Around the modelling of negative materials

Lucas Chesnel¹

Coll. with A.-S. Bonnet-Ben Dhia², P. Ciarlet², C. Carvalho², X. Claeys³, S.A. Nazarov⁴.

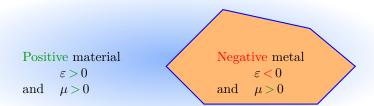
 1 Inverse Problems Research Group, Aalto University, Finland 2 POems team, Ensta, Palaiseau, France

 3 LJLL, Paris VI, France

 4 FMM, St. Petersburg State University, Russia

Introduction: general framework

- ► Scattering by a metal in electromagnetism in time-harmonic regime at optical frequency.
- For metals at optical frequency, $\Re e \, \varepsilon(\omega) < 0$ and $\Im m \, \varepsilon(\omega) << |\Re e \, \varepsilon(\omega)|$. \Rightarrow We neglect losses and study the ideal case $\varepsilon(\omega) \in (-\infty; 0)$.



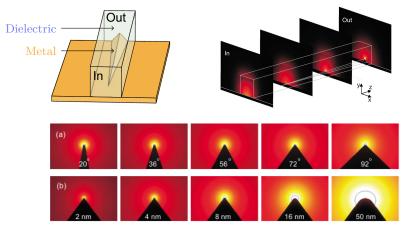
Introduction: general framework

- ▶ Scattering by a metal in electromagnetism in time-harmonic regime at optical frequency.
- For metals at optical frequency, $\Re e \, \varepsilon(\omega) < 0$ and $\Im m \, \varepsilon(\omega) << |\Re e \, \varepsilon(\omega)|$. \Rightarrow We neglect losses and study the ideal case $\varepsilon(\omega) \in (-\infty; 0)$.

▶ Waves called Surface Plasmon Polaritons can propagate at the interface between a dielectric and a negative metal.

Introduction: applications

▶ Surface Plasmons Polaritons can propagate information. Physicists hope to exploit them to reduce the size of computer chips.



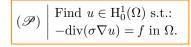
Figures from O'Connor et al., Appl. Phys. Lett. 95, 171112 (2009)

► In this context, physicists use singular geometries to focus energy. It allows to stock information.

▶ We study a scalar model problem set in a bounded domain $\Omega \subset \mathbb{R}^2$:

$$(\mathscr{P}) \mid \text{Find } u \in \mathrm{H}_0^1(\Omega) \text{ s.t.:} \\ -\mathrm{div}(\sigma \nabla u) = f \text{ in } \Omega.$$

▶ We study a scalar model problem set in a bounded domain $\Omega \subset \mathbb{R}^2$:

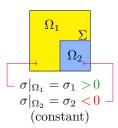


- $\mathrm{H}^1_0(\Omega) = \{ v \in \mathrm{L}^2(\Omega) \mid \nabla v \in \mathrm{L}^2(\Omega); \ v|_{\partial\Omega} = 0 \}$
- f is the source term in $\mathrm{H}^{-1}(\Omega)$

▶ We study a scalar model problem set in a bounded domain $\Omega \subset \mathbb{R}^2$:

$$(\mathscr{P}) \mid \text{Find } u \in \mathrm{H}_0^1(\Omega) \text{ s.t.:} \\ -\mathrm{div}(\sigma \nabla u) = f \text{ in } \Omega.$$

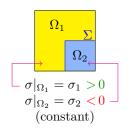
- $\bullet \ \operatorname{H}^1_0(\Omega) = \{ v \in \operatorname{L}^2(\Omega) \, | \, \nabla v \in \operatorname{L}^2(\Omega); \ v|_{\partial\Omega} = 0 \}$
- f is the source term in $H^{-1}(\Omega)$



▶ We study a scalar model problem set in a bounded domain $\Omega \subset \mathbb{R}^2$:

$$(\mathscr{P}) \mid \text{Find } u \in \mathrm{H}^1_0(\Omega) \text{ s.t.:} \\ -\mathrm{div}(\sigma \nabla u) = f \text{ in } \Omega.$$

- $\mathrm{H}^1_0(\Omega) = \{ v \in \mathrm{L}^2(\Omega) \mid \nabla v \in \mathrm{L}^2(\Omega); \ v|_{\partial\Omega} = 0 \}$
- f is the source term in $\mathrm{H}^{-1}(\Omega)$



▶ We slightly round the interface Σ :

$$\begin{array}{c|c} \Omega_1^{\delta} & \Sigma^{\delta} \\ \hline \Omega_2^{\delta} & \\ \hline \sigma^{\delta}|_{\Omega_1} = \sigma_1 > 0 \\ \sigma^{\delta}|_{\Omega_2} = \sigma_2 < 0 - \end{array}$$

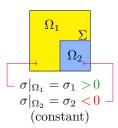
$$\left(\mathscr{P}^{\delta}\right) \mid \text{Find } u^{\delta} \in \mathrm{H}_{0}^{1}(\Omega) \text{ s.t.:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = f \text{ in } \Omega.$$

• δ denotes the radius of curvature of the rounded interface at the origin.

▶ We study a scalar model problem set in a bounded domain $\Omega \subset \mathbb{R}^2$:

$$(\mathscr{P}) \mid \begin{array}{c} \operatorname{Find} \ u \in \mathrm{H}_0^1(\Omega) \ \text{s.t.:} \\ -\mathrm{div}(\sigma \nabla u) = f \ \text{in} \ \Omega. \end{array}$$

- $\mathrm{H}^1_0(\Omega) = \{ v \in \mathrm{L}^2(\Omega) \mid \nabla v \in \mathrm{L}^2(\Omega); \ v \mid_{\partial\Omega} = 0 \}$
- f is the source term in $\mathrm{H}^{-1}(\Omega)$



▶ We slightly round the interface Σ :

$$\begin{array}{c|c} \Omega_1^{\delta} & \Sigma^{\delta} \\ \hline \Omega_2^{\delta} & \\ \sigma^{\delta}|_{\Omega_1} = \sigma_1 > 0 \\ \sigma^{\delta}|_{\Omega_2} = \sigma_2 < 0 \end{array}$$

$$(\mathscr{P}^{\delta}) \mid \text{Find } u^{\delta} \in \mathrm{H}_{0}^{1}(\Omega) \text{ s.t.:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = f \text{ in } \Omega.$$

• δ denotes the radius of curvature of the rounded interface at the origin.

What is the behaviour of the sequence $(u^{\delta})_{\delta}$ when δ tends to zero?

Outline of the talk

1 Numerical experiments

To get an intuition, we discretize (\mathscr{P}^{δ}) and observe what happens when $\delta \to 0$.

Outline of the talk

1 Numerical experiments

To get an intuition, we discretize (\mathscr{P}^{δ}) and observe what happens when $\delta \to 0$.

2 Properties of the limit problem

We present the properties of the limit problem in the geometry with the real corner ($\delta = 0$). Since σ changes sign, original phenomena appear.

Outline of the talk

Numerical experiments

To get an intuition, we discretize (\mathscr{P}^{δ}) and observe what happens when $\delta \to 0$.

2 Properties of the limit problem

We present the properties of the limit problem in the geometry with the real corner ($\delta = 0$). Since σ changes sign, original phenomena appear.

3 Asymptotic analysis

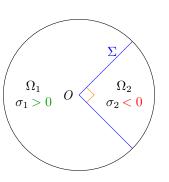
We prove a curious instability phenomenon: for certain configurations, (\mathscr{P}^{δ}) critically depends on δ .

1 Numerical experiments

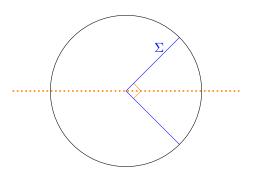
2 Properties of the limit problem

3 Asymptotic analysis

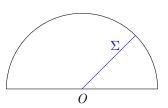
▶ For the numerical experiments, we round the corner in a particular way



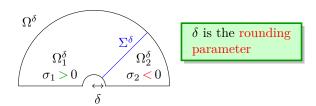
▶ For the numerical experiments, we round the corner in a particular way



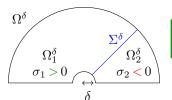
► For the numerical experiments, we round the corner in a particular way



▶ For the numerical experiments, we round the corner in a particular way

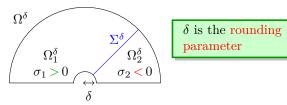


► For the numerical experiments, we round the corner in a particular way (in this domain, we can separate variables).



 δ is the rounding parameter

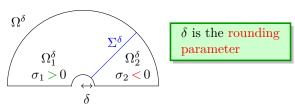
► For the numerical experiments, we round the corner in a particular way (in this domain, we can separate variables).



▶ Our goal is to study the behaviour of the solution, if it is well-defined, of

$$\left(\mathscr{P}^{\delta}\right) \left| \begin{array}{l} \text{Find } u^{\delta} \in \mathrm{H}^{1}_{0}(\Omega^{\delta}) \text{ such that:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = f \quad \text{ in } \Omega^{\delta}. \end{array} \right.$$

► For the numerical experiments, we round the corner in a particular way (in this domain, we can separate variables).



▶ Our goal is to study the behaviour of the solution, if it is well-defined, of

$$\left(\mathscr{P}^{\delta}\right) \left| \begin{array}{l} \text{Find } u^{\delta} \in \mathrm{H}^{1}_{0}(\Omega^{\delta}) \text{ such that:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = f \quad \text{in } \Omega^{\delta}. \end{array} \right.$$

▶ We approximate u^{δ} , assuming it is well-defined, by a usual P1 Finite Element Method. We compute the solution u_h^{δ} of the discretized problem with FreeFem++ (F. Hecht).

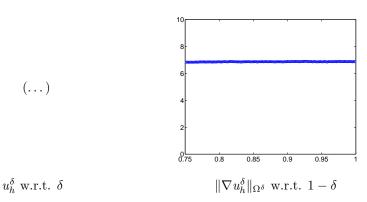
We display the behaviour of u_h^{δ} as $\delta \to 0$ with *Paraview* and *Matlab*.

Numerical experiments 1/2

$$\sigma_1 = 1$$
 and $\sigma_2 = 1$ (positive materials)

Numerical experiments 1/2

$$\sigma_1 = 1$$
 and $\sigma_2 = 1$ (positive materials)



- ▶ For positive materials, it is well-known that $(u^{\delta})_{\delta}$ converges to u, the solution in the limit geometry.
- \triangleright The rate of convergence depends on the regularity of u.
- ► To avoid to mesh Ω^{δ} , we can approximate u^{δ} by u_h .

Numerical experiments 2/2

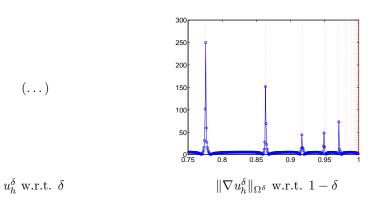
... and what about for a sign-changing σ ???

$$\sigma_1 = 1 \text{ and } \sigma_2 = -0.9999$$

Numerical experiments 2/2

... and what about for a sign-changing σ ???

$$\sigma_1 = 1 \text{ and } \sigma_2 = -0.9999$$



For this configuration, u^{δ} seems to depend critically on δ .

In this talk, our goal is to explain this behaviour.

1 Numerical experiments

2 Properties of the limit problem

3 Asymptotic analysis

Mathematical difficulty

• Classical case $\sigma > 0$ everywhere:

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \ge \min(\sigma) \|u\|_{\mathrm{H}_0^1(\Omega)}^2$$
 coercivity

Lax-Milgram theorem \Rightarrow (\mathscr{P}) well-posed.

Mathematical difficulty

• Classical case $\sigma > 0$ everywhere:

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \ge \min(\sigma) \|u\|_{\mathrm{H}_0^1(\Omega)}^2$$
 coercivity

Lax-Milgram theorem \Rightarrow (\mathscr{P}) well-posed.

----- VS. -----

• The case σ changes sign:

$$a(u,u) = \int_{\Omega} \sigma |\nabla u|^2 \ge C \|u\|_{\mathcal{H}_0^1(\Omega)}^2$$

loss of coercivity

Mathematical difficulty

• Classical case $\sigma > 0$ everywhere:

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \ge \min(\sigma) \|u\|_{\mathrm{H}_0^1(\Omega)}^2$$
 coercivity

Lax-Milgram theorem \Rightarrow (\mathscr{P}) well-posed.

VS. -----

• The case σ changes sign:

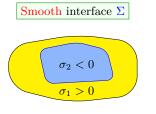
$$a(u,u) = \int_{\Omega} \sigma |\nabla u|^2 \ge C ||u||_{\mathrm{H}_0^1(\Omega)}^2$$
 loss of coercivity

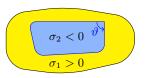
▶ When $\sigma_2 = -\sigma_1$, (\mathscr{P}) is always ill-posed (Costabel-Stephan 85). For a symmetric domain (w.r.t. Σ) we can build a kernel of infinite dimension.

Problems with a sign changing coefficient

$$(\mathscr{P}) \mid \text{Find } u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \text{in } \Omega.$$

We have the following properties (see Costabel and Stephan 85, Dauge and Texier 97, Bonnet-Ben Dhia et al. 99,10,12,13):



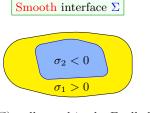


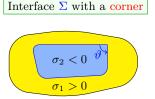
 \checkmark (\mathscr{P}) well-posed in the Fredholm $\dot{}$ \checkmark (\mathscr{P}) well-posed in the Fredholm sense sense iff $\kappa_{\sigma} = \sigma_2/\sigma_1 \neq -1$. iff $\kappa_{\sigma} \notin I_c = [-\ell; -1/\ell], \ \ell = (2\pi - \vartheta)/\vartheta$.

Problems with a sign changing coefficient

$$(\mathscr{P}) \mid \text{Find } u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \text{in } \Omega.$$

We have the following properties (see Costabel and Stephan 85, Dauge and Texier 97, Bonnet-Ben Dhia et al. 99,10,12,13):





sense iff $\kappa_{\sigma} = \sigma_2/\sigma_1 \neq -1$. iff $\kappa_{\sigma} \notin I_c = [-\ell; -1/\ell], \ \ell = (2\pi - \vartheta)/\vartheta$.

Well-posedness depends on the smoothness of Σ and on σ .

$$(\mathscr{P}) \mid \text{Find } u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \text{in } \Omega.$$

▶ When the interface has a corner, (\mathcal{P}) is well-posed in the Fredholm sense iff $\kappa_{\sigma} \notin I_c$ (the critical interval).

$$(\mathscr{P}) \mid \text{Find } u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \text{in } \Omega.$$

▶ When the interface has a corner, (\mathcal{P}) is well-posed in the Fredholm sense iff $\kappa_{\sigma} \notin I_c$ (the critical interval).

▶ When the interface is smooth, (\mathscr{P}) is well-posed in the Fredholm sense iff $\kappa_{\sigma} \neq -1$.

$$(\mathscr{P}) \mid \begin{array}{c} \operatorname{Find} \ u \in \mathrm{H}_0^1(\Omega) \text{ such that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \text{in } \Omega. \end{array}$$

▶ When the interface has a corner, (\mathcal{P}) is well-posed in the Fredholm sense iff $\kappa_{\sigma} \notin I_c$ (the critical interval).

When the interface is smooth, (\mathcal{P}) is well-posed in the Fredholm sense iff $\kappa_{\sigma} \neq -1$.

What happens for a slightly rounded corner when $\kappa_{\sigma} \in I_c \setminus \{-1\}$?

$$(\mathscr{P}) \mid \text{Find } u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \text{in } \Omega.$$

▶ When the interface has a corner, (\mathcal{P}) is well-posed in the Fredholm sense iff $\kappa_{\sigma} \notin I_c$ (the critical interval).

When the interface is smooth, (\mathcal{P}) is well-posed in the Fredholm sense iff $\kappa_{\sigma} \neq -1$.

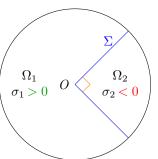
What happens for a slightly rounded corner when $\kappa_{\sigma} \in I_{c} \setminus \{-1\}$?

▶ We need to clarify the properties of (\mathscr{P}) when the interface has a corner in the case $\kappa_{\sigma} \in I_c \setminus \{-1\}$.

Properties of the limit problem inside the critical interval

$$(\mathscr{P}) \mid \text{Find } u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \text{in } \Omega.$$

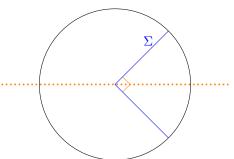
▶ To simplify the presentation, we work on a particular configuration.



Properties of the limit problem inside the critical interval

$$(\mathscr{P}) \ \middle| \ \begin{array}{c} \operatorname{Find} \ u \in \mathrm{H}^1_0(\Omega) \ \text{such that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \text{ in } \Omega. \end{array}$$

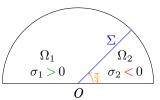
▶ To simplify the presentation, we work on a particular configuration.



Properties of the limit problem inside the critical interval

$$(\mathscr{P}) \mid \text{Find } u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \text{in } \Omega.$$

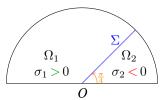
➤ To simplify the presentation, we work on a particular configuration.



Properties of the limit problem inside the critical interval

$$(\mathscr{P}) \mid \text{Find } u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \text{in } \Omega.$$

▶ To simplify the presentation, we work on a particular configuration.



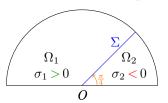
▶ Using the variational method of the T-coercivity, we prove the

PROPOSITION. The problem (\mathscr{P}) is well-posed as soon as the contrast $\kappa_{\sigma} = \sigma_2/\sigma_1$ satisfies $\kappa_{\sigma} \notin I_c = [-1; -1/3]$.

Properties of the limit problem inside the critical interval

$$(\mathscr{P}) \mid \text{Find } u \in \mathrm{H}^1_0(\Omega) \text{ such that:} \\ -\mathrm{div}(\sigma \nabla u) = f \quad \text{in } \Omega.$$

▶ To simplify the presentation, we work on a particular configuration.

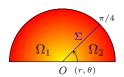


▶ Using the variational method of the T-coercivity, we prove the

PROPOSITION. The problem (\mathscr{P}) is well-posed as soon as the contrast $\kappa_{\sigma} = \sigma_2/\sigma_1$ satisfies $\kappa_{\sigma} \notin I_c = [-1; -1/3]$.

What happens when $\kappa_{\sigma} \in (-1; -1/3]$?

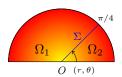
• Bounded sector Ω



• Equation:

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta\sigma\partial_\theta)u} = f$$

• Bounded sector Ω



• Equation:

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta\sigma\partial_\theta)u} = f$$

• Singularities in the sector $s(r, \theta) = r^{\lambda} \varphi(\theta)$

We compute the singularities $s(r, \theta) = r^{\lambda} \varphi(\theta)$ and we observe two cases:

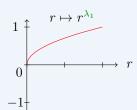
Outside the critical interval

$$\kappa_{\sigma} = -1/4 \frac{1}{1}$$

$$-\lambda_{2} -\lambda_{1} \lambda_{1} \lambda_{2}$$

$$-2 -1 1 2$$

$$\text{not } H^{1} -1 H^{1}$$



We compute the singularities $s(r,\theta) = r^{\lambda}\varphi(\theta)$ and we observe two cases:

Outside the critical interval

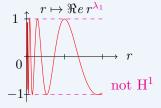
$$\kappa_{\sigma} = -1/4 \frac{1}{1}$$

$$-\lambda_{2} -\lambda_{1} \quad \lambda_{1} \quad \lambda_{2}$$

$$-2 \quad -1 \qquad 1 \quad 2$$

$$\text{not } H^{1} \qquad -1 \qquad H^{1}$$

Inside the critical interval



We compute the singularities $s(r,\theta) = r^{\lambda}\varphi(\theta)$ and we observe two cases:

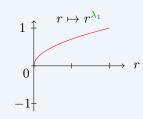
Outside the critical interval

$$\kappa_{\sigma} = -1/4 \frac{1}{1}$$

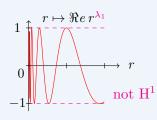
$$-\lambda_{2} -\lambda_{1} \quad \lambda_{1} \quad \lambda_{2}$$

$$-2 \quad -1 \qquad 1 \quad 2$$

$$\text{not } H^{1} \qquad H^{1}$$

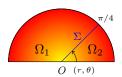


Inside the critical interval



How to deal with the propagative singularities inside the critical interval?

• Bounded sector Ω

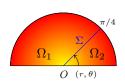


• Equation:

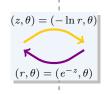
$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta\sigma\partial_\theta)u} = f$$

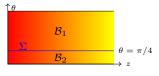
• Singularities in the sector $s(r, \theta) = r^{\lambda} \varphi(\theta)$

Bounded sector Ω



• Half-strip $\mathcal B$





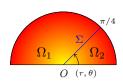
• Equation:

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta\sigma\partial_\theta)u} =$$

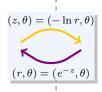
• Singularities in the sector

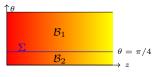
$$s(r,\theta) = r^{\lambda} \varphi(\theta)$$

Bounded sector Ω



Half-strip \mathcal{B}





Equation:

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta\sigma\partial_\theta)u} = f$$

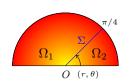
• Singularities in the sector

$$s(r,\theta) = r^{\lambda} \varphi(\theta)$$

Equation:

$$\underbrace{-\text{div}(\sigma \nabla u)}_{-(\sigma \partial_z^2 + \partial_\theta \sigma \partial_\theta)u} = e^{-2z} f$$

• Bounded sector Ω

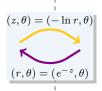


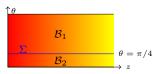
• Equation:

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta\sigma\partial_\theta)u} = f$$

• Singularities in the sector $s(r, \theta) = r^{\lambda} \varphi(\theta)$

Half-strip B





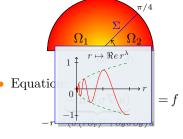
• Equation:

$$\underbrace{-\operatorname{div}(\sigma\nabla u)}_{-(\sigma\partial_z^2 + \partial_\theta\sigma\partial_\theta)u} = e^{-2z}f$$

• Modes in the strip

$$m(z,\theta) = e^{-\lambda z} \varphi(\theta)$$

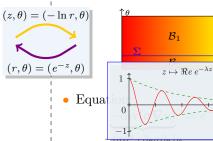
• Bounded sector Ω



• Singularities in the sector $s(r,\theta) = r^{\lambda} \varphi(\theta)$

$$s{\in \mathrm{H}^1(\Omega)}$$

• Half-strip ${\mathcal B}$



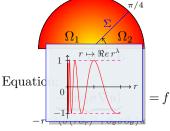
• Modes in the strip

$$m(z,\theta) = e^{-\lambda z} \varphi(\theta)$$

 $\Re e \, \lambda' > 0$

m is evanescent

Bounded sector Ω



• Singularities in the sector

$$s(r,\theta) = r^{\lambda} \varphi(\theta) \qquad m(z, \theta) = r^{\alpha} (\cos b \ln r + i \sin b \ln r) \varphi(\theta)$$

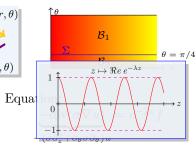
$$(\Re e \lambda = a, \Im h \lambda = b)$$

 $\begin{array}{c} s \in \mathrm{H}^1(\Omega) \\ s \not\in \mathrm{H}^1(\Omega) \end{array}$

 $\Re e \, \lambda > 0$ $\Re e \, \lambda = 0$

 $(z,\theta) = (-\ln r, \theta)$

• Half-strip $\mathcal B$



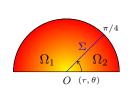
• Modes in the strip

$$m(z,\theta) = e^{-\lambda z} \varphi(\theta)$$

= $e^{-\lambda z} (\cos bz - i \sin bz) \varphi(\theta)$

m is evanescent
m is propagative

Bounded sector Ω



 $= \mathcal{P}(\cos b \ln r + i \sin b \ln r) \varphi(\theta)$

Half-strip \mathcal{B} $(z,\theta) = (-\ln r,\theta)$

Equation:

 $-\operatorname{div}(\sigma \nabla u) = e^{-2z} f$

 $= e^{-az} (\cos bz - i\sin bz)\varphi(\theta)$

 $\theta = \pi/4$

15 / 30

Equation: $-\operatorname{div}(\sigma\nabla u)$

 $s(r,\theta) = r^{\lambda} \varphi(\theta)$

$$-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u$$
• Singularities in the sector

 $-(\sigma\partial_z^2 + \partial_\theta\sigma\partial_\theta)u$

• Modes in the strip $m(z,\theta) = e^{-\lambda z} \varphi(\theta)$

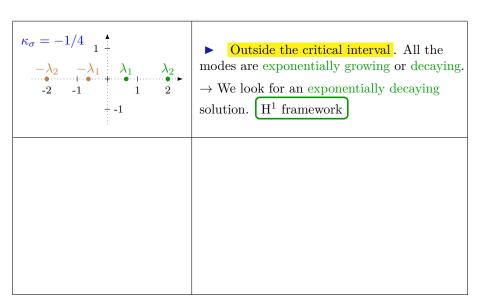
$$s \in H^{1}(\Omega) \qquad \Re e \lambda = a, |\mathfrak{S}| m \lambda = b)$$

$$s \in H^{1}(\Omega) \qquad \Re e \lambda > 0 \qquad m \text{ is evanescent}$$

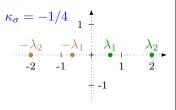
$$s \notin H^{1}(\Omega) \qquad \Re e \lambda = 0 \qquad m \text{ is propagative}$$

This encourages us to use modal decomposition in the half-strip.

Modal analysis in the waveguide



Modal analysis in the waveguide



- Outside the critical interval. All the modes are exponentially growing or decaying.
- \rightarrow We look for an exponentially decaying solution. H^1 framework



Inside the critical interval. There are exactly two propagative modes.

Modal analysis in the waveguide

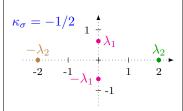
$$\kappa_{\sigma} = -1/4$$

$$-\lambda_{2} \quad -\lambda_{1} \quad \lambda_{1} \quad \lambda_{2}$$

$$-2 \quad -1 \quad 1 \quad 2$$

$$-1 \quad 1 \quad 2$$
Outside the critical interval. All the modes are exponentially growing or decaying solution. H¹ framework

- modes are exponentially growing or decaying.
- solution. H^1 framework



- Inside the critical interval. There are exactly two propagative modes.
- → The decomposition on the outgoing modes leads to look for a solution of the form

$$u = \underbrace{c_1 \varphi_1 e^{\lambda_1 z}}_{\text{propagative part}} + \underbrace{u_e.}_{\text{evanescent part}}$$

non H¹ framework

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

$$\mathbf{W}_{-\beta} \, = \{ v \, | \, e^{\beta z} v \in \mathbf{H}^1_0(\mathcal{B}) \} \qquad \quad \text{space of exponentially decaying functions}$$

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

$$\mathbf{W}_{-\beta} \, = \{ v \, | \, e^{\beta z} v \in \mathbf{H}^1_0(\mathcal{B}) \}$$

space of exponentially decaying functions

$$\mathbf{W}_{\beta} = \{ v \mid e^{-\beta z} v \in \mathbf{H}_0^1(\mathcal{B}) \}$$

space of exponentially growing functions

Consider $0 < \beta < 2,$ ζ a cut-off function (equal to 1 in $+\infty$) and define

$$\begin{aligned} \mathbf{W}_{-\beta} &= \{ v \mid e^{\beta z} v \in \mathbf{H}_0^1(\mathcal{B}) \} \\ \mathbf{W}^+ &= \mathrm{span}(\zeta \varphi_1 \ e^{\lambda_1 z}) \oplus \mathbf{W}_{-\beta} \\ \mathbf{W}_{\beta} &= \{ v \mid e^{-\beta z} v \in \mathbf{H}_0^1(\mathcal{B}) \} \end{aligned}$$

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

Consider $0 < \beta < 2,$ ζ a cut-off function (equal to 1 in $+\infty$) and define

$$\begin{aligned} & \underset{\cap}{\mathbf{W}_{-\beta}} &= \{ v \mid e^{\beta z} v \in \mathbf{H}_0^1(\mathcal{B}) \} \\ & \underset{\cap}{\mathbf{W}^+} &= \mathrm{span}(\zeta \varphi_1 \ e^{\lambda_1 z}) \oplus \mathbf{W}_{-\beta} \\ & \mathbf{W}_{\beta} &= \{ v \mid e^{-\beta z} v \in \mathbf{H}_0^1(\mathcal{B}) \} \end{aligned}$$

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

$$\begin{array}{ll} \mathbb{W}_{-\beta} = \{v \mid e^{\beta z}v \in \mathbb{H}^1_0(\mathcal{B})\} & \text{space of exponentially decaying functions} \\ \mathbb{W}^+_{\beta} = \operatorname{span}(\zeta\varphi_1 \ e^{\lambda_1 z}) \oplus \mathbb{W}_{-\beta} & \text{propagative part} + \operatorname{evanescent part} \\ \mathbb{W}_{\beta} = \{v \mid e^{-\beta z}v \in \mathbb{H}^1_0(\mathcal{B})\} & \text{space of exponentially growing functions} \end{array}$$

THEOREM. Let $\kappa_{\sigma} \in (-1; -1/3)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\sigma \nabla \cdot)$ from W^+ to W_{β}^* is an isomorphism.

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

THEOREM. Let $\kappa_{\sigma} \in (-1; -1/3)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\sigma \nabla \cdot)$ from W^+ to W_{β}^* is an isomorphism.

IDEAS OF THE PROOF:

1 $A_{-\beta}$: $\operatorname{div}(\sigma \nabla \cdot)$ from $W_{-\beta}$ to W_{β}^* is injective but not surjective.

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

THEOREM. Let $\kappa_{\sigma} \in (-1; -1/3)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\sigma \nabla \cdot)$ from W^+ to W_{β}^* is an isomorphism.

IDEAS OF THE PROOF:

- **1** $A_{-\beta}$: div $(\sigma \nabla \cdot)$ from $W_{-\beta}$ to W_{β}^* is injective but not surjective.

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

```
\begin{array}{ll} \mathbb{W}_{-\beta} = \{v \mid e^{\beta z}v \in \mathbb{H}^1_0(\mathcal{B})\} & \text{space of exponentially decaying functions} \\ \mathbb{W}^+_1 = \mathrm{span}(\zeta\varphi_1 \, e^{\lambda_1 z}) \oplus \mathbb{W}_{-\beta} & \text{propagative part} + \mathrm{evanescent \; part} \\ \mathbb{W}_{\beta} = \{v \mid e^{-\beta z}v \in \mathbb{H}^1_0(\mathcal{B})\} & \text{space of exponentially growing functions} \end{array}
```

THEOREM. Let $\kappa_{\sigma} \in (-1; -1/3)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\sigma \nabla \cdot)$ from W^+ to W_{β}^* is an isomorphism.

IDEAS OF THE PROOF:

- **1** $A_{-\beta}: \operatorname{div}(\sigma \nabla \cdot)$ from $W_{-\beta}$ to W_{β}^* is injective but not surjective.
- **3** The intermediate operator $A^+: W^+ \to W_{\beta}^*$ is injective (energy integral) and surjective (residue theorem).

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

```
\begin{array}{ll} \mathbb{W}_{-\beta} = \{v \mid e^{\beta z}v \in \mathbb{H}^1_0(\mathcal{B})\} & \text{space of exponentially decaying functions} \\ \mathbb{W}^+_1 = \mathrm{span}(\zeta\varphi_1\,e^{\lambda_1z}) \oplus \mathbb{W}_{-\beta} & \text{propagative part} + \mathrm{evanescent\ part} \\ \mathbb{W}_{\beta} = \{v \mid e^{-\beta z}v \in \mathbb{H}^1_0(\mathcal{B})\} & \text{space of exponentially growing functions} \end{array}
```

THEOREM. Let $\kappa_{\sigma} \in (-1; -1/3)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\sigma \nabla \cdot)$ from W^+ to W_{β}^* is an isomorphism.

IDEAS OF THE PROOF:

- **1** $A_{-\beta}$: div $(\sigma \nabla \cdot)$ from $W_{-\beta}$ to W_{β}^* is injective but not surjective.
- 3 The intermediate operator A^+ : W⁺ → W_β* is injective (energy integral) and surjective (residue theorem).
- 4 Limiting absorption principle to select the outgoing mode.

Naive approximation

▶ Let us try a usual Finite Element Method (P1 Lagrange Finite Element). We solve the problem

Find
$$u_h \in V_h$$
 s.t.:
$$\int_{\Omega} \sigma \nabla u_h \cdot \nabla v_h = \int_{\Omega} f v_h, \quad \forall v \in V_h,$$

where V_h approximates $H_0^1(\Omega)$ as $h \to 0$ (h is the mesh size).

Naive approximation

▶ Let us try a usual Finite Element Method (P1 Lagrange Finite Element). We solve the problem

Find
$$u_h \in V_h$$
 s.t.:
$$\int_{\Omega} \sigma \nabla u_h \cdot \nabla v_h = \int_{\Omega} f v_h, \quad \forall v \in V_h,$$

where V_h approximates $H_0^1(\Omega)$ as $h \to 0$ (h is the mesh size).

▶ We display u_h as $h \to 0$.

Naive approximation

Let us try a usual Finite Element Method (P1 Lagrange Finite

We display u_h as $h \to 0$.

$$(\dots)$$

Contrast
$$\kappa_{\sigma} = -0.999 \in (-1; -1/3)$$
.

Remark

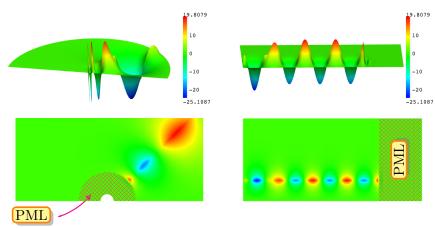
ightharpoonup Outside the critical interval, the sequence (u_h) converges with the naive approximation.

$$(\dots)$$

Contrast
$$\kappa_{\sigma} = -1.001 \notin (-1; -1/3)$$
.

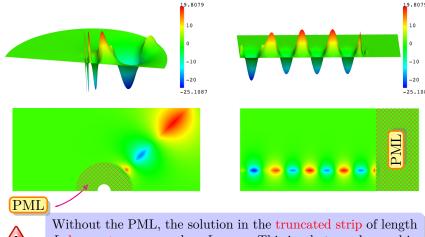
How to approximate the solution?

We use a PML (Perfectly Matched Layer) to bound the domain \mathcal{B} + finite elements in the truncated strip $(\kappa_{\sigma} = -0.999 \in (-1; -1/3))$.



How to approximate the solution?

We use a PML (Perfectly Matched Layer) to bound the domain \mathcal{B} + finite elements in the truncated strip $(\kappa_{\sigma} = -0.999 \in (-1; -1/3))$.



Without the PML, the solution in the truncated strip of length L does not converge when $L \to \infty$. This is what we observed in our numerical experiment for the rounded corner.

A black hole phenomenon

► The same phenomenon occurs for the Helmholtz equation.

$$(\boldsymbol{x},t)\mapsto \Re e\left(u(\boldsymbol{x})e^{-i\omega t}\right) \text{ for } \kappa_{\sigma}=-1/1.3$$

$$(\dots)$$
 (\dots)

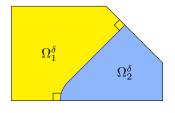
► Analogous phenomena occur in cuspidal domains in the theory of water-waves and in elasticity (Cardone, Nazarov, Taskinen).

Numerical experiments

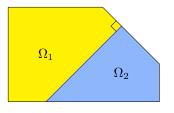
2 Properties of the limit problem

3 Asymptotic analysis

Source term problem

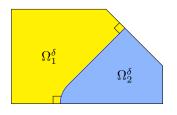


$$(\mathscr{P}^{\delta}) \mid \text{Find } u^{\delta} \in \mathrm{H}_{0}^{1}(\Omega) \text{ s.t.:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = f \text{ in } \Omega.$$

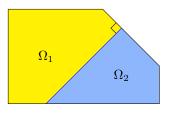


$$(\mathscr{P}) \mid \text{Find } u \in \mathrm{H}^1_0(\Omega) \text{ s.t.:} \\ -\mathrm{div}(\sigma \nabla u) = f \text{ in } \Omega.$$

▶ The behaviour of $(u^{\delta})_{\delta}$ depends on the properties of the limit problem.



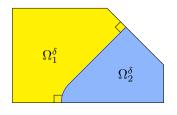
$$(\mathscr{P}^{\delta}) \mid \text{Find } u^{\delta} \in \mathrm{H}_{0}^{1}(\Omega) \text{ s.t.:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = f \text{ in } \Omega.$$



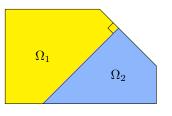
$$(\mathscr{P}) \mid \begin{array}{l} \operatorname{Find} \ u \in \mathrm{H}_0^1(\Omega) \ \mathrm{s.t.:} \\ -\mathrm{div}(\sigma \nabla u) = f \ \mathrm{in} \ \Omega. \end{array}$$

▶ The behaviour of $(u^{\delta})_{\delta}$ depends on the properties of the limit problem.

If (\mathscr{P}) well-posed (in $\mathrm{H}^1_0(\Omega)$), then u^{δ} is uniquely defined for δ small enough and $(u^{\delta})_{\delta}$ converges to u (as for positive materials).



$$\left(\mathscr{P}^{\delta}\right) \left| \begin{array}{l} \operatorname{Find} \ u^{\delta} \in \mathrm{H}^{1}_{0}(\Omega) \ \mathrm{s.t.:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = f \ \mathrm{in} \ \Omega. \end{array} \right.$$



$$(\mathscr{P}) \mid \begin{array}{c} \operatorname{Find} \ u \in \mathrm{H}_0^1(\Omega) \ \text{s.t.:} \\ -\mathrm{div}(\sigma \nabla u) = f \ \text{in} \ \Omega. \end{array}$$

▶ The behaviour of $(u^{\delta})_{\delta}$ depends on the properties of the limit problem.

If (\mathscr{P}) well-posed (in $\mathrm{H}^1_0(\Omega)$), then u^{δ} is uniquely defined for δ small enough and $(u^{\delta})_{\delta}$ converges to u (as for positive materials).

If the limit problem is well-posed only in the exotic framework, then (\mathscr{P}^{δ}) critically depends on the value of the rounding parameter δ .

IDEA OF THE APPROACH:

① We prove the *a priori* estimate $\|u^{\delta}\|_{H_0^1(\Omega)} \leq c |\ln \delta|^{1/2} \|f\|_{\Omega}$ for all δ in some set $\mathscr S$ which excludes a discrete set accumulating in zero (\spadesuit hard part of the proof, Nazarov's technique).

IDEA OF THE APPROACH:

① We prove the *a priori* estimate $\|u^{\delta}\|_{\mathrm{H}_{0}^{1}(\Omega)} \leq c |\ln \delta|^{1/2} \|f\|_{\Omega}$ for all δ in some set $\mathscr S$ which excludes a discrete set accumulating in zero (\spadesuit hard part of the proof, Nazarov's technique).

$$\ln \mathcal{S} = \{\ln \delta, \ \delta \in \mathcal{S}\}$$

2 We provide an asymptotic expansion of u^{δ} , denoted \hat{u}^{δ} with the error estimate, for some $\beta > 0$,

$$\|u^{\delta} - \hat{u}^{\delta}\|_{\mathrm{H}^{1}_{0}(\Omega)} \le c \, \delta^{\beta} \|f\|_{\Omega}, \qquad \forall \delta \in \mathscr{S}.$$

IDEA OF THE APPROACH:

① We prove the *a priori* estimate $\|u^{\delta}\|_{\mathrm{H}_0^1(\Omega)} \leq c |\ln \delta|^{1/2} \|f\|_{\Omega}$ for all δ in some set $\mathscr S$ which excludes a discrete set accumulating in zero (\spadesuit hard part of the proof, Nazarov's technique).

2 We provide an asymptotic expansion of u^{δ} , denoted \hat{u}^{δ} with the error estimate, for some $\beta > 0$,

$$\|u^\delta - \hat{u}^\delta\|_{\mathrm{H}^1_0(\Omega)} \leq \ c \, \delta^\beta \|f\|_\Omega, \qquad \forall \delta \in \mathscr{S}.$$

3 The behaviour of $(\hat{u}^{\delta})_{\delta}$ can be explicitly examined as $\delta \to 0$. The sequence $(\hat{u}^{\delta})_{\delta}$ does not converge, even for the L²-norm!

IDEA OF THE APPROACH:

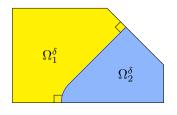
① We prove the *a priori* estimate $\|u^{\delta}\|_{H_0^1(\Omega)} \leq c |\ln \delta|^{1/2} \|f\|_{\Omega}$ for all δ in some set $\mathscr S$ which excludes a discrete set accumulating in zero (\spadesuit hard part of the proof, Nazarov's technique).

2 We provide an asymptotic expansion of u^{δ} , denoted \hat{u}^{δ} with the error estimate, for some $\beta > 0$,

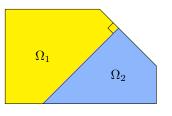
$$\|u^\delta - \hat{u}^\delta\|_{\mathrm{H}^1_0(\Omega)} \leq \ c \, \delta^\beta \|f\|_\Omega, \qquad \forall \delta \in \mathscr{S}.$$

- 3 The behaviour of $(\hat{u}^{\delta})_{\delta}$ can be explicitly examined as $\delta \to 0$. The sequence $(\hat{u}^{\delta})_{\delta}$ does not converge, even for the L²-norm!
- 4 Conclusion.

The sequence $(u^{\delta})_{\delta}$ does not converge, even for the L²-norm!



$$\left(\mathscr{P}^{\delta}\right) \left| \begin{array}{l} \operatorname{Find} \ u^{\delta} \in \mathrm{H}^{1}_{0}(\Omega) \ \mathrm{s.t.:} \\ -\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = f \ \mathrm{in} \ \Omega. \end{array} \right.$$



$$(\mathscr{P}) \mid \begin{array}{c} \operatorname{Find} \ u \in \mathrm{H}_0^1(\Omega) \ \text{s.t.:} \\ -\mathrm{div}(\sigma \nabla u) = f \ \text{in} \ \Omega. \end{array}$$

▶ The behaviour of $(u^{\delta})_{\delta}$ depends on the properties of the limit problem.

If (\mathscr{P}) well-posed (in $\mathrm{H}^1_0(\Omega)$), then u^{δ} is uniquely defined for δ small enough and $(u^{\delta})_{\delta}$ converges to u (as for positive materials).

If the limit problem is well-posed only in the exotic framework, then (\mathscr{P}^{δ}) critically depends on the value of the rounding parameter δ .

▶ In the geometry with a rounded corner, we consider the spectral problem

Find
$$(\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times (\mathrm{H}_0^1(\Omega) \setminus \{0\}) \text{ s.t.:}$$

 $-\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta} \text{ in } \Omega.$

▶ We define the operator $A^{\delta}: D(A^{\delta}) \to L^{2}(\Omega)$ such that

$$\mid D(\mathbf{A}^{\delta}) = \{ u \in \mathbf{H}_0^1(\Omega) \mid \operatorname{div}(\sigma^{\delta} \nabla u) \in \mathbf{L}^2(\Omega) \}$$
$$\mid \mathbf{A}^{\delta} u = \operatorname{div}(\sigma^{\delta} \nabla u).$$

Spectral problem

In the geometry with a rounded corner, we consider the spectral problem

Find
$$(\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times (\mathrm{H}_0^1(\Omega) \setminus \{0\}) \text{ s.t.:}$$

 $-\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta} \text{ in } \Omega.$

We define the operator $A^{\delta}: D(A^{\delta}) \to L^{2}(\Omega)$ such that

$$\mid D(\mathbf{A}^{\delta}) = \{ u \in \mathbf{H}_0^1(\Omega) \, | \, \mathrm{div}(\sigma^{\delta} \nabla u) \in \mathbf{L}^2(\Omega) \}$$
$$\mid \mathbf{A}^{\delta} u = \mathrm{div}(\sigma^{\delta} \nabla u).$$

PROPOSITION. Assume that $\kappa_{\sigma} \neq -1$. For $\delta > 0$ (in this case the interface is "smooth"), the operator A^{δ} is selfadjoint and has compact resolvent. Its spectrum $\mathfrak{S}(A^{\delta})$ consists in two sequences of isolated eigenvalues: $-\infty \underset{n \to +\infty}{\longleftarrow} \dots \lambda_{-n}^{\delta} \leq \dots \leq \lambda_{-1}^{\delta} < 0 \leq \lambda_{1}^{\delta} \leq \lambda_{2}^{\delta} \leq \dots \leq \lambda_{n}^{\delta} \dots \underset{n \to +\infty}{\longrightarrow} +\infty.$

$$-\infty \underset{n \to +\infty}{\longleftarrow} \dots \lambda_{-n}^{\delta} \le \dots \le \lambda_{-1}^{\delta} < 0 \le \lambda_{1}^{\delta} \le \lambda_{2}^{\delta} \le \dots \le \lambda_{n}^{\delta} \dots \xrightarrow[n \to +\infty]{} +\infty.$$

Spectral problem

▶ In the geometry with a rounded corner, we consider the spectral problem

Find
$$(\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times (\mathrm{H}_0^1(\Omega) \setminus \{0\}) \text{ s.t.:}$$

 $-\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta} \text{ in } \Omega.$

▶ We define the operator $A^{\delta}: D(A^{\delta}) \to L^{2}(\Omega)$ such that

$$\mid D(\mathbf{A}^{\delta}) = \{ u \in \mathbf{H}_0^1(\Omega) \, | \, \mathrm{div}(\sigma^{\delta} \nabla u) \in \mathbf{L}^2(\Omega) \}$$
$$\mid \mathbf{A}^{\delta} u = \mathrm{div}(\sigma^{\delta} \nabla u).$$

PROPOSITION. Assume that $\kappa_{\sigma} \neq -1$. For $\delta > 0$ (in this case the interface is "smooth"), the operator A^{δ} is selfadjoint and has compact resolvent. Its spectrum $\mathfrak{S}(A^{\delta})$ consists in two sequences of isolated eigenvalues:

$$-\infty \underset{n \to +\infty}{\longleftarrow} \dots \lambda_{-n}^{\delta} \leq \dots \leq \lambda_{-1}^{\delta} < 0 \leq \lambda_{1}^{\delta} \leq \lambda_{2}^{\delta} \leq \dots \leq \lambda_{n}^{\delta} \dots \underset{n \to +\infty}{\longrightarrow} +\infty.$$

For $n \in \mathbb{Z}^*$, what is the behaviour of λ_n^{δ} when δ tends to zero?

▶ In the geometry with a rounded corner, we consider the spectral problem

Find
$$(\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times (\mathrm{H}_0^1(\Omega) \setminus \{0\}) \text{ s.t.:}$$

 $-\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta} \text{ in } \Omega.$

▶ We define the operator $A^{\delta}: D(A^{\delta}) \to L^{2}(\Omega)$ such that

$$\left| \begin{array}{l} D(\mathbf{A}^{\delta}) = \{u \in \mathbf{H}_0^1(\Omega) \, | \, \mathrm{div}(\sigma^{\delta} \nabla u) \in \mathbf{L}^2(\Omega) \} \\ \mathbf{A}^{\delta} u = \mathrm{div}(\sigma^{\delta} \nabla u). \end{array} \right|$$

PROPOSITION. Assume that $\kappa_{\sigma} \neq -1$. For $\delta > 0$ (in this case the interface is "smooth"), the operator A^{δ} is selfadjoint and has compact resolvent. Its spectrum $\mathfrak{S}(A^{\delta})$ consists in two sequences of isolated eigenvalues:

$$-\infty \underset{n \to +\infty}{\longleftarrow} \dots \lambda_{-n}^{\delta} \leq \dots \leq \lambda_{-1}^{\delta} < 0 \leq \lambda_{1}^{\delta} \leq \lambda_{2}^{\delta} \leq \dots \leq \lambda_{n}^{\delta} \dots \underset{n \to +\infty}{\longrightarrow} +\infty.$$

- **?** For $n \in \mathbb{Z}^*$, what is the behaviour of λ_n^{δ} when δ tends to zero?
- \Rightarrow This depends on the features of the limit operator for $\delta = 0...$

▶ Let $A : D(A) \to L^2(\Omega)$ denote the limit operator $(\delta = 0)$ such that

$$\left| \begin{array}{l} D(\mathbf{A}) = \{u \in \mathbf{H}^1_0(\Omega) \, | \, \mathrm{div}(\sigma \nabla u) \in \mathbf{L}^2(\Omega) \} \\ \mathbf{A}u = \mathrm{div}(\sigma \nabla u). \end{array} \right.$$

▶ For $\delta = 0$, the interface is no longer "smooth" and the properties of A depend on the values of κ_{σ} :

Spectral problem

▶ Let $A : D(A) \to L^2(\Omega)$ denote the limit operator $(\delta = 0)$ such that

$$\left| \begin{array}{l} D(\mathbf{A}) = \{u \in \mathbf{H}^1_0(\Omega) \, | \, \mathrm{div}(\sigma \nabla u) \in \mathbf{L}^2(\Omega) \} \\ \mathbf{A}u = \mathrm{div}(\sigma \nabla u). \end{array} \right.$$

- ▶ For $\delta = 0$, the interface is no longer "smooth" and the properties of A depend on the values of κ_{σ} :
 - \clubsuit When $\kappa_{\sigma} \notin I_c$, A is selfadjoint and has compact resolvent. Its spectrum $\mathfrak{S}(A)$ consists in two sequences of isolated eigenvalues:

$$-\infty \underset{n \to +\infty}{\longleftarrow} \dots \lambda_{-n} \le \dots \le \lambda_{-1} < 0 \le \lambda_1 \le \lambda_2 \le \dots \le \lambda_n \dots \underset{n \to +\infty}{\longrightarrow} +\infty.$$

In this case, there holds $\mathfrak{S}(A^{\delta}) \underset{\delta \to 0}{\to} \mathfrak{S}(A)$.

▶ Let A : $D(A) \to L^2(\Omega)$ denote the limit operator $(\delta = 0)$ such that

$$| D(\mathbf{A}) = \{ u \in \mathbf{H}_0^1(\Omega) \mid \operatorname{div}(\sigma \nabla u) \in \mathbf{L}^2(\Omega) \}$$
$$| \mathbf{A}u = \operatorname{div}(\sigma \nabla u).$$

► For $\delta = 0$, the interface is no longer "smooth" and the properties of A depend on the values of κ_{σ} :

 \clubsuit When $\kappa_{\sigma} \notin I_c$, A is selfadjoint and has compact resolvent. Its spectrum $\mathfrak{S}(A)$ consists in two sequences of isolated eigenvalues:

$$-\infty \underset{n \to +\infty}{\leftarrow} \dots \lambda_{-n} \leq \dots \leq \lambda_{-1} < 0 \leq \lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n \dots \underset{n \to +\infty}{\rightarrow} +\infty.$$

In this case, there holds $\mathfrak{S}(A^{\delta}) \underset{\delta \to 0}{\to} \mathfrak{S}(A)$.

• When $\kappa_{\sigma} \in I_c \setminus \{-1\}$, there holds $D(A^*) = D(A) \oplus \operatorname{span}(s_+, s_-)$ where $s_{\pm} = \zeta r^{\pm i\eta} \varphi(\theta)$ (in particular A is not selfadjoint). Moreover, $\mathfrak{S}(A) = \mathbb{C}$.

Inside the critical interval:

- 1 The selfadjoint extensions of A are the operators
- $A(\tau): D(A(\tau)) \to L^2(\Omega), \ \tau \in \mathbb{R}$, such that

$$D(\mathbf{A}(\tau)) = D(\mathbf{A}) \oplus \operatorname{span}(s_{+} + e^{i\tau}s_{-})$$
$$\mathbf{A}(\tau)u = \operatorname{div}(\sigma \nabla u).$$

A Missian F(0) (in positioning A is not called joint). Moreover, S(A)

Inside the Critical Interval:

- 1 The selfadjoint extensions of A are the operators
- $A(\tau): D(A(\tau)) \to L^2(\Omega), \ \tau \in \mathbb{R}$, such that

$$D(A(\tau)) = D(A) \oplus \operatorname{span}(s_{+} + e^{i\tau}s_{-})$$
$$A(\tau)u = \operatorname{div}(\sigma \nabla u).$$

2 Using matched asymptotic expansions techniques, we have proved the

THEOREM. Assume that $\kappa_{\sigma} \in I_c \setminus \{-1\}$. There exist $a \neq 0, b \in \mathbb{R}$, such that $\operatorname{dist}(\mathfrak{S}(A^{\delta}), \mathfrak{S}(A(a \ln \delta + b))) \to 0$ on each compact set of \mathbb{R} as $\delta \to 0$.

Spectral problem

Inside the critical interval:

- 1 The selfadjoint extensions of A are the operators
- $A(\tau): D(A(\tau)) \to L^2(\Omega), \ \tau \in \mathbb{R}$, such that

$$D(\mathbf{A}(\tau)) = D(\mathbf{A}) \oplus \operatorname{span}(s_{+} + e^{i\tau}s_{-})$$
$$\mathbf{A}(\tau)u = \operatorname{div}(\sigma \nabla u).$$

2 Using matched asymptotic expansions techniques, we have proved the

THEOREM. Assume that $\kappa_{\sigma} \in I_c \setminus \{-1\}$. There exist $a \neq 0, b \in \mathbb{R}$, such that $\operatorname{dist}(\mathfrak{S}(A^{\delta}), \mathfrak{S}(A(a \ln \delta + b))) \to 0$ on each compact set of \mathbb{R} as $\delta \to 0$.

3 Conclusion.

The spectrum of A^{δ} does not converge when $\delta \to 0$. Asymptotically, $\mathfrak{S}(A^{\delta})$ is $2\pi/a$ -periodic in $\ln \delta$ -scale.

Spectral problem

▶ Let A : $D(A) \to L^2(\Omega)$ denote the limit operator $(\delta = 0)$ such that

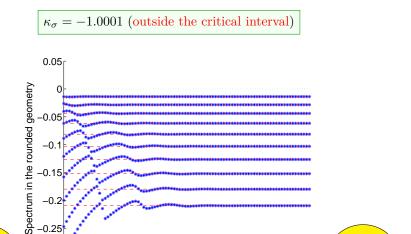
$$| D(\mathbf{A}) = \{ u \in \mathbf{H}_0^1(\Omega) \mid \operatorname{div}(\sigma \nabla u) \in \mathbf{L}^2(\Omega) \}$$
$$| \mathbf{A}u = \operatorname{div}(\sigma \nabla u).$$

- ▶ For $\delta = 0$, the interface is no longer "smooth" and the properties of A depend on the values of κ_{σ} :
 - \clubsuit When $\kappa_{\sigma} \notin I_c$, A is selfadjoint and has compact resolvent. Its spectrum $\mathfrak{S}(A)$ consists in two sequences of isolated eigenvalues:

$$-\infty \underset{n \to +\infty}{\leftarrow} \dots \lambda_{-n} \leq \dots \leq \lambda_{-1} < 0 \leq \lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n \dots \underset{n \to +\infty}{\rightarrow} +\infty.$$

In this case, there holds $\mathfrak{S}(A^{\delta}) \underset{\delta \to 0}{\to} \mathfrak{S}(A)$.

♣ When $\kappa_{\sigma} \in I_c \setminus \{-1\}$, the spectrum of A^δ does not converge when $\delta \to 0$. Asymptotically, $\mathfrak{S}(A^{\delta})$ is $2\pi/a$ -periodic in $\ln \delta$ -scale.



 $\mathfrak{S}(A^{\delta})$ converges to $\mathfrak{S}(A)$ (A is the limit operator) when $\delta \to 0$.

2.5 –Inδ

3.5

3

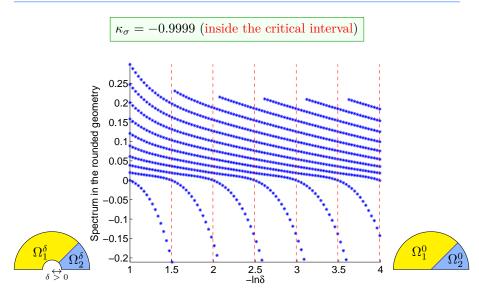
1.5

-0.25

 Ω_1^0

Spectral problem: numerical experiments

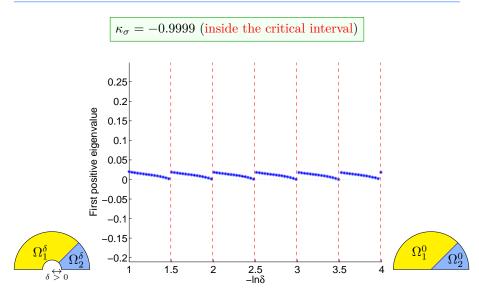
4/4



Asymptotically, $\mathfrak{S}(A^{\delta})$ is periodic in $\ln \delta$ -scale as $\delta \to 0$.

Spectral problem: numerical experiments

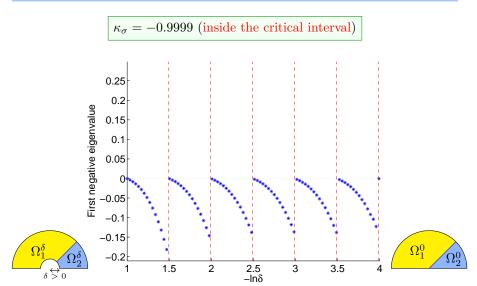
4/4



Asymptotically, $\mathfrak{S}(A^{\delta})$ is periodic in $\ln \delta$ -scale as $\delta \to 0$.

Spectral problem: numerical experiments

4/4



Asymptotically, $\mathfrak{S}(A^{\delta})$ is periodic in $\ln \delta$ -scale as $\delta \to 0$.

Numerical experiments

2 Properties of the limit problem

3 Asymptotic analysis

Conclusion

Let us remind the initial question:

What is the behaviour of $(u^{\delta})_{\delta}$ when δ tends to zero?

Conclusion

Let us remind the initial question:

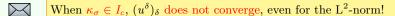
What is the behaviour of $(u^{\delta})_{\delta}$ when δ tends to zero?

This depends on the features of the limit problem.

$$(\dots)$$
 (\dots)

$$\kappa_{\sigma} = -1.0001 \notin I_c$$

$$\kappa_{\sigma} = -0.9999 \in I_c$$



In this case, it is impossible to simulate the fields since it is impossible to measure exactly $\delta. \Rightarrow$ What happens physically?

Thank you for your attention!!!

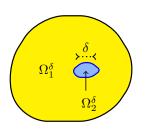
- ► ANR project Metamath coordinated by S. Fliss.
- A.-S. Bonnet-Ben Dhia, L. Chesnel, P. Ciarlet Jr., *T-coercivity for scalar interface problems between dielectrics and metamaterials*, M2AN, 46, 1363–1387, 2012.
- A.-S. Bonnet-Ben Dhia, L. Chesnel, X. Claeys, Radiation condition for a non-smooth interface between a dielectric and a metamaterial, M3AS, 23, 2013.
- L. Chesnel, X. Claeys, S.A. Nazarov, A curious instability phenomenon for a rounded corner in presence of a negative material, Asymp. Anal., in press, 2013.

- ▶ Let Ω , Ξ be smooth domains of \mathbb{R}^3 such that $O \in \Xi$, $\overline{\Xi} \subset \Omega$.
- ▶ For $\delta \in (0; 1]$, we consider the spectral problem

Find
$$(\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times (\mathrm{H}_0^1(\Omega) \setminus \{0\}) \text{ s.t.:}$$

 $-\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta} \text{ in } \Omega,$

where
$$\sigma^{\delta} = \begin{vmatrix} \sigma_1 > 0 & \text{in} & \Omega_1^{\delta} := \Omega \setminus \overline{\delta \Xi} \\ \sigma_2 < 0 & \text{in} & \Omega_2^{\delta} := \delta \Xi. \end{vmatrix}$$

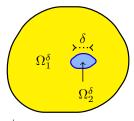


- ▶ Let Ω , Ξ be smooth domains of \mathbb{R}^3 such that $O \in \Xi$, $\overline{\Xi} \subset \Omega$.
- ▶ For $\delta \in (0; 1]$, we consider the spectral problem

Find
$$(\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times (\mathrm{H}_0^1(\Omega) \setminus \{0\}) \text{ s.t.:}$$

 $-\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta} \text{ in } \Omega,$

where
$$\sigma^{\delta} = \begin{vmatrix} \sigma_1 > 0 & \text{in} & \Omega_1^{\delta} := \Omega \setminus \overline{\delta \Xi} \\ \sigma_2 < 0 & \text{in} & \Omega_2^{\delta} := \delta \Xi. \end{vmatrix}$$



▶ We define the operator $A^{\delta}: D(A^{\delta}) \to L^{2}(\Omega)$ such that

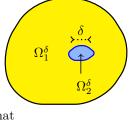
$$\mid D(\mathbf{A}^{\delta}) = \{ u \in \mathbf{H}_0^1(\Omega) \mid \operatorname{div}(\sigma^{\delta} \nabla u) \in \mathbf{L}^2(\Omega) \}$$
$$\mid \mathbf{A}^{\delta} u = \operatorname{div}(\sigma^{\delta} \nabla u).$$

- ▶ Let Ω , Ξ be smooth domains of \mathbb{R}^3 such that $O \in \Xi$, $\overline{\Xi} \subset \Omega$.
- ▶ For $\delta \in (0; 1]$, we consider the spectral problem

Find
$$(\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times (\mathrm{H}_0^1(\Omega) \setminus \{0\}) \text{ s.t.:}$$

$$-\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta} \quad \text{in } \Omega,$$

where
$$\sigma^{\delta} = \begin{vmatrix} \sigma_1 > 0 & \text{in} & \Omega_1^{\delta} := \Omega \setminus \overline{\delta \Xi} \\ \sigma_2 < 0 & \text{in} & \Omega_2^{\delta} := \delta \Xi. \end{vmatrix}$$



• We define the operator $A^{\delta}: D(A^{\delta}) \to L^{2}(\Omega)$ such that

PROPOSITION. Assume that $\kappa_{\sigma} \neq -1$. For $\delta > 0$, the operator A^{δ} is selfadjoint and has compact resolvent. Its spectrum $\mathfrak{S}(A^{\delta})$ consists in two sequences of isolated eigenvalues:

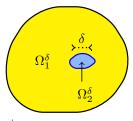
$$-\infty \underset{n \to +\infty}{\longleftarrow} \dots \lambda_{-n}^{\delta} \leq \dots \leq \lambda_{-1}^{\delta} < 0 \leq \lambda_{1}^{\delta} \leq \lambda_{2}^{\delta} \leq \dots \leq \lambda_{n}^{\delta} \dots \underset{n \to +\infty}{\longrightarrow} +\infty.$$

- ▶ Let Ω , Ξ be smooth domains of \mathbb{R}^3 such that $O \in \Xi$, $\overline{\Xi} \subset \Omega$.
- For $\delta \in (0; 1]$, we consider the spectral problem

Find
$$(\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times (\mathrm{H}_0^1(\Omega) \setminus \{0\}) \text{ s.t.:}$$

 $-\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta} \text{ in } \Omega,$

where
$$\sigma^{\delta} = \begin{vmatrix} \sigma_1 > 0 & \text{in} & \Omega_1^{\delta} := \Omega \setminus \overline{\delta \Xi} \\ \sigma_2 < 0 & \text{in} & \Omega_2^{\delta} := \delta \Xi. \end{vmatrix}$$



▶ We define the operator $A^{\delta}: D(A^{\delta}) \to L^{2}(\Omega)$ such that

$$| D(\mathbf{A}^{\delta}) = \{ u \in \mathbf{H}_0^1(\Omega) \mid \operatorname{div}(\sigma^{\delta} \nabla u) \in \mathbf{L}^2(\Omega) \}$$
$$| \mathbf{A}^{\delta} u = \operatorname{div}(\sigma^{\delta} \nabla u).$$

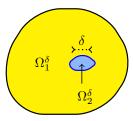
▶ For all $\delta \in (0; 1]$, A^{δ} has negative spectrum. At the limit $\delta = 0$, the inclusion of negative material vanishes and σ is strictly positive.

- ▶ Let Ω , Ξ be smooth domains of \mathbb{R}^3 such that $O \in \Xi$, $\overline{\Xi} \subset \Omega$.
- For $\delta \in (0; 1]$, we consider the spectral problem

Find
$$(\lambda^{\delta}, u^{\delta}) \in \mathbb{C} \times (\mathrm{H}_0^1(\Omega) \setminus \{0\}) \text{ s.t.:}$$

 $-\mathrm{div}(\sigma^{\delta} \nabla u^{\delta}) = \lambda^{\delta} u^{\delta} \text{ in } \Omega,$

$$\text{where } \sigma^{\delta} = \left| \begin{array}{ccc} \sigma_1 > 0 & \text{in} & \Omega_1^{\delta} := \Omega \setminus \overline{\delta \, \Xi} \\ \sigma_2 < 0 & \text{in} & \Omega_2^{\delta} := \delta \, \Xi. \end{array} \right.$$



▶ We define the operator $A^{\delta}: D(A^{\delta}) \to L^{2}(\Omega)$ such that

▶ For all $\delta \in (0; 1]$, A^{δ} has negative spectrum. At the limit $\delta = 0$, the inclusion of negative material vanishes and σ is strictly positive.

What happens to the negative spectrum when δ tends to zero?

Limit operators

▶ As $\delta \to 0$, the small inclusion of negative material disappears. We introduce the far field operator A^0 such that

There holds
$$\mathfrak{S}(A^0) = \{\mu_n\}_{n \geq 1}$$
 with $0 < \mu_1 < \mu_2 \leq \cdots \leq \mu_n \ldots \underset{n \to +\infty}{\longrightarrow} +\infty$.

Limit operators

As $\delta \to 0$, the small inclusion of negative material disappears. We introduce the far field operator A^0 such that

There holds $\mathfrak{S}(A^0) = \{\mu_n\}_{n \geq 1}$ with $0 < \mu_1 < \mu_2 \leq \cdots \leq \mu_n \ldots \underset{n \to +\infty}{\longrightarrow} +\infty$.

Introduce the rapid coordinate $\boldsymbol{\xi} := \delta^{-1} \boldsymbol{x}$ and let $\delta \to 0$. Define the near field operator \mathbf{B}^{∞} such that

$$D(\mathbf{B}^{\infty}) := \{ w \in \mathbf{H}^{1}(\mathbb{R}^{3}) \mid \operatorname{div}(\sigma^{\infty}\nabla w) \in \mathbf{L}^{2}(\mathbb{R}^{3}) \} \qquad \sigma^{\infty} = \sigma_{2}$$

$$\mathbf{B}^{\infty}w = -\operatorname{div}(\sigma^{\infty}\nabla w). \qquad \sigma^{\infty} = \sigma_{1}$$

Limit operators

▶ As $\delta \to 0$, the small inclusion of negative material disappears. We introduce the far field operator A^0 such that

There holds $\mathfrak{S}(A^0) = \{\mu_n\}_{n \geq 1}$ with $0 < \mu_1 < \mu_2 \leq \cdots \leq \mu_n \ldots \xrightarrow[n \to +\infty]{} +\infty$.

Introduce the rapid coordinate $\boldsymbol{\xi} := \delta^{-1} \boldsymbol{x}$ and let $\delta \to 0$. Define the near field operator \mathbf{B}^{∞} such that

$$D(\mathbf{B}^{\infty}) := \{ w \in H^{1}(\mathbb{R}^{3}) \mid \operatorname{div}(\sigma^{\infty}\nabla w) \in \mathbf{L}^{2}(\mathbb{R}^{3}) \} \qquad \sigma^{\infty} = \sigma_{2}$$

$$\mathbf{B}^{\infty}w = -\operatorname{div}(\sigma^{\infty}\nabla w). \qquad \sigma^{\infty} = \sigma_{1}$$

PROPOSITION. Assume that $\kappa_{\sigma} \neq -1$. The continuous spectrum of \mathbf{B}^{∞} is equal to $[0; +\infty)$ while its discrete spectrum is a sequence of eigenvalues:

$$\mathfrak{S}(\mathbf{B}^{\infty}) \setminus \overline{\mathbb{R}_{+}} = \{\mu_{-n}\}_{n \geq 1} \text{ with } \mathbf{0} > \mu_{-1} \geq \cdots \geq \mu_{-n} \ldots \underset{n \to +\infty}{\to} -\infty.$$

Assume that $\kappa_{\sigma} \neq -1$ and that \mathbf{B}^{∞} is injective. For $n \in \mathbb{N}^*$, we denote $\lambda_{\pm n}^{\delta}$, μ_n^{δ} , μ_{-n}^{δ} the eigenvalues of \mathbf{A}^{δ} , \mathbf{A}^0 , \mathbf{B}^{∞} as in the previous slides.

THEOREM. (Positive spectrum) For all $n \in \mathbb{N}^*$, $\varepsilon \in (0; 1)$, there exist constants $C, \delta_0 > 0$ depending on n, ε but independent of δ , such that

$$|\lambda_n^{\delta} - \mu_n| \le C \, \delta^{3/2 - \varepsilon}, \quad \forall \delta \in (0; \delta_0].$$

Assume that $\kappa_{\sigma} \neq -1$ and that \mathbf{B}^{∞} is injective. For $n \in \mathbb{N}^*$, we denote $\lambda_{\pm n}^{\delta}$, μ_n^{δ} , μ_{-n}^{δ} the eigenvalues of \mathbf{A}^{δ} , \mathbf{A}^{0} , \mathbf{B}^{∞} as in the previous slides.

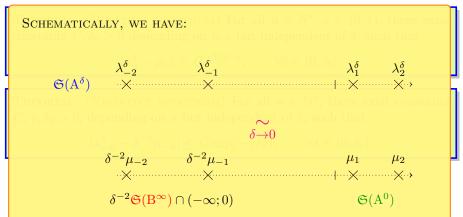
THEOREM. (Positive spectrum) For all $n \in \mathbb{N}^*$, $\varepsilon \in (0; 1)$, there exist constants $C, \delta_0 > 0$ depending on n, ε but independent of δ , such that

$$|\lambda_n^{\delta} - \mu_n| \le C \, \delta^{3/2 - \varepsilon}, \quad \forall \delta \in (0; \delta_0].$$

THEOREM. (NEGATIVE SPECTRUM) For all $n \in \mathbb{N}^*$, there exist constants $C, \gamma, \delta_0 > 0$, depending on n but independent of δ , such that

$$|\lambda_{-n}^{\delta} - \delta^{-2}\mu_{-n}| \le C \exp(-\gamma/\delta), \quad \forall \delta \in (0; \delta_0].$$

Assume that $\kappa_{\sigma} \neq -1$ and that \mathbf{B}^{∞} is injective. For $n \in \mathbb{N}^*$, we denote $\lambda_{\pm n}^{\delta}$, μ_n^{δ} , μ_{-n}^{δ} the eigenvalues of \mathbf{A}^{δ} , \mathbf{A}^{0} , \mathbf{B}^{∞} as in the previous slides.



Assume that $\kappa_{\sigma} \neq -1$ and that \mathbf{B}^{∞} is injective. For $n \in \mathbb{N}^*$, we denote $\lambda_{\pm n}^{\delta}$, μ_n^{δ} , μ_{-n}^{δ} the eigenvalues of \mathbf{A}^{δ} , \mathbf{A}^{0} , \mathbf{B}^{∞} as in the previous slides.

THEOREM. (Positive spectrum) For all $n \in \mathbb{N}^*$, $\varepsilon \in (0; 1)$, there exist constants $C, \delta_0 > 0$ depending on n, ε but independent of δ , such that

$$|\lambda_n^{\delta} - \mu_n| \le C \, \delta^{3/2 - \varepsilon}, \quad \forall \delta \in (0; \delta_0].$$

THEOREM. (NEGATIVE SPECTRUM) For all $n \in \mathbb{N}^*$, there exist constants $C, \gamma, \delta_0 > 0$, depending on n but independent of δ , such that

$$|\lambda_{-n}^{\delta} - \delta^{-2}\mu_{-n}| \le C \exp(-\gamma/\delta), \quad \forall \delta \in (0; \delta_0].$$

Assume that $\kappa_{\sigma} \neq -1$ and that \mathbf{B}^{∞} is injective. For $n \in \mathbb{N}^*$, we denote $\lambda_{\pm n}^{\delta}$, μ_{n}^{δ} , μ_{-n}^{δ} the eigenvalues of \mathbf{A}^{δ} , \mathbf{A}^{0} , \mathbf{B}^{∞} as in the previous slides.

THEOREM. (POSITIVE SPECTRUM) For all $n \in \mathbb{N}^*$, $\varepsilon \in (0;1)$, there exist constants $C, \delta_0 > 0$ depending on n, ε but independent of δ , such that

$$|\lambda_n^{\delta} - \mu_n| \le C \, \delta^{3/2 - \varepsilon}, \qquad \forall \delta \in (0; \delta_0].$$

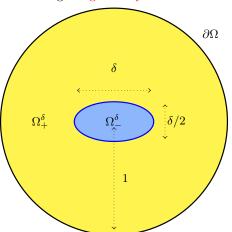
THEOREM. (NEGATIVE SPECTRUM) For all $n \in \mathbb{N}^*$, there exist constants $C, \gamma, \delta_0 > 0$, depending on n but independent of δ , such that

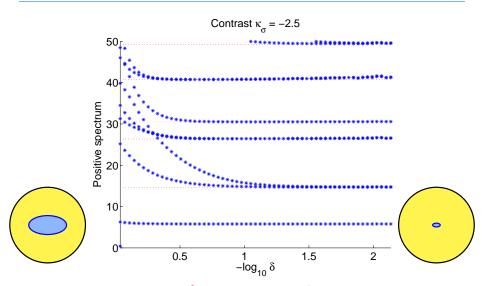
$$|\lambda_{-n}^{\delta} - \delta^{-2}\mu_{-n}| \le C \exp(-\gamma/\delta), \quad \forall \delta \in (0; \delta_0].$$

PROPOSITION. (LOCALIZATION EFFECT) For all $n \in \mathbb{N}^*$, let u_{-n}^{δ} be an eigenfunction corresponding to the negative eigenvalue λ_{-n}^{δ} . There exist constants $C, \gamma, \delta_0 > 0$, depending on n but independent of δ , such that

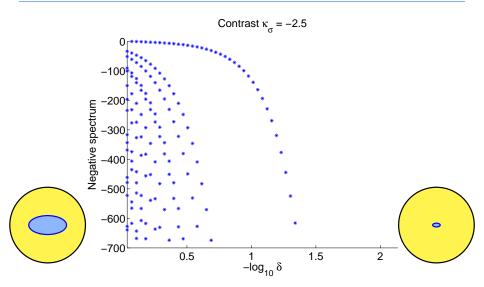
$$\int_{\Omega} (|u_{-n}^{\delta}|^2 + |\nabla u_{-n}^{\delta}|^2) e^{\gamma x/\delta} d\boldsymbol{x} \le C \|u_{-n}^{\delta}\|_{\Omega}, \quad \forall \delta \in (0; \delta_0].$$

- ▶ We approximate numerically the spectrum of A^{δ} using a usual P1 Finite Element Method and we make δ goes to zero.
- ▶ We consider the following 2D geometry:

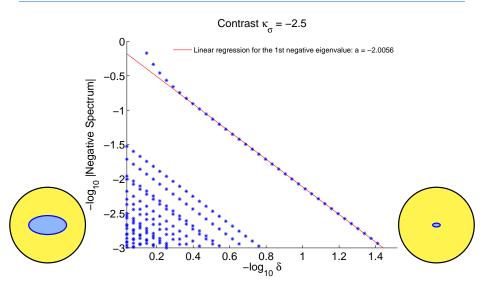




► The positive part of $\mathfrak{S}(A^{\delta})$ converges to $\mathfrak{S}(A^{0})$ when $\delta \to 0$.



The negative part of $\mathfrak{S}(A^{\delta})$ is asymptotically equivalent to the negative part of $\delta^{-2}\mathfrak{S}(B^{\infty})$ when $\delta \to 0$.

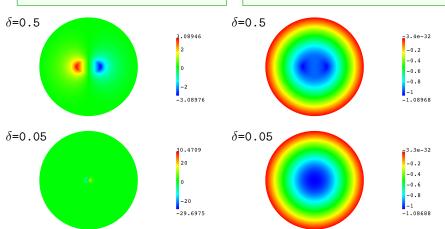


The negative part of $\mathfrak{S}(A^{\delta})$ is asymptotically equivalent to the negative part of $\delta^{-2}\mathfrak{S}(B^{\infty})$ when $\delta \to 0$.

Localization effect

Eigenfunction associated to the first negative eigenvalue

Eigenfunction associated to the first positive eigenvalue



► The eigenfunctions corresponding to the negative eigenvalues are localized around the small inclusion. Here, $\kappa_{\sigma} = -2.5$.