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Introduction: objective

Scattering by a negative material in electromagnetism in 3D in
time-harmonic regime (at a given frequency):
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Introduction: objective

Scattering by a negative material in electromagnetism in 3D in
practical realizations of metamaterials are

Zoom on a metamaterial:
achieved by a periodic assembly of small resonators
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Introduction: applications

» Surface Plasmons Polaritons that propagate at the interface between a
metal and a dielectric can help reducing the size of computer chips.

A =1,600 nm
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Introduction: applications

» Surface Plasmons Polaritons that propagate at the interface between a
metal and a dielectric can help reducing the size of computer chips.

|4.
A =1,600 nm

» The negative refraction at the interface metamaterial/dielectric could
allow the realization of perfect lenses (Pendry 00), photonic traps ...

Interfaces between negative materials and dielectrics occur in all (exciting)

applications...
3 /32



Introduction: in this talk

Problem set in a bounded domain  C R3:

e<0
©n<0

e>0
nw>0

» Unusual transmission problem because the sign of the coefficients £ and
w1 changes through the interface Y.
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Introduction: in this talk

Problem set in a bounded domain Q C R3:

e>0 Q <0
n>0 2 n<0

Metamaterial

» Unusual transmission problem because the sign of the coefficients £ and
w1 changes through the interface Y.

» Well-posedness is recovered by the presence of dissipation: Sme, u > 0.
But interesting phenomena occur for almost dissipationless materials.

The relevant question is then: what happens if dissipation is neglected ?

@ Does well-posedness still hold?
) @ What is the appropriate functional framework?
° @ What about the convergence of approximation methods?

4/ 32



Outline of the talk

@ The coerciveness issue for the scalar case
We develop a T-coercivity method based on geometrical transforma-

tions to study div(p='V:):Hj(2) - H () (improvement over
Bonnet-Ben Dhia et al. 10, Zwolf 08).
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We develop a T-coercivity method based on geometrical transforma-

tions to study div(p='V:):Hj(2) - H () (improvement over
Bonnet-Ben Dhia et al. 10, Zwolf 08).

© A new functional framework in the critical interval
We propose a new functional framework when div(p='V:):X — Y

is not Fredholm for X = H}(2) and Y = H=(Q) (extension of Dauge,
Texier 97, Ramdani 99).

© A curious instability phenomenon

We prove a curious instability phenomenon for a rounded corner when
the rounding parameter tends to zero.
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@ The coerciveness issue for the scalar case
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A scalar model problem

Problem for E, in 2D in case of an invariance with respect to z:

Find E, € H}(2) such that:
div(u ! VE,) + w*cE, = —f in Q.
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@ f is the source term in H1(Q) pa = ptla, <0
(constant)

Since H}(Q) cc L?(Q), we focus on the principal part.

Find u € H}(Q) s.t.:
div(p=t Vu) = —f in Q.

Find u € H{(Q) s.t.:

(2) PV o, ) = 1(0), Vo € HA(Q).
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A scalar model problem

Problem for E, in 2D in case of an invariance with respect to z:

Find E, € H}(Q) such that:

div(u ! VE,) + w*cE, = —f in Q.
Q
o HA(Q) = {v € L3(Q) | Vv € L2(Q); v]sq = 0} (m — tla, 07

pa = plo, <0
(constant)

@ f is the source term in H1 ()

Since H}(Q) cc L?(Q), we focus on the principal part.

Find u € H}(Q) s.t.:
div(p=t Vu) = —f in Q.

Find u € H{(Q) s.t.:

& [(Py) a(u,v) = I(v), Yv € HY(Q).

(2)

with a(u,v) z/u_l Vu-Vo and I(v) = (f,v)q.
o

DEFINITION. We will say that the problem (&?) is well-posed if the operator
A = div (p~1V") is an isomorphism from H}(2) to H=(9).
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Mathematical difficulty

o Classical case p > 0 everywhere:

a(u,u) = /Q/fl |Vu? > min(p 1) HU’H?{})(Q) coercivity

Lax-Milgram theorem = () well-posed.
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Mathematical difficulty
o Classical case p > 0 everywhere:
a(u, u) / p | Vaul? > min(p” )HuHH1 (@)  coercivity

Lax-Milgram theorem = () well-posed.

@ The case u changes sign:

a(u,u) = = C HUH%{(%(Q) loss of coercivity

» When po = —p1, (£) is always ill-posed (Costabel-Stephan 85).
For a symmetric domain (w.r.t. ¥) we can build a kernel of
infinite dimension.
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Idea of the T-coercivity 1/2

Let T be an isomorphism of H}(2).

Find u € H}(Q) such that:

(2) & (Pv) a(u, v) = I(v), Yo € H5(Q).
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Uy in Ql
—Uus + 2R1U1 in QQ ’

Ry tmnsfer/ extension operator continuous from €21 to Q9

- - Riup = w3 on X
Riyg =0 ond\X
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Idea of the T-coercivity 1/2

Let T be an isomorphism of H}(2).

Find u € H}(Q) such that:

(Z2) & (Pv) S (PV)| 44 ) = i(Tv), Yo € HA(Q).

Goal: Find T such that a is T-coercive: /
Q

In this case, Lax-Milgram = (27,) (and so (£y)) is well-posed.

V- V() > Cllulli o)

Uy in Ql
—Uus + 2R1U1 in QQ ’

Ry tmnsfer/ extension operator continuous from €21 to Q9

- - Riup = w3 on X
Riyg =0 ond\X

@® T,0T, =Idso Ty isan isomorphism of Hj(£2)

@ Define Tyu = with

9 /32



Idea of the T-coercivity 2/2

® One has a(u, Tyu) = / || Vul? — 2/ iyt V- V(R uy)
Q Qo
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Idea of the T-coercivity 2/2

® One has a(u,Tyu) = / || Vul? — 2/ iyt V- V(R uy)
Q Qo

Young’s inequality = @ is T-coercive when |ua| > || Ry || p1-

Uy — 2R2u2 in Ql

. where Ry : Q9 — 4, one
— g in QQ ) 2 2 15

O Working with Tou =

proves that a is T-coercive when pu; > || Ral|? |p2].

The interval depends on the

@ Conclusion:
norms of the transfer operators

THEOREM. If the contrast s, = ua/pu1 €| [—||R1l|*; —1/||Rz|/?] | then the
operator div (¢! V+) is an isomorphism froni Hg($2) €6 H = (t1]:
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Choice of R{,R5?
» A simple case: symmetric domain
so that |Ry]| = ||Rz2|| =1
“ (Z) well-posed < £, # —1
» Interface with a 2D corner
z Action of Ry: symmetry + dilatation w.r.t 6
— Action of Rs: symmetry + dilatation w.r.t 6

IR = [| Rol|* = R (27T —a)/o
(Z2) well-posed < K, ¢ [—Ro;—1/R,]

11 / 32



Choice of R{,R5?

» A simple case: symmetric domain

Ry = Ry = 5%

£ -1

» Interface with

z > tation w.r.t 6
~ 04 tation w.r.t 0

Im—o)/o
e’/T; *I/RW]
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Choice of R{,R5?

» A simple case: symmetric domain

Ry =Ry = S5

» Interface with

2 > tation w.r.t 6
—~ Q4 tation w.r.t 0

it —0)/

{5 —1/Ro]

» By localization techniques, we prove

PROPOSITION. (&2) is well-posed in the Fredholm sense for a curvilinear
polygonal interface iff k,, ¢ [—7R,; —1/R,] where o is the smallest angle.

=When ¥ is smooth, (£?) is well-posed in the Fredholm sense iff x, # —1.
11 / 32



Extensions for the scalar case

» The T-coercivity approach can be used to deal with non constant py, s
and with the Neumann problem.
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Extensions for the scalar case

» The T-coercivity approach can be used to deal with non constant py, s
and with the Neumann problem.

» 3D geometries can be handl

T
Y
T
v

» The T-coercivity technique
allows to justify convergence of
standard finite element method
for simple meshes (Bonnet-Ben
Dhia et al. 10, Nicaise,
Venel 11, Chesnel, Ciarlet 12

ed in the same way.

gy
&4
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Digression: the result for Maxwell’s equations

Consider F € L*(Q) such that div F € L*(Q).

THEOREM. Suppose
(p, ") — / eV - V' is T-coercive on H}(Q);
Q
(p, ") = / uV - V' is T-coercive on H(Q)/R.
Q

Then, the problem for the magnetic field

Find H € H(curl; Q) such that:

curl (e tcurl H) —w?yH =F inQ
elcurl H xn=0 on 9
uH-n=0 on 0f).

is well-posed for all w € C\.¥ where . is a discrete (or empty) set of C.
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THEOREM. Suppose
(p, ") — / eV - V' is T-coercive on H}(Q);
Q
(p, ") = / uV - V' is T-coercive on H(Q)/R.
Q

Then, the problem for the magnetic field

Find H € H(curl; Q) such that:

curl (e tcurl H) —w?yH =F inQ
elcurl H xn=0 on 9
uH-n=0 on 0f).

is well-posed for all w € C\.¥ where . is a discrete (or empty) set of C.

» This result (with the same assumptions) is also true for the problem for

the electric field. 13 / 32



Transition: from variational methods to
Fourier /Mellin techniques

For the corner case, what happens when the contrast lies inside the
® | criticial interval, i.e. when k,, € [-R,;—1/R,]?7?

N
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Transition: from variational methods to
Fourier /Mellin techniques

For the corner case, what happens when the contrast lies inside the
® | criticial interval, i.e. when k,, € [-R,;—1/R,]?7?

N

., | Idea: we will study precisely the regularity of the “solutions” using
{27 | the Kondratiev’s tools, i.e. the Fourier/Mellin transform (Dauge,
= Texier 97, Nazarov, Plamenevsky 94).
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© A new functional framework in the critical interval

= collaboration with X. Claeys (LJLL Paris VI).
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Problem considered in this section

» We recall the problem under consideration

(2) Find u € H}(Q2) such that:
—div(p=tVu)=f in Q.

» To simplify the presentation, we work on a particular configuration.
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» We recall the problem under consideration

Find u € H}(Q2) such that:

(Z) —div(p=tVu)=f in Q.

» To simplify the presentation, we work on a particular configuration.

» Using the variational method of the previous section, we prove the

PROPOSITION. The problem (&) is well-posed as soon as the contrast £, =
W/ satisfies k, & [—3; —1].

What happens when x, € [-3; —1)?
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Analogy with a waveguide problem

e Bounded sector €2

O (r,0)

e Equation:
—div(p~! Vu) =f
S —

—1 =2 (4= (r0,)2+ 001~ Do) u

17 / 32



Analogy with a waveguide problem

e Bounded sector €2

O (r,0)
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1

We compute the singularities s(r,0) = r*p() and we observe two cases:

» Outside the critical interval

n 7 M
Ky=—4 | 1 1
ERVRRESYE Az
R YRR PR TORRR ... ({000 (i T
9 -l 1 2 0

+-1
not H! § S -1

» Inside the critical interval

Ky = —2 1 A
A2 . A1 A2
@ o fooeeees o>
-2 -17/\1 . 2
not H! i H!

How to deal with the propagative singularities inside the critical interval?
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e Bounded sector 2 E o Half-strip B

(2,0) =(—1nr,0)

—"

(r,0) = (Ie_z,e)

e Singularities in the sector
s(r,0) = 1rp(0)
:><(cos blnr+ ésin blnr)p(d)

o Modes in the strip
m(z,0) = e p(0)
:><(cos bz — isin bz)p(0)

I
I
I
I
1
1
I
I
I
I
I
I
I
I
I
1
1
I
1S

(ReX =a, SmA=0b)
s€ HY(Q) ReA> 0 m is evanescent
s¢ HY(Q) ReX=0 m is propagative
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Analogy with a waveguide problem

e Bounded sector €2

/4 (Z,e) A
&f
0 (rn0) (r,0) = (Ie

e Equation:
—div(p~! Vu)
S —

—r=2 (1 (r0,)2+0e ™1 Op)u
e Singularities in the sector
s(r,0) = 1rp(0)
:><(cos blnr+ ésin blnr)p(d)

o Half-strip B

nr,0)
/ 0=m/4
_270) z
o Equation:
—div(p~'Vu) =e 2 f
—_————

—(p=19240p = 10p)u
o Modes in the strip
m(2,6) = e #(0)
% (cos bz — isin bz)p(0)

(ReX =a, S
s€ HY(Q) Re N
s¢ HY(Q) Re

A=1)
0 m is evanescent
=0 m is propagative

» This encourages us to use modal decomposition in the half-strip.
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Modal analysis in the waveguide

Ky, =—4 4
. L= » Outside the critical interval . All the
Ao =)\ 1 Ao modes are exponentially growing or decaying.
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2 A 1 2 — We look for an exponentially decaying

= solution.

18 / 32



Modal analysis in the waveguide

K, = —4 4
. 1= » Outside the critical interval . All the
—do =)\ 1 Ao modes are exponentially growing or decaying.
. @@ P
2 A 1 2 — We look for an exponentially decaying
-1 solution.
» Inside the critical interval . There are
Ky =—2 . i exactly two propagative modes.
o\
- /\ D ! A2
. ! + ! o>
2 -1 2
_)\] PY
]

18 / 32



Modal analysis in the waveguide

Ky, =—4 4
" L= » Outside the critical interval . All the
—X2 =)\ 1 Ao modes are exponentially growing or decaying.
o @0 o
2 A 1 2 — We look for an exponentially decaying
-1 solution.
» Inside the critical interval . There are
Ky = —2 . i exactly two propagative modes.
\ o)\ A\ — The decomposition on the outgoing modes
FOCT ; | poe leads to look for a solution of the form
-2 -1 1 2
—)\] (] u= C1 Y1 (SAl ? + Ue.
L1 ———
propagative part evanescent part
[non H! framework]

18 / 32



Modal analysis in the waveguide

— A
o =4 L= » Outside the critical interval . All the
Ao =)\ 1 Ao modes are exponentially growing or decaying.
-‘2 {1 v 1 ; - — We look for an exponentially decaying
=-1 solution.
» Inside the critical interval . There are
Ky =—2 . i exactly two propagative modes.
o o)\ Ao — The decomposition on the outgoing modes
. : ; | o.» | leads to look for a solution of the form
2 _1—)\1 ) 2 u= €11 M ? + Ug.
o propagative part evanescent part
[non H! framework]

A\

... but the modal decomposition is not easy to justify because two sign-

changing appear in the transverse problem: dgoOpp = —a 2.
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The new functional framework

Consider 0 < 8 < 2, ¢ a cut-off function (equal to 1 in +00) and define

W_ 5 ={v|e?v e H{(B)} space of exponentially decaying functions
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\A', 5 ={v| v e H{(B)} space of exponentially decaying functions

= span(Cp; eM?) @ W_5  propagative part 4 evanescent part

W = {v]e P e H}(B)} space of exponentially growing functions

THEOREM. Let k, € (—3;—1) and 0 < § < 2. The operator
div(p=1V-) from to W5 is an isomorphism.

IDEAS OF THE PROOF:
Q A ;5 :div(p~tV:) from W_5 to W3 is injective but not surjective.
Q A :div(p=tV:) from Wy to W* g 1s surjective but not injective.

@ The intermediate operator : — Wj is injective (energy
integral) and surjective (residue theorem).

© Limiting absorption principle to select the outgoing mode.
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How to approximate the solution?

» Let us try a usual Finite Element Method (P1 Lagrange Finite
Element). We solve the problem

Find uj, € Vy, s.t.:
/ p iV, - Vo, = / fon, Yv e Vy,
Q Q

where V}, approximates Hj(2) as b — 0 (h is the mesh size).
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How to approximate the solution?

» Let us try a usual Finite Element Method (P1 Lagrange Finit
Element). We solve the problem o o

» We display u, as h — 0.

Contrast x, = —1.001 € (-3;—1).
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Remark

» Outside the critical interval, the sequence (uy) converges.

Contrast x, = —0.999 ¢ (—3;—1).
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A funny use of PMLs

» We use a PML (Perfectly Matched Layer) to bound the domain B
+ finite elements in the truncated strip

IS.B079

10

0

-10

=20

-25.1087 -25.1087

Contrast £, = —1.001 € (—3; —1).J
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A black hole phenomenon

» The same phenomenon occurs for the Helmholtz equation.

(z,t) — Re (u(z)e” ™) for k, = —1.3

» Analogous phenomena occur in cuspidal domains in the theory of

water-waves and in elasticity (Cardone, Nazarov, Taskinen).
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Summary of the results for the scalar problem

e
?‘O‘O Find u € H)(Q) s.t.:
(2)
—div (p"'Vu) =f in Q.
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Summary of the results for the scalar problem

e
,@) ‘ Find u € H}(Q) s.t.:

—div(p™'Vu) =f in Q.

‘GFor Ky € C\R_, (Z) well-posed in

H§(Q) (Lax-Milgram)

Il For x, € R*\[-3;—1], (&) well-posed
in H{(Q) (T-coercivity)

[ For k, € (=3;-1), (£) is not well-
posed in the Fredholm sense in H§(9)

but well-posed in V' (PMLs)

@ k,=—1,(2) ill-posed in H§(Q)
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© A curious instability phenomenon

= joint work with S.A. Nazarov (IPME RAS St Petersburg).
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Problem considered in this section

» We recall the problem under consideration

(2) Find u € H}(Q2) such that:
—div(p=tVu)=f in Q.

» When the interface has a corner, (&) is well-posed in
the Fredholm sense iff x,, ¢ I. (the critical interval).
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Problem considered in this section

» We recall the problem under consideration

(2) Find u € H}(Q2) such that:
—div(p=tVu)=f in Q.

» When the interface has a corner, (&) is well-posed in
the Fredholm sense iff x,, ¢ I. (the critical interval).

> When the interface is smooth, (&) is well-posed in the
Fredholm sense iff x,, # —1.

What happens for a slightly rounded corner when
Ky € I\ {-1}7
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Numerical experiment 1/2

» For the numerical experiment, we round the corner in a particular way.
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Numerical experiment 1/2

» For the numerical experiment, we round the corner in a particular way.

0 is the rounding
parameter

J

» Our goal is to study the behaviour of the solution, if it is well-defined, of
the problem

Find us € H}(£25) such that:

(5) —div(u;'Vus) = f  in Q.

» We approximate by a usual Finite Element Method (P1 Lagrange Finite
Element) this us, assuming it is well-defined. The solution of the discretized
problem is called us . (We display the behaviour of s as 6 — 0.
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Numerical experiment 2/2

Ku = —0.9999 (outside the critical interval)
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Numerical experiment 2/2

Ku = —0.9999 (outside the critical interval)
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A curious instability phenomenon

We proved that the problem (£2s) critically depends on the value of the
rounding parameter 6.
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A curious instability phenomenon

We proved that the problem (&Z5) critically depends on the value of the
rounding parameter 9.

IDEA OF THE APPROACH:
@ We proved that the solution us is uniquely defined for all § € (0; o] \ -7,
where . is a discrete set which accumulates in zero.

@® We provided an asymptotic expansion of u;, denoted 5 with the error
estimate

lus = sy, < ¢08llfllass Vo € (0,00]\ S,
where 8 > 0 and where .7 is a neighbourhood of ..

@ The behaviour of (i5)s can be explicitly examined as § — 0. The
sequence (5)s does not converge, even for the L?-norm!

@ Conclusion.

(The sequence (ugs)s does not converge, even for the L2—norm!)

This leads us to question the physical model we are using. What do we lose
at the corner? 29 / 32



@ The coerciveness issue for the scalar case

© A new functional framework in the critical interval

© A curious instability phenomenon
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»? ? Future directions

?

°~J

Scalar problem

& Computation of 3D singularities (conical tip,
edge, Fichera corner) for the scalar problem.

Are the interval obtained by geometrical methods optimal?

& Concerning the approximation of the solution, in practice, usual methods

converge. Only partial proofs are available.

& Our new model in the critical interval raises a lot of questions, related to the

physics of plasmonics and metamaterials.
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edge, Fichera corner) for the scalar problem.
Are the interval obtained by geometrical methods optimal?

& Concerning the approximation of the solution, in practice, usual methods
converge. Only partial proofs are available.

& Our new model in the critical interval raises a lot of questions, related to the
physics of plasmonics and metamaterials.

‘Asymptotic analysis
& Asymptotic analysis for a rounded

corner, a thin layer, a small inclusion. Strange phenomena can occur...

& Study for a cusp between two kissing balls?

‘Maxwell’s equations inside the critical interval‘

& New functional framework for Maxwell’s equations taking into account the
propagative singularities.

& Approximation of the solution in the new functional framework. We need first
to justify an edge element method outside the critical interval...
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Thank you for your attention!!!
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