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Introduction

» Waveguides appear in many fields of physics: acoustics, water waves,
electromagnetics, classical mechanics, quantum mechanics, ...

» One can think to musical instruments, loudspeakers, optical fibers,
conductive metal pipes, ...
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General setting

» We will be interested in the scattering of incident waves:
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General setting

» We will be interested in the scattering of incident waves:

1L 0L e iy
SENENENEND

» We wish to study questions of invisibility:

How to identify situations (geometry, frequency, ...)
where waves go through like if there were no defect — ®

IFEAS AN EN

e One can wish to have good energy transmission through the structure.

e One can wish to hide objects.
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Goals of the mini course

1) To explain how to model propagation of scalar waves in waveguides
in time-harmonic regime.

2) To present different tools of applied mathematics to identify
situations of invisibility:
- Asymptotic analysis;
- Spectral theory for self-adjoint and non self-adjoint problems;

- Finite element methods.
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Goals of the mini course

1) To explain how to model propagation of scalar waves in waveguides
in time-harmonic regime.

2) To present different tools of applied mathematics to identify
situations of invisibility:
- Asymptotic analysis;
- Spectral theory for self-adjoint and non self-adjoint problems;
- Finite element methods.

Structure of the mini course

Lecture 1. Rudiments of waveguide theory.

Lecture 2. Invisible perturbations of the reference geometry.

— Construction of small amplitude invisible obstacles.

Lecture 3. Playing with resonances to achieve invisibility.

— Construction of large amplitude invisible obstacles.

Lecture 4. A spectral problem characterizing zero reflection.

— Given an obstacle, find frequencies such that one has zero reflection.
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Lecture 1: Rudiments of waveguide theory

@ Setting

© Dirichlet problem for k <

@ Dirichlet problem for k >

@ Neumann problem
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@ Sctting
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Setting

> Set I:=(0;1), S:=R x I. Let Q C R? be a waveguide which coincides
with S outside of a compact region.
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Setting

> Set I:=(0;1), S:=R x I. Let Q C R? be a waveguide which coincides
with S outside of a compact region.

Y

L

» Consider the wave equation, for ¢ > 0,

102U

U = 0 ondQ,

with some initial conditions. Assume that the celerity ¢ > 0 is constant.
This problem appears for example in electromagnetics.
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Setting

» For time-harmonic F', i.e. of the form

F(z,y,t) = f(z,y)e ",
for some pulsation w > 0, it is natural to look for solutions of the form

—iwt

U(z,y,t) = u(z,y)e
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Setting

» For time-harmonic F', i.e. of the form
F(z,y,t) = f(z,y)e ",
for some pulsation w > 0, it is natural to look for solutions of the form

U(z,y,t) = u(z,y)e .

» Then we find that u satisfies the problem

—Au—Fku = f inQ

(Zp) v = 0 ondf

where k := w/c > 0 denotes the wavenumber.
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Setting

» For time-harmonic F', i.e. of the form
F(z,y,t) = f(z,y)e ™",
for some pulsation w > 0, it is natural to look for solutions of the form

U(z,y,t) = u(z,y)e .

» Then we find that u satisfies the problem

—Au—Fku = f inQ
(Zp) u = 0 ondf

where k := w/c > 0 denotes the wavenumber.

Goal of the lecture

To understand the features of (£p) according to the values of k > 0.
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9 Dirichlet problem for k < 7
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Dirichlet problem for k£ < 7 1/2

» Assume that f € L2(Q). The variational formulation of (£p) writes

Find u € H}(2) such that
a(u,v) = £(v), Vo € H (),

with H§(Q) := {w € HY(Q) |w = 0 on 90} and

a(u,v) = / Vu - Vv — k*uv dady, L(v) = / fvdzdy.
Q Q
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a(u,v) = £(v), Vo € H (),

with H§(Q) := {w € HY(Q) |w = 0 on 90} and

a(u,v) = / Vu - Vv — k*uv dady, L(v) = / fvdzdy.
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» Since a(,-) is continuous, with Riesz we can define the linear bounded
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Dirichlet problem for k < 7 1/2

» Assume that f € L2(Q). The variational formulation of (£p) writes

Find u € H}(2) such that
au,0) = ((v), o€ HY(S),

with H§(Q) := {w € HY(Q) |w = 0 on 90} and

a(u,v) = / Vu - Vv — k*uv dady, L(v) = / fvdzdy.
Q Q

» Since a(,-) is continuous, with Riesz we can define the linear bounded
operator A(k) : H(Q) — H(Q) such that

(A(k)u,v)m ) = a(u,v), Vu,v € Hy(€).

THEOREM: Pick k € (0;7). The operator A(k) decomposes as

A(k)=B+ K

where B : H}(Q) — H}(Q) is an isomorphism, K : H{(Q) — H} () is compact.
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Dirichlet problem for k <7 2/2

» We deduce that A(k) satisfies the Fredholm alternative:

- Either A(k) is injective and then is it an isomorphism;

- Or A(k) has a kernel of finite dim. span(ug,...,up) and then the equation
Ak)u=F

has a solution (defined up to span(uy,...,up)) if and only if F satisfies the
compatibility conditions

(F,up)Hl(Q)ZO, p=17...,P.
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Dirichlet problem for k < 7 2/2

» We deduce that A(k) satisfies the Fredholm alternative:

- Either A(k) is injective and then is it an isomorphism;

- Or A(k) has a kernel of finite dim. span(uy,...,up) and then the equation
Ak)u=F

has a solution (defined up to span(uy,...,up)) if and only if F satisfies the
compatibility conditions

(F,up)Hl(Q)ZO, p=17...,P.

PROPOSITION: Assume that k € (0;7) and Q C S =R x I. Then A(k) is
injective, and so is an isomorphism of H}(Q).

A(k) isom. for all k € (0;) A(k) not always isom. for k € (0;)
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© Dirichlet problem for k > 7

@ Computations of modes
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Computation of modes

» Modes are defined as the solutions with separate variables

u(z,y) = a(z)e(y),
of (#p) in the reference strip S for f = 0.
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Computation of modes

» Modes are defined as the solutions with separate variables
u(z,y) = alz)p(y),
of (#p) in the reference strip S for f = 0.
» We obtain
o (2)p(y) + a(z)¢” (y) + k*a(z)p(y) = 0
which gives
—¢"(y) =Ae(y) inl
e(0) =¢(1)=0
for some constant A to be determined.

—a"(z) = (K* = \) a(z) in R
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Computation of modes

» Modes are defined as the solutions with separate variables
u(z,y) = a(z)e(y),
of (#p) in the reference strip S for f = 0.
» We obtain
o (@)e(y) + alz)e” (y) + k2alz)e(y) = 0

which gives

" =\ in I
) =Aely) i —o"(@)= (k- Nalz) mR
©(0) =p(1)=0
for some constant A to be determined.

» We deduce that
Ap = N, ©n(y) = V2sin(nry), neN":={1,2,... }.

When k ¢ Nr, the modes coincide with the family {wZ},cn- where

eiiﬂnr@n(y)a ﬁn =V k2 - n27r2.

wi(z,y) =

14
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Comments

» /- is chosen such that Sm /- > 0.

» Pick k € (N7; (N + 1)7) for some N € N. Two families of modes :

* There are N propagating modes

wr(z,y) = eFVEITIG (4)) m=1,..,N.

e Propagating modes do not exist when k € (0; 7).
e Propagating modes exist when k& > 7.

e w," are rightgoing modes while the w,, are leftgoing.
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Comments

» /- is chosen such that Sm /- > 0.

» Pick k € (N7; (N + 1)7) for some N € N. Two families of modes :

* There are N propagating modes

)= HVETETRIG (), n=1,.,N.

wy (2, y

aeey

e Propagating modes do not exist when k € (0; 7).
e Propagating modes exist when k& > 7.

e w," are rightgoing modes while the w,, are leftgoing.

* There is an infinite number of modes

w’er:(m7y) = e:F n27r27k2mson(y)7 n=N+ ]-7 N + 27 (X3}

which are expon. decaying as z — +o0o and expon. growing as r — F00.
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© Dirichlet problem for k > 7

@ Ill-posedness in H{(€2)
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Ill-posedness in H}(Q)
DEFINITION: Let T : X — Y be a continuous linear map between two
Hilbert spaces. T is said to be Fredholm iff
i) dim(kerT) < +o0 and range T is closed;
ii) dim(cokerT) < +oo where cokerT := (Y /rangeT).
Then the index of T is defined by ind 7' = dim(ker T') — dim(coker T').
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Then the index of T is defined by ind 7' = dim(ker T') — dim(coker T').

PEETRE’S LEMMA: Let X, Y, Z be Hilbert spaces such that X is compactly
embedded into Z. Let T : X — Y be a continuous linear map. Then

dim(ker T') < +o0 and rangeT is closed in Y;
< there exists C' > 0 such that [|u|lx < C (||Tully + ||ullz), Vu € X.
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Ill-posedness in H}(Q)
DEFINITION: Let T : X — Y be a continuous linear map between two
Hilbert spaces. T is said to be Fredholm iff
i) dim(kerT) < +o0 and range T is closed;
ii) dim(cokerT) < +oo where cokerT := (Y /rangeT).
Then the index of T is defined by ind 7' = dim(ker T') — dim(coker T').

PEETRE’S LEMMA: Let X, Y, Z be Hilbert spaces such that X is compactly
embedded into Z. Let T : X — Y be a continuous linear map. Then

dim(ker T') < +o0 and rangeT is closed in Y;
< there exists C' > 0 such that [|u|lx < C (||Tully + ||ullz), Vu € X.

PROPOSITION: For k > m, A(k) : H}(Q2) — H}(Q) is not Fredholm.

|z| Message: loss of Fredholmness in H}(€2) is due to the existence of
propagating modes.
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© Dirichlet problem for k > 7

@ Problem with dissipation
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Problem with dissipation 1/4

» To model dissipation, for 7 > 0, work on the problem
—Au, — (K® +ikn)u, = f inQ

(Zn) u, = 0 ondQ.
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Problem with dissipation 1/4

» To model dissipation, for 7 > 0, work on the problem
—Au, — (K® +ikn)u, = f inQ

(Zn) u, = 0 ondQ.

» With the convention U, (x,y,t) = u,(x,y)e ", this originates from

o*u, oU, 1 .
7_672AU77 = F inQ,t>0, (1)

oz ot
U, = 0 onoQ,t>0.
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Problem with dissipation 1/4

» To model dissipation, for 7 > 0, work on the problem
—Au, — (K® +ikn)u, = f inQ

(Zn) u, = 0 ondQ.

» With the convention U, (x,y,t) = u,(x,y)e ", this originates from

o*u, oU, 1 .
7_672AU77 = F inQ,t>0, (1)

oz o
U, = 0 onoQ,t>0.

» Assume that F = 0. Multiplying (1) by 0;U and integrating in Q gives

01 / o, o,
92 Jo| ot ot

2 2

dxdy.

1
+ 0—2\VU7,|2dxdy = fn/g '
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Problem with dissipation 1/4

» To model dissipation, for 7 > 0, work on the problem
—Au, — (K® +ikn)u, = f inQ

(&) u, = 0 ondQ.

» With the convention U, (x,y,t) = u,(x,y)e ", this originates from
02U, ou, 1 i
W-FnW—C—QAUn = F an,t>0,

(1)
U, = 0 onoQ,t>0.

» Assume that F' = 0. Multiplying (1) by 9,U and integrating in Q gives
o1 [|ou,)* 1 U,
—— —|VU, | dedy = — -1
atz/Q + 2 VU dedy ’7/9'815

ot
Conclusion: the energy

1 [ |oU,
E“)—i/g‘w

indeed decreases, due to the term 70,U,, when 1 > 0.

2

dxdy.

S
2
+c_2|VU"| dxdy
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Problem with dissipation 2/4

THEOREM: For k > 0, > 0, (£2,) admits a unique solution u, € H§(Q).
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Problem with dissipation 2/4

THEOREM: For k > 0, > 0, (£2,) admits a unique solution u, € H§(Q).

» To take the limit n — 0 (limiting absorption principle ), let us rewrite
the problem in a bounded domain. For L > d, set

Qp = {(x,y)€Q||x| <L}7 Yip = {:tL}XI, I':=00n9o0.
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Problem with dissipation 2/4

THEOREM: For k > 0, > 0, (£2,) admits a unique solution u, € H§(Q).

» To take the limit n — 0 (limiting absorption principle ), let us rewrite
the problem in a bounded domain. For L > d, set

Qp = {(x,y)€Q||x| <L}7 Yip = {iL}XI, I':=00n9o0.

—L—d r d L

IZI We must impose ad hoc transparent conditions on the artificial
boundaries ¥+ that do not create spurious reflections.
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Problem with dissipation 3/4

» Set Sy := £(L;+00) x I and define the Dirichlet-to-Neumann operators
AL HYA(Sir) — HV2(Sip)

O0vy,

v’

where £0, = 0, on ¥4 and v, € H!(S4) is the function such that

® —

Av, + (k2 + iknjv, = 0 inS4
v, = 0 ond2NoSi
Vo = @ onXir.
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Problem with dissipation 3/4

> Set St := +(L;+00) x I and define the Dirichlet-to-Neumann operators
AL HYP(Sep) — HY2(S4p)

O0vy,
¥ = I
where £0, = 0, on ¥4 and v, € H!(S4) is the function such that
Av, + (k2 + iknv, = 0 in St
v, = 0 ond2NoSi
Vo = @ onXir.

PROPOSITION: u,, € H}(Q) solves (£, iff u,|q, satisfies

Find u,, € H}(Qr;T) such that
—Au, — (k* +ikn)u, = f in Qp
ouy

ov

L
()
= Al(uy) onXip

where 0, = +0,, at x = +L.




Problem with dissipation 4/4

» For the A”., we have the explicit representation

+oo
R R o R e AR (1) [ S

n=1
+oo

= sz (%@n)m(zﬂ) Qon(y)

n=1

where 7 := \/k? 4+ in — n?7w? (the solution decomposes on the exponentially
decaying modes).

AL (p)
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© Dirichlet problem for k > 7

@ Problem without dissipation
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Problem without dissipation 1/2

» Taking the limit n — 0, we define the operators

+oo
As(p) = Z iBn (@, 0n)r2(zr) Pn(Y)

n=1

and consider the problem

Find u € H}(Qp;T) such that

(@L) —Au—k‘;u = f in Qp,
u
Em = Ay(u) onXip.
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Problem without dissipation

» Taking the limit n — 0, we define the operators

+oo
As(p) = Z iBn (@, 0n)r2(zr) Pn(Y)

n=1
and consider the problem

Find u € H}(Qp;T) such that

(@L) —Au—k‘;u = f in Qp,
U
W Ayr(u) onXip.

» Its variational formulation writes
Find u € Hy(Q; T) such that
a®(u,v) = £(v), Vv € Hy(Qp; 1),

with

a®(u,v) = | Vu-V0 - k*uvdedy — (Ay(u),v)s, — (A_(u),v)s_,.

Qr

1/2
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Problem without dissipation

» Since a®(-,) is continuous, with Riesz we can define the linear
bounded operator A°"(k) : H{(Qp;T) — H(Q;T) such that

(AOUt(k:)u,U)Hl(Q) = aout(u,v), Yu,v € H(l)(Q)

2/2

THEOREM: For k € (N7; (N + 1)), N € N*, A°"*(k) decomposes as

A (k) =B+ K

H}(Qr;T) is compact.

where B : H{(Qr;T') — H{(Qz;T) is an isomorphism and K : H{(Qp;T) —
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Problem without dissipation 2/2

» Since a®(-,) is continuous, with Riesz we can define the linear
bounded operator A°"(k) : H{(Qp;T) — H(Q;T) such that

(AOUt(k:)u,U)Hl(Q) = aout(u,v), Yu,v € H(l)(Q)

THEOREM: For k € (N7; (N + 1)), N € N*, A°"*(k) decomposes as
A% (E) = B+ K

where B : H{(Qr;T') — H{(Qz;T) is an isomorphism and K : H{(Qp;T) —
H}(Qr;T) is compact.

PROPOSITION: If u € ker A°"*(k), it extends to a solution of () with
f = 0 which is exponentially decaying at infinity (trapped modes ).
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Problem without dissipation 2/2

» Since a®(-,) is continuous, with Riesz we can define the linear
bounded operator A°"(k) : H{(Qp;T) — H(Q;T) such that

(AOUt(k:)u,U)Hl(Q) = aout(u,v), Yu,v € H(l)(Q)

THEOREM: For k € (N7; (N + 1)), N € N*, A°"*(k) decomposes as
A% (E) = B+ K

where B : H{(Qr;T') — H{(Qz;T) is an isomorphism and K : H{(Qp;T) —
H}(Qr;T) is compact.

PROPOSITION: If u € ker A°"*(k), it extends to a solution of () with
f = 0 which is exponentially decaying at infinity (trapped modes ).

THEOREM: Fix k € (m;+00) \ {N7} and assume that A°"*(k) is injective.
There is C' > 0 (independent of 1), 1y such that we have

luy —ullar@,) < Cnllfllizay), Vn € (0;70].
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© Dirichlet problem for k > 7

@ Scattering problems
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Scattering problems 1/2

» In sequel, we will not work with source terms f but instead consider the
scattering of incident waves.

» To simplify, assume that k € (7;27) so that only the waves

eiiﬁ1w ) _ eii\/k2—7r2z<p1(y).

wx(z,y) = o1(y
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Scattering problems 1/2

» In sequel, we will not work with source terms f but instead consider the
scattering of incident waves.

» To simplify, assume that k € (m;27) so that only the waves

eiiﬁ1w ) _ eii\/k:2—7r29;<p1(y).

wx(z,y) = o1(y

» The scattering of the rightgoing wave w, coming from the left branch of
the waveguide leads us to consider the problem

Find uy € H%MOC(Q) such that u; — w4 is outgoing and
<fg2+) Au+ —+ I{Z2U+ = 0 in Q
Uy = 0 on 0.
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Scattering problems 1/2

» In sequel, we will not work with source terms f but instead consider the
scattering of incident waves.

» To simplify, assume that k € (m;27) so that only the waves

+ipgrx eii\/k2—7r2x<p1(y).

wi(z,y) =e e1(y) =

» The scattering of the rightgoing wave w, coming from the left branch of
the waveguide leads us to consider the problem

Find uy € H%MOC(Q) such that u; — w4 is outgoing and
<f@+) A’LL+ —+ I{Z2U+ = O in Q
Uy = 0 on 0.

The sentence “uy — wy is outgoing” means that we impose

oo
Z ot e o, (y) forx > L
Uy — Wy = , for some o € C.
Z age BT p (y)  forxz < —L

27 / 34



Scattering problems 2/2

PRrROPOSITION: For all k € (m; 27), () admits a solution. It is unique if
trapped modes do not exist.
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Scattering problems 2/2

PRrROPOSITION: For all k € (m; 27), () admits a solution. It is unique if
trapped modes do not exist.

» For u; we have the representation

UJ+ + R+w, + ’&/+ fOI' Tr < —L
Tiywy +4y forxz>L,

Uy =

with @4 € H(Q). R4 /T € C are the reflection/transmission coefficients.
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PRrROPOSITION: For all k € (m; 27), () admits a solution. It is unique if
trapped modes do not exist.

» For u; we have the representation

UJ+ + R+w, + ’&/+ fOI' Tr < —L
Tiywy +4y forxz>L,

Uy =

with @4 € H(Q). R4 /T € C are the reflection/transmission coefficients.
» Similarly, () admits a solutions u_ with the representation

T w_+u_ forx<-—L
w_ +R_wy+a_ forx>L,

where R_, T_ € C, a_ € H}(9).
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Scattering problems 2/2

PRrROPOSITION: For all k € (m; 27), () admits a solution. It is unique if
trapped modes do not exist.

» For uy we have the representation

1,U+ + R+w, + ’&/+ fOI‘ Tr < —L
Tiwy +04 forz> L,

Uy =

with @4 € H(Q). R4 /T € C are the reflection/transmission coefficients.
» Similarly, (%) admits a solutions u_ with the representation

T w_+u_ forx<—L
w_ +R_wy+a_ forx>L,

where R_, T_ € C, a_ € H}(9).

PRrROPOSITION: We have T =T_ =: T and the identities

|IRL|?+|T1? =1 (conservation of energy).

28 / 34



© Dirichlet problem for k > 7

@ Numerical approximation
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Numerical approximation

Computers don’t like infinite!

» is unbounded. Let us work in Qf, on the formulation
Find uq € HJ(Qp;T) such that for all v € HY(Q; ),

L

/Vu+ - VT — k2wt dedy — (Ayp(uy),v)s, —(A—(uy),v)s_, = —21'61/ wiTdy.
Q S_p
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Numerical approximation

Computers don’t like infinite!

» is unbounded. Let us work in Qf, on the formulation
Find uq € HJ(Qp;T) such that for all v € HY(Q; ),
/ Vu, - VT — k2wt dedy — (Ay(uy),v)s, —(A—(uy),v)s_, = —2if1 / wiTdy.
Q >

L —L

» AL contain infinite series. Let us truncate them to some rank M (large
enough to take into account all propagating modes).
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Numerical approximation

Computers don’t like infinite!

» is unbounded. Let us work in Qf, on the formulation
Find uq € HJ(Qp;T) such that for all v € HY(Q; ),

/Vu+ - VT — k2wt dedy — (Ayp(uy),v)s, —(A—(uy),v)s_, = —21'61/ wiTdy.
Q b

L —L

» A_ contain infinite series. Let us truncate them to some rank M (large
enough to take into account all propagating modes).

» H}(Qp;T) is of infinite dimension. Use Finite Element spaces. Finally

Find uf:_ € V), such that for all v € Vy,,
M
/ vuli - Voh — k2l ol dedy — Ziﬁn (W, en)r2(s,) (V" on)i2es,)
Q

L n=1
M

- Ziﬁn (W, on)izs ) Wiz ) = —22'51/ wvh dy.

n=1 X
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Numerical approximation

Computers don’t like infinite!

» is unbounded. Let us work in Qf, on the formulation
Find uq € HJ(Qp;T) such that for all v € HY(Q; ),
/ Vug - VU — kzuﬁda:dy — (A+(u+),’u>gL - <A,(u+),v>gil‘ = —2if1 / w4V dy.
Qr S_r
» AL contain infinite series. Let us truncate them to some rank M (large
enough to take into account all propagating modes).

» H}(Qp;T) is of infinite dimension. Use Finite Element spaces. Finally

Find u'j_ € V), such that for all v € Vy,,
M
/ Vu}fF - Voh — kQuivh dzdy — Zzﬁn (uﬁ”_, en)r2(s,) (W en)e(s,)
Qr n=1
M
- Ziﬁn (W enzs ) 0 en)2s ) = —2iﬂ1/ wivh dy.
n=1 X

g [For h small enough, L large enough (one has exponential convergenceJ

with respect to L), uf"_ yields a good approximation of .
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e Neumann problem
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Neumann problem

» In acoustics (also relevant in optics, microwaves, water-waves theory,...),
one considers the problem

Au+k?u = 0 inQ,
Opu = 0 on 99
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Neumann problem

» In acoustics (also relevant in optics, microwaves, water-waves theory,...),
one considers the problem

Au+k?u = 0 inQ,

/ Opu = 0 on 99

Lo

(2)

» For this problem with k£ € (N7; (N + 1)7), the modes are
Propagating | wi(x,y) = e*"#% cos(nmy), Bn = VEZ —n2n2, nc [0,N — 1]
Evanescent | w¥(z,y) = e cos(nny), Bn = Vn?n? — k2, n > N.
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Au+k?u = 0 inQ,

(#) Opu = 0 on 99

Lo

» We fix k € (0;7) so that only the plane waves e***® can propagate.
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Neumann problem

» In acoustics (also relevant in optics, microwaves, water-waves theory,...),
one considers the problem

Au+ku = 0 inQ,

(#) Oput 0 on 09

E=kD

» We fix k € (0;7) so that only the plane waves e can propagate.

» The scattering of the wave e’* leads us to consider the solutions of ()

with the decomposition

w— kT  Re~thr 4 T — —00
Tetthe 4 T — 400
R, T € C are the scattering coefficients , the ... are expon. decaying terms.
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@ Sctting

9 Dirichlet problem for k& < 7

e Dirichlet problem for k& > 7

@ Neumann problem
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Conclusion of lecture 1

What we did

We studied waveguides problems in time-harmonic regime.
- Dirichlet BCs with k < 7: H{(2) ok because no propagating modes.

- Dirichlet BCs with k > 7: H}(Q) not ok because propagating modes
— impose radiation conditions (add dissipation and take the limit n — 0).

- Neumann BCs with &£ > 0: H!(Q) not ok because propagating modes
— impose radiation conditions.
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Conclusion of lecture 1

What we did

We studied waveguides problems in time-harmonic regime.
- Dirichlet BCs with k < 7: H{(2) ok because no propagating modes.

- Dirichlet BCs with k > 7: H}(Q) not ok because propagating modes
— impose radiation conditions (add dissipation and take the limit n — 0).

- Neumann BCs with &£ > 0: H!(Q) not ok because propagating modes
— impose radiation conditions.

Next lecture

& We will study questions of invisibility. How to create defects which
provide the same scattering coefficients as in the reference strip?
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