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Introduction: objective
Scattering by a negative material in electromagnetism in 3D in
time-harmonic regime (at a given frequency):

Negative material
ε< 0

and/or µ< 0

Positive material
ε> 0

and µ> 0

Do such negative materials occur in practice?

I For metals at optical frequencies, ε < 0 and µ > 0.

Drude model for a metal (high frequency):

ε(ω) = ε0

(
1−

ωp
2

ω2

)
,

where ωp is the plasma frequency.

ω

ε0

0
ωp

ε(ω)

ε(ω) < 0 for ω < ωp

I Recently, artificial metamaterials have been realized which can be
modelled (at some frequency of interest) by ε < 0 and µ < 0.

Zoom on a metamaterial: practical realizations of metamaterials are
achieved by a periodic assembly of small resonators.

Example of metamaterial (NASA)
Mathematical justification of the homogenized model (Bouchitté,
Bourel, Felbacq 09).
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Introduction: applications
I Surface Plasmons Polaritons that propagate at the interface between a
metal and a dielectric can help reducing the size of computer chips.

S

e 2en = −1

n = 1
S

I The negative refraction at the interface metamaterial/dielectric could
allow the realization of perfect lenses (Pendry 00), photonic traps ...

Interfaces between negative materials and dielectrics occur in all (exciting)
applications...
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Introduction: in this talk
Problem set in a bounded domain Ω ⊂ R3:

Ω2
Metamaterial

ε< 0
µ< 0

Ω1
Dielectric

Σε> 0
µ> 0

I Unusual transmission problem because the sign of the coefficients ε and
µ changes through the interface Σ.

I Well-posedness is recovered by the presence of dissipation: =m ε, µ > 0.

But interesting phenomena occur for almost dissipationless materials.

The relevant question is then: what happens if dissipation is neglected ?

Does well-posedness still hold?
What is the appropriate functional framework?
What about the convergence of approximation methods?
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Outline of the talk

1 The coerciveness issue for the scalar case

We develop a T-coercivity method based on geometrical transforma-
tions to study div(µ−1∇·) : H1

0(Ω)→ H−1(Ω) (improvement over
Bonnet-Ben Dhia et al. 10, Zwölf 08).

2 A new functional framework in the critical interval

We propose a new functional framework when div(µ−1∇·) : X→ Y
is not Fredholm for X = H1

0(Ω) and Y = H−1(Ω) (extension of Dauge,
Texier 97, Ramdani 99).

3 A curious instability phenomenon

We prove a curious instability phenomenon for a rounded corner when
the rounding parameter tends to zero.
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A scalar model problem
Problem for Ez in 2D in case of an invariance with respect to z:

Find Ez ∈ H1
0(Ω) such that:

div(µ−1∇Ez) + ω2εEz = −f in Ω.

H1
0(Ω) = {v ∈ L2(Ω) | ∇v ∈ L2(Ω); v|∂Ω = 0}

f is the source term in H−1(Ω)

Since H1
0(Ω) ⊂⊂ L2(Ω), we focus on the principal part.

(P) Find u ∈ H1
0(Ω) s.t.:

div(µ−1∇u) = −f in Ω. ⇔ (PV ) Find u ∈ H1
0(Ω) s.t.:

a(u, v) = l(v), ∀v ∈ H1
0(Ω).

with a(u, v) =
∫

Ω
µ−1∇u · ∇v and l(v) = 〈f , v〉Ω.

Definition. We will say that the problem (P) is well-posed if the operator
A = div (µ−1∇·) is an isomorphism from H1

0(Ω) to H−1(Ω).
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Mathematical difficulty

Classical case µ > 0 everywhere:

a(u, u) =
∫

Ω
µ−1 |∇u|2 ≥ min(µ−1) ‖u‖2H1

0(Ω) coercivity

Lax-Milgram theorem ⇒ (P) well-posed.

VS.

The case µ changes sign:

a(u, u) =
∫

Ω
µ−1 |∇u|2 ≥ C ‖u‖2H1

0(Ω)
loss of coercivity

I When µ2 = −µ1, (P) is always ill-posed (Costabel-Stephan 85).
For a symmetric domain (w.r.t. Σ) we can build a kernel of
infinite dimension.
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Idea of the T-coercivity 1/2
Let T be an isomorphism of H1

0(Ω).

(P) ⇔ (PV ) Find u ∈ H1
0(Ω) such that:

a(u, v) = l(v), ∀v ∈ H1
0(Ω).

Goal: Find T such that a is T-coercive:
∫

Ω
µ−1∇u · ∇(Tu) ≥ C ‖u‖2

H1
0(Ω).

In this case, Lax-Milgram ⇒ (PT
V ) (and so (PV )) is well-posed.

1 Define
R1 transfer/extension operator

ΣΩ1 Ω2

R1

R1u1 = u1 on Σ
R1u1 = 0 on ∂Ω2 \ Σ

On Σ, we have −u2 + 2R1u1 = −u2 + 2u1 = u1 ⇒ T1u ∈ H1
0(Ω).

2 T1 ◦ T1 = Id so T1 is an isomorphism of H1
0(Ω)
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Idea of the T-coercivity 2/2

3 One has a(u, T1u) =
∫

Ω
|µ|−1|∇u|2 − 2

∫
Ω2

µ−1
2 ∇u · ∇(R1 u1)

Young’s inequality ⇒ a is T-coercive when |µ2| > ‖R1‖2 µ1.

4 Working with T2u = u1 − 2R2u2 in Ω1
−u2 in Ω2

, where R2 : Ω2 → Ω1, one

proves that a is T-coercive when µ1 > ‖R2‖2 |µ2|.

5 Conclusion:

Theorem. If the contrast κµ = µ2/µ1 /∈ [−‖R1‖2;−1/‖R2‖2], then the
operator div (µ−1∇·) is an isomorphism from H1

0(Ω) to H−1(Ω).

[−‖R1‖2;−1/‖R2‖2]

The interval depends on the
norms of the transfer operators
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Choice of R1,R2?
I A simple case: symmetric domain

Ω1

Ω2

Σ

R1 = R2 = SΣ
so that ‖R1‖ = ‖R2‖ = 1

(P) well-posed ⇔ κµ 6= −1

I Interface with a 2D corner

I By localization techniques, we prove

Proposition. (P) is well-posed in the Fredholm sense for a curvilinear
polygonal interface iff κµ /∈ [−Rσ;−1/Rσ] where σ is the smallest angle.

⇒When Σ is smooth, (P) is well-posed in the Fredholm sense iff κµ 6= −1.

σ
Ω2

Ω1

Σ

11 / 32



Choice of R1,R2?
I A simple case: symmetric domain

Ω1

Ω2

Σ
R1 = R2 = SΣ

so that ‖R1‖ = ‖R2‖ = 1
(P) well-posed ⇔ κµ 6= −1

I Interface with a 2D corner

I By localization techniques, we prove

Proposition. (P) is well-posed in the Fredholm sense for a curvilinear
polygonal interface iff κµ /∈ [−Rσ;−1/Rσ] where σ is the smallest angle.

⇒When Σ is smooth, (P) is well-posed in the Fredholm sense iff κµ 6= −1.

σ
Ω2

Ω1

Σ

11 / 32



Choice of R1,R2?
I A simple case: symmetric domain

Ω1

Ω2

Σ
R1 = R2 = SΣ

so that ‖R1‖ = ‖R2‖ = 1
(P) well-posed ⇔ κµ 6= −1

I Interface with a 2D corner

Ω1

Ω2

σ

O

Σ

I By localization techniques, we prove

Proposition. (P) is well-posed in the Fredholm sense for a curvilinear
polygonal interface iff κµ /∈ [−Rσ;−1/Rσ] where σ is the smallest angle.

⇒When Σ is smooth, (P) is well-posed in the Fredholm sense iff κµ 6= −1.

σ
Ω2

Ω1

Σ

11 / 32



Choice of R1,R2?
I A simple case: symmetric domain

Ω1

Ω2

Σ
R1 = R2 = SΣ

so that ‖R1‖ = ‖R2‖ = 1
(P) well-posed ⇔ κµ 6= −1

I Interface with a 2D corner

Ω1

Ω2

σ

O

Σ Action of R1:

symmetry

+ dilatation

w.r.t θ
Action of R2: symmetry + dilatation w.r.t θ

‖R1‖2

= ‖R2‖2

= Rσ := (2π − σ)/σ
(P) well-posed κµ /∈ [−Rσ;−1/Rσ]

I By localization techniques, we prove

Proposition. (P) is well-posed in the Fredholm sense for a curvilinear
polygonal interface iff κµ /∈ [−Rσ;−1/Rσ] where σ is the smallest angle.

⇒When Σ is smooth, (P) is well-posed in the Fredholm sense iff κµ 6= −1.

σ
Ω2

Ω1

Σ

11 / 32



Choice of R1,R2?
I A simple case: symmetric domain

Ω1

Ω2

Σ
R1 = R2 = SΣ

so that ‖R1‖ = ‖R2‖ = 1
(P) well-posed ⇔ κµ 6= −1

I Interface with a 2D corner

Ω1

Ω2

Σ Action of R1:

symmetry

+ dilatation

w.r.t θ
Action of R2: symmetry + dilatation w.r.t θ

‖R1‖2

= ‖R2‖2

= Rσ := (2π − σ)/σ
(P) well-posed κµ /∈ [−Rσ;−1/Rσ]

I By localization techniques, we prove

Proposition. (P) is well-posed in the Fredholm sense for a curvilinear
polygonal interface iff κµ /∈ [−Rσ;−1/Rσ] where σ is the smallest angle.

⇒When Σ is smooth, (P) is well-posed in the Fredholm sense iff κµ 6= −1.

σ
Ω2

Ω1

Σ

11 / 32



Choice of R1,R2?
I A simple case: symmetric domain

Ω1

Ω2

Σ
R1 = R2 = SΣ

so that ‖R1‖ = ‖R2‖ = 1
(P) well-posed ⇔ κµ 6= −1

I Interface with a 2D corner

Ω1

Ω2

Σ Action of R1: symmetry

+ dilatation

w.r.t θ

Action of R2: symmetry + dilatation w.r.t θ
‖R1‖2

= ‖R2‖2

= Rσ := (2π − σ)/σ
(P) well-posed κµ /∈ [−Rσ;−1/Rσ]

I By localization techniques, we prove

Proposition. (P) is well-posed in the Fredholm sense for a curvilinear
polygonal interface iff κµ /∈ [−Rσ;−1/Rσ] where σ is the smallest angle.

⇒When Σ is smooth, (P) is well-posed in the Fredholm sense iff κµ 6= −1.

σ
Ω2

Ω1

Σ

11 / 32



Choice of R1,R2?
I A simple case: symmetric domain

Ω1

Ω2

Σ
R1 = R2 = SΣ

so that ‖R1‖ = ‖R2‖ = 1
(P) well-posed ⇔ κµ 6= −1

I Interface with a 2D corner

Ω1

Ω2

Σ Action of R1: symmetry + dilatation w.r.t θ

Action of R2: symmetry + dilatation w.r.t θ
‖R1‖2

= ‖R2‖2

= Rσ := (2π − σ)/σ
(P) well-posed κµ /∈ [−Rσ;−1/Rσ]

I By localization techniques, we prove

Proposition. (P) is well-posed in the Fredholm sense for a curvilinear
polygonal interface iff κµ /∈ [−Rσ;−1/Rσ] where σ is the smallest angle.

⇒When Σ is smooth, (P) is well-posed in the Fredholm sense iff κµ 6= −1.

σ
Ω2

Ω1

Σ

11 / 32



Choice of R1,R2?
I A simple case: symmetric domain

Ω1

Ω2

Σ
R1 = R2 = SΣ

so that ‖R1‖ = ‖R2‖ = 1
(P) well-posed ⇔ κµ 6= −1

I Interface with a 2D corner

Ω1

Ω2

σ

O

Σ Action of R1: symmetry + dilatation w.r.t θ

Action of R2: symmetry + dilatation w.r.t θ

‖R1‖2

= ‖R2‖2

= Rσ := (2π − σ)/σ

(P) well-posed κµ /∈ [−Rσ;−1/Rσ]

I By localization techniques, we prove

Proposition. (P) is well-posed in the Fredholm sense for a curvilinear
polygonal interface iff κµ /∈ [−Rσ;−1/Rσ] where σ is the smallest angle.

⇒When Σ is smooth, (P) is well-posed in the Fredholm sense iff κµ 6= −1.

σ
Ω2

Ω1

Σ

11 / 32



Choice of R1,R2?
I A simple case: symmetric domain

Ω1

Ω2

Σ
R1 = R2 = SΣ

so that ‖R1‖ = ‖R2‖ = 1
(P) well-posed ⇔ κµ 6= −1

I Interface with a 2D corner

Ω1

Ω2

σ

O

Σ Action of R1: symmetry + dilatation w.r.t θ
Action of R2: symmetry + dilatation w.r.t θ

‖R1‖2 = ‖R2‖2 = Rσ := (2π − σ)/σ

(P) well-posed κµ /∈ [−Rσ;−1/Rσ]

I By localization techniques, we prove

Proposition. (P) is well-posed in the Fredholm sense for a curvilinear
polygonal interface iff κµ /∈ [−Rσ;−1/Rσ] where σ is the smallest angle.

⇒When Σ is smooth, (P) is well-posed in the Fredholm sense iff κµ 6= −1.

σ
Ω2

Ω1

Σ

11 / 32



Choice of R1,R2?
I A simple case: symmetric domain

Ω1

Ω2

Σ
R1 = R2 = SΣ

so that ‖R1‖ = ‖R2‖ = 1
(P) well-posed ⇔ κµ 6= −1

I Interface with a 2D corner

Ω1

Ω2

σ

O

Σ Action of R1: symmetry + dilatation w.r.t θ
Action of R2: symmetry + dilatation w.r.t θ

‖R1‖2 = ‖R2‖2 = Rσ := (2π − σ)/σ
(P) well-posed ⇐ κµ /∈ [−Rσ;−1/Rσ]

I By localization techniques, we prove

Proposition. (P) is well-posed in the Fredholm sense for a curvilinear
polygonal interface iff κµ /∈ [−Rσ;−1/Rσ] where σ is the smallest angle.

⇒When Σ is smooth, (P) is well-posed in the Fredholm sense iff κµ 6= −1.

σ
Ω2

Ω1

Σ

11 / 32



Choice of R1,R2?
I A simple case: symmetric domain

Ω1

Ω2

Σ
R1 = R2 = SΣ

so that ‖R1‖ = ‖R2‖ = 1
(P) well-posed ⇔ κµ 6= −1

I Interface with a 2D corner

Ω1

Ω2

σ

O

Σ Action of R1: symmetry + dilatation w.r.t θ
Action of R2: symmetry + dilatation w.r.t θ

‖R1‖2 = ‖R2‖2 = Rσ := (2π − σ)/σ
(P) well-posed ⇔ κµ /∈ [−Rσ;−1/Rσ]

I By localization techniques, we prove

Proposition. (P) is well-posed in the Fredholm sense for a curvilinear
polygonal interface iff κµ /∈ [−Rσ;−1/Rσ] where σ is the smallest angle.

⇒When Σ is smooth, (P) is well-posed in the Fredholm sense iff κµ 6= −1.

σ
Ω2

Ω1

Σ

11 / 32



Choice of R1,R2?
I A simple case: symmetric domain

Ω1

Ω2

Σ
R1 = R2 = SΣ

so that ‖R1‖ = ‖R2‖ = 1
(P) well-posed ⇔ κµ 6= −1

I Interface with a 2D corner

Ω1

Ω2

σ

O

Σ Action of R1: symmetry + dilatation w.r.t θ
Action of R2: symmetry + dilatation w.r.t θ

‖R1‖2 = ‖R2‖2 = Rσ := (2π − σ)/σ
(P) well-posed ⇔ κµ /∈ [−Rσ;−1/Rσ]

I By localization techniques, we prove

Proposition. (P) is well-posed in the Fredholm sense for a curvilinear
polygonal interface iff κµ /∈ [−Rσ;−1/Rσ] where σ is the smallest angle.

⇒When Σ is smooth, (P) is well-posed in the Fredholm sense iff κµ 6= −1.

σ
Ω2

Ω1

Σ

11 / 32



Choice of R1,R2?
I A simple case: symmetric domain

Ω1

Ω2

Σ
R1 = R2 = SΣ

so that ‖R1‖ = ‖R2‖ = 1
(P) well-posed ⇔ κµ 6= −1

I Interface with a 2D corner

Ω1

Ω2

σ

O

Σ Action of R1: symmetry + dilatation w.r.t θ
Action of R2: symmetry + dilatation w.r.t θ

‖R1‖2 = ‖R2‖2 = Rσ := (2π − σ)/σ
(P) well-posed ⇔ κµ /∈ [−Rσ;−1/Rσ]

I By localization techniques, we prove

Proposition. (P) is well-posed in the Fredholm sense for a curvilinear
polygonal interface iff κµ /∈ [−Rσ;−1/Rσ] where σ is the smallest angle.

⇒When Σ is smooth, (P) is well-posed in the Fredholm sense iff κµ 6= −1.

σ
Ω2

Ω1

Σ

11 / 32



Extensions for the scalar case
I The T-coercivity approach can be used to deal with non constant µ1, µ2
and with the Neumann problem.

I 3D geometries can be handled in the same way.

I The T-coercivity technique
allows to justify convergence of
standard finite element method
for simple meshes (Bonnet-Ben
Dhia et al. 10, Nicaise,
Venel 11, Chesnel, Ciarlet 12).
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Digression: the result for Maxwell’s equations
Consider F ∈ L2(Ω) such that divF ∈ L2(Ω).

Theorem. Suppose

(ϕ,ϕ′) 7→
∫

Ω
ε∇ϕ · ∇ϕ′ is T-coercive on H1

0(Ω); (Aε)

(ϕ,ϕ′) 7→
∫

Ω
µ∇ϕ · ∇ϕ′ is T-coercive on H1(Ω)/R. (Aµ)

Then, the problem for the magnetic field

Find H ∈ H(curl ; Ω) such that:
curl (ε−1curl H )− ω2µH = F in Ω
ε−1curl H × n = 0 on ∂Ω
µH · n = 0 on ∂Ω.

is well-posed for all ω ∈ C\S where S is a discrete (or empty) set of C.

I This result (with the same assumptions) is also true for the problem for
the electric field.
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Transition: from variational methods to
Fourier/Mellin techniques

For the corner case, what happens when the contrast lies inside the
criticial interval, i.e. when κµ ∈ [−Rσ;−1/Rσ]???

Ω1

Ω2

σ

O

Σ

Idea: we will study precisely the regularity of the “solutions” using
the Kondratiev’s tools, i.e. the Fourier/Mellin transform (Dauge,
Texier 97, Nazarov, Plamenevsky 94).
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the Kondratiev’s tools, i.e. the Fourier/Mellin transform (Dauge,
Texier 97, Nazarov, Plamenevsky 94).
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1 The coerciveness issue for the scalar case

2 A new functional framework in the critical interval

3 A curious instability phenomenon

⇒ collaboration with X. Claeys (LJLL Paris VI).
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Problem considered in this section
I We recall the problem under consideration

(P) Find u ∈ H1
0(Ω) such that:

−div(µ−1∇u) = f in Ω.

I To simplify the presentation, we work on a particular configuration.

Σ

Ω1
µ1 > 0

Ω2
µ2 < 0O

I Using the variational method of the previous section, we prove the

Proposition. The problem (P) is well-posed as soon as the contrast κµ =
µ2/µ1 satisfies κµ /∈ [−3;−1].

What happens when κµ ∈ [−3;−1)?
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Analogy with a waveguide problem

(z, θ) = (− ln r , θ)

(r , θ) = (e−z , θ)

(<e λ = a, =m λ = b)

s∈ H1(Ω) <e λ > 0 m is evanescent
s/∈ H1(Ω) <e λ = 0 m is propagative

• Bounded sector Ω

Σ

π/4

Ω1 Ω2

O (r, θ)

• Equation:
−div(µ−1∇u)︸ ︷︷ ︸

−r−2(µ−1(r∂r )2+∂θµ−1∂θ)u

= f

• Singularities in the sector
s(r , θ) = rλϕ(θ)

s(r , θ) = ra (cos b ln r + i sin b ln r)ϕ(θ)

• Half-strip B

z

θ

B1

B2
Σ θ = π/4

• Equation:
−div(µ−1∇u)︸ ︷︷ ︸

−(µ−1∂2
z +∂θµ−1∂θ)u

= e−2z f

• Modes in the strip
m(z, θ) = e−λzϕ(θ)

m(z, θ) = e−az (cos bz − i sin bz)ϕ(θ)

I This encourages us to use modal decomposition in the half-strip.

r0

r 7→ <e rλ
1

−1

z0

z 7→ <e e−λz
1

−1

We compute the singularities s(r , θ) = rλϕ(θ) and we observe two cases:

I Outside the critical interval

λ1−λ1 λ2−λ2

1-1 2-2

1

-1

κµ = −4

H1not H1

r0

r 7→ rλ1

1

−1

I Inside the critical interval

λ1

−λ1

λ2−λ2

1-1 2-2

1

-1

κµ = −2

H1not H1

r0

r 7→ <e rλ1

1

−1 not H1

How to deal with the propagative singularities inside the critical interval?
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• Singularities in the sector
s(r , θ) = rλϕ(θ)
s(r , θ) = ra (cos b ln r + i sin b ln r)ϕ(θ)

• Half-strip B

z

θ

B1

B2
Σ θ = π/4

• Equation:
−div(µ−1∇u)︸ ︷︷ ︸

−(µ−1∂2
z +∂θµ−1∂θ)u

= e−2z f

• Modes in the strip
m(z, θ) = e−λzϕ(θ)
m(z, θ) = e−az (cos bz − i sin bz)ϕ(θ)

I This encourages us to use modal decomposition in the half-strip.

r0

r 7→ <e rλ
1

−1

z0

z 7→ <e e−λz
1

−1

We compute the singularities s(r , θ) = rλϕ(θ) and we observe two cases:

I Outside the critical interval

λ1−λ1 λ2−λ2

1-1 2-2

1

-1

κµ = −4

H1not H1

r0

r 7→ rλ1

1

−1

I Inside the critical interval

λ1

−λ1

λ2−λ2

1-1 2-2

1

-1

κµ = −2

H1not H1

r0

r 7→ <e rλ1

1

−1 not H1

How to deal with the propagative singularities inside the critical interval?
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Modal analysis in the waveguide

λ1−λ1 λ2−λ2

1-1 2-2

1

-1

κµ = −4
I Outside the critical interval . All the
modes are exponentially growing or decaying.
→ We look for an exponentially decaying
solution. H1 framework

λ1

−λ1

λ2−λ2

1-1 2-2

1

-1

κµ = −2
I Inside the critical interval . There are
exactly two propagative modes.
→ The decomposition on the outgoing modes
leads to look for a solution of the form

u = c1 ϕ1 eλ1 z︸ ︷︷ ︸
propagative part

+ ue.︸︷︷︸
evanescent part

non H1 framework

... but the modal decomposition is not easy to justify because two sign-
changing appear in the transverse problem: ∂θσ∂θϕ = −σλ2ϕ.
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The new functional framework

Consider 0 < β < 2, ζ a cut-off function (equal to 1 in +∞) and define

W−β = {v | eβzv ∈ H1
0(B)} space of exponentially decaying functions

W+ = span(ζϕ1 eλ1z)⊕W−β propagative part + evanescent part
Wβ = {v | e−βzv ∈ H1

0(B)} space of exponentially growing functions

Theorem. Let κµ ∈ (−3;−1) and 0 < β < 2. The operator A+ :
div(µ−1∇·) from W+ to W∗β is an isomorphism.

Ideas of the proof:
1 A−β : div(µ−1∇·) from W−β to W∗β is injective but not surjective.

2 Aβ : div(µ−1∇·) from Wβ to W∗−β is surjective but not injective.

3 The intermediate operator A+ : W+ →W∗β is injective (energy
integral) and surjective (residue theorem).

4 Limiting absorption principle to select the outgoing mode.

∩
∩
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How to approximate the solution?
I Let us try a usual Finite Element Method (P1 Lagrange Finite
Element). We solve the problem

Find uh ∈ Vh s.t.:∫
Ω
µ−1∇uh · ∇vh =

∫
Ω
fvh, ∀v ∈ Vh,

where Vh approximates H1
0(Ω) as h → 0 (h is the mesh size).

I We display uh as h → 0.

Contrast κµ = −1.001 ∈ (−3;−1).

The sequence (uh) does not converge as h → 0!!!
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Remark

I Outside the critical interval, the sequence (uh) converges.

(. . . ) (. . . )

Contrast κµ = −0.999 /∈ (−3;−1).
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A funny use of PMLs
I We use a PML (Perfectly Matched Layer) to bound the domain B

+ finite elements in the truncated strip

Contrast κµ = −1.001 ∈ (−3;−1).

PML

PM
L
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A black hole phenomenon
I The same phenomenon occurs for the Helmholtz equation.

(x, t) 7→ <e (u(x)e−iωt) for κµ = −1.3

(. . . ) (. . . )

I Analogous phenomena occur in cuspidal domains in the theory of
water-waves and in elasticity (Cardone, Nazarov, Taskinen).
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Summary of the results for the scalar problem

Σ

π
4

Ω1
µ1 > 0

Ω2
µ2 < 0

OO

−1−3

<e κµ

=m κµ

(P) Find u ∈ H1
0(Ω) s.t.:

−div (µ−1∇u) = f in Ω.

For κµ ∈ C\R−, (P) well-posed in
H1

0(Ω) (Lax-Milgram)

For κµ ∈ R∗−\[−3;−1], (P) well-posed
in H1

0(Ω) (T-coercivity)

For κµ ∈ (−3;−1), (P) is not well-
posed in the Fredholm sense in H1

0(Ω)
but well-posed in V+ (PMLs)

κµ = −1, (P) ill-posed in H1
0(Ω)

Prob
lem

Resu
lts
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1 The coerciveness issue for the scalar case

2 A new functional framework in the critical interval

3 A curious instability phenomenon

⇒ joint work with S.A. Nazarov (IPME RAS St Petersburg).
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Problem considered in this section
I We recall the problem under consideration

(P) Find u ∈ H1
0(Ω) such that:

−div(µ−1∇u) = f in Ω.

I When the interface has a corner, (P) is well-posed in
the Fredholm sense iff κµ /∈ Ic (the critical interval).

I When the interface is smooth, (P) is well-posed in the
Fredholm sense iff κµ 6= −1.

What happens for a slightly rounded corner when
κµ ∈ Ic \ {−1}?
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Numerical experiment 1/2

δ is the rounding
parameter

I For the numerical experiment, we round the corner in a particular way.

Σ

Ω1
µ1 > 0

Ω2
µ2 < 0O

I Our goal is to study the behaviour of the solution, if it is well-defined, of
the problem

(Pδ)
Find uδ ∈ H1

0(Ωδ) such that:
−div(µ−1

δ ∇uδ) = f in Ωδ.

I We approximate by a usual Finite Element Method (P1 Lagrange Finite
Element) this uδ, assuming it is well-defined. The solution of the discretized
problem is called uδ h.

We display the behaviour of uδ h as δ → 0.

27 / 32



Numerical experiment 1/2

δ is the rounding
parameter

I For the numerical experiment, we round the corner in a particular way.

Σ

I Our goal is to study the behaviour of the solution, if it is well-defined, of
the problem

(Pδ)
Find uδ ∈ H1

0(Ωδ) such that:
−div(µ−1

δ ∇uδ) = f in Ωδ.

I We approximate by a usual Finite Element Method (P1 Lagrange Finite
Element) this uδ, assuming it is well-defined. The solution of the discretized
problem is called uδ h.

We display the behaviour of uδ h as δ → 0.

27 / 32



Numerical experiment 1/2

δ is the rounding
parameter

I For the numerical experiment, we round the corner in a particular way.

Σ

O

I Our goal is to study the behaviour of the solution, if it is well-defined, of
the problem

(Pδ)
Find uδ ∈ H1

0(Ωδ) such that:
−div(µ−1

δ ∇uδ) = f in Ωδ.

I We approximate by a usual Finite Element Method (P1 Lagrange Finite
Element) this uδ, assuming it is well-defined. The solution of the discretized
problem is called uδ h.

We display the behaviour of uδ h as δ → 0.

27 / 32



Numerical experiment 1/2

δ is the rounding
parameter

I For the numerical experiment, we round the corner in a particular way.

Σδ
Ωδ 1
µ1 > 0

Ωδ 2
µ2 < 0

δ

Ωδ

I Our goal is to study the behaviour of the solution, if it is well-defined, of
the problem

(Pδ)
Find uδ ∈ H1

0(Ωδ) such that:
−div(µ−1

δ ∇uδ) = f in Ωδ.

I We approximate by a usual Finite Element Method (P1 Lagrange Finite
Element) this uδ, assuming it is well-defined. The solution of the discretized
problem is called uδ h.

We display the behaviour of uδ h as δ → 0.

27 / 32



Numerical experiment 1/2

δ is the rounding
parameter

I For the numerical experiment, we round the corner in a particular way.

Σδ
Ωδ 1
µ1 > 0

Ωδ 2
µ2 < 0

δ

Ωδ

I Our goal is to study the behaviour of the solution, if it is well-defined, of
the problem

(Pδ)
Find uδ ∈ H1

0(Ωδ) such that:
−div(µ−1

δ ∇uδ) = f in Ωδ.

I We approximate by a usual Finite Element Method (P1 Lagrange Finite
Element) this uδ, assuming it is well-defined. The solution of the discretized
problem is called uδ h.

We display the behaviour of uδ h as δ → 0.

27 / 32



Numerical experiment 1/2

δ is the rounding
parameter

I For the numerical experiment, we round the corner in a particular way.

Σδ
Ωδ 1
µ1 > 0

Ωδ 2
µ2 < 0

δ

Ωδ

I Our goal is to study the behaviour of the solution, if it is well-defined, of
the problem

(Pδ)
Find uδ ∈ H1

0(Ωδ) such that:
−div(µ−1

δ ∇uδ) = f in Ωδ.

I We approximate by a usual Finite Element Method (P1 Lagrange Finite
Element) this uδ, assuming it is well-defined. The solution of the discretized
problem is called uδ h.

We display the behaviour of uδ h as δ → 0.

27 / 32



Numerical experiment 1/2

δ is the rounding
parameter

I For the numerical experiment, we round the corner in a particular way.

Σδ
Ωδ 1
µ1 > 0

Ωδ 2
µ2 < 0

δ

Ωδ

I Our goal is to study the behaviour of the solution, if it is well-defined, of
the problem

(Pδ)
Find uδ ∈ H1

0(Ωδ) such that:
−div(µ−1

δ ∇uδ) = f in Ωδ.

I We approximate by a usual Finite Element Method (P1 Lagrange Finite
Element) this uδ, assuming it is well-defined. The solution of the discretized
problem is called uδ h. We display the behaviour of uδ h as δ → 0.
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A curious instability phenomenon

We proved that the problem (Pδ) critically depends on the value of the
rounding parameter δ.

Idea of the approach:
1 We proved that the solution uδ is uniquely defined for all δ ∈ (0; δ0] \S ,
where S is a discrete set which accumulates in zero.
2 We provided an asymptotic expansion of uδ, denoted ûδ with the error
estimate

‖uδ − ûδ‖H1
0(Ωδ) ≤ c δβ‖f ‖Ωδ

, ∀δ ∈ (0, δ0] \ S̃ ,

where β > 0 and where S̃ is a neighbourhood of S .
3 The behaviour of (ûδ)δ can be explicitly examined as δ → 0. The
sequence (ûδ)δ does not converge, even for the L2-norm!
4 Conclusion.

The sequence (uδ)δ does not converge, even for the L2-norm!

This leads us to question the physical model we are using. What do we lose
at the corner?
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Future directions

Scalar problem
♠ Computation of 3D singularities (conical tip,

edge, Fichera corner) for the scalar problem.
Are the interval obtained by geometrical methods optimal?

♠ Concerning the approximation of the solution, in practice, usual methods
converge. Only partial proofs are available.

♠ Our new model in the critical interval raises a lot of questions, related to the
physics of plasmonics and metamaterials.

Asymptotic analysis
♠ Asymptotic analysis for a rounded

corner, a thin layer, a small inclusion. Strange phenomena can occur...
♠ Study for a cusp between two kissing balls?

Maxwell’s equations inside the critical interval
♠ New functional framework for Maxwell’s equations taking into account the

propagative singularities.
♠ Approximation of the solution in the new functional framework. We need first

to justify an edge element method outside the critical interval...
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Thank you for your attention!!!
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