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Lecture 2

♠ We explained how to construct small non reflecting or invisible
obstacles by working with perturbative techniques.
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Lecture 3

♠ We wish to obtain non reflection or invisibility for large obstacles by
working with resonant phenomena.
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Outline of lecture 3

1 Construction of non reflecting obstacles using Fano resonance

2 Cloaking of given obstacles in acoustics using resonant ligaments
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A 1D toy problem
▶ Fano resonance phenomenon appears in many fields in physics. First, we
illustrate it for a simple 1D problem.

x
y

Ω1

Ω2

Ω3O 1

1
Ω = Ω1 ∪ Ω2 ∪ Ω3

▶ Consider the scattering problem

φ′′+k2φ = 0 in Ω,

φ1 = φ2 = φ3 at O

φ′
1 = φ′

2 + φ′
3 at O

φ′
2 = φ′

3 = 0 on ∂Ω
with φ1 = eikx + R e−ikx︸ ︷︷ ︸

radiation condition

, R ∈ C.

▶ Well-posedness ⇔ invertibility of a 3 × 3 system MΦ = F .

▶ Uniqueness ⇔ k ̸∈ (2N+ 1)π/2. Existence for all k ∈ R (F ∈ ker tM⊥)

R =
cos(k) + 2i sin(k)
cos(k) − 2i sin(k) .
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A 1D toy problem
▶ We perturb the geometry: Ωε = Ω1 ∪ Ω2 ∪ Ωε

3 with Ωε
3 = (0; 1 + ε).

Well-posedness in Ωε ⇔ invertibility of a 3 × 3 system MεΦε = F .

Rε =
cos(k) cos(k(1 + ε)) + i sin(k(2 + ε))
cos(k) cos(k(1 + ε)) − i sin(k(2 + ε)).

▶ Since |Rε| = 1 (conservation of energy), ∃θε ∈ [0; 2π[ s.t. Rε = eiθε.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7
0

1

2

3

4

5

6

Figure: k 7→ θε(k) for several ε (non uniqueness for ε = 0, k = π/2).
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A 1D toy problem

▶ Set R(ε, k) = eiθ(ε,k) (functions of two variables).
(ε, k) 7→ θ(ε, k)

ε

k

π/2

ε0

θ(·, ·) and R(·, ·) are not continuous at (0, π/2))!

Next steps

1) Prove a similar Fano resonance phenomenon for a 2D waveguide.
2) Use it to provide examples of non reflection and complete reflection.
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Setting
▶ Scattering in time-harmonic regime in a symmetric (to simplify) acoustic
waveguide Ω coinciding with {(x, y) ∈ R × (0; 1)} outside a compact region.

Ω

(∗) ∆v + λv = 0 in Ω,
∂nv = 0 on ∂Ω.

▶ We assume that trapped modes exist for λ = λ0 ∈ (0; π2):

utr ∈ H1(Ω) \ {0} satisfies (∗) for λ = λ0 (non uniqueness).

▶ Due to symmetry, utr is also a trapped mode for the half waveguide pb.

ω

∆v + λv = 0 in ω,
∂nv = 0 on ∂ω ∩ ∂Ω,

ABC(v) = v/∂nv = 0 on ∂ω \ ∂Ω.
(depends on the sym.)
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Scattering problem in the half waveguide

ω

w+

(P)
∆v + λv = 0 in ω,

∂nv = 0 on ∂ω ∩ ∂Ω,

ABC(v) = 0 on ∂ω \ ∂Ω.

▶ For this problem with k :=
√

λ ∈ (0; π), only one propagating mode

w±(x, y) = e±ikx.

▶ (P) admits the solution

v = w+ + R w− + ṽ,

where R ∈ C and ṽ is expo. decaying (uniqueness ⇔ abs. of trapped modes).

▶ R is uniquely defined ( even for λ = λ0 ) and |R| = 1 (cons. of energy).
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Small perturbation of the geometry

▶ We perturb slightly (ε ≥ 0 is small) the geometry

ω ωε

1 + εH(x)

Locally ∂ωε coincides with the graph of x 7→ 1 + εH(x),
where H ∈ C ∞

0 (R) is a given profile function.

▶ For a given H, the scattering/reflection coefficient R is a function of ε, λ.

We can study the behaviour of (ε, λ) 7→ R(ε, λ) in a neighbourhood of
(0, λ0) where trapped modes exist.

→ One proves that R is not continuous at (0, λ0) (one approach: work
with the augmented scattering matrix which is continuous at (0, λ0)).
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The Fano resonance
Proposition: There is λ′

p > 0 such that

lim
ε→0

R(ε, λ0 + ελ′) = R, for λ′ ̸= λ′
p

lim
ε→0

R(ε, λ0 + ελ′
p + ε2µ) = R +

a

ibµ − c
, µ ∈ R.

Here a, b, c are some constants that one can characterize.

→ When µ ∈ R, the quantity R +
a

ibµ − c
runs on the whole unit circle.

→ We find the same picture as in 1D: R(·, ·) is not continuous at (0, λ0) .
Phase of R(·, ·)

ε

λ

λ0

ε0

→ For a small given ε0, λ 7→ R(ε0, λ) exhibits a quick change at λ0 + ε0λ′
p.
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Exploiting symmetry
▶ We come back to the problem in the total waveguide Ω

Ω
w+

(∗) ∆v + λv = 0 in Ω,
∂nv = 0 on ∂Ω.

▶ (∗) admits the solution

v =
eikx + R e−ikx + ṽ, x < 0 (reflection)

T e−ikx + ṽ, x > 0 (transmission)

with R, T ∈ C and ṽ ∈ H1(Ω). We have |R|2 + |T |2 = 1.

▶ Introduce the two half-waveguide problems

ω

∆u + λu = 0 in ω
∂nu = 0 on ∂ω

∆U + λU = 0 in ω
∂nU = 0 on ∂ω \ ∂Ω

U = 0 on ∂ω ∩ ∂Ω.
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Exploiting symmetry
▶ Half-waveguide problems admit the solutions

u = eikx + RN e−ikx + ũ, with ũ ∈ H1(ω)
U = eikx + RD e−ikx + Ũ , with Ũ ∈ H1(ω).

▶ Due to conservation of energy, one has

|RN | = |RD| = 1.

ω
w+

RDRN
RD

RN

▶ Using that v =
u + U

2 in ω, v(x, y) =
u(−x, y) − U(−x, y)

2 in Ω \ ω,

we deduce that R =
RN + RD

2 and T =
RN − RD

2 .

Non reflection R = 0
⇔ RN = −RD

Perfect reflection T = 0
⇔ RN = RD
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▶ Due to conservation of energy, one has

|RN | = |RD| = 1.

ω
w+

RDRN

RD

RN

▶ Using that v =
u + U

2 in ω, v(x, y) =
u(−x, y) − U(−x, y)

2 in Ω \ ω,

we deduce that R =
RN + RD

2 and T =
RN − RD

2 .

Non reflection R = 0
⇔ RN = −RD

Perfect reflection T = 0
⇔ RN = RD

15 / 46



Exploiting symmetry
▶ Half-waveguide problems admit the solutions

u = eikx + RN e−ikx + ũ, with ũ ∈ H1(ω)
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Non reflection and perfect reflection

R =
RN + RD

2 T =
RN − RD

2

▶ To set ideas, we assume that utr is symmetric w.r.t. (Oy).
⇒ utr is a trapped mode for the pb with Neumann B.Cs.

i) No trapped modes for the Dirichlet pb at λ = λ0. This implies

|RD(ε, λ0 + ελ′
p + ε2µ) − RD(0, λ0)| ≤ C ε, ∀ε ∈ (0; ε0], µ ∈ [−cε−1; cε].

ii) µ 7→ RN (ε, λ0 + ελ′
p + ε2µ) rushes on the unit circle for µ ∈ [−cε−1; cε].

Proposition:
∃λε, with λε − λ0 = O(ε), s.t. for ε small, R(ε, λε) = 0 ( non reflection ).

∃λ̃ε, with λ̃ε − λ0 = O(ε), s.t. for ε small, T (ε, λ̃ε) = 0 ( perfect reflection ).
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1 Construction of non reflecting obstacles using Fano resonance
A 1D toy problem
The Fano resonance in 2D waveguides
Non reflection and complete reflection
Numerical experiments

2 Cloaking of given obstacles in acoustics using resonant ligaments
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The Fano resonance
▶ Numerics using FE methods (Freefem++) with DtN maps or PMLs.

▶ Left: domain ωε. Right: utr (trapped mode) for ε = 0.

0.5 + ε

1

▶ Since |Rε| = 1 (conservation of energy), ∃θε ∈] − π; π] s.t. Rε = eiθε.
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Figure: k 7→ θε(k) for several ε (non uniqueness for ε = 0, k = 2.7403).
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Non reflection/perfect reflection

▶ Scattering coefficients for k ∈ (2.5; 3.1).

No shift (ε = 0) Small shift (ε > 0)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

k 7→ R(0, k) k 7→ T (0, k) k 7→ R(0.05, k) k 7→ T (0.05, k)
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Non reflection/perfect reflection

▶ Example of setting where R(ε, λε) = 0 (non reflection).

ℜe v

ℜe (v − vi)

▶ Example of setting where T (ε, λε) = 0 (perfect reflection).

ℜe v
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Frequency behaviour

No shift (ε = 0) | Small shift (ε > 0)

▶ k 7→ ℜe v(k)

▶ Complex spectrum computed with PMLs (we zoom at the real axis).
• Trapped mode • Complex resonance
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Comments

What we did

♠ We illustrated the Fano resonance phenomenon in a 2D waveguide.
If trapped modes exist for (ε, λ) = (0, λ0), then for ε > 0 small,
λ 7→ R(ε, λ) has a quick variation at λ0. Symmetry is not needed.

♠ We use it to show examples of non reflection and perfect reflection.
Symmetry is essential.

♠ The phenomenon appears with other B.C. (Dirichlet, ...), other kinds
of perturbation (penetrable obstacles, ...), in any dimension.

Other directions

1) Without symmetry, one can show that T still passes through zero.

2) Is there non reflection/perfect reflection for k > π (monomode
regime was essential in the mechanism)?

3) What happens if λ0 is not a simple eigenvalue?
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1 Construction of non reflecting obstacles using Fano resonance

2 Cloaking of given obstacles in acoustics using resonant ligaments

22 / 46



Setting

▶ We consider the propagation of waves in a 2D acoustic waveguide with
an obstacle (also relevant in optics, microwaves, water-waves theory,...).

1
x

y

Ω

(P) ∆u + k2u = 0 in Ω,
∂nu = 0 on ∂Ω

▶ We fix k ∈ (0; π) so that only the plane waves e±ikx can propagate.

▶ The scattering of these waves leads us to consider the solutions of (P)
with the decomposition

u+ = eikx + R+ e−ikx + . . .
T e+ikx + . . .

u− = T e−ikx + . . . x → −∞
e−ikx + R− e+ikx + . . . x → +∞

R±, T ∈ C are the scattering coefficients , the . . . are expon. decaying terms.
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Goal

We wish to slightly perturb the walls of the guide to obtain R± = 0, T = 1
in the new geometry (as if there were no obstacle) ⇒ cloaking at “infinity”.

Difficulty: the scattering coefficients have a not explicit and not linear
dependence wrt the geometry.

We wish to cloak big obstacles and not only small perturbations.
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1 Construction of non reflecting obstacles using Fano resonance

2 Cloaking of given obstacles in acoustics using resonant ligaments
Asymptotic analysis in presence of thin resonators
Almost zero reflection
Cloaking
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Setting

Main ingredient of our approach: outer resonators of width ε ≪ 1.
ε

ℓ

A

Ωε

(Pε) ∆u + k2u = 0 in Ωε,
∂nu = 0 on ∂Ωε

▶ In this geometry, we have the scattering solutions

uε
+ = eikx + Rε

+ e−ikx + . . .
T ε e+ikx + . . .

uε
− = T ε e−ikx + . . . x → −∞

e−ikx + Rε
− e+ikx + . . . x → +∞

In general, the thin ligament has only a weak influence on the scattering
coefficients: Rε

± ≈ R±, T ε ≈ T . But not always ...
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Numerical experiment

▶ We vary the length of the ligament:
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Numerical experiment

▶ For one particular length of the ligament, we get a standing mode (zero
transmission):
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Asymptotic analysis

To understand the phenomenon, we compute an asymptotic expansion
of uε

+, Rε
+, T ε as ε → 0.

ε

ℓ

A

Ωε

(Pε) ∆uε
+ + k2uε

+ = 0 in Ωε,
∂nuε

+ = 0 on ∂Ωε

uε
+ = eikx + Rε

+ e−ikx + . . .
T ε e+ikx + . . .

▶ To proceed we use techniques of matched asymptotic expansions
(see Beale 73, Gadyl’shin 93, Kozlov et al. 94, Nazarov 96, Maz’ya et al. 00,
Joly & Tordeux 06, Lin & Zhang 17, 18, Brandao, Holley, Schnitzer 20,...).
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Asymptotic analysis
▶ We work with the outer expansions

uε
+(x, y) = u0(x, y) + . . . in Ω,

uε
+(x, y) = ε−1v−1(y) + v0(y) + . . . in the resonator.

▶ Considering the restriction of (Pε) to the thin resonator, when ε tends
to zero, we find that v−1 must solve the homogeneous 1D problem

(P1D)
∂2

yv + k2v = 0 in (1; 1 + ℓ)
v(1) = ∂yv(1 + ℓ) = 0.

The features of (P1D) play a key role in the physical phenomena
and in the asymptotic analysis.

▶ We denote by ℓres (resonance lengths) the values of ℓ, given by

ℓres := π(m + 1/2)/k, m ∈ N,

such that (P1D) admits the non zero solution v(y) = sin(k(y − 1)).
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Asymptotic analysis – Non resonant case

▶ Assume that ℓ ̸= ℓres . Then we find v−1 = 0 and when ε → 0, we get

uε
±(x, y) = u± + o(1) in Ω,

uε
±(x, y) = u±(A) v0(y) + o(1) in the resonator,

Rε
± = R± + o(1), T ε = T + o(1).

Here v0(y) = cos(k(y − 1) + tan(k(y − ℓ) sin(k(y − 1).

The thin resonator has no influence at order ε0.

→ Not interesting for our purpose because we want Rε
± = 0 + . . .

T ε = 1 + . . .
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Asymptotic analysis – Resonant case
▶ Now assume that ℓ = ℓres . Then we find v−1(y) = a sin(k(y − 1)) for
some a to determine.

▶ Inner expansion. Set ξ = ε−1(x − A) (stretched coordinates). Since

(∆x + k2)uε
+(ε−1(x − A)) = ε−2∆ξuε(ξ) + . . . ,

when ε → 0, we are led to study the problem

(⋆) −∆ξY = 0 in Ξ
∂νY = 0 on ∂Ξ.

O

Ξ−

Ξ+

Ξ

▶ Problem (⋆) admits a solution Y 1 (up to a constant) with the expansion

Y 1(ξ) =


ξy + CΞ + O(e−πξy ) as ξy → +∞, ξ ∈ Ξ+

1
π

ln
1

|ξ|
+ O

( 1
|ξ|

)
as |ξ| → +∞, ξ ∈ Ξ−.

▶ In a neighbourhood of A, we look for uε
+ of the form

uε
+(x) = CA Y 1(ξ) + cA + . . . (cA, CA constants to determine).

Since at A, the Taylor formula gives

uε
+(x) = ε−1v−1(y) + v0(y) + · · · = 0 + (akξy + v0(1)) + . . . ,

we take CA = ak.
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
ξy + CΞ + O(e−πξy ) as ξy → +∞, ξ ∈ Ξ+

1
π

ln
1

|ξ|
+ O

( 1
|ξ|

)
as |ξ| → +∞, ξ ∈ Ξ−.

▶ In a neighbourhood of A, we look for uε
+ of the form

uε
+(x) = ak Y 1(ξ) + cA + . . . (cA, CA constants to determine).

Since at A, the Taylor formula gives

uε
+(x) = ε−1v−1(y) + v0(y) + · · · = 0 + (akξy + v0(1)) + . . . ,

we take CA = ak.
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Asymptotic analysis – Resonant case
▶ In the ansatz uε

+ = u0 + . . . in Ω, we deduce that we must take

u0 = u+ + akγ

where γ is the outgoing Green function such that ∆γ + k2γ = 0 in Ω
∂nγ = δA on ∂Ω.

▶ Then in the inner field expansion uε
+(x) = ak Y 1(ξ) + cA + . . . , this sets

cA = u+(A) + ak(Γ + π−1 ln |ε|).

▶ Matching the constant behaviour in the resonator, we obtain

v0(1) = u+(A) + ak(Γ + π−1 ln |ε| + CΞ).

▶ This is a Fredholm problem with a non zero kernel. A solution exists iff
the compatibility condition is satisfied. This sets

ak = −
u+(A)

Γ + π−1 ln |ε| + CΞ

and ends the calculus of the first terms.
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Asymptotic analysis – Resonant case

▶ Finally for ℓ = ℓres , when ε → 0, we obtain

uε
+(x, y) = u+(x, y) + akγ(x, y) + o(1) in Ω,

uε
+(x, y) = ε−1a sin(k(y − 1)) + O(1) in the resonator,

Rε
+ = R+ + iau+(A)/2 + o(1), T ε = T + iau−(A)/2 + o(1).

Here γ is the outgoing Green function such that ∆γ + k2γ = 0 in Ω
∂nγ = δA on ∂Ω

and

ak = −
u+(A)

Γ + π−1 ln |ε| + CΞ
.

This time the thin resonator has an influence at order ε0
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Asymptotic analysis – Resonant case
▶ Similarly for ℓ = ℓres + εη with η ∈ R fixed, by modifying only the last
step with the compatibility relation, when ε → 0, we obtain

uε
+(x, y) = u+(x, y) + a(η)kγ(x, y) + o(1) in Ω,

uε
+(x, y) = ε−1a(η) sin(k(y − 1)) + O(1) in the resonator,

Rε
+ = R+ + ia(η)u+(A)/2 + o(1), T ε = T + ia(η)u−(A)/2 + o(1).

Here γ is the outgoing Green function such that ∆γ + k2γ = 0 in Ω
∂nγ = δA on ∂Ω

and

a(η)k = −
u+(A)

Γ + π−1 ln |ε| + CΞ + η
.

This time the thin resonator has an influence at order ε0

and it depends on the choice of η!
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Asymptotic analysis – Resonant case
▶ Below, for several η ∈ R, we display the paths

{(ε, ℓres + ε(η − π−1| ln ε|)), ε > 0} ⊂ R2.

ε

ℓ

ℓres

ε0

ε

ℓ

A

Ωε

According to η, the limit of the scattering coefficients along
the path as ε → 0+ is different.

▶ For a fixed small ε0, the scattering coefficients have a rapid variation for
ℓ varying in a neighbourhood of the resonance length.
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1 Construction of non reflecting obstacles using Fano resonance

2 Cloaking of given obstacles in acoustics using resonant ligaments
Asymptotic analysis in presence of thin resonators
Almost zero reflection
Cloaking
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Almost zero reflection
From this expansion, we find that asymptotically, when the length
of the resonator is perturbed around ℓres, Rε

+, T ε run on circles
whose features depend on the choice for A.

▶ Using the expansions of u±(A) far from the obstacle, one shows:
Proposition: There are positions of the resonator A such that the circle
{R0

+(η) | η ∈ R} passes through zero. ⇒ ∃ situations s.t. Rε
+ = 0 + o(1).
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Almost zero reflection
▶ Example of situation where we have almost zero reflection (ε = 0.3).

ℜe uε
+

ℜe eikx

ℜe (uε
+ − eikx)

→ Simulations realized with the Freefem++ library.

To cloak the object, it remains to compensate the phase shift!

39 / 46



Almost zero reflection
▶ Example of situation where we have almost zero reflection (ε = 0.01).

ℜe uε
+

ℜe eikx

ℜe (uε
+ − eikx)

→ Simulations realized with the Freefem++ library.

To cloak the object, it remains to compensate the phase shift!
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Phase shifter

▶ Working with two resonators, we can create phase shifters , that is
devices with almost zero reflection and any desired phase.

ℜe uε

ℜe eikx

▶ Here the device is designed to obtain a phase shift approx. equal to π/4.
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Cloaking with three resonators
▶ Gathering the two previous results, we can cloak any object with three
resonators.

ℜe u+

ℜe uε
+

ℜe (uε
+ − eikx)
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Cloaking with two resonators
▶ Working a bit more, one can show that two resonators are enough to
cloak any object.

t 7→ ℜe (u+(x, y)e−ikt)

t 7→ ℜe (uε
+(x, y)e−ikt)

t 7→ ℜe (eik(x−t))
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Cloaking with two resonators
▶ Another example

t 7→ ℜe (u+(x, y)e−ikt)

t 7→ ℜe (uε
+(x, y)e−ikt)

t 7→ ℜe (eik(x−t))
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Recap of the cloaking strategy

What we did

♠ We explained how to approximately cloak any object in monomode
regime using thin resonators. Two main ingredients:

- Around resonant lengths, effects of order ε0 with perturb. of width ε.
- The 1D limit problems in the resonator provide a rather explicit

dependence wrt to the geometry.

Possible extensions and open questions

1) We can similarly hide penetrable obstacles or work in 3D.

2) We can do cloaking at a finite number of wavenumbers (thin
structures are resonant at one wavenumber otherwise act at order ε).

3) With Dirichlet BCs, other ideas must be found.

4) Can we realize exact cloaking (T = 1 exactly)? This question is also
related to robustness of the device.
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