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General setting

» We are interested in methods based on the propagation of waves to
determine the shape, the physical properties of objects, in an exact or
qualitative manner, from given measurements.

» GENERAL PRINCIPLE OF THE METHODS:
i) send waves in the medium;
ii) measure the scattered field;
iii) deduce information on the structure.
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e Many techniques: Xray, ultrasound imaging, seismic tomography, ...

e Many applications: biomedical imaging, non destructive testing of

materials, geophysics, ...
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Goal of the talk

» The goal of imaging techniques is to find features of the structure from
the knowledge of measurements.

» In this talk, we are interested in questions of invisibility when one has a
finite number of measurements |
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@ Scattering in free space

@ Scattering in waveguides



Goal of the talk

» The goal of imaging techniques is to find features of the structure from
the knowledge of measurements.

» In this talk, we are interested in questions of invisibility when one has a
finite number of measurements |

- Less ambitious than usual cloaking and therefore, more accessible.

» At least two reasons to study invisibility questions:

- Also relevant for applications.

» We will consider two types of problems:

@ Scattering in free space

ol

- It allows to understand limits of imaging techniques.

@ Scattering in waveguides

- We can wish to hide objects.
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Outline of the talk

e Invisibility in free space
@ The general scheme

@ The forbidden case

@ Numerical experiments

© Invisibility for waveguide problems
@ Construction of invisible penetrable defects
@ Can one hide a small Dirichlet obstacle?

@ Can one hide a perturbation of the wall?
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@ Iuvisibility in free space

@ The general scheme
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Model problem

» Scattering in time-harmonic regime of an incident plane wave by a
bounded penetrable (coefficients p) in R2.

Find u such that
—Au = Ek?pu in R?,
u = uit+us inR? (1)

. Oous . _
TEIJPOO NG < o zkzus> =0.

6 /39



Model problem
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Model problem

» Scattering in time-harmonic regime of an incident plane wave by a

bounded penetrable (coefficients p) in R2.

\\l u; := eFOne® (incident dir. Oy, € S')

N

Find u such that
—Au = Ek?pu in R?,
U u +us in R2,

lim /r <3“S - zku) — 0.

r—+o00 or

DEFINITION:

u; = incident field (data)
u = total field (uniquely defined by (1))
ug = scattered field (uniquely defined by (1)).
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Far field pattern

Re u;
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Far field pattern

Re uy Reu
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» The scattered field of an incident plane wave of direction 6;,. behaves in
each direction like a cylindrical wave at infinity:

(

ezkr

us (2, Oinc) = 7 (

ugo(escay ainc) + 0(1/7‘) ) .
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» The scattered field of an incident plane wave of direction 6;,. behaves in
each direction like a cylindrical wave at infinity:

ikr

s(Binc) = 7 (2 (Buca, Oine) +0(1/7) ).

DEFINITION: The map : S xSt — C is called the far field pattern.

7 /39



Far field pattern

Re uy Reu

e

» The scattered field of an incident plane wave of direction 6;,. behaves in
each direction like a cylindrical wave at infinity:

S =

ikr

s(Binc) = 7 (2 (Buca, Oine) +0(1/7) ).

DEFINITION: The map : S xSt — C is called the far field pattern.

At infinity, one measures the far field pattern (other terms are too small). ‘
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Setting
» The goal of imaging techniques is to find features of the inclusion from
the knowledge of u2°(-,-) on a subset of S' x St.

— In literature, most of the techniques require a continuum of data.

(Nachma_n, 1988, Sylvester & Uhlmann, 1987, Bukhgeim, 2008, Imanuvilov &
Yamamoto, 2012)

— In practice, one has a finite number of emitters and receivers.
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Setting

» To simplify the presentation, only one incident direction 6;,. and N
scattering directions 01, ...,0y (given).

Binc
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e <
A
0, 05

—  We measure u$°(01),...,u*(On).
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Setting

» To simplify the presentation, only one incident direction 6;,. and N
scattering directions 01, ...,0y (given).

v <
A

0, 0>

0, 05

ay

We explain how to construct inclusions such that

W (0) = = U (ON) =0

» These inclusions cannot be detected from far field measurements.

» We assume that & and the support of the inclusion D are given.
8 /39



Setting

Find a real valued function p # 1, with p — 1 supported in D, such
that the solution to the problem

Find u = ug + e**9ne® guch that
—Au = k?pu in RZ
ug is outgoing

satisfies u2°(01) = - - = ul°(On) = 0.
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Sketch of the method

» We will work as in the proof of the implicit functions theorem.

The idea was used in Nazarov 11 to construct waveguides for which
there are embedded eigenvalues in the continuous spectrum.
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(N complex measurements = 2N real measurements)
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Sketch of the method

» Define 0 = p — 1 and gather the measurements in the vector
F(o) = (Fi(0),...,Fan(0))" € R*N,

» No obstacle leads to null measurements = F(0) = 0.
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Sketch of the method

» Define 0 = p — 1 and gather the measurements in the vector
F(o) = (Fi(0),...,Fan(0))T € R*Y,
Our goal: to find o € L*°(D) such that F'(o) = 0 (with o # 0).
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Sketch of the method

» Define 0 = p — 1 and gather the measurements in the vector
F(o) = (Fi(0),...,Fan(0))T € R*Y,
Our goal: to find o € L*°(D) such that F'(o) = 0 (with o # 0).

» We look for small perturbations of the reference medium: o = ¢/ where
€ > 0 is a small parameter and where p has be to determined.
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Sketch of the method
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> Taylor: F(ep) = F(0) + edF(0)(p) + 2 F¢(u)
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Sketch of the method

» Define 0 = p — 1 and gather the measurements in the vector
F(o) = (Fi(0),...,Fan(0))T € R*Y,
Our goal: to find o € L*°(D) such that F'(o) = 0 (with o # 0).

> Taylor: F(ep) = edF(0)(u) + e2F=(p).

Assume that dF(0) : L>°(D) — R*V is onto. ‘

oo(py ot | A (O0)(po) =0

Juo, pa, - - -, oy € L®(D) s.t. dEO) (1), .. AF(0) (o] = Idon.
2N

» Take = uo+ Z Tnltn, Where the 7, are real parameters to set:

n=1

0= F(en) = O—EZ’TndF V(i) + €2F¢ (1)
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If G¢ is a contraction, the fixed-point equation has a unique solution 7.

9/ 39



Sketch of the method

» Define 0 = p — 1 and gather the measurements in the vector
F(o) = (Fi(0),...,Fan(0))T € R*Y,
Our goal: to find o € L*°(D) such that F'(o) = 0 (with o # 0).

> Taylor: F(ep) = edF(0)(u) + e2F=(p).

Assume that dF(0) : L>°(D) — R*V is onto. ‘

(D) s, | PO () =0
oty €LP) S| {ap (o)) PO o] = o

2N
» Take = uo+ Z Tnltn, Where the 7, are real parameters to set:
n=1
0= Fep) =3 7= G(7)
where 7 = (71,...,7on) | and G&(7) = —eF* ().

If G¢ is a contraction, the fixed-point equation has a unique solution 7.

Set 0%°! := eu*°l. We have F(0°') = 0 (invisible inclusion).
9739



Calculus of dF(0) 1/2

» For our problem, we have (¢ = p—1)

F(o) = (Reu®(01),..., Reu®(On), Smu(01),..., Smu(0y)).
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» We denote u®, uf the functions satisfying

Find u® = uf + e*%ne® with uS outgoing, such that

—Auf = k%2pfuf in R
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To compute dF(0)(u), we take p° = 1+ eu with y supported in D.

» We denote u®, uf the functions satisfying
Find u® = uf + e*%ne® with uS outgoing, such that
—Auf = k%2pfuf in R

» We obtain the expansion (Born approx.), for small e

us>®(8,) =0+eck? / peFBme=0n)@ o 1 O(2).
D
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Calculus of dF(0) 1/2

» For our problem, we have (¢ = p—1)

ug®(61) ur(On) o u(61) o u(On)
Ck’2 ,...,%e CI{;2 ,sm Ckz ,...,me).

F(o) = (Re
To compute dF(0)(u), we take p° = 1+ eu with p supported in D.

» We denote u®, uf the functions satisfying

Find u® = uf + e*%ne® with uS outgoing, such that
—Auf = k%2pfuf in R

» We obtain the expansion (Born approx.), for small e

us>®(8,) =0+eck? / peFBme=0n)@ gor | 1 O(2).
D

S

dF(0)(n) = (/D,u cos(k(Oinc — 01)-x) dzx, . . ., ./D/JJ cos(k(Oinc — On)-x) dz,

/D;Lsin(k(ﬂinc _0,))-x)de, ..., /usin(k(@inc —On)-x) dcc)

D
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Calculus of dF(0) 2/2

= (/Mcos Oine — 01)-x)dzx, . .., /ucos(k(ﬂinc —0n)-x)de,
D

/usm Oinc — 01) -x)dz, ..., /usin(k(@inc —0n)-x) dw)
D
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Calculus of dF(0) 2/2

dF(0)(1) = (/,ucos(k(@im —0))-2)du, ... /ﬂcos(k(einc —Oy)-x)da,

/usin(k inc —01)-x)dx, .. /psm Oinc — ON)-x) dw)
D

Is dF(0) : L°(D) — R?N onto ?

» Clearly, we need to avoid the configuration 6;,. — 8,, = 0.

7] inc 077, = Oinc
e S o
Emitter Receiver
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Calculus of dF(0) 2/2

dF(0)(1) = (/,ucos(k:(@mc —0))-2)du, ... /ﬂcos(k(einc —Oy)-x)da,

/usm (Oinc — 61)-x) de, . . /psm mC—ON)-w)dw)

Is dF(0) : L°(D) — R?N onto ?

» Clearly, we need to avoid the configuration 6;,. — 8,, = 0.

7] inc 077, = ginc
e S o
Emitter Receiver

» And one can prove that if 8, # 0i,c, n=1,..., N, the answer is yes.
11 / 39



Main result

enough, define p*°' = 1 + 4! with

2N
1 1
po = o+ Y .
n=1

Then the solution of the scattering problem
Find uf = uf + ¢**%ne'® guch that
—Au = Kk%p*'u inR?

ug is outgoing

satisfies uZ®(01) = - - = ul°(On) = 0.

PROPOSITION: Assume that 6, # 6y, for n = 1,...,N. For &£ small

COMMENTS:
— We need € to be small enough to prove that G° is a contraction.

— We have ;°°' # 0 (non trivial inclusion). To see it, compute dF(0)(u

sol).

12 / 39



Main result

PROPOSITION: Assume that 6, # 6y, for n = 1,...,N. For &£ small
enough, define p*°! = 1 4 eu*°! with

2N
1 1
po = o+ Y .
n=1

Then the solution of the scattering problem
Find uf = uf + ¢**%ne'® guch that
—Au = Kk%p*'u inR?

ug is outgoing

satisfies uZ®(01) = - - = ul°(On) = 0.

COMMENTS:
— We need € to be small enough to prove that G° is a contraction.

— We have ;°°! # 0 (non trivial inclusion). To see it, compute dF(0)(u5).

— We have 7°°! = Oe) = p ol &~ 119. We control the main form of the defect.
12 / 39



Main result

Existence of invisible inclusions may appear not so surprising since there are
2N measurements and p € L>=°(D).
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@ Iuvisibility in free space

@ The forbidden case
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The case 6;,. = 0,

» In the previous approach, we needed to assume 6,, # Oy, n=1,...

What if 0,, = 0,7

ainc 071 = einc
T O TN
Emitter Receiver
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Rellich’s lemma = us = 0 in R? \ D. An incident plane wave which
produces a scattered field null outside the defect... Is it possible?
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The case 6;,. = 0,

» In the previous approach, we needed to assume 6,, # @i, n =1,..., N.
What if 0,, = 6;,.7

» There holds

uS® (Oine) = ckQ/ (p—1) (u; + us) T; dex.
D

e No solution if D has corners and under certain assumptions on p.

- Corners always scatter, E. Blasten, L. Paivarinta, J. Sylvester, 2014

- Corners and edges always scatter, J. Elschner, G. Hu, 2015

e And if D is smooth? = The problem seems open.

|z| Imposing invisibility in the direction 0;,. requires to impose invisi-
bility in all directions 6 € S™ (not only for small but for all defects)

Rellich’s lemma = us = 0 in R? \ D. An incident plane wave which
produces a scattered field null outside the defect... Is it possible?
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@ Iuvisibility in free space

@ Numerical experiments
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Data and algorithm

» We can solve the fixed point problem using an iterative procedure: we
set 70 = (0,...,0)T then define

7l = GE(77).
» At each step, we solve a scattering problem. We use a P2 finite element
method set on the ball Bg. On 0Bg, a truncated Dirichlet-to-Neumann map

with 13 harmonics serves as a transparent boundary condition.

» For the numerical experiments, we take D = By, M = 3 (3 directions of
observation) and

Oinc = (cos(Yinc), sin(Yinc)), Yine = 0°

01 = (cos(¢1), sin(¥y1)), Y1 = 90°

92 = (cos(t2), sin(¢2)), o = 180°
= (cos(3), sin(1)3)), 3 = 225°
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Results: coefficient p at the end of the process

.374836
1.3

— —— Il'2

0.915801

.374836

0.915801
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Results: scattered field

0.781012

0.1
0.01
0.001
0.0001

5.479e-5

Figure: |us| at the end of the fixed point procedure in logarithmic scale. As
desired, we see it is very small far from D in the directions corresponding to
the angles 90°, 180° and 225°. The domain is equal to Bs.
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Results: far field pattern

0.7

0.6

0.5

0.4

0.3

0.2

0.1

— — — Far field pattern at iteration 0
Far field pattern at the end of the fixed point procedure P

!
0 50 100 150 200 250 300 350

Figure: The dotted lines show the directions where we want ©2° to vanish.
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© Iuvisibility for waveguide problems

@ Construction of invisible penetrable defects
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Waveguide problem

» Scattering in time-harmonic regime of an incident plane wave by a
bounded penetrable inclusion D (coefficients p) in Q := {(x,y) € R x (0;1)}.

Find v = u; + ug s. t.
~Au = k?pu inQ,
Opu = 0 on 0f,
ug is outgoing.
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Waveguide problem

» Scattering in time-harmonic regime of an incident plane wave by a
bounded penetrable inclusion D (coefficients p) in Q := {(x,y) € R x (0;1)}.

Find v = u; + ug s. t.
~Au = k?pu inQ,
Opu = 0 on 0f,
ug is outgoing.

— +

» For ke (0;m),

only 2 propagative modes w* = e*%#® | Set u; = wt.

> u, is outgoing & | us = xtstwt +xTsTwT + g,

with s* € C, 45 exponentially decaying at +oo.
(X:t are smooth cut-off functions s.t. x* =1 for £z > 20, x* =0 for +a < £)

21 / 39



Waveguide problem

» Scattering in time-harmonic regime of an incident plane wave by a
bounded penetrable inclusion D (coefficients p) in Q := {(x,y) € R x (0;1)}.

Find v = u; + ug s. t.
~Au = k?pu inQ,
Opu = 0 on 0f,
ug is outgoing.

» For ke (0;m),

only 2 propagative modes w* = e*%#® | Set u; = wt.

> u, is outgoing & | us = xtstwt +xTsTwT + g,

with s* € C, 45 exponentially decaying at +oo.

21 / 39



Waveguide problem

» Scattering in time-harmonic regime of an incident plane wave by a
bounded penetrable inclusion D (coefficients p) in Q := {(x,y) € R x (0;1)}.

Find v = u; + ug s. t.
~Au = k?pu inQ,
Opu = 0 on 0f,
ug is outgoing.

» For ke (0;m),

only 2 propagative modes w* = e*%#® | Set u; = wt.

> u, is outgoing & | us = xtstwt +xTsTwT + g,

with s* € C, 45 exponentially decaying at +oo.

» Conservation of energy implies [s~|> + |1 + sT|? = 1.
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Invisibility for waveguides

> 1, is outgoing means that there are some s* € C such that

us = xTsTwt + x"sTwT + G,

where @ is exponentially decaying at +oo.

At infinity, one measures the reflection coefficient s~ and/or the transmission

coefficient 1 + s (other terms are too small).
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Invisibility for waveguides

> 1, is outgoing means that there are some s* € C such that

us = xTsTwt + x"sTwT + G,

where @ is exponentially decaying at +oo.

At infinity, one measures the reflection coefficient s~ and/or the transmission
coefficient 1 + s (other terms are too small).

DEFINITION: Inclusion is said | non reflective if s= =

perfectly invisible if sT = 0.

» Due to conservation of energy |[s7|% + |1+ sT]2 =1,

st=0 = s =0 ‘ (and ug is expo. decay. at +00).

The converse is wrong (s~ = 0 # sT = 0).

22 / 39



Penetrable inclusion

s~ st st

> Set F(o) = (R T3 ST

S
€k

Again, we wish to find o # 0 such that F'(o) = 0.
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Penetrable inclusion

s~ st st

%mi]?,% Sm—) witho=p—1.

> Set F(o) = (R e 7

S
€k

dF(0)(y) = (/D,ucos(%m) dx | /Dusin(ka) daz,/Dudm, o)

Is dF(0) : L>°(D) — R* onto 2

23 / 39



Penetrable inclusion

s~ st st

%mi]?,% Sm—) witho=p—1.

> Set F(o) = (R e 7

S
€k

dF(0)(y) = (/D,ucos(%m) dx | /Dusin(ka) daz,/Dudm, o)

Is dF(0) : L*(D) - R4 onto #  » No!

23 / 39



Penetrable inclusion

s~ st st

%mi]?,% Sm—) witho=p—1.

> Set F(o) = (R e 7

S
€k

dF(0)(y) = ( /D 11 cos(2kz) dee /D ysin(2kz) de /D pde, o)

Is dF(0) : L*°(D) — R* onto ? » No! But we can get s= =0.

23 / 39



Penetrable inclusion

s~ st st

%mi]?,% Sm—) witho=p—1.

> Set F(o) = (R e 7

S
€k

dF(0)(y) = ( /D 11 cos(2kz) dee /D ysin(2kz) de /D pde, o)

Is dF(0) : L*°(D) — R* onto ? » No! But we can get s= =0.

Can we have sT =0 or

o

. Free space
Waveguide

Ui S+:0 Oinc goainc 0

23 / 39



Penetrable inclusion

s~ st st

Cx _ Cx 0
Im ik2’% Sm

» Set F(o) = (R e ik2)

S

dF(0)(y) = ( /D 11 cos(2kz) dee /D ysin(2kz) de /D pde, o)

Is dF(0) : L*°(D) — R* onto ? » No! But we can get s= =0.

Can we have sT =0 or

Ui 5+:0 einc go ainc =0

—+H—> .

. Free space
Waveguide

lsTP+]1+st? =1

=
s*zO(e) = sT=0.

~0O)~ s =0
9\ Impose Smst =0 Then,
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Penetrable inclusion

With this approach, we produce small contrast invisible perturbations of
the reference medium.
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Penetrable inclusion

With this approach, we produce small contrast invisible perturbations of
the reference medium.

Can we increase the perturbation to obtain larger defects ?
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Can we increase the perturbation?

» Schematic view of what we did (F : R> — R is the measurements map):

F(o) =0
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Can we increase the perturbation?

» Schematic view of what we did (F : R> — R is the measurements map):

F(o) =0

7

Ve
F(epd)
i ]

// F(E/.LSOI)
7
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Can we increase the perturbation?

» Schematic view of the process to construct larger invisible defects:

F(o) =0

Can we reiterate the process ?
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Numerical results to impose s =0

» Weset k=0.8nand D = (—n/k;n/k) x (1/4;3/4).
» Wereplace “Find o € L*°(D) such that F'(o) = Og=”
by  “Find o € span(po, 1, pt2) such that F(o) = Og2".
‘ 4
“3.00
.;2.00
E].OU
0
‘ 4
“3.00
éz.oo
E].OU
0
‘ 4

~3.00

2200
o0
0
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Numerical results to impose s =0

» After 250 steps of iterations, we obtain

4.57

s
c=p—1 r.zs

0
0.605

 §
Z0.3m
- [ -

-0.302

-0.604

0.446

 §
“0227

-0.227

-0.462
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Numerical results to impose s =0

» Each * on the curves represents one o € span(uo, i1, fi2) s.t. F(o) = Oge.

AXIS NON EQUAL AXIS EQUAL

07

W, Ho
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Numerical results to impose s~ = 0

Depending on the directions, we may have

F(a)=0

— First results are encouraging. Still some questions: with more elements in
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Numerical results to impose s =0

» Each * on the curves represents one o € span(uo, i1, fi2) s.t. F(o) = Oge.

AXIS NON EQUAL AXIS EQUAL

07

W, Ho

— First results are encouraging. Still some questions: with more elements in
the basis (po, ..., N ), at each step, how to choose the new directions?

— We are not able to prove that ds~ (o) : L>°(D) — C is onto for o # 0. vr ) 56



© Iuvisibility for waveguide problems

@ Can one hide a small Dirichlet obstacle?
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Small Dirichlet obstacle

» Can one hide a small Dirichlet obstacle centered at M;?

Find v = u; + ug s. t.

u= 0 on 0N°,
_- ug is outgoing.

» Again, u, is outgoing means that there are some s* € C such that

us = xTsTwt + x“sTw™ + @, with @ is expo. decaying at 0.

~Au = kK?’u in QF:=Q\ 05
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Find v = u; + ug s. t.

u= 0 on 0N°,
_- ug is outgoing.

» Again, u, is outgoing means that there are some s* € C such that

us = xTsTwt + x“sTw™ + @, with @ is expo. decaying at 0.

Due to Dirichlet B.C., w™ are not the same as previously (but this not
important).

~Au = kK?’u in QF:=Q\ 05
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Small Dirichlet obstacle

» Can one hide a small Dirichlet obstacle centered at M;?

Find v = u; + ug s. t.
~Au = kK?u in QF:=Q\ 05,
u =0 on 0°,
_- ug is outgoing.

» Again, u, is outgoing means that there are some s* € C such that

us = xTsTwt + x“sTw™ + @, with @ is expo. decaying at 0.

» In 3D, we obtain
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st 0+ ¢ (4imcap(O)|wt (My)[?) + O(£?).
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Small Dirichlet obstacle

» Can one hide a small Dirichlet obstacle centered at M;?

T Find v = u; + us s. t.
~Au = kK?u in QF:=Q\ 05,
u= 0 on 0N°,
_- ug is outgoing.

» Again, u, is outgoing means that there are some s* € C such that

us = xTsTwt + x“sTw™ + @, with @ is expo. decaying at 0.

» In 3D, we obtain

+= = 0+ el{@imeap(O)ut(A)) + O Non zero terms!
st 0+ 6‘ (4im cap(O)|w™ (M) |? )‘+ (cap(0) > 0)

= One single small obstacle cannot even be non reflective. ‘
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Small Dirichlet obstacles

» Let us try with two small Dirichlet
obstacles centered at M7, Ms.

wh(My)?) +O(e?)

» Weobtain s~ = 04¢ (dimrcap(O)

M

n=1

w* (M,)[*) + O(e?).

0+ & (4im cap(O)

M

Il
-

n
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Small Dirichlet obstacles

o Ose » Let us try with two small Dirichlet
‘1 obstacles centered at My, Ms.
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M +e7, and choosing a good T € R3 (fized point), we can get s~ =0.

COMMENTS:

— Hard part is to justify the asymptotics for the fixed point problem.
— We cannot impose s = 0 with this strategy.

— When there are more propagative waves, we need more obstacles.
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Small Dirichlet obstacles

o Ose » Let us try with two small Dirichlet
‘1 obstacles centered at My, Ms.
2
» Weobtain s~ = 0+ ¢|(4imcap(O) Z wt (M,)?)|+ O(g?)
n=1
st = 0+ e (4imcap(O Z 3+ 0(e%).

/

9’_ We can find My, My such that s~ = O(g2). Then moving O5 from M; to
M +e7, and choosing a good T € R3 (fized point), we can get s~ =0.

~

COMMENTS:

— Hard part is to justify the asymptotics for the fixed point problem.
— We cannot impose s = 0 with this strategy.

— When there are more propagative waves, we need more obstacles.

IXI Acting as a team, flies can become invisible!
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© Iuvisibility for waveguide problems

@ Can one hide a perturbation of the wall?
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Can one hide a perturbation of the wall?

> Pick h € 65°(—¢;4), £ > 0. Set k € (0;7), wr = ek /2 uy = w.

1+ ch(z)

Find v = u; + ug s. t.
—Au = k%>u in QF,
Opu = 0 on 00°,
0_ ug is outgoing.

» Again, u, is outgoing means that there are some s* € C such that

us = xTsTwt + x“sTw™ + @, with @ is expo. decaying at Fco.
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Can one hide a perturbation of the wall?

> Pick h € 65°(—¢;4), £ > 0. Set k € (0;7), wr = ek /2 uy = w.

1+ ch(z)

Find v = u; + ug s. t.
—Au = k%u in Q°,
Opu = 0 on 00°,
0_ ug is outgoing.

» Again, u, is outgoing means that there are some s* € C such that

us = xTsTwt + x“sTw™ + @, with @ is expo. decaying at Fco.

» We obtain
‘
s = 0+e¢ <—%/_Zazh(.’1,‘)(w+(x))2 da:) +O(52)
st = 040 +0(2).

=  With this approach, we can impose s~ = 0 but not st =0.
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Can one hide a perturbation of the wall?

» More generally, for any Neumann wave-
guide, one can show that s™ = 0 implies

/ | Vg |* — k?|us|? dz = 0.
Q
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» More generally, for any Neumann wave- _/\ o
guide, one can show that s™ = 0 implies ¢

2 1200 (2 g0
/Q|VUS| k% |us|” de = 0. s a2

e Decomposing in Fourier series, one finds

/ |Vug|* — k2 |ug|? dz > 0.
&2

e Note that st =0=us €Y :={veH'(Q)| [ _., vdo = 0}. Define
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e Decomposing in Fourier series, one finds
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e Note that st =0=us €Y :={veH'(Q)| [ _., vdo = 0}. Define
s = inf 2 2
t = infyev\ {0} </ |V dm) / (/ v dm) > 0.
Q[ QZ

PROPOSITION: For a given shape, sT = 0 cannot hold for k2 € (0; \;).

— For a small smooth perturbation of amplitude eh, one finds |\; — 7| < C'e.
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Can one hide a perturbation of the wall?

» More generally, for any Neumann wave- _/\ o
guide, one can show that s™ = 0 implies ¢

2 1200 (2 g0
/Q|Vus\ k?lus|® de = 0. s a

e Decomposing in Fourier series, one finds

/ |Vug|? — k2 |ug|* dz > 0.
£

e Note that st =0=us €Y :={veH'(Q)| [ _., vdo = 0}. Define
s = inf 2 2
t = infyev\ {0} </ |V dm) / (/ v dm) > 0.
Q[ QZ

PROPOSITION: For a given shape, sT = 0 cannot hold for k2 € (0; \;).

— To impose invisibility at low frequency, we need to work with special shapes.
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Non smooth perturbation of the wall

» We study the same problem in the geometry °

> Weobtain s~ = 0-+e (ikZizl(er(Mn))Ztan(khn))+0(52)

b= 02 (i/250 tan(khn) ) +O()
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Non smooth perturbation of the wall

» We study the same problem in the geometry °

> Weobtain s~ = 0-+e (ikzizl(m(Mn))?tan(khn))+0(52)

st

0+¢ (/255 tan(khn)) +O()

1) We can find My, h, such that s~ = O(e?) and sT = O(e?) .




Non smooth perturbation of the wall

» We study the same problem in the geometry °

3
c >,

ha hs

QE

» Weobtain s~

0+e (z’k S (wt(M,))? tan(khn)) +O(e2)

0+e (1/2 3 tan(khn)> +O(e?)

1) We can find My, h, such that s~ = O(¢?) and sT = O(?) .
9/_ 2) Then changing hy, into hy + T, and choosing a good T = (11,72, 73) € R?

(fized point), we can get s~ =0 and SmsT =0.




Non smooth perturbation of the wall

» We study the same problem in the geometry °

g
c >,

ha hs

QE

» Weobtain s~

0+e (z’k S (wt(M,))? tan(khn)) +O(e2)

0+e (z’/2 3 tan(khn)> +O(e?)

1) We can find My, h, such that s~ = O(¢?) and sT = O(?) .
9/_ 2) Then changing hy, into hy + T, and choosing a good T = (11,72, 73) € R?

(fized point), we can get s~ =0 and SmsT =0.

3) Energy conservation + [st =0()] = st =




Numerical results

» Perturbed waveguide (§Re( (x )

—iwt) )
D.AS
[ a5

» Reference waveguide (Re (u;(x)e=*?))

0.45

=022
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Remark

» We could also have worked with gardens of flowers!
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@ Iuvisibility in free space
@ The general scheme

@ The forbidden case

@ Numerical experiments

© Iuvisibility for waveguide problems
@ Construction of invisible penetrable defects
@ Can one hide a small Dirichlet obstacle?

@ Can one hide a perturbation of the wall?
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Conclusion

What we did

& We explained how to construct invisible perturbations of a reference
situation in a setting with a finite number of measurements.

1) We want to continue the analysis of the reiteration process to
construct large invisible defects of the reference medium.

2) It would be interesting to consider other models (Maxwell, elasticity,
...) and to investigate cases where the differential is not onto.

3) For a given perturbation, can we study the frequencies (invisible
modes) such that invisibility holds?

4) We wish to better understand the link between the invisible modes

and the so-called trapped modes in waveguides.
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Thank you for your attention!!!
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