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Lecture 3

♠ We explained how to exploit the Fano resonance phenomenon
together with symmetry to obtain zero reflection for large obstacles.

Lecture 4 : Two distinct goals

1 A simple example of large invisible defect in acoustics

Asymptotic analysis:
k is given, we construct simple examples of Ω such that T = 1.

2 A spectral approach to determine non reflecting wavenumbers

Spectral theory:
Ω is given, we explain how to find non reflecting k by solving an unusual
spectral problem.
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Outline of the talk

1 A simple example of large invisible defect in acoustics

Asymptotic analysis:
k is given, we construct simple examples of Ω such that T = 1.

2 A spectral approach to determine non reflecting wavenumbers

Spectral theory:
Ω is given, we explain how to find non reflecting k by solving an
unusual spectral problem.
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Geometrical setting
▶ Let us work in the geometry

ℓ = 2π/k

hΩh

▶ Introduce the two half-waveguide problems

ℓ/2

ωh

Neumann/
Dirichlet

Σh

∆u + k2u = 0 in ωh

∂nu = 0 on ∂ωh

Neumann B.C.

∆U + k2U = 0 in ωh

∂nU = 0 on ∂ωh \ Σh

U = 0 on Σh.

Mixed B.C.
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Relations for the scattering coefficients
▶ Half-waveguide problems admit the solutions

u = w+ + RN w− + ũ, with ũ ∈ H1(ωh)
U = w+ + RD w− + Ũ , with Ũ ∈ H1(ωh).

▶ Due to conservation of energy, one has

|RN | = |RD| = 1.

ωh

h

RDRN

RD RN

▶ Using symmetry considerations, one can show that

R =
RN + RD

2 and T =
RN − RD

2
Perfect invisibility
⇔ [RN = 1, RD = −1]

Crucial point: in this particular geometry ωh,
u = w+ + w− = 2 cos(kx) solves the Neum. pb.

⇒ RN = 1, ∀h > 1.

→ It remains to study the behaviour of RD = RD(h) as h → +∞.
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Asymptotics of RD as h → +∞
Depends on the nb. of propagating modes in the vertical branch of ω∞

ℓ/2
ω∞

Σ∞

(PD)
∆φ + k2φ = 0 in ω∞

∂nφ = 0 on ∂ω∞ \ Σ∞
φ = 0 on Σ∞.

- For ℓ = 2π/k, 2 modes can propagate in the vertical branch of ω∞.

▶ Using asymptotic analysis, one shows that when h → +∞,

|RD(h) − RD
asy(h)| ≤ Ce−ch

where RD
asy(h) runs periodically on the unit circle C .

▶ Additionally one can prove that h 7→ RD(h) runs continuously on C .

⇒ There is a sequence (hn) with hn → +∞ such that RD(hn) = −1.
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Conclusion

Theorem: There is an unbounded sequence (hn) such that for h = hn, we
have T = 1 (perfect invisibility).
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Numerical results
▶ Works also in the geometry below. When we vary h, the height of the
central branch, T runs exactly on the circle C (1/2, 1/2).
→ Numerically, we simply sweep in h and extract the h such that T (h) = 1.

▶ Perfectly invisible defect ( t 7→ ℜe (v(x, y)e−iωt) )

▶ Reference waveguide ( t 7→ ℜe (v(x, y)e−iωt) )
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Remark
▶ Actually Ω does not have to be symmetric and we can work in the
following geometry:

π/k

π/k

π/k h

Ωh

▶ In this Ωh, we can show that there holds R + T = 1 .

▶ With the identity of energy |R|2 + |T |2 = 1, this guarantees that T must
be on the circle C (1/2, 1/2).

▶ Finally, with asy. analysis, we show that T goes through 1 as h → +∞.
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Outline of the talk

1 A simple example of large invisible defect in acoustics
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Scattering problem
▶ Consider the scattering problem with k ∈ ((N − 1)π; Nπ), N ∈ N∗

Ω

+L−L

vi

Find v = vi + vs s. t.
∆v + k2v = 0 in Ω,

∂nv = 0 on ∂Ω,
vs is outgoing.

▶ For this problem, the modes are

Propagating
Evanescent

w±
n (x, y) = e±iβnx cos(nπy), βn =

√
k2 − n2π2, n ∈ J0, N − 1K

w±
n (x, y) = e∓βnx cos(nπy), βn =

√
n2π2 − k2, n ≥ N.

▶ Set vi =
N−1∑
n=0

αnw+
n for some given (αn)N−1

n=0 ∈ CN .

▶ vs is outgoing ⇔ vs =
+∞∑
n=0

γ±
n w±

n for ±x ≥ L, with (γ±
n ) ∈ CN.
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Goal of the section

Definition: v is a non reflecting mode if vs is expo. decaying for x ≤ −L
⇔ γ−

n = 0, n ∈ J0, N − 1K ⇔ energy is completely transmitted.

GOAL
For a given geometry, we present a method to find values of
k such that there is a non reflecting mode v.

→ Note that non reflection occurs for particular vi to be computed.
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Classical complex scaling to compute vs 1/2

Reminder: vs =
N−1∑
n=0

γ±
n e±iβnx cos(nπy) +

+∞∑
n=N

γ±
n e∓βnx cos(nπy), ±x ≥ L.

−iβ1

−iβ0

β2 β3

exp. growing exp. decaying

θ
−iβ̃1

−iβ̃0

β̃2

β̃3

Modal exponents for vs (x ≤ −L)

Modal exponents for vθ (x ≤ −L)

▶ For θ ∈ (0; π/2), consider the complex change of variables

Iθ(x) =
−L + (x + L) eiθ for x ≤ −L

x for |x| < L
+L + (x − L) eiθ for x ≥ L.

▶ Set vθ := vs ◦ (Iθ(x), y) .
1) vθ = vs for |x| < L.
2) vθ is exp. decaying at infinity.

vθ =
N−1∑
n=0

γ̃±
n e±iβ̃nx cos(nπy) +

+∞∑
n=N

γ̃±
n e∓β̃nx cos(nπy), ±x ≥ L β̃n = βneiθ
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Classical complex scaling to compute vs 2/2

▶ vθ solves (∗) αθ
∂

∂x

(
αθ

∂vθ

∂x

)
+ ∂2vθ

∂y2 + k2vθ = 0 in Ω
∂nvθ = −∂nvi on ∂Ω.

αθ(x) = 1 for |x| < L αθ(x) = e−iθ for |x| ≥ L

• Numerically we solve (∗) in the truncated domain

αθ = e−iθ αθ = e−iθαθ = 1

+L−L +R−R

Dirichlet/
Neumann

Dirichlet/
Neumann

⇒ We obtain a good approximation of vs for |x| < L.

• This is the method of Perfectly Matched Layers (PMLs).
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Spectral analysis
▶ Define the operators A, Aθ of L2(Ω) such that

Av = −∆v, Aθv = −
(

αθ
∂

∂x

(
αθ

∂v

∂x

)
+ ∂2v

∂y2

)
+ ∂nv = 0 on ∂Ω.

■ A is selfadjoint and positive.
■ σ(A) = σess(A) = [0; +∞).
■ σ(A) may contain embedded eigenvalues in the essential spectrum.

0 ℜe λ
ℑm λess. spectrum

embedded eig.

■ Aθ is not selfadjoint. σ(Aθ) ⊂ {ρ eiγ , ρ ≥ 0, γ ∈ [−2θ; 0]}.
■ σess(Aθ) = ∪n∈N{n2π2 + t e−2iθ, t ≥ 0}.
■ real eigenvalues of Aθ = real eigenvalues of A.

2θ0 ℜe λ
ℑm λ

ess. spectrum
embedded eig.
complex res.
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Numerical results

▶ We work in the geometry
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Numerical results

▶ Discretized spectrum of Aθ in k (not in k2). We take θ = π/4.
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A new complex spectrum for non reflecting v

▶ Usual complex scaling selects scattered fields which are

outgoing at −∞ and outgoing at +∞.

Important remark: general v decompose as

v = vi +
N−1∑
n=0

γ−
n w−

n +
+∞∑

n=N

γ−
n w−

n x ≤ −L, v =
+∞∑
n=0

γ+
n w+

n x ≥ L.

▶ In other words, non reflecting v are

ingoing at −∞ and outgoing at +∞.

Let us change the sign of the complex scaling at −∞!
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A new complex spectrum for non reflecting v

▶ For θ ∈ (0; π/2), consider the complex change of variables

Jθ(x) =
−L + (x + L) e−iθ for x ≤ −L

x for |x| < L

+L + (x − L) e+iθ for x ≥ L.

▶ Set uθ := v ◦ (Jθ(x), y) . 1) uθ = v for |x| < L.
2) uθ is exp. decaying at infinity.

−iβ1

−iβ0

β2 β3

exp. growing exp. decaying

−θ
−iβ̂1

−iβ̂0

β̂2

β̂3

Modal exponents for v (x ≤ −L) Modal exponents for uθ (x ≤ −L)

▶ uθ solves (∗) βθ
∂

∂x

(
βθ

∂uθ

∂x

)
+ ∂2uθ

∂y2 + k2uθ = 0 in Ω
∂nuθ = 0 on ∂Ω.

βθ(x) = 1 for |x| < L, βθ(x) = eiθ for x ≤ −L, βθ(x) = e−iθ for x ≥ L
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Spectral analysis

▶ Define the operator Bθ of L2(Ω) such that

Bθv = −
(

βθ
∂

∂x

(
βθ

∂v

∂x

)
+ ∂2v

∂y2

)
+ ∂nv = 0 on ∂Ω.

■ Bθ is not selfadjoint. σ(Bθ) ⊂ {ρ eiγ , ρ ≥ 0, γ ∈ [−2θ; 2θ]}.
■ σess(Bθ) = ∪n∈N{n2π2 + t e−2iθ, t ≥ 0} ∪ {n2π2 + t e2iθ, t ≥ 0}.
■ real eigenvalues of Bθ = real eigenvalues of A+non reflecting k2.

2θ

2θ

0 ℜe λ

ℑm λ
essential spectrum
embedded eig.
non reflecting eig.
? eig.
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Remarks

2θ

2θ

0 ℜe λ

ℑm λ
essential spectrum
embedded eig.
non reflecting eig.
? eig.

1) • ? eig. correspond to solutions of the Helmholtz equation which are
exp. growing at one side of Ω, exp. decaying at the other.

Different from complex resonances for which the eigenfunctions are exp.
growing both at ±∞ ...

2) It is not simple to prove that σ(Bθ) \ σess(Bθ) is discrete.

→ Not true in general!

eikx ◦ Jθ is an eigenfunction for all k ∈ R.

→ C \ σess(Bθ) is not connected ⇒ we cannot apply simply the analytic Fredholm thm.

→ A compact perturbation can change drastically the spectrum ( Bθ is not selfadjoint ).
Numerical consequences?

Aθ − zId invertible

Usual PMLs

Bθ − zId invertible

Conjugated PMLs
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Numerical results

▶ Again we work in the geometry

▶ Define the operators P (Parity), T (Time reversal) such that

Pv(x, y) = v(−x, y) and T v(x, y) = v(x, y).

Prop.: For symmetric Ω = {(−x, y) | (x, y) ∈ Ω}, Bθ is PT symmetric:

PT BθPT = Bθ.

As a consequence, σ(Bθ) = σ(Bθ).

⇒ If λ is an “isolated” eigenvalue located close to the real axis, then λ ∈ R !
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Numerical results
▶ Discretized spectrum in k (not in k2). We take θ = π/4.
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• The spectrum is indeed stable by conjugation.
• Much more eigenvalues on the real axis than before.

• PMLs with different signs Classical PMLs
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Numerical results

▶ We display the eigenmodes for the ten first real eigenvalues in the whole
computational domain (including PMLs).
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Numerical results
▶ Let us focus on the eigenmodes such that 0 < k < π.

First trapped mode Second trapped mode
k = 1.2355... k = 2.3897...

First non reflecting mode Second non reflecting mode
k = 1.4513... k = 2.8896...
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1

There is perfect agreement!
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▶ To check our results, we compute k 7→ |R(k)| for 0 < k < π.
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Numerical results

▶ Now the geometry is not symmetric in x nor in y:

▶ The operator Bθ is no longer PT -symmetric and we expect:

■ No trapped modes
■ No invariance of the spectrum by complex conjugation.
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Numerical results
▶ Discretized spectrum of Bθ in k (not in k2). We take θ = π/4.
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• Indeed, the spectrum is not symmetric w.r.t. the real axis.
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Numerical results
▶ We compute k 7→ |R(k)| for 0 < k < π.
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k = 1.28 + 0.0003i k = 2.3866 + 0.0005i k = 2.8647 + 0.0243i

Complex eigenvalues also contain information on almost no reflection.
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Spectra for a changing geometry

▶ Two series of computations: one with PMLs with different sign, one
with classical PMLs. We compute the spectra for h ∈ (1.3; 8) .

ℓ = 2.5

h
Ωh

▶ The magenta marks on the real axis correspond to k = π/ℓ & k = 2π/ℓ.
For k = 2π/ℓ, trapped modes and T = 1 should occur for certain h.
▶ We zoom at the region 0 < ℜe k < π.
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++ PMLs with different signs + Classical PMLs



Conclusion

Part I

♠ We explained how to find simples examples of Ω where T = 1 for the
Neumann problem.

1) This can be adapted to construct geometries supporting trapped
modes for the Neumann problem.

2) However this approach does not work for the Dirichlet problem.

Part II
♠ Spectral approach to compute non reflecting k (R = 0) for a given Ω.

1) Can we find a spectral approach to compute completely reflecting or
completely invisible k?

2) Can we prove existence of non reflecting k for the PT -symmetric pb?
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Conclusion of the course

What we did

Lecture 1. We presented rudiments of scattering theory in waveguides.

Lecture 2, 3 & 4. We used tools of asymptotic analysis and spectral
theory to identify situations of invisibility:

- Construction of small amplitude invisible obstacles.
- Construction of large amplitude non reflecting obstacles using complex
resonances.
- We presented a spectral problem characterizing zero reflection.

→ To be continued...
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v

vi

Thank you for your attention!
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