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Introduction 1/3
▶ We consider the propagation of waves in a 2D acoustic waveguide with
an obstacle (also relevant in optics, microwaves, water-waves theory,...).

1
x

y

Ω

(P) ∆u + k2u = 0 in Ω,
∂nu = 0 on ∂Ω

▶ For this problem, the modes are

Propagating
Evanescent

w±
n (x, y) = e±iβnx cos(nπy), βn =

√
k2 − n2π2, n ∈ J0, N − 1K

w±
n (x, y) = e∓βnx cos(nπy), βn =

√
n2π2 − k2, n ≥ N.

▶ We fix k ∈ (0; π) so that only the plane waves e±ikx can propagate.

▶ The scattering of the wave eikx leads us to consider the solutions of (P)
with the decomposition

u = eikx + R e−ikx + . . . x → −∞
T e+ikx + . . . x → +∞

R, T ∈ C are the scattering coefficients , the . . . are expon. decaying terms.
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Introduction 2/3
▶ We have the relation of conservation of energy |R|2 + |T |2 = 1.

- Without obstacle, u = eikx so that (R, T ) = (0, 1).

- With an obstacle, in general (R, T ) ̸= (0, 1).

Goal of the talk

We wish to identify situations (geometries, k) where R = 0 (zero reflection)
or T = 1 (perfect invisibility) ⇒ cloaking at “infinity”.
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Introduction 3/3

Difficulty: the scattering coefficients have a non explicit and non
linear dependence wrt the geometry and k.
→ Optimization techniques fail due to local minima.

Remark: different from the usual cloaking picture
(Pendry et al. 06, Leonhardt 06, Greenleaf et al. 09)
because we wish to control only the scattering coef..

→ Less ambitious but doable without fancy materials
(and relevant in practice).
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Outline of the talk

1 Smooth non reflecting perturbations of the reference strip

2 Non reflecting clouds of small obstacles

3 Construction of large invisible defects

4 Cloaking of given large obstacles
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General picture

▶ Perturbative technique: we construct small non reflecting defects using
variants of the implicit functions theorem.

R = 0

1 + h(x)

R = 0
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Sketch of the method
1 + h(x)▶ For h ∈ C ∞

0 (R), denote R(h) ∈ C
the reflection coef. in the geometry:

Note that R(0) = 0
(no obstacle leads to null measurements).

Our goal: to find h ̸≡ 0 such that R(h) = 0.

▶ We look for h of the form h = εµ with ε > 0 small and µ to determine.

We can show that dR(0) : C ∞
0 (R) → C is onto

⇒ ∃µ0, µ1, µ2 s.t.

dR(0)(µ0) = 0, dR(0)(µ1) = 1, dR(0)(µ2) = i.

▶ Take µ = µ0 + τ1µ1 + τ2µ2 where the τn are real parameters to set:

0 = R(εµ) ⇔

Gε is a contraction ⇒ the fixed-point equation has a unique solution τ⃗ sol.

Set hsol := εµsol. We have R(hsol) = 0 (non reflecting perturbation).
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Calculus of the differential
1 + εµ(x)

Ωε

▶ Using classical results of asymptotic analysis, we obtain

R(εµ) = 0 + ε

(
−1

2

∫ ℓ

−ℓ

∂xµ(x)e2ikx dx

)
+ O(ε2).

dR(0)(µ)

dR(0) : C ∞
0 (R) → C is onto ⇒ we can get non trivial Ω s.t. R = 0.

▶ Can we use the technique to construct Ω such that T = 1? We obtain

T (εµ) − 1 = 0 + ε 0 + O(ε2).

dT (0) is not onto ⇒ the approach fails to impose T = 1.
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Numerical results
▶ The fixed point problem can be solved iteratively: τ⃗ n+1 = Gε(τ⃗ n).

Numerics done by a group of students of École Polytechnique with the
Freefem++ library → P2 FEM + Dirichlet-to-Neumann to truncate Ω.
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2 Non reflecting clouds of small obstacles

3 Construction of large invisible defects

4 Cloaking of given large obstacles

11 / 37



Small Dirichlet obstacle

Can one hide a small Dirichlet obstacle centered at M1

Oε
1

Find u = ui + us s. t.
∆u + k2u = 0 in Ωε := Ω \ Oε

1,
u = 0 on ∂Ωε,

us is outgoing.

▶ With Dirichlet B.C., the modes are not the same as previously but this
not important. Denote by w± the first propagating modes.

▶ In 3D, we obtain

R = 0 + ε (4iπ cap(O)w+(M1)2) + O(ε2)

T = 1 + ε (4iπ cap(O)|w+(M1)|2) + O(ε2).

Non zero terms!
(cap(O) > 0)

⇒ One single small obstacle cannot even be non reflecting.
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Small Dirichlet obstacles

▶ Let us try with TWO small Dirichlet
obstacles at M1, M2.Oε

1
Oε

2

▶ We obtain R = 0 + ε (4iπ cap(O)
2∑

n=1
w+(Mn)2) + O(ε2)

T = 1 + ε (4iπ cap(O)
2∑

n=1
|w+(Mn)|2) + O(ε2).

We can find M1, M2 such that R = O(ε2). Then moving Oε
1 from M1 to

M1 + ετ , and choosing a good τ ∈ R3 (fixed point), we can get R = 0 .

Comments:
→ Hard part is to justify the asymptotics for the fixed point problem.
→ We cannot impose T = 1 with this strategy.
→ When there are more propagative waves, we need more obstacles.

Acting as a team, flies can become invisible!
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Outline of the talk

1 Smooth non reflecting perturbations of the reference strip

2 Non reflecting clouds of small obstacles

3 Construction of large invisible defects

4 Cloaking of given large obstacles

We constructed small defects
such that R = 0. How to get
large defects with T = 1
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Geometrical setting
▶ Let us work in the geometry

ℓ = 2π/k

hΩh

▶ Introduce the two half-waveguide problems

ℓ/2

ωh

Neumann/
Dirichlet

Σh

∆u + k2u = 0 in ωh

∂nu = 0 on ∂ωh

Neumann B.C.

∆U + k2U = 0 in ωh

∂nU = 0 on ∂ωh \ Σh

U = 0 on Σh.

Mixed B.C.
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Relations for the scattering coefficients
▶ Half-waveguide problems admit the solutions

u = w+ + RN w− + ũ, with ũ ∈ H1(ωh)
U = w+ + RD w− + Ũ , with Ũ ∈ H1(ωh).

▶ Due to conservation of energy, one has

|RN | = |RD| = 1.

ωh

h

RDRN

RD RN

▶ Using symmetry considerations, one can show that

R =
RN + RD

2 and T =
RN − RD

2
Perfect invisibility
⇔ [RN = 1, RD = −1]

Crucial point: in this particular geometry ωh,
u = w+ + w− = 2 cos(kx) solves the Neum. pb.

⇒ RN = 1, ∀h > 1.

→ It remains to study the behaviour of RD = RD(h) as h → +∞.
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Asymptotics of RD as h → +∞
Depends on the nb. of propagating modes in the vertical branch of ω∞

ℓ/2
ω∞

Σ∞

(PD)
∆φ + k2φ = 0 in ω∞

∂nφ = 0 on ∂ω∞ \ Σ∞
φ = 0 on Σ∞.

- For ℓ = 2π/k, 2 modes can propagate in the vertical branch of ω∞.

▶ Using asymptotic analysis, one shows that when h → +∞,

|RD(h) − RD
asy(h)| ≤ Ce−ch

where RD
asy(h) runs periodically on the unit circle C .

▶ Additionally one can prove that h 7→ RD(h) runs continuously on C .

⇒ There is a sequence (hn) with hn → +∞ such that RD(hn) = −1.
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Conclusion

Theorem: There is an unbounded sequence (hn) such that for h = hn, we
have T = 1 (perfect invisibility).
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Numerical results
▶ Works also in the geometry below. When we vary h, the height of the
central branch, T runs exactly on the circle C (1/2, 1/2).
→ Numerically, we simply sweep in h and extract the h such that T (h) = 1.

▶ Perfectly invisible defect ( t 7→ ℜe (v(x, y)e−iωt) )

▶ Reference waveguide ( t 7→ ℜe (v(x, y)e−iωt) )
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Remark
▶ Actually Ω does not have to be symmetric and we can work in the
following geometry:

π/k

π/k

π/k h

Ωh

▶ In this Ωh, we can show that there holds R + T = 1 .

▶ With the identity of energy |R|2 + |T |2 = 1, this guarantees that T must
be on the circle C (1/2, 1/2).

▶ Finally, with asy. analysis, we show that T goes through 1 as h → +∞.
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Outline of the talk

1 Smooth non reflecting perturbations of the reference strip

2 Non reflecting clouds of small obstacles

3 Construction of large invisible defects

4 Cloaking of given large obstacles

We constructed invisible defects.
How to hide given large obstacles
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Setting

Main ingredient of our approach: outer resonators of width ε ≪ 1.
ε

ℓ

A

Ωε

(Pε) ∆u + k2u = 0 in Ωε,
∂nu = 0 on ∂Ωε

▶ In this geometry, we have the scattering solutions

uε
+ = eikx + Rε

+ e−ikx + . . .
T ε e+ikx + . . .

uε
− = T ε e−ikx + . . . x → −∞

e−ikx + Rε
− e+ikx + . . . x → +∞

In general, the thin ligament has only a weak influence on the scattering
coefficients: Rε

± ≈ R±, T ε ≈ T . But not always ...
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Numerical experiment

▶ We vary the length of the ligament:
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Numerical experiment

▶ For one particular length of the ligament, we get a standing mode (zero
transmission):
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Asymptotic analysis

To understand the phenomenon, we compute an asymptotic expansion
of uε

+, Rε
+, T ε as ε → 0.

ε

ℓ

A

Ωε

(Pε) ∆uε
+ + k2uε

+ = 0 in Ωε,
∂nuε

+ = 0 on ∂Ωε

uε
+ = eikx + Rε

+ e−ikx + . . .
T ε e+ikx + . . .

▶ To proceed we use techniques of matched asymptotic expansions
(see Beale 73, Gadyl’shin 93, Kozlov et al. 94, Nazarov 96, Maz’ya et al. 00,
Joly & Tordeux 06, Lin, Shipman & Zhang 17, 18, Brandao, Holley, Schnitzer 20,...).
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Asymptotic analysis
▶ We work with the outer expansions

uε
+(x, y) = u0(x, y) + . . . in Ω,

uε
+(x, y) = ε−1v−1(y) + v0(y) + . . . in the resonator.

▶ Considering the restriction of (Pε) to the thin resonator, when ε tends
to zero, we find that v−1 must solve the homogeneous 1D problem

(P1D)
∂2

yv + k2v = 0 in (1; 1 + ℓ)
v(1) = ∂yv(1 + ℓ) = 0.

The features of (P1D) play a key role in the physical phenomena
and in the asymptotic analysis.

▶ We denote by ℓres (resonance lengths) the values of ℓ, given by

ℓres := π(m + 1/2)/k, m ∈ N,

such that (P1D) admits the non zero solution v(y) = sin(k(y − 1)).
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▶ We work with the outer expansions

uε
+(x, y) = u0(x, y) + . . . in Ω,

uε
+(x, y) = ε−1v−1(y) + v0(y) + . . . in the resonator.

▶ Considering the restriction of (Pε) to the thin resonator, when ε tends
to zero, we find that v−1 must solve the homogeneous 1D problem

(P1D)
∂2

yv + k2v = 0 in (1; 1 + ℓ)
v(1) = ∂yv(1 + ℓ) = 0.
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Asymptotic analysis – Non resonant case

▶ Assume that ℓ ̸= ℓres . Then we find v−1 = 0 and when ε → 0, we get

uε
±(x, y) = u± + o(1) in Ω,

uε
±(x, y) = u±(A) v0(y) + o(1) in the resonator,

Rε
± = R± + o(1), T ε = T + o(1).

Here v0(y) = cos(k(y − 1) + tan(k(y − ℓ) sin(k(y − 1).

The thin resonator has no influence at order ε0.

→ Not interesting for our purpose because we want Rε
± = 0 + . . .

T ε = 1 + . . .
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Asymptotic analysis – Resonant case

▶ For ℓ = ℓres , when ε → 0, we obtain

uε
+(x, y) = u+(x, y) + akγ(x, y) + o(1) in Ω,

uε
+(x, y) = ε−1a sin(k(y − 1)) + O(1) in the resonator,

Rε
+ = R+ + iau+(A)/2 + o(1), T ε = T + iau−(A)/2 + o(1).

Here γ is the outgoing Green function such that ∆γ + k2γ = 0 in Ω
∂nγ = δA on ∂Ω

and

ak = −
u+(A)

Γ + π−1 ln |ε| + CΞ
.

This time the thin resonator has an influence at order ε0
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Asymptotic analysis – Resonant case

▶ For ℓ = ℓres + εη with η ∈ R fixed, when ε → 0, we obtain

uε
+(x, y) = u+(x, y) + a(η)kγ(x, y) + o(1) in Ω,

uε
+(x, y) = ε−1a(η) sin(k(y − 1)) + O(1) in the resonator,

Rε
+ = R+ + ia(η)u+(A)/2 + o(1), T ε = T + ia(η)u−(A)/2 + o(1).

Here γ is the outgoing Green function such that ∆γ + k2γ = 0 in Ω
∂nγ = δA on ∂Ω

and

a(η)k = −
u+(A)

Γ + π−1 ln |ε| + CΞ + η
.

This time the thin resonator has an influence at order ε0

and it depends on the choice of η!
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Almost zero reflection
From this expansion, we find that asymptotically, when the length
of the resonator is perturbed around ℓres, Rε

+, T ε run on circles
whose features depend on the choice for A.

▶ Using the expansions of u±(A) far from the obstacle, one shows:
Proposition: There are positions of the resonator A such that the circle
{R0

+(η) | η ∈ R} passes through zero. ⇒ ∃ situations s.t. Rε
+ = 0 + o(1).
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Almost zero reflection
▶ Example of situation where we have almost zero reflection (ε = 0.01).

ℜe uε
+

ℜe eikx

ℜe (uε
+ − eikx)

Simulations realized with the Freefem++ library.

Conservation of energy guarantees that when Rε
+ = 0, |T ε| = 1.

→ To cloak the object, it remains to compensate the phase shift!
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Phase shifter

▶ Working with two resonators, we can create phase shifters , that is
devices with almost zero reflection and any desired phase.

ℜe uε

ℜe eikx

▶ Here the device is designed to obtain a phase shift approx. equal to π/4.
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Cloaking with three resonators
▶ Now working in two steps, we can approximately cloak any object with
three resonators:
1) With one resonant ligament, first we get almost zero reflection;
2) With two additional resonant ligaments, we compensate the phase shift.

ℜe u+

ℜe uε
+

ℜe (uε
+ − eikx)
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Cloaking with two resonators
▶ Working a bit more, one can show that two resonators are enough to
cloak any object.

t 7→ ℜe (u+(x, y)e−ikt)

t 7→ ℜe (uε
+(x, y)e−ikt)

t 7→ ℜe (eik(x−t))
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Outline of the talk

1 Smooth non reflecting perturbations of the reference strip

2 Non reflecting clouds of small obstacles

3 Construction of large invisible defects

4 Cloaking of given large obstacles
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Conclusion

What we did

1) We constructed small smooth non reflecting perturbations of the
reference strip.

2) We explained how clouds of small obstacles can be non reflecting.

3) We constructed large obstacles which are perfectly invisible.

4) We showed how to hide approximately (T ≈ 1) given large obstacles.

Future work

♠ Can one hide given large obstacles at higher frequency?

♠ Can one hide exactly given large obstacles?

♠ Can we get for example small reflection for an interval of frequencies?

♠ What can be done for water-waves, electromagnetism,...?
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Thank you for your attention!
A.-S. Bonnet-Ben Dhia, S.A. Nazarov. Obstacles in acoustic waveguides becoming
“invisible” at given frequencies. Acoust. Phys., vol. 59, 6, 2013.
L. Chesnel, J. Heleine and S.A. Nazarov. Acoustic passive cloaking using thin outer
resonators. ZAMP, vol. 73, 98, 2022.
L. Chesnel, S.A. Nazarov. Team organization may help swarms of flies to become
invisible, Inverse Problens and Imaging, vol. 10, 4:977-1006, 2016.
L. Chesnel, V. Pagneux. Simple examples of perfectly invisible and trapped modes in
waveguides, Quart. J. Mech. Appl. Math., vol. 71, 3:297-315, 2018.
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