ 34




Outline of the talk

e Numerical experiments

To get an intuition, we discretize (@5 ) and observe what happens when
0 — 0.
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Outline of the talk

e Numerical experiments

To get an intuition, we discretize (@5 ) and observe what happens when
0 — 0.

© Properties of the limit problem

We present the properties of the limit problem in the geometry with the
real corner (0 = 0). Since o changes sign, original phenomena appear.

© Asymptotic analysis

We prove a curious instability phenomenon: for certain configurations,
(2°) critically depends on 6.
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@ Numerical experiments
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Setting

» For the numerical experiments, we round the corner in a particular way
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Setting

» For the numerical experiments, we round the corner in a particular way
(in this domain, we can separate variables).

d is the rounding
parameter

» Our goal is to study the behaviour of the solution, if it is well-defined, of

Find u’ € H}(92?) such that:

(#°) —div(e®Vul) = f in Q°.

» We approximate u®, assuming it is well-defined, by a usual P1 Finite
Element Method. We compute the solution ug of the discretized problem
with FreeFem++.

[We display the behaviour of uj as § — O.]
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Numerical experiments 1/2

o1 =1 and o9 = 1 (positive materials)
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Numerical experiments 1/2

o1 =1 and o9 = 1 (positive materials)

10

&75 0.8 0.85 0.9 0.95 1

ul w.r.t. & [Vudlls wort. 1 =6

» For positive materials, it is well-known that (u°)s converges to u, the
solution in the limit geometry.
» The rate of convergence depends on the regularity of u.

» To avoid to mesh Q°, we can approximate u° by uy,. ,
8 / 34
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Numerical experiments 2/2

... and what about for a sign-changing o777

\ o1 =1 and oy = —0.9999 \
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ul wort. & [Vud s wort. 1—6
n W.r.t. nllQs w.r.t.

)

» For this configuration, u° seems to depend critically on d.

(In this talk, our goal is to explain this behaviour.)
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© Properties of the limit problem
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Mathematical difficulty

e Classical case o > 0 everywhere:
a(u,u) = /Qa |Vu|? > min(o) Hu”?{é(ﬁ) coercivity

Lax-Milgram theorem = () well-posed.
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Mathematical difficulty
o Classical case o > 0 everywhere:
a(u,u) = /Qa |Vu|? > min(o) Hu”%{})(m coercivity

Lax-Milgram theorem = () well-posed.

e The case o changes sign:
a(u,u) = . C ||“||2H(1)(Q) loss of coercivity

» When oy = —0y, (&) is always ill-posed (Costabel-Stephan 85).
For a symmetric domain (w.r.t. ¥) we can build a kernel of
infinite dimension.
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Problems with a sign changing coefficient

Find u € H}(Q) such that:

(Z) —div(eVu) =f in Q.

» We have the following properties (see Costabel and Stephan 85,
Dauge and Texier 97, Bonnet-Ben Dhia et al. 99,10,12,13):

’ Smooth interface X ‘ ’Interface ¥ with a corner ‘

o1 >0

v (&) well-posed in the Fredholm
sense iff ko = 02/01 # —1.

v () well-posed in the Fredholm sense
iff ko ¢ I = [—0;—1/0), £ = (2m — ) /.
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Find u € H}(Q) such that:

(Z) —div(eVu) =f in Q.

» We have the following properties (see Costabel and Stephan 85,
Dauge and Texier 97, Bonnet-Ben Dhia et al. 99,10,12,13):

’ Smooth interface X ‘ ’Interface ¥ with a corner ‘

o1 >0

v (&) well-posed in the Fredholm
sense iff ko = 02/01 # —1.

v () well-posed in the Fredholm sense
iff ko ¢ I = [—0;—1/0), £ = (2m — ) /.

@ Well-posedness depends on the smoothness of ¥ and on o.
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The problematic of the rounded corner

Find u € H}(Q) such that:

(Z) —div(eVu) =f in Q.

» When the interface has a corner, (&) is well-posed in
the Fredholm sense iff x, ¢ I, (the critical interval).
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The problematic of the rounded corner

Find u € H}(Q) such that:

(Z) —div(eVu) =f in Q.

» When the interface has a corner, () is well-posed in
the Fredholm sense iff x, ¢ I. (the critical interval).

» When the interface is smooth, () is well-posed in the
Fredholm sense iff x, # —1.

What happens for a slightly rounded corner when
ke € I\ {—1}7

» We need to clarify the properties of (&) when
the interface has a corner in the case r, € I.\{—1}.

13 / 34



Properties of the limit problem inside the
critical interval

Find u € H}(2) such that:

(&) —div(eVu) =f in Q.

» To simplify the presentation, we work on a particular configuration.
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Properties of the limit problem inside the
critical interval

Find u € H}(2) such that:

(&) —div(eVu) =f in Q.

» To simplify the presentation, we work on a particular configuration.

» Using the variational method of the T-coercivity, we prove the

PROPOSITION. The problem (&) is well-posed as soon as the contrast kK, =
o9 /oy satisfies ko & I. = [ 1; ].

What happens when £, € (—1; ?
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Analogy with a waveguide problem

o Bounded sector Q2

O (r,0)

¢ Equation:
—div(oVu) =f
—_———
—r=2(0(rd,)2+00ds)u
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Analogy with a waveguide problem

We compute the singularities s(r,0) = r*¢() and we observe two cases:

» Outside the critical interval

N T rh
f@,:—l/llt1 : 1
Ae =M AL A
e BP0 [0 ()| r
2 =l ’ 1 2 0
1 71 1
not H ; H -1
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Analogy with a waveguide problem

We compute the singularities s(r,6) = r*p(f) and we observe two cases

» Outside the critical interval 2
N T rot
Ko = —1/4 14 1
PYRE VI D VR v
e BP0 [0 ()| r
S| ’ 1 2 0
1 71 1
not H ; H -1

Inside the critical interval
ke =—1/2 %

L 3
Az P i
e oo foooenns ° >
-2 —1_/\1 . 1 2
1 -1 1
not H H
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Inside the critical interval: message 1

For a contrast k. inside the critical interval, there are singularities of the
form s(r,0) = r*"p(0) with n € R\ {0}.

» Using these singularities, we can show that the following a priori
estimate does not hold

lullay o) < T u € H(Q),

where L : H}(2) — H(Q2) is the operator such that
(Lu, v)m1 () = (0Vu, Vo)a, Yau, v € Hy().
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For a contrast k. inside the critical interval, there are singularities of the
form s(r,0) = r*"p(0) with n € R\ {0}.

» Using these singularities, we can show that the following a priori
estimate does not hold

lullm o) < T u € Hy(Q),

where L : H}(2) — H(Q2) is the operator such that
(Lu, v)1 () = (0Vu, V), Yau, v € Hy(Q).

» We deduce the following result:

= holm type (Sm L is not closed in H}(£2)).

PROPOSITION. For k, € (—1;—1/3), the operator L is not of Fred-

Let’s see how to change the functional framework to recover a well-posed
problem ...
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Analogy with a waveguide problem

1

We compute the singularities s(r,6) = r*p(f) and we observe two cases

» Outside the critical interval A\
N = !
Ko = —1/4 14 1
R VI P VR
203 1@ |G RNS o > r
S| ’ 1 2 0
1 -1 1
not H H —1

Inside the critical interval

ho==1/2 4
~X2 A,
Y TN FRR o oo * >
-2 _1—A1 . 1 2
+-1
not H! § H!
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Analogy with a waveguide problem
We compute the singularities s(r,6) = r*p(f) and we observe two cases

» Outside the critical interval

N T rh
Ko = —1/4 14 1
)\) /\I )\1 )\2
. -0 - -G NSRS r
2 -1 | 12 0
1 T-1 1
not H ; H -1
» Inside the critical interval
ho==1/2 4
~ A L
PR TR o oo ° >
-2 -1 1 1 2
il P
1 T-1 1
not H ; H

How to deal with the propagative singularities inside the critical interval?
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Analogy with a waveguide problem

e Bounded sector 2 E o Half-strip B

(2,0) =(—1nr,0)

—"

(r,0) = (Ie_z,e)

e Singularities in the sector
s(r,0) = r(0)
:><(cos blnr + isin bln r)p(6)

e Modes in the strip
m(z,0) = e p(0)
:><(cos bz — isin bz)p(0)

I
I
I
I
1
1
I
I
I
I
I
I
I
I
I
1
1
I
1S

(ReX =a, SmA=0b)
s€ HY(Q) ReA> 0 m is evanescent
s¢ HY(Q) ReX=0 m is propagative
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Analogy with a waveguide problem

e Bounded sector €2

O (r,0)

e Equation:

—div(oVu) =

———
—r=2(0(10,;)2+8900g)u

e Singularities in the sector
s(r,0) = r(0)

:><(cos blnr + isin bln r)p(6)

s€ HY(Q)
s¢ HY(Q)

(2,0) = (—
&f
(r,0) = (e

e\

o Half-strip B

nr,0)

e

o Equation:
—div(cVu) =e 27 f
—_———

—(002+05009)u

e Modes in the strip
m(z,0) = e"*¢(0)

e\ 4

A=1)
0 m is evanescent
=0 m is propagative

0=m/4

:><(cos bz — isin bz)p(0)

» This encourages us to use modal decomposition in the half-strip.
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Modal analysis in the waveguide

ke = —1/4 .

A =)\
L] 1o

-2 -1

A

+@ ]

» Outside the critical interval . All the

modes are exponentially growing or decaying.

— We look for an exponentially decaying

solution.

18 / 34



Modal analysis in the waveguide

Rg = _1/4 4 . o .
1+ » Outside the critical interval . All the
S VR PR ¥ Ao modes are exponentially growing or decaying.
* I-e + e | [
2 -1 2 — We look for an exponentially decaying
= solution.
» Inside the critical interval . There are
e =—1/2 * exactly two propagative modes.
1 -
o)\
— X : Ay
o | + | .
-2 -1 1 2
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Modal analysis in the waveguide

Rg = _1/4 4 . o .
1= » Outside the critical interval . All the
S VR PR ¥ Ao modes are exponentially growing or decaying.
o R ) .
2 -1 2 — We look for an exponentially decaying
-1 solution.
» Inside the critical interval . There are
e =—1/2 * exactly two propagative modes.
1 -
) o\ \ — The decomposition on the outgoing modes
PO ; & leads to look for a solution of the form
-2 -1 2
—Ap e U= cpp eM? + Ue.
—_———— ~—

propagative part

[non H! framework]

evanescent part
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Inside the critical interval: message 2

Ig There is a functional framework, different from H}((2), involving one
singularity, where existence and uniqueness of the solution holds.
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The new functional framework

Consider 0 < 8 < 2, ¢ a cut-off function (equal to 1 in +00) and define

W_5 = {v]| v e H)(B)} space of exponentially decaying functions
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Consider 0 < 8 < 2, ¢ a cut-off function (equal to 1 in +00) and define

Wop = {v| eP#v € H{(B)} space of exponentially decaying functions
W = span(Cp; eM?) @ W_5  propagative part 4 evanescent part
W = {v]e P e H}(B)} space of exponentially growing functions

THEOREM. Let k, € (—1;—1/3) and 0 < 8 < 2. The operator
div(oV-) from to Wg* is an isomorphism.

IDEAS OF THE PROOF:
Q A_j:div(eV:) from W_z to Wg* is injective but not surjective.
Q Aps:div(eV:) from Ws to W_g* is surjective but not injective.

@ The intermediate operator : — Wpg* is injective (energy
integral) and surjective (residue theorem).

@ Limiting absorption principle to select the outgoing mode.

€
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How to numerically approximate the solution

in this new framework ?
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Naive approximation

» Let us try a usual Finite Element Method (P1 Lagrange Finite
Element). We solve the problem

Find u € Vy, s.t.:
/ oVuy -V, = / fon, YveVy,
Q Q

where V}, approximates Hj(2) as b — 0 (h is the mesh size).
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Naive approximation

» Let us try a usual Finite Element Method (P1 Lagrange Finit ;
Element). We solve the problem o

» We display uy, as h — 0.

Contrast k, = —0.999 € (—1;—1/3).
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Remark

» Outside the critical interval, for the classical approximation method, the
sequence (uy) converges.

Contrast £, = —1.001 ¢ (—1;—1/3).
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How to approximate the solution?

» We use a PML (Perfectly Matched Layer) to bound the domain B
+ finite elements in the truncated strip (k, = —0.999 € (—1; -1/3)).

IS.SU79 I9.8079
10 10
0 0
-10 -10
=20 -20
-25.1087
|

-25.1087
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How to approximate the solution?

» We use a PML (Perfectly Matched Layer) to bound the domain B
+ finite elements in the truncated strip (k, = —0.999 € (—1; -1/3)).

Is.aws
10
0
-10
-20
-25.1087
1

PML

Without the PML, the solution in the truncated strip of length
A L does not converge when L — oo. This is what we observed in
our numerical experiment for the rounded corner.
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A curious black hole phenomenon

» For the Helmholtz equation div (¢Vu) 4+ w?u = f, analogously, it is
necessary to modify the functional framework to have a well-posed problem.

» In time domain, the solution adopts a curious behaviour.

.36
2.00

Z1.00

2nu

0.000
-2.00 -2.00

-2.45 -2.36

0.000

-1.00

(z, t) — Re (u(z)e™™!)  for k, = —1/1.3J

» Everything happens like if a waves was absorbed by the corner point.

» Analogous phenomena occur in cuspidal domains in the theory of

water-waves and in elasticity (Cardone, Nazarov, Taskinen).
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© Asymptotic analysis
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Source term problem

(7°)

Find u® € H}() s.t.:
—div(e®Vu?) = f in Q.

(2

)

Find u € H}(Q) s.t.:
—div(cVu) = f in Q.

» The behaviour of (u%)s depends on the properties of the limit problem.
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(2°) —div(c’Vul) = f in Q.

(2

)

Find u € H}(Q) s.t.:
—div(cVu) = f in Q.

» The behaviour of (u%)s depends on the properties of the limit problem.

If () well-posed (in H§(R)), then «° is uniquely defined for § small enough
and (u’)s converges to u (as for positive materials).
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Source term problem

Q3 0,

Find v’ € H}(Q) s.t.:
—div(c’Vul) = f in Q.

Find u € H(Q) s.t.:

(#°) —div(eVu) = f in .

()

» The behaviour of (u%)s depends on the properties of the limit problem.

If (22) well-posed (in H3(9)), then w9 is uniquely defined for ¢ small enough
and (u%)s converges to u (as for positive materials).

If the limit problem is well-posed only in the exotic framework, then (£2°)
critically depends on the value of the rounding parameter 4.
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Source term problem

IDEA OF THE APPROACH:

@ We prove the a priori estimate Hu5||H(1J(Q) < ¢|In |2 ||f|q for all §
in some set .% which excludes a discrete set accumulating in zero (#
hard part of the proof, Nazarov’s technique).

X X X Dal X X X>  Iné

T— In. ={Ind, 6 € &}

)
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Source term problem

IDEA OF THE APPROACH:

@ We prove the a priori estimate u5||H(1)(Q) < ¢|In |2 ||f|q for all §
in some set .% which excludes a discrete set accumulating in zero (#
hard part of the proof, Nazarov’s technique).

X X X Dal X X X>  Iné

T— In. ={Ind, 6 € &}

@® We provide an asymptotic expansion of u?, denoted 49 with the
error estimate, for some 3 > 0,

[~ iy < c&Nflo, VO €S

27 / 34



Source term problem

IDEA OF THE APPROACH:

@ We prove the a priori estimate u5||H(1)(Q) < ¢|In |2 ||f|q for all §

in some set .% which excludes a discrete set accumulating in zero (#
hard part of the proof, Nazarov’s technique).

X X X Dal X X X>  Iné

T— InY ={Iné, 6 € 7}

@® We provide an asymptotic expansion of u?, denoted 49 with the
error estimate, for some 3 > 0,

[~ iy < c&Nflo, VO €S

® The behaviour of (1%)5 can be explicitly examined as § — 0. The
sequence (#°)s does not converge, even for the L2-norm!
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IDEA OF THE APPROACH:

@ We prove the a priori estimate u5||H(1)(Q) < ¢|In |2 ||f|q for all §
in some set .% which excludes a discrete set accumulating in zero (#
hard part of the proof, Nazarov’s technique).

X X X Dal X X X>  Iné

T— InY ={Iné, 6 € 7}

@® We provide an asymptotic expansion of u?, denoted 49 with the
error estimate, for some 3 > 0,

[~ iy < c&Nflo, VO €S

® The behaviour of (1%)5 can be explicitly examined as § — 0. The
sequence (#°)s does not converge, even for the L2-norm!

@ Conclusion.

(The sequence (u%)s does not converge, even for the Lz—norm!)
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Source term problem

Q3 0,

Find v’ € H}(Q) s.t.:
—div(c’Vul) = f in Q.

Find u € H(Q) s.t.:

(#°) —div(eVu) = f in .

()

» The behaviour of (u%)s depends on the properties of the limit problem.

If (22) well-posed (in H3(9)), then w9 is uniquely defined for ¢ small enough
and (u%)s converges to u (as for positive materials).

If the limit problem is well-posed only in the exotic framework, then (£2°)
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Spectral problem 1/4

» In the geometry with a rounded corner, we consider the spectral problem

Find (A%, %) € C x (H§(Q) \ {0}) s.t.:
—div(e’Vu?) = N’ in Q.

» We define the operator A° : D(A°) — L?(Q) such that
D(A%) = {u € H)(Q) | div(c’Vu) € L2(Q)}
Ady = div(a?Vu).
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PROPOSITION. Assume that x, # —1. For 6 > 0 (in this case the interface
is “smooth” ), the operator A° is selfadjoint and has compact resolvent. Its
spectrum G(A%) consists in two sequences of isolated eigenvalues:

< <A <0SAT SN <SS XL 5 oo
n——+00

—00 +— .. A8

n—-+00 n
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[ ? For n € Z*, what is the behaviour of A’ when ¢ tends to zero?]
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Spectral problem 1/4

» In the geometry with a rounded corner, we consider the spectral problem

Find (A%, %) € C x (H}(Q) \ {0}) s.t.:
—div(e’Vu?) = N’ in Q.

» We define the operator A° : D(A°) — L?(Q) such that
D(A%) = {u € H)(Q) | div(c’Vu) € L2(Q)}
Ady = div(a?Vu).

PROPOSITION. Assume that x, # —1. For 6 > 0 (in this case the interface
is “smooth” ), the operator A° is selfadjoint and has compact resolvent. Its
spectrum G(A?) consists in two sequences of isolated eigenvalues:

< <A <0SAT SN <SS XL 5 oo
n——+00

—00 +— .. A8

n—-+00 n

[ ? For n € Z*, what is the behaviour of A’ when ¢ tends to zero?]

= This depends on the features of the limit operator for § = 0... .



Spectral problem 2/4

> Let A: D(A) — L?(Q) denote the limit operator (6 = 0) such that

D(A) = {u € H}(Q) |div(eVu) € L2(Q)}
Ay = div(oVu).

» For § = 0, the interface is no longer “smooth” and the properties of A
depend on the values of k,:
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D(A) = {u € H}(Q) |div(eVu) € L2(Q)}
Ay = div(oVu).

» For § = 0, the interface is no longer “smooth” and the properties of A
depend on the values of k,:

& When r, ¢ 1., A is selfadjoint and has compact resolvent. Its spectrum
GS(A) consists in two sequences of isolated eigenvalues:

—00 = A< <A<<0S NSl =5 Foo.
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In this case, there holds G(A?) o S(A).
—
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> Let A: D(A) — L?(Q) denote the limit operator (6 = 0) such that

D(A) = {u € H}(Q) |div(eVu) € L2(Q)}
Ay = div(oVu).

» For § = 0, the interface is no longer “smooth” and the properties of A
depend on the values of k,:

& When r, ¢ 1., A is selfadjoint and has compact resolvent. Its spectrum
GS(A) consists in two sequences of isolated eigenvalues:

—00 = A< <A<<0S NSl =5 Foo.

n—-+o0 n—-+o00

In this case, there holds G(A?) o S(A).
—

& When r, € I.\ {—1}, there holds D(A*) = D(A) @ span(s;, s—) where
sy = (r¥p(0) (in particular A is not selfadjoint). Moreover, S(A) = C.
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Spectral problem 2/4

INSIDE THE CRITICAL INTERVAL:
@ The selfadjoint extensions of A are the operators
A(7) : D(A(71)) — L3(Q2), 7 € R, such that
D(A(7)) = D(A) @ span(sy + e7s_)
A(r)u =div(cVu).

)
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A(7) : D(A(71)) — L3(Q2), 7 € R, such that

D(A(7)) = D(A) @ span(sy + e7s_)
A(r)u =div(cVu).

@ Matched asymptotic expansions techniques lead to the

CONJECTURE. Assume that ko, € I. \ {—1}. There are a # 0, b € R, such
that dist(S(A%), S(A(alnd+b))) — 0 on each compact set of R as § — 0.
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INSIDE THE CRITICAL INTERVAL:

@ The selfadjoint extensions of A are the operators
A(7) : D(A(71)) — L3(Q2), 7 € R, such that

D(A(7)) = D(A) @ span(sy + e7s_)
A(r)u =div(cVu).

@ Matched asymptotic expansions techniques lead to the

CONJECTURE. Assume that ko, € I. \ {—1}. There are a # 0, b € R, such
that dist(S(A%), S(A(alnd+b))) — 0 on each compact set of R as § — 0.

@ Conclusion (conjecture).

|z| The spectrum of A% does not converge when 6 — 0. Asymptoti-
cally, §(A?®) is 27/ a—periodic in In J-scale.

)
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Spectral problem 2/4

> Let A: D(A) — L?(Q) denote the limit operator (6 = 0) such that

D(A) = {u € H{(Q) | div(cVu) € L2(Q)}
Au = div(oVu).

» For § = 0, the interface is no longer “smooth” and the properties of A
depend on the values of k,:

& When r, ¢ I., A is selfadjoint and has compact resolvent. Its spectrum
GS(A) consists in two sequences of isolated eigenvalues:

—00 — LA, < <A< A S <<, — 4o0.
n—r+oo n—+00
In this case, there holds G(A?) o S(A).
—

& When #, € I.\ {1}, the spectrum of A% does not converge when § — 0.
Asymptotically, G(A%) seems 27 /a-—periodic in In §-scale.
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Spectral problem: numerical experiments

Spectrum in the rounded geometry

> GS(A°%) converges to G(A) (A is the limit operator) when § — 0.

ke = —1.0001 (outside the critical interval)
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Spectral problem: numerical experiments

ko = —0.9999 (inside the critical interval)

0.25

o
[N)

0.15

o
o ©
o. .40 P

-0.05

|
©
[N

Spectrum in the rounded geometry

-0.15

:

6>0

» Asymptotically, G(A%) seems periodic in In § scale as § — 0.

4/4
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ko = —0.9999 (inside the critical interval)

Spectral problem: numerical experiments
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» Asymptotically, G(A%) seems periodic in In ¢ scale as § — 0.



@ Numerical experiments

© Properties of the limit problem

© Asymptotic analysis
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Conclusion

?

Let us remind the initial question:

What is the behaviour of (u°)s when § tends to zero?




Conclusion

Let us remind the initial question:

? ’What is the behaviour of (u®)s; when § tends to zero? ’

>< ‘ This depends on the features of the limit problem. ‘

ko = —1.0001 ¢ I, Ko = —0.9999 € I.

< ‘When ko € I, (u®)s does not converge, even for the L2-norm!

In this case, it is impossible to simulate the fields since it is impossible
to measure exactly 6. = What happens physically?

33
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Future directions

» Spectral problem in presence of doubly negative materials:

Find (\,u) € C x HY(Q) \ {0} such that
—div(p™tVu) = Aeu in Q;
v =20 on ON.

= What can we say when both ¢ and p change sign (non selfadjoint pb )?



Future directions

Frequency and time dependent models for negative materials

» The physical parameters € and p depend on the frequency. For metals
at optical frequencies, the Drude model gives

e(w) = e (1 - wi)

w2

where g9 and w,, are given.

= What can we say of the non linear spectral problem

Find (w,u) € C x HY(Q) \ {0} such that
—div(e 7N (w) Vu) = w?u in
ii-e Y w)Vu =0 on 0f) ?

» First results have been obtained in time domain for a flat interface.
= Can we prove the limiting amplitude principle for the black-hole?
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» Let ©, = be smooth domains of R? such that O € E, = C Q.
], we consider the spectral problem

Spectrum for a small inclusion: setting

» Ford e (0;1
Find (X°, ) € C x (H§(Q) \ {0}) st
—div(e®Vu?) = N’ in Q,
s _|oi>0 in Q:=Q\0Z=
where o® =\ T 0 im0} s=.
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Spectrum for a small inclusion: setting
» Let ©, = be smooth domains of R? such that O € E, = C Q.
» For 6 € (0;1], we consider the spectral problem
Find (X°, %) € C x (H§(Q) \ {0}) s.t.:
in Q,

—div(e’Vul) = Nou’
o1>0 in Q:=Q\=

o< 0 in Q) :=0E.

where 0 =
» We define the operator A° : D(A%) — L?((2) such that
D(A%) = {u € H)(Q) | div(c’Vu) € L2(Q)}

Ady = div(a®Vu).
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» For 6 € (0;1], we consider the spectral problem
Find (X°, %) € C x (H§(Q) \ {0}) s.t.:
in Q,

—div(e’Vul) = Nou’
o1>0 in Q:=Q\=

where 0 =
» We define the operator A° : D(A%) — L?((2) such that
D(A%) = {u € H)(Q) | div(c’Vu) € L2(Q)}

Ady = div(o°Vu).
PROPOSITION. Assume that x, # —1. For 6 > 0, the operator A% is
selfadjoint and has compact resolvent. Its spectrum G(A’S) consists in two

50 —  +o00.

o< 0 in Q) :=0E.

n——+oo
36 / 34

sequences of isolated eigenvalues:
< <A <O0SAT SN S <A

o 0O

—00
n——+oo




Spectrum for a small inclusion: setting
» Let ©, = be smooth domains of R? such that O € E, = C Q.

» For 6 € (0;1], we consider the spectral problem
Find (X°, %) € C x (H§(Q) \ {0}) s.t.:
in Q,

—div(e’Vul) = Nou’
o1>0 in Q:=Q\0=

where 0 =
» We define the operator A° : D(A%) — L?((2) such that
D(A%) = {u € H)(Q) | div(c’Vu) € L2(Q)}

Ady = div(a?Vu).
» For all § € (0;1], A® has negative spectrum. At the limit § = 0, the

inclusion of negative material vanishes and o is strictly positive.
36 / 34
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Spectrum for a small inclusion: setting
> Let Q, = be smooth domains of R? such that O € 2, E C Q.

» For 6 € (0;1], we consider the spectral problem
Find (A%, %) € C x (H§(Q) \ {0}) s.t.:
in Q,

—div(a®Vul) = XNoud
01> 0 in Q):=Q\0E

o< 0 in Q) :=0E.

where 0 =
» We define the operator A° : D(A%) — L?((2) such that
D(A%) = {u € H)(Q) | div(c’Vu) € L2(Q)}

Ady = div(a?Vu).
» For all § € (0;1], A® has negative spectrum. At the limit § = 0, the

inclusion of negative material vanishes and o is strictly positive.
36 / 34

( ? What happens to the negative spectrum when § tends to zero?)




Limit operators

» As ¢ — 0, the small inclusion of negative material disappears. We
introduce the far field operator A” such that

D(A%) = {v e H}(Q) | Av € L2(Q2)}
Ay = —g1Aw.

There holds &(A%) = {pp}n>1 with 0 <pg < pio <+ < ... — +oo.

n— 00
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» Introduce the rapid coordinate & := 6 '« and let § — 0.
Define the near field operator B> such that

D(B>*) = {w e HY(R?) | div (¢c>®°Vw) € L2(R3)}
B*w = —div(c*Vw).
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Limit operators
» As ¢ — 0, the small inclusion of negative material disappears. We

introduce the far field operator A” such that

D(A%) = {v e H}(Q) | Av € L2(Q2)}
Ay = —g1Aw.

There holds &(A%) = {pp}n>1 with 0 <pg < pio <+ < ... — +oo.

n— 00

» Introduce the rapid coordinate & := 6 '« and let § — 0.
Define the near field operator B> such that

D(B>*) = {w e HY(R?) | div (¢c>®°Vw) € L2(R3)}

B*w = —div(c*Vw). P

PROPOSITION. Assume that x, # —1. The continuous spectrum of B> is
equal to [0; +00) while its discrete spectrum is a sequence of eigenvalues:

SB)\Ry ={p_n}n>1 with 0>p 1> >p_,... = —oco.

n——+oo
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Spectrum for a small inclusion: results

Assume that s, # —1 and that B> is injective. For n € N*, we denote A\,
pl, 1’ the eigenvalues of A%, A°, B> as in the previous slides.

THEOREM. (PosITIVE SPECTRUM) For all n € N*| ¢ € (0;1), there exist
constants C,dg > 0 depending on 7, e but independent of d, such that

XS — | < CO3%72, W6 € (0;0).
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Spectrum for a small inclusion: results

Assume that s, # —1 and that B> is injective. For n € N*, we denote A\,

pl, 1’ the eigenvalues of A%, A°, B> as in the previous slides.

SCHEMATICALLY, WE HAVE:
Ads o S ho
ROV S S D X
0—0
6_2M_2 5_2M_1 M1 H2
2Pacossacosnasnnssasnace S oaconcasasoasssasassaseossasassanaans [rooa¥Goasacocsans Dod
6726 (B>) N (—o0; 0) G(A%)
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Spectrum for a small inclusion: results

Assume that s, # —1 and that B> is injective. For n € N*, we denote A\,
pl, 1’ the eigenvalues of A%, A°, B> as in the previous slides.

THEOREM. (PosITIVE SPECTRUM) For all n € N*| ¢ € (0;1), there exist
constants C,dg > 0 depending on 7, e but independent of d, such that

I\, — | < C8*%7¢, W5 € (0;6)-

THEOREM. (NEGATIVE SPECTRUM) For all n € N*| there exist constants
C, 7,80 > 0, depending on n but independent of §, such that

X%, =0 2pu_n| < Cexp(—v/6), Vb € (0;80].

—n

PROPOSITION. (LOCALIZATION EFFECT) For all n € N*, let u®,_ be an
eigenfunction corresponding to the negative eigenvalue \° . There exist
constants C',,dp > 0, depending on n but independent of 4, such that

/OﬂA”HVﬁM%ﬁ”%mSCWﬁAm V6 € (03 60].
Q
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Numerical experiments for the small inclusion

» We approximate numerically the spectrum of A% using a usual P1 Finite
Element Method and we make ¢ goes to zero.

» We consider the following 2D geometry:
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Numerical experiments for the small inclusion

Contrast Ky = -2.5
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» The positive part of G(A%) converges to G(A”) when § — 0.
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Numerical experiments for the small inclusion

Contrast Ky = -2.5
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» The negative part of G(A°%) is asymptotically equivalent to the negative
part of 6 ?&(B>) when § — 0.
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Numerical experiments for the small inclusion

Contrast Ky = -2.5
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* Linear regression for the 1st negative eigenvalue: a = —2.0056
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» The negative part of G(A°%) is asymptotically equivalent to the negative
part of 6 ?&(B>) when § — 0.
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Localization effect

Eigenfunction associated to the
first negative eigenvalue

Eigenfunction associated to the
first positive eigenvalue
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» The eigenfunctions corresponding to the negative eigenvalues are

localized around the small inclusion. Here, k, = —2.5.
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