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Introduction

Figure 1: Examples of waveguides (source Wikipedia).

The aim of these lecture notes is to consider a concrete problem, namely the identification of
situations of invisibility in waveguides, to present techniques and tools of applied mathematics
that can be useful in other contexts. We will be interested in the propagation of scalar waves
in guides which are unbounded in one direction. Such problems arise in many fields of physics.
For example air ducts and horns in acoustics carry sound waves in musical instruments as well as
in loudspeakers. Conductive metal pipes are exploited to propagate high frequency radio waves
while optical fibers serve as waveguides for light in electromagnetics. Waveguides problems also
appear in water waves theory, in classical mechanics or in quantum mechanics. In general, the
diffraction of an incident wave in such structures in presence of an obstacle generates a reflection
and a transmission characterized by some scattering coefficients. Generally speaking, our goal is
to play with the geometry, the frequency and/or the index material to control these scattering
coefficients.

This document is divided in four chapters. In the first one, we present classical results con-
cerning waveguide theory. This is a rather long story and the aim here is not to be exhaustive
but instead to present the main ideas and ingredients that will be useful to address the invisibility
problematic. In Chapter II, we develop perturbative techniques based in particular on the use
of shape derivatives to design invisible defects of the reference geometry. With these approaches,
in principle we construct small amplitude invisible obstacles. In Chapter III, we exploit resonant
phenomena to provide examples of larger invisible obstacles. There, we also propose a method to
hid given objects by perturbing (in a singular way) the boundaries of the waveguide. Finally, in
Chapter IV we change the point of view, assume that the obstacle is given, and construct a non
self-adjoint operator whose eigenvalues coincide with frequencies such that there are incident fields
which produce zero reflection.

Our approaches mainly rely on techniques of asymptotic analysis as well as spectral theory for
self-adjoint and non self-adjoint operators. Wherever possible, we will illustrate the results by
numerical experiments.

The first chapter contains classical material. In the next three, some more recent results are
presented. They have been obtained with different colleagues among them, Antoine Bera, Anne-
Sophie Bonnet-Ben Dhia, Jérémy Heleine, Sergei Nazarov, Vincent Pagneux. I thank them warmly.

This is the first version of this document and it probably contains typos. I would be grateful
to those finding them and sending them to lucas.chesnel@inria.fr. Remarks, suggestions are
also welcome.

Key words. Waveguides, scattering, invisibility, asymptotic analysis, spectral theory, complex
resonances, spectral theory, shape derivative.
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Chapter I

Waveguide problems

1 Setting

1
x

y
S Ω

−d d

Figure I.1: Left: reference strip S. Right: perturbed waveguide Ω.

In this chapter, we present general results concerning waveguide theory. To make it simple, we
stick to a 2D scalar problem.

Set I := (0; 1) and consider Ω ⊂ R2 a waveguide which coincides with the reference strip
S := {(x, y) ∈ R × I} outside of a compact region located in the zone {(x, y) ∈ R2 | |x| < d}
for some d > 0 (see Figure I.1). We assume that the domain Ω is connected with Lipschitz
boundary. Let us study the wave equation, for t ≥ 0,

1
c2
∂2U

∂t2
− ∆U = F in Ω

U = 0 on ∂Ω,
(I.1)

with some initial conditions. Here c > 0, the celerity of waves in the medium filling Ω, is assumed
to be constant. The homogeneous Dirichlet Boundary Conditions (BCs) are relevant in certain
circumstances in electromagnetics when the Maxwell’s problem has some invariance with respect
to one spatial variable. Assume that the excitation F is time harmonic, i.e. of the form

F (x, y, t) = f(x, y)e−iωt,

for some pulsation ω > 0 corresponding to a temporal period T := 2π/w. Then it is natural to
look for solutions of (I.1) which are also harmonic for long times1. More precisely, we are led to
search for U solving (I.1) of the form

U(x, y, t) = u(x, y)e−iωt. (I.2)

Inserting (I.2) in (I.1), we find that u satisfies the problem

∆u+ k2u = f in Ω
u = 0 on ∂Ω

(I.3)

1The is the limiting amplitude principle, which can be violated due to trapped modes that we will meet later.
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where k := ω/c > 0 denotes the wavenumber.

We wish to endow (I.3) with a well-suited functional framework. This is not straightforward
for two reasons. First, the form associated with (I.3) is not coercive except when k is small.
Second, the domain Ω is unbounded so that the term involving k cannot be seen as a compact
perturbation of the principal part.

Before proceeding further, we introduce a few spaces that will be useful in the analysis. De-
note by L2(Ω) the usual Lebesgue space of square-integrable functions. It is a Hilbert space for
the inner product

(u, v)L2(Ω) =
∫

Ω
uv dxdy, ∀u, v ∈ L2(Ω). (I.4)

We will also work with the Sobolev spaces

H1(Ω) := {u ∈ L2(Ω) | ∇u ∈ (L2(Ω))2}
H1

0(Ω) := {u ∈ H1(Ω) |u = 0 on ∂Ω}

that we endow with the inner product

(u, v)H1(Ω) =
∫

Ω
∇u · ∇v + uv dxdy. (I.5)

They also are Hilbert spaces. We define the norms

∥ · ∥L2(Ω) = (·, ·)1/2
L2(Ω), ∥ · ∥H1(Ω) = (·, ·)1/2

H1(Ω).

For a non-empty set O, C ∞
0 (O) refer to the space of infinitely differentiable functions whose support

is bounded and in O.

2 Dirichlet problem for 0 < k < π

Assume that f in (I.3) belongs to L2(Ω). The natural variational formulation of that problem
writes

Find u ∈ H1
0(Ω) such that

a(u, v) = ℓ(v), ∀v ∈ H1
0(Ω),

(I.6)

with
a(u, v) =

∫
Ω

∇u · ∇v − k2uv dxdy, ℓ(v) =
∫

Ω
fv dxdy.

The bilinear form a(·, ·) is continuous in H1
0(Ω). Therefore, with the Riesz representation theorem,

we can introduce the linear bounded operator A(k) : H1
0(Ω) → H1

0(Ω) such that

(A(k)u, v)H1(Ω) = a(u, v), ∀u, v ∈ H1
0(Ω). (I.7)

In this section, we establish the following statement.

Theorem I.1. Pick k ∈ (0;π). The operator A(k) decomposes as

A(k) = B +K

where B : H1
0(Ω) → H1

0(Ω) is an isomorphism and K : H1
0(Ω) → H1

0(Ω) is compact (B and K are
allowed to depend on k).
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Proof. Define the bilinear form b(·, ·) such that

b(u, v) =
∫

Ω
∇u · ∇v + ((1 + k2)1Ωd

− k2)uv dxdy, ∀u, v ∈ H1
0(Ω),

where 1Ωd
stands for the indicator function of the set Ωd := {(x, y) ∈ Ω | |x| < d}. Since b(·, ·) is

continuous in H1
0(Ω), we can define the bounded operator B : H1

0(Ω) → H1
0(Ω) such that

(Bu, v)H1(Ω) = b(u, v), ∀u, v ∈ H1
0(Ω).

From the Lax-Milgram theorem, to show that B is an isomorphism, it suffices to prove that b(·, ·)
is coercive in H1

0(Ω). Below we establish the 1D Poincaré inequality

π2
∫

I
φ2 dt ≤

∫
I
(∂tφ)2 dt, ∀φ ∈ H1

0(I) := {ψ ∈ H1(I) |ψ(0) = ψ(1) = 0}, (I.8)

where we recall that I = (0; 1). Integrating this estimate with respect to x ∈ (−∞; −d) ∪ (d; +∞)
for u ∈ C ∞

0 (Ω) (the space of infinitely differentiable functions supported in Ω) and using the
density of C ∞

0 (Ω) in H1
0(Ω), we obtain

π2
∫

Ω\Ωd

u2 dxdy ≤
∫

Ω\Ωd

|∇u|2 dxdy, ∀u ∈ H1
0(Ω).

Therefore we can write

b(u, u) ≥
(

1 −
k2

π2

)∫
Ω\Ωd

|∇u|2 dxdy + ∥u∥2
H1(Ωd)

≥
(

1 −
k2

π2

)∫
Ω\Ωd

|∇u|2 dxdy + ∥u∥2
H1(Ωd)

≥ (1 + π2)−1
(

1 −
k2

π2

)
∥u∥2

H1(Ω\Ωd) + ∥u∥2
H1(Ωd) ≥ α ∥u∥2

H1(Ω)

with α = (1 + π2)−1(1 − k2/π2). This shows that b(·, ·) is coercive in H1
0(Ω).

Now set K = A(k) −B. We have

(Ku, v)H1(Ω) = −(1 + k2)
∫

Ω
uv dxdy, ∀u, v ∈ H1

0(Ω), (I.9)

To establish that K : H1
0(Ω) → H1

0(Ω) is compact, we have to prove that from any bounded
sequence (un) of functions of H1

0(Ω), we can extract a subsequence such that (Kun) converges in
H1

0(Ω). By taking v = Ku in (I.39), we obtain, for all u ∈ H1
0(Ω),

∥Ku∥H1(Ω) ≤ (1 + k2) ∥u∥L2(Ωd).

In particular, for umn := um − un, we obtain

∥Kumn∥H1(Ω) ≤ (1 + k2) ∥umn∥L2(Ωd). (I.10)

Since Ωd is bounded, the Rellich theorem ensures that the embedding of H1(Ωd) in L2(Ωd) is
compact. We deduce that we can extract from (un), which is bounded in H1(Ω) and so in H1(Ωd),
a subsequence, still denoted (un) such that (un) converges in L2(Ωd). Thus (un) is a Cauchy
sequence in L2(Ωd). From (I.10), we infer that (Kun) is a Cauchy sequence in H1

0(Ω). Since this
space is complete, we infer that (Kun) indeed converges in H1

0(Ω).
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This shows that A(k) satisfies the Fredholm alternative. Either A(k) is injective and in this case
it is an isomorphism of H1

0(Ω). Or A(k) has a kernel of finite dimension span(u1, . . . , uP ) and in
that case the equation

A(k)u = F in H1
0(Ω) (I.11)

has a solution (defined up to span(u1, . . . , uP )) if and only if F satisfies the compatibility conditions

(F, up)H1(Ω) = 0, p = 1, . . . , P. (I.12)

Let us emphasize that by multiplying (I.11) by up and using the symmetry of A(k), one easy finds
that the conditions (I.12) are necessary for the existence of a solution.

We prove now the Poincaré inequality needed in (I.8).

Lemma I.2. We have

inf
φ∈H1

0(I)\{0}

∥∂tφ∥2
L2(I)

∥φ∥2
L2(I)

= π2 (I.13)

so that there holds
π2 ∥φ∥2

L2(I) ≤ ∥∂tφ∥2
L2(I), ∀φ ∈ H1

0(I). (I.14)

Proof. To obtain 1D Poincaré inequalities as (I.14), a classical approach consists in working with
explicit representations. More precisely, for φ ∈ C ∞

0 (I), we can write, for s ∈ (0; 1),

φ(s) =
∫ s

0
∂tφ(t) dt.

According to the Cauchy-Schwarz inequality in L2, this implies, for all s ∈ (0; 1/2),

φ2(s) ≤
∫ s

0
1 dt

∫ s

0
(∂tφ(t))2 dt ≤ s ∥∂tφ∥2

L2(0;1/2).

Integrating this identity between 0 and 1/2, we obtain

∥φ∥2
L2(0;1/2) ≤

1
8 ∥∂tφ∥2

L2(0;1/2).

By establishing a similar estimate on (1/2; 1) (note that φ(1) = 0) and using the density of C ∞
0 (I)

in H1
0(I), we find

∥φ∥2
L2(I) ≤

1
8 ∥∂tφ∥2

L2(I) ⇔ 8 ∥φ∥2
L2(I) ≤ ∥∂tφ∥2

L2(I), ∀φ ∈ H1
0(I).

This is a nice Poincaré inequality but it is not optimal (observe that (I.14) is better because
8 < π2). Looking for the best Poincaré inequality leads us to consider the minimization problem

inf
φ∈H1

0(I)\{0}

∥∂tφ∥2
L2(I)

∥φ∥2
L2(I)

. (I.15)

Below we prove that this infimum, equal to some λ > 0, is actually a minimum because it is
attained at some functions u ∈ H1

0(I) \ {0}. Moreover we establish that these quantities satisfy

−∂2
ttu = λu in I. (I.16)

In other words, λ is an eigenvalue (the smallest) of the Dirichlet Laplacian and u is a corresponding
eigenfunction. Since I = (0; 1), a direct computation gives λ = π2 with u(t) = sin(πt) (up to a
multiplicative constant which does not change the ratio in (I.15)). Thus we obtain (I.13) and so
(I.14).
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To prove that the infimum in (I.15) is reached, let us first remark that solving (I.15) is equiv-
alent to solve the constrained minimization problem

inf
φ∈K

{
J(φ) =

∫
I
∂tφ

2 dt

}
with B := {φ ∈ H1

0(I) |
∫

I φ
2 dt = 1}. The functional J is positive in B, therefore we have

infB J ≥ 0. Consider (un) ∈ BN a minimizing sequence for J , i.e. a sequence of functions of B
such that

lim
n→+∞

J(un) = inf
B
J.

The sequence (J(un)) is bounded and so (un) is bounded in H1
0(I). Then we know that we can

extract a subsequence, still denoted by (un), such that there is some u ∈ H1
0(I) such that

un ⇀ u weakly in H1
0(I), un → u strongly in L2(I).

Now, by writing

0 ≤ (∂t(u− un), ∂t(u− un))L2(Ω) = ∥∂tu∥2
L2(I) + ∥∂tun∥2

L2(I) − 2(∂tu, ∂tun)L2(I),

we obtain 2(∂tu, ∂tun)L2(I) − ∥∂tu∥2
L2(I) ≤ ∥∂tun∥2

L2(I). By passing to the inferior limit, we deduce

∥∂tu∥2
L2(I) ≤ lim inf

n→+∞
∥∂tun∥2

L2(I)

and so
J(u) ≤ lim inf

n→+∞
J(un) = inf

B
J.

But, for all n ∈ N, we have ∥un∥L2(I) = 1. Since (un) converges strongly to u in L2(I), we deduce
∥u∥L2(I) = 1, which shows that u belongs to B. Thus J attains its infimum in B at u.

Set λ = J(u). For all v ∈ H1
0(I) \ {0}, we have v/∥v∥L2(I) ∈ B and so

J(v/∥v∥L2(I)) ≥ λ.

This gives, for all v ∈ H1
0(I) \ {0}, ∫

I
(∂tv)2 − λv2 dt ≥ 0.

Then we are led to consider the following minimization problem without constraint

min
v∈H1

0(I)

{
J̃(v) =

∫
I
(∂tv)2 − λv2 dt

}
.

According to what precedes, the functional J̃ is non negative in H1
0(I). Moreover, we have J̃(u) = 0

and u ∈ H1
0(I). Therefore u is a minimizer of J̃ in H1

0(I). Thus we must have, for all v ∈ H1
0(I),

s ∈ R,
0 = J̃(u) ≤ J̃(u+ sv).

This is equivalent to

0 ≤ s

(∫
I
∂tu ∂tv − λuv dt

)
+ s2J̃(v), ∀v ∈ H1

0(I), s ∈ R,

which holds if and only if ∫
I
∂tu ∂tv dt = λ

∫
I
uv dt, ∀v ∈ H1

0(I).

We deduce that, in the sense of distributions, we must have the equation (I.16).
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In Theorem I.1, we proved that A(k) satisfies the Fredholm alternative for k ∈ (0;π). We give now
a result of injectivity in certain geometries.

Proposition I.3. Assume that k ∈ (0;π) and Ω ⊂ S = R × I. Then the operator A(k) defined in
(I.7) is injective, and so is an isomorphism of H1

0(Ω). In that case, Problem (I.6) admits a unique
solution for all f ∈ L2(Ω).

Figure I.2: Left: example of domain where A(k) is an isomorphism for all k ∈ (0;π). Right:
example of domain where A(k) is not an isomorphism for all k ∈ (0;π).

Remark I.4. In Figure I.2 left, we give an example of domain Ω satisfying the assumption Ω ⊂ S.
We emphasize that the injectivity of A(k) for all k ∈ (0;π) does not always hold and in waveguides
with exterior bumps (with respect to the reference strip S) as in Figure I.2 right, A(k) can have a
non zero kernel for certain k ∈ (0;π).

Proof. When Ω ⊂ S, if a function belongs to H1
0(Ω), then its extension by zero to S is an element

of H1
0(S). Therefore we have

inf
u∈H1

0(S)\{0}

∫
Ω

|∇u|2 dxdy∫
Ω
u2 dxdy

≤ inf
u∈H1

0(Ω)\{0}

∫
Ω

|∇u|2 dxdy∫
Ω
u2 dxdy

. (I.17)

Now integrating the 1D Poincaré inequality (I.14) with respect to x ∈ R for u ∈ C ∞
0 (S) and using

the density of C ∞
0 (S) in H1

0(S), we obtain

π2
∫
S
u2 dxdy ≤

∫
S

|∇u|2 dxdy, ∀u ∈ H1
0(S).

From (I.17), this gives

π2
∫

Ω
u2 dxdy ≤

∫
Ω

|∇u|2 dxdy, ∀u ∈ H1
0(Ω).

Therefore, if u ∈ H1
0(Ω) is such that A(k)u = 0, then we have

0 = a(u, u) =
∫

Ω
|∇u|2 − k2u2 dxdy

≥ (π2 − k2)
∫

Ω
u2 dxdy,

which ensures that u ≡ 0 in Ω. This shows that A(k) is injective and Theorem I.1 together with
the Fredholm alternative guarantee that A(k) is an isomorphism of H1

0(Ω).

3 Dirichlet problem for k > π

In the previous paragraph, we studied Problem (I.3) for k < π. Now we wish to understand what
happens for k ≥ π. To proceed, we first compute what one usually calls the “modes” of (I.3). They
play a key role in the physical phenomena and so in the mathematical properties of (I.3).
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3.1 Computation of modes

The modes are defined as the solutions with separate variables, i.e. of the form

u(x, y) = α(x)φ(y), (I.18)

which solve Problem (I.3) in the reference strip S for f ≡ 0. Inserting (I.18) in the equation
∆u+ k2u = 0 in S, this yields

α′′(x)φ(y) + α(x)φ′′(y) + k2α(x)φ(y) = 0.

Dividing this identity by α(x)φ(y), we find that we must have

−φ′′(y) = λφ(y) in I

φ(0) = φ(1) = 0
(I.19)

and
−α′′(x) = (k2 − λ)α(x) in R (I.20)

for some constant λ to be determined. Problem (I.19) is a spectral problem: we wish to find the
values of λ such that (I.19) admits a non zero solution φ. A direct calculation shows that the
eigenpairs of (I.19) are given by

λn = nπ, φn(y) =
√

2 sin(nπy), n ∈ N∗ := {1, 2, . . . }. (I.21)

Note that the φn have been chosen such that they satisfy the orthonormality conditions

(φm, φn)L2(I) = δm,n

where δm,n stands for the Kronecker symbol. Then solving the second order ODE (I.20), finally
we find that when k ̸= nπ for all n ∈ N∗, the modes coincide with the family {w±

n }n∈N∗ where

w±
n (x, y) = e±iβnxφn(y), βn :=

√
k2 − n2π2. (I.22)

Here and below, the complex square root is chosen (this is a convention) such that if z = reiθ with
r ≥ 0 and θ ∈ [0; 2π), then

√
z =

√
reiθ/2. As a consequence, for any z ∈ C, there holds ℑm

√
z ≥ 0.

Let us make a few observations concerning these modes. To set ideas, introduce N ∈ N such
that k ∈ (Nπ; (N + 1)π).
⋆ For n = 1, ..., N (ignore this case if N = 0), we have

w±
n (x, y) = e±i

√
k2−n2π2xφn(y).

Since
√
k2 − n2π2 > 0 for n = 1, ..., N , these modes do not decay at infinity. They are called

propagating modes. For a fixed k > 0, there is always a finite number of propagating modes.
Moreover they do not exist when k ∈ (0;π) (the situation studied in the previous paragraph). On
the contrary, for all k > π, the modes w±

1 are propagating. Going back to time-domain, we observe
that these modes lead to consider solutions of (I.1) of the form

W±
n (x, y, t) = ei(±

√
k2−n2π2x−ωt)φn(y).

The waves W+
n propagate to the right while the W−

n propagate to the left. For this reason, we will
say that the w+

n are rightgoing modes while the w−
n are leftgoing.

⋆ For n = N + 1, N + 2, ..., we have

w±
n (x, y) = e∓

√
n2π2−k2xφn(y).

Since
√
n2π2 − k2 > 0 for n = N+1, N+2, . . . , these modes are exponentially decaying as x → ±∞

and exponentially growing as x → ∓∞. There are an infinite number of them.

Though these modes have been computed for the problem in the reference strip S, we will also use
them in the analysis of Problem (I.3) in the perturbed domain Ω.
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3.2 Ill-posedness in H1
0(Ω)

In this paragraph, our goal is to show that the existence of propagating modes for k > π is
responsible for the ill-posedness in the Fredholm sense of the operator A(k) : H1

0(Ω) → H1
0(Ω)

defined in (I.7).

Definition I.5. Let X and Y be two Banach spaces, and let T : X → Y be a continuous linear
map. The operator T is said to be a Fredholm operator if and only if the following two conditions
are fulfilled

i) dim(kerT ) < +∞ and rangeT is closed;

ii) dim(cokerT ) < +∞ where cokerT :=
(
Y/rangeT

)
.

Besides, the index of a Fredholm operator T is defined by indT = dim(kerT ) − dim(cokerT ).

To prove that the range of A(k) is not closed, we start by recalling a lemma due to J. Peetre [33]
(see also Theorem 12.12 in [41]).

Lemma I.6. Let X, Y, Z be three reflexive Banach spaces, such that X is compactly embedded
into Z. Let T : X → Y be a continuous linear map. Then the assertions below are equivalent:

i) dim(kerT ) < +∞ and rangeT is closed in Y;
ii) there exists C > 0 such that ∥u∥X ≤ C (∥Tu∥Y + ∥u∥Z), ∀u ∈ X.

Proposition I.7. For k > π, the operator A(k) : H1
0(Ω) → H1

0(Ω) defined in (I.7) is not Fredholm.

Remark I.8. We exclude the case k = π because the computations are a bit different. However in
that situation too one can prove that A(k) : H1

0(Ω) → H1
0(Ω) is not Fredholm.

Proof. Set again Ωd := {(x, y) ∈ Ω | |x| < d} where d appears before (I.3). Our goal is to show
that we cannot have the existence of C > 0 such that there holds

∥u∥H1(Ω) ≤ C (∥A(k)u∥H1(Ω) + ∥u∥L2(Ωd)), ∀u ∈ H1
0(Ω). (I.23)

To proceed, consider some functions ψ+, ψ− ∈ C ∞(R) such that

ψ+(x) =
1 for x > d+ 1
0 for x < d

ψ−(x) =
1 for x < 0
0 for x > 1.

Then for m ∈ N, set ψm(x) = ψ+(x)ψ−(x−m) and

um(x, y) = ψm(x)w+
1 (x, y) = ψm(x)eiβ1xφ1(y),

where w+
1 is the mode appearing in (I.22) which is propagating for k > π (because then β1 =√

k2 − π2 ∈ R).

d d+ 1 m+ 1m

Figure I.3: Graphs of the cut-off function ψm.

Exploiting that the support of um becomes unbounded as m → +∞, it is straightforward to show
that

lim
m→+∞

∥um∥H1(Ω) = +∞.

11



On the other hand, clearly (∥um∥L2(Ωd)) remains bounded as m → +∞. Now, for v ∈ H1
0(Ω), we

have

(A(k)um, v)H1(Ω) =
∫

Ω
∇um · ∇v − k2umv dxdy = −

∫
Ω

(∆um + k2um)v dxdy. (I.24)

But there holds

∆um + k2um = ψm(∆w+
1 + k2w+

1 ) + 2∇ψm · ∇w+
1 + w+

1 ∆ψm

= 2∇ψm · ∇w+
1 + w+

1 ∆ψm.

By observing that ψm, ∆ψm are non zero only in (d; d+ 1) × (0; 1) ∪ (m;m+ 1) × (0; 1) and that
their norms in L∞(Ω) remain bounded independently of m ∈ N, we find that there exists C > 0
independent of m such that we have

∥∆um + k2um∥L2(Ω) ≤ C.

By taking v = A(k)um in (I.24), we conclude that (A(k)um) remains bounded in H1
0(Ω) as m →

+∞. This shows that Estimate (I.23) does not hold.
Finally, since Ωd is bounded, the embedding of H1

0(Ω) in L2(Ωd) is compact. From Lemma I.6, we
deduce that A(k) : H1

0(Ω) → H1
0(Ω) is not Fredholm when k > π.

By working in weighted Sobolev spaces, one can show that A(k) has a kernel of finite dimension
for all k > π. Therefore, the loss of Fredholmness is due to the fact that the range of A(k) is not
closed then k > π. Thus, even by removing the kernel if there exists one, we cannot create an
operator in H1

0(Ω) which admits a continuous inverse when propagating modes exist. This leads
us to think that we have to take them into account in the functional framework.

To proceed, we will apply some strategy which is classical in applied mathematics related to
physics: we will add a bit of dissipation in the medium characterized by some parameter η > 0
and then take the limit as η → 0. More precisely, with dissipation the definition of the physical
solution, the one in H1

0(Ω), becomes obvious. Then we will define the solution without dissipation
as the limit as η → 0 of the solution with dissipation. This is called the limiting absorption in
scattering theory. In fluid mechanics, dissipation is more often refereed to as viscosity but the idea
is the same.

3.3 Problem with dissipation

To model dissipation, let us work on the problem

∆uη + (k2 + ikη)uη = f in Ω
uη = 0 on ∂Ω

(I.25)

with η > 0. To get an idea of why this is a relevant way to model dissipation, let us come back
to time domain. With the time harmonic convention Uη(x, y, t) = uη(x, y)e−iωt, Problem (I.25)
originates from the study of the wave equation, for t ≥ 0,

∂2Uη

∂t2
+ η

∂Uη

∂t
−

1
c2 ∆Uη = F in Ω

Uη = 0 on ∂Ω,
(I.26)

with some initial conditions. Assume that the forcing term F is null. Then multiplying (I.26) by
∂tU and integrating in Ω, we obtain

∂

∂t

1
2

∫
Ω

∣∣∣∣∂Uη

∂t

∣∣∣∣2 +
1
c2 |∇Uη|2 dxdy = −η

∫
Ω

∣∣∣∣∂Uη

∂t

∣∣∣∣2 dxdy.
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Therefore, the energy

E(t) =
1
2

∫
Ω

∣∣∣∣∂Uη

∂t

∣∣∣∣2 +
1
c2 |∇Uη|2 dxdy

indeed decreases, due to the term η∂tUη, when η > 0.

The variational formulation associated with (I.25) writes

Find uη ∈ H1
0(Ω) such that

aη(uη, v) = ℓ(v), ∀v ∈ H1
0(Ω),

(I.27)

where the sesquilinear (resp. antilinear) forms aη(·, ·) (resp. ℓ(·)) are such that

aη(w, v) =
∫

Ω
∇w · ∇v − (k2 + ikη)wv dxdy, ℓ(v) =

∫
Ω
fv dxdy.

Note that the functions are now assumed to be complex valued and the inner products introduced
in (I.4), (I.5) are changed accordingly.

Theorem I.9. For all k > 0, for all η > 0, Problem (I.27) admits a unique solution uη ∈ H1
0(Ω).

Proof. For v ∈ H1
0(Ω), we have

ℜe aη(v, v) =
∫

Ω
|∇v|2 − k2|v|2 dxdy, ℑmaη(v, v) = −kη

∫
Ω

|v|2 dxdy,

Therefore, we obtain, for γ > 0,

ℜe
(
(1 + iγ)aη(v, v)

)
= ℜe aη(v, v) − γ ℑmaη(v, v) =

∫
Ω

|∇v|2 + (γkη − k2) |v|2 dxdy.

Thus for any η > 0, for γ > 0 large enough, the form (1 + iγ)aη(·, ·) is coercive in H1
0(Ω). With

the complex version of the Lax-Milgram theorem, this is enough to conclude that Problem (I.27)
admits a unique solution in that case.

ΩL

−d d−L L

ΣLΣ−L
Γ

Γ

Γ
Figure I.4: Domain ΩL.

Now assume that f in (I.25) is given in L2(Ω) and supported in Ωd. Introduce some L > d and
define the bounded domain

ΩL := {(x, y) ∈ Ω | |x| < L}

(see Figure I.4). To take the limit η tends to zero in (I.27), we first derive a problem set in ΩL

whose solution coincides with uη|ΩL
. To proceed, we must impose ad hoc transparent conditions

on the artificial boundaries
Σ± := {±L} × I

that do not create spurious reflections. Set S+ := (L; +∞)×I and define the Dirichlet-to-Neumann
operator such that

Λη
+ : H1/2

00 (ΣL) → H−1/2(ΣL)

φ 7→
∂vφ

∂ν
,
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where ∂ν = ∂x on ΣL and vφ ∈ H1(S+) is the function such that

∆vφ + (k2 + ikη)vφ = 0 in S+

vφ = 0 on ∂Ω ∩ ∂S+

vφ = φ on ΣL.

(I.28)

Here H1/2
00 (ΣL) stands for the space of traces on ΣL of elements of H1

0(ΩL). It coincides with the
functions which belong to H1/2({L}×R) when extended by zero. Moreover H−1/2(ΣL) denotes the
dual space of H1/2

00 (ΣL). Classically, one shows that the linear operator Λη
+ : H1/2

00 (ΣL) → H−1/2(ΣL)
is continuous. If uη solves (I.27), then it satisfies

∂uη

∂ν
= Λη

+(uη) on ΣL, (I.29)

where again ∂ν = ∂x on ΣL.

In the following, it will be useful to have an explicit representation of the action of Λη
+. We

will obtain it by working with the modes of (I.28). Assume that k is not equal to one of the nπ,
n ∈ N∗. In every transverse section {x} × I of S+, we have the decomposition in Fourier series

vφ(x, y) =
+∞∑
n=1

αn(x)φn(y) (I.30)

where the φn are the ones introduced in (I.21) and the αn are to be determined. Inserting (I.30)
into (I.25), similarly to (I.20), we find that the αn must be of the form

αn(x) = An e
iβη

nx +Bn e
−iβη

nx

for some constants An, Bn ∈ C with

βη
n =

√
k2 + iη − n2π2.

But according to our convention for the complex square root after (I.22), for η > 0, the imaginary
part of βη

n is positive for all n ∈ N∗. As a consequence, x 7→ eiβη
nx is exponentially decaying at +∞

while x 7→ e−iβη
nx is exponentially growing. Since vφ belongs to H1(S+), we must impose Bn = 0

for all n ∈ N∗. Thus for x > L, we have the expansion

vφ(x, y) =
+∞∑
n=1

(φ,φn)L2(ΣL) e
iβη

n(x−L) φn(y)

so that there holds

Λη
+(φ) =

+∞∑
n=1

iβη
n (φ,φn)L2(ΣL) φn(y).

We work completely similarly in S− := (−∞; −L)×I and define the Dirichlet-to-Neumann operator
such that

Λη
− : H1/2

00 (Σ−L) → H−1/2(Σ−L)

φ 7→
∂vφ

∂ν
,

where this time ∂ν = −∂x on Σ−L and vφ ∈ H1(S−) is the function such that

∆vφ + (k2 + ikη)vφ = 0 in S−

vφ = 0 on ∂Ω ∩ ∂S−

vφ = φ on Σ−L.
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The operator Λη
− : H1/2

00 (Σ−L) → H−1/2(Σ−L) is continuous and if uη solves (I.27), then it satisfies

∂uη

∂ν
= Λη

−(uη) on Σ−L, (I.31)

with ∂ν = −∂x on Σ−L. Besides, we have the representation

Λη
−(φ) =

+∞∑
n=1

iβη
n (φ,φn)L2(Σ−L) φn(y).

Now we have everything to write our problem in ΩL. Set Γ := ∂Ω ∩ ∂ΩL and H1
0(ΩL; Γ) := {v ∈

H1(ΩL) | v = 0 on Γ}.

Proposition I.10. If uη ∈ H1
0(Ω) solves (I.25), then its restriction to ΩL satisfies

Find uη ∈ H1
0(ΩL; Γ) such that

∆uη + (k2 + ikη)uη = f in ΩL

∂uη

∂ν
= Λη

±(uη) on Σ±L

(I.32)

where ∂ν = ±∂x at x = ±L. Conversely, if uη ∈ H1
0(Ω) satisfies (I.32), it can be extended as a

solution in H1
0(Ω) of (I.25).

Proof. The first part of the statement comes from (I.29), (I.31). Now if uη ∈ H1
0(Ω) solves (I.32),

define ûη such that

ûη(x, y) =
uη(x, y) in ΩL

+∞∑
n=1

(uη, φn)L2(Σ±L) e
±iβη

n(x∓L) φn(y) in S±.

The function ûη satisfies ∆ûη + (k2 + ikη)ûη = f in ΩL ∪ S+ ∪ S−. Moreover we have [ûη]|Σ±L
= 0

as well as [∂xûη]|Σ±L
= 0 where [·]|Σ±L

stands for the jump at x = ±L. This is enough to conclude
that ûη is the solution of (I.32) in H1

0(Ω).

3.4 Problem without dissipation

Taking the limit η tends to zero in (I.32), we are led to consider the problem

Find u ∈ H1
0(ΩL; Γ) such that

∆u+ k2u = f in ΩL

∂u

∂ν
= Λ±(u) on Σ±L

(I.33)

where Λ± are the operators such that

Λ± : H1/2
00 (Σ±L) → H−1/2(Σ±L)

φ 7→
+∞∑
n=1

iβn (φ,φn)L2(Σ±L) φn(y).
(I.34)

The study of Problem (I.33) leads to consider the following variational problem

Find u ∈ H1
0(ΩL; Γ) such that

aout(u, v) = ℓ(v), ∀v ∈ H1
0(ΩL; Γ),

(I.35)
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with

aout(u, v) =
∫

ΩL

∇u · ∇v − k2uv dxdy − ⟨Λ+(u), v⟩ΣL
− ⟨Λ−(u), v⟩Σ−L

, ℓ(v) =
∫

ΩL

fv dxdy. (I.36)

It is important to understand that the Dirichlet-to-Neumann operators Λ± in (I.33) on Σ±L have
a double action. First, they allow to look for a solution which decompose on propagating modes
which are not in H1

0(Ω). But we cannot allow for all propagating modes in the functional space
because otherwise by combining them, we could create non zero functions satisfying the homoge-
neous problem, i.e we would obtain for all frequencies a non zero kernel. But by working with the
Λ±, we also impose radiation conditions and select outgoing behaviors (this explains the choice of
the index out for “outgoing”). At the end, for ±x > L the solution, which is the physical one, is
searched as a superposition of outgoing propagating modes and evanescent modes.

Besides, in (I.36) ⟨·, ·⟩Σ±L
stands for the antilinear duality pairing between H−1/2(Σ±L) and

H1/2
00 (Σ±L). By exploiting that the operators Λ± : H1/2

00 (Σ±L) → H−1/2(Σ±L) are continuous
and that the trace mappings from H1

0(ΩL) to H1/2
00 (Σ±L) are also continuous, we deduce that

the sesquilinear form aout(·, ·) is continuous in H1
0(ΩL). Therefore, with the Riesz representation

theorem, we can introduce the linear operator Aout(k) : H1
0(ΩL; Γ) → H1

0(ΩL; Γ) such that

(Aout(k)u, v)H1(ΩL) = aout(u, v), ∀u, v ∈ H1
0(ΩL; Γ). (I.37)

One has the following statement.

Theorem I.11. For k ∈ (π; +∞) \ {Nπ}, the operator Aout(k) decomposes as

Aout(k) = Bout +K

where Bout : H1
0(ΩL; Γ) → H1

0(ΩL; Γ) is an isomorphism and K : H1
0(ΩL; Γ) → H1

0(ΩL; Γ) is
compact (Bout and K are allowed to depend on k).

Proof. Define the continuous operator Bout : H1
0(ΩL; Γ) → H1

0(ΩL; Γ) such that

(Boutu, v)H1(ΩL) = aout(u, v), ∀u, v ∈ H1
0(ΩL; Γ),

with
bout(u, v) =

∫
ΩL

∇u · ∇v + uv dxdy − ⟨Λ+(u), v⟩ΣL
− ⟨Λ−(u), v⟩Σ−L

.

For u ∈ H1
0(ΩL; Γ), we have

ℜe bout(u, u) = ∥u∥2
H1(ΩL) − ℜe ⟨Λ+(u), u⟩ΣL

− ℜe ⟨Λ−(u), u⟩Σ−L
. (I.38)

But (I.34) provides

⟨Λ±(u), u⟩Σ±L
=

+∞∑
n=1

iβn |(u, φn)L2(Σ±L)|2.

Introduce N ∈ N∗ such that k ∈ (Nπ; (N + 1)π). The iβn for n = 1, . . . , N are purely imaginary.
On the other hand, the iβn for n > N are real negative. Thus we have

ℜe ⟨Λ±(u), u⟩Σ±L
=

+∞∑
n=N+1

iβn |(u, φn)L2(Σ±L)|2 =
+∞∑

n=N+1
−
√
n2π2 − k2 |(u, φn)L2(Σ±L)|2 < 0.

With (I.38), this gives
ℜe bout(u, u) ≥ ∥u∥2

H1(ΩL).

From the complex version of the Lax-Milgram theorem, we deduce that Bout : H1
0(ΩL; Γ) →

H1
0(ΩL; Γ) is an isomorphism.
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Now set K = Aout(k) −Bout. We have

(Ku, v)H1(ΩL) = −(1 + k2)
∫

ΩL

uv dxdy, ∀u, v ∈ H1
0(ΩL; Γ). (I.39)

Since ΩL is bounded, the embedding of H1
0(ΩL; Γ) in L2(ΩL) is compact and we can show that

K : H1
0(ΩL; Γ) → H1

0(ΩL; Γ) is compact by working as for the operator K appearing in the proof
of Theorem I.1.

This shows that Aout(k) satisfies the Fredholm alternative. Either Aout(k) is injective and in this
case it is an isomorphism of H1

0(ΩL; Γ). Or Aout(k) has a kernel of finite dimension span(u1, . . . , uP )
and in that case the equation

Aout(k)u = F in H1
0(ΩL; Γ)

has a solution (defined up to span(u1, . . . , uP )) if and only if F satisfies the compatibility conditions

(F, up)H1(ΩL) = 0, p = 1, . . . , P. (I.40)

For a given geometry, one can show that the set of k ∈ (π; +∞) \ {Nπ} such that Aout(k) is not
injective is discrete and accumulates only at +∞.

If u solves (I.33), then by defining û such that

û(x, y) =
u(x, y) in ΩL

+∞∑
n=1

(u, φn)L2(Σ±L) e
±iβn(x∓L) φn(y) for ± x > L,

(I.41)

we obtain a solution of (I.3). In general, this û does not belong to H1
0(Ω) because it involves

propagating modes.

In the (rare) cases where Aout(k) is not injective, we show now that the element u of its ker-
nel do not decompose on the propagating modes. As a consequence, the corresponding extensions
û are exponentially decaying as x → ±∞ and so are localized in a neighborhood of the perturbation
in the geometry. For this reason one usually call them trapped modes.

Proposition I.12. Pick k ∈ (π; +∞) \ {Nπ} and consider some u in kerAout(k). Then its
corresponding extension û defined via (I.41) decays as O(e−

√
(N+1)2π2−k2|x|) as x → ±∞ and so

belongs to H1
0(Ω).

Proof. Introduce again N ∈ N∗ such that k ∈ (Nπ; (N + 1)π). If u is an element of kerAout(k),
we have aout(u, u) = 0 and so

0 = ℑmaout(u, u) = −
N∑

n=1
βn (|(u, φn)L2(Σ+L)|2 + |(u, φn)L2(Σ−L)|2).

Since the β1, . . . , βN are all positive, this proves that the corresponding û in (I.41) decomposes
only on the evanescent modes.

3.5 Limiting absorption principle

In this paragraph, we prove that the dissipative solution converges to the solution of Problem
(I.33) without dissipation as η tends to zero.
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Theorem I.13. Fix k ∈ (π; +∞) \ {Nπ} and assume that the operator Aout(k) defined in (I.37)
is injective. Then there is η0 such that we have

∥uη − u∥H1(ΩL) ≤ Cη ∥f∥L2(ΩL), ∀η ∈ (0; η0],

with a constant C > 0 which is independent of η. Here u, uη are the functions solving respectively
(I.33), (I.32).

Proof. Let F be the element of H1
0(ΩL; Γ) such that

(F, v)H1(ΩL) = ℓ(v), ∀v ∈ H1
0(ΩL; Γ).

Denote also by Aη : H1
0(ΩL; Γ) → H1

0(ΩL; Γ) the operator such that

(Aηw, v)H1(ΩL) = aη(w, v), ∀w, v ∈ H1
0(ΩL; Γ).

We have, for all η > 0,
Aηuη = F = Aoutu.

This gives Aout(u − uη) = (Aη − Aout)uη. Since Aout is assumed to be injective, Theorem I.11
together with the Fredholm alternative guarantee that Aout is an isomorphism of H1

0(ΩL; Γ). Thus
we can write

u− uη = (Aout)−1(Aη −Aout)uη. (I.42)

Now from the definition of Aout, Aη, one establishes, for η small,

∥Aη −Aout∥ ≤ Cη, (I.43)

where C > 0 is a constant which may change from one line to another below, but remains inde-
pendent of η. Gathering (I.42) and (I.43), we find

∥u− uη∥H1(ΩL) ≤ Cη ∥uη∥H1(ΩL). (I.44)

By using the inequality ∥uη∥H1(ΩL) ≤ ∥u− uη∥H1(ΩL) + ∥u∥H1(ΩL) in (I.44), we obtain, for η small
enough,

∥u− uη∥H1(ΩL) ≤ Cη ∥u∥H1(ΩL) ≤ Cη ∥(Aout)−1f∥H1(ΩL) ≤ Cη ∥f∥L2(ΩL).

3.6 Scattering problem

In (I.33), we considered a problem with a source term f . In the following, we will be mostly
interested in scattering problems for incident waves. To keep things as simple as possible, we
assume all through this paragraph that k ∈ (π; 2π) so that only the modes w±

1 can propagate. To
make short, we denote them by w± so that

w±(x, y) = e±iβ1xφ1(y) = e±i
√

k2−π2xφ1(y). (I.45)

The scattering of the rightgoing wave w+ coming from the left branch of the waveguide leads us
to consider the problem

Find u+ ∈ H1
0,loc(Ω) such that u+ − w+ is outgoing and

∆u+ + k2u+ = 0 in Ω
u+ = 0 on ∂Ω.

(I.46)
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Here H1
0,loc(Ω) denotes the set of measurable functions v such that ζv belongs to H1

0(Ω) for all
ζ ∈ C ∞

0 (R2). Moreover, the sentence u+ −w+ is outgoing means that we impose the decomposition

u+ − w+ =



+∞∑
n=1

α+
n e

iβnx φn(y) for x > L

+∞∑
n=1

α−
n e

−iβnx φn(y) for x < −L,

for some α±
n ∈ C. In this context, u+ is usually called the total field associated with the incident

field w+ while the quantity us
+ := u+ − w+ is the scattered field.

Proposition I.14. For all k ∈ (π; 2π), (I.46) admits a solution. It is unique if trapped modes do
not exist.

Proof. Introduce some cut-off functions ζ ∈ C ∞(R) such that

ζ(x) =
1 for x ≤ −L
0 for x ≥ −d,

If u+ satisfies (I.46), then us
+ = u+ − ζw+ solves Problem (I.33) with

f = −∆(ζw+) − k2(ζw+) ∈ L2(ΩL). (I.47)

Conversely, if us
+ satisfies (I.33) with the above f , then u+ := us

+ + ζw+ is a solution of (I.46).
Therefore it is sufficient to focus our attention on the study of (I.33) with f defined in (I.47).

If trapped modes do not exist, Theorem I.11 together with the Fredholm alternative ensure that
(I.33) admits a unique solution.
Now if trapped modes span(u1, . . . , uP ), P ≥ 1, exist, let us prove that for the particular f con-
sidered in (I.47) related to the incident mode, Problem (I.33) still have a solution. To proceed, we
have to show that f satisfies the compatibility conditions appearing in (I.40). For p = 1, . . . , P ,
integrating twice by parts in ΩL and using that ∆up + k2up = 0 in Ω, we obtain

(f, up)L2(ΩL) = −
∫

ΩL

(
∆(ζw+) + k2(ζw+)

)
up dxdy = −

∫
Σ−L

∂w+

∂ν
up − w+

∂up

∂ν
dy.

Above we used the fact that ζ = 1 on Σ−L. Now we observe that w+ is propagating while
Proposition I.12 ensures that up decomposes only on the evanescent modes. From the orthogonality
of the family (φn)n∈N∗ in L2(I), we conclude that (f, up)L2(ΩL) = 0.

Set R+ := α−
n , T+ := 1 + α+

n so that for u+ we have the representation

u+ =
w+ +R+w− + ũ+ for x < −L

T+w+ + ũ+ for x > L,
(I.48)

with ũ+ ∈ H1
0(Ω). The quantities R+, T+ are usually called the reflection and transmission coeffi-

cients. Let us emphasize that they are uniquely defined, even if trapped modes exist a certain k.
Indeed since trapped modes decay as O(e−

√
4π2−k2|x|) as x → ±∞ according to Proposition I.12,

the scattering coefficients R+, T+ are insensitive to their existence.

In the same way, one shows that Problem (I.3) admits a solution u− ∈ H1
0,loc(Ω) with the de-

composition

u− =
T−w− + ũ− for x < −L

w− +R−w+ + ũ− for x > L,
(I.49)
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where R−, T− ∈ C, ũ− ∈ H1
0(Ω). It corresponds to the scattering of the leftgoing wave w− coming

from the right branch of the waveguide.

With the coefficients R±, T± appearing in the decompositions (I.48), (I.49), we form the scat-
tering matrix

S :=
(
R+ T+

T− R−

)
∈ C2×2.

Due to physics, the matrix S has a very rigid structure. More precisely, we have the following
statement:

Proposition I.15. The scattering matrix S is symmetric (T+ = T−) and unitary (SS⊤ = Id2×2).

Proof. For l > 0, set Ωl := {(x, y) ∈ Ω | |x| < l}, Σ±l := {±l} × I. We have

0 =
∫

Ωl

(∆u+ + k2u+)u− − u+(∆u− + k2u−) dxdy =
∫

Σl∪Σ−l

∂u+

∂ν
u− − u+

∂u−

∂ν
dy.

Using decompositions (I.48), (I.49) in the above identity and taking the limit l → +∞, we obtain
0 = 2iβ1(T+ − T−), which gives T+ = T−. Then working similarly from the identities

0 =
∫

Ωl

(∆u± + k2u±)u± − u±(∆u± + k2u±) dxdy =
∫

Σl∪Σ−l

∂u±

∂ν
u± − u±

∂u±

∂ν
dy,

one establishes the relations of conservation of energy

|R±|2 + |T±|2 = 1. (I.50)

Finally, by using that

0 =
∫

Ωl

(∆u± + k2u±)u∓ − u±(∆u∓ + k2u∓) dxdy =
∫

Σl∪Σ−l

∂u±

∂ν
u∓ − u±

∂u∓

∂ν
dy,

one gets R±T∓ + T±R∓ = 0.

In the following, we simply set T := T+ = T− so that we have

S =
(
R+ T

T R−

)
.

In our study, we will need some formulas expressing the values of the scattering coefficients R±,
T with respect to u±.

Proposition I.16. For k ∈ (π; 2π), the coefficients R±, T appearing in (I.48), (I.49) in the
decompositions of u+, u− satisfy

R± =
1

2iβ1

∫
ΣL∪Σ−L

∂u±

∂ν
w∓ − u±

∂w∓

∂ν
dy and T − 1 =

1
2iβ1

∫
ΣL∪Σ−L

∂u±

∂ν
w± − u±

∂w±

∂ν
dy.

Proof. From (I.48), we find on Σ−L

∂u+

∂ν
= −

∂u+

∂x
= −iβ(w+ −R+w−) − ∂xũx,

∂w−

∂ν
= −

∂w+

∂x
= −iβw+,

and on on ΣL

∂u+

∂ν
=
∂u+

∂x
= iβT w+ + ∂xũx,

∂w−

∂ν
=
∂w+

∂x
= iβw+.
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By exploiting that the exponentially decaying modes appearing in the decomposition of ũ are
orthogonal to w± in L2(Σ±L), we obtain

1
2iβ1

∫
ΣL∪Σ−L

∂u+

∂ν
w− − u+

∂w−

∂ν
dy

=
1
2

∫
Σ−L

−(w+ −R+w−)w+ + (w+ +R+w−)w+ dy +
1
2

∫
ΣL

T (w2
+) − T (w2

+) dy = R+.

Formulas for R− and T are obtained in a similar manner.

3.7 Numerical approximation

Below we will have to compute numerical approximations of the quantities u±, in particular to
obtain S. There are “three infinities” which are unpleasant to solve (I.46) with a computer. First,
the domain Ω is unbounded. To face this difficulty, we will exploit the above analysis and consider
a formulation set in ΩL involving the Dirichlet-to-Neumann operators similar to (I.35). Second,
H1

0(ΩL; Γ) is a space of infinite dimension. We will work with a finite element method and solve a
variational formulation in a space of finite dimension. Third, the radiation condition involves an
infinite number of terms. Quite naturally, we will truncate the series appearing in the Dirichlet-
to-Neumann operators at rank M > N where N is the number of propagating modes.

To set ideas, assume that k ∈ (π; 2π) and consider the approximation of u+. Since u+ − w+
is outgoing, we have the conditions

∂(u+ − w+)
∂ν

= Λ±(u+ − w+) on Σ±L.

This gives
∂u+

∂ν
= Λ±(u+) +

∂w+

∂ν
− Λ±(w+) on Σ±L.

Since w+ is rightgoing, using the definitions (I.34) of Λ±, we obtain

∂νw+ − Λ+(w+) = 0 on ΣL, ∂νw+ − Λ−(w+) = −2iβ1w+ on Σ−L.

Thus u+ solves the problem

Find u+ ∈ H1
0(ΩL; Γ) such that for all v ∈ H1

0(ΩL; Γ),∫
ΩL

∇u+ · ∇v − k2uv dxdy − ⟨Λ+(u+), v⟩ΣL
− ⟨Λ−(u+), v⟩Σ−L

= −2iβ1

∫
Σ−L

w+v dy.

Note that (I.34) yields

⟨Λ±(u), v⟩Σ±L
=

+∞∑
n=1

iβn (u, φn)L2(Σ±L) (v, φn)L2(Σ±L).

Now introduce (Th)h a shape regular family of triangulations of ΩL (in other words, we mesh the
domain ΩL with triangles). Define the family of Lagrange finite element spaces

Vh :=
{
v ∈ H1

0(ΩL; Γ) such that v|τ ∈ Pq(τ) for all τ ∈ Th

}
,

where Pq(τ) is the space of polynomials of degree at most q on the triangle τ . Finally, the problem
we solve writes

Find uh
+ ∈ Vh such that for all vh ∈ Vh,∫

ΩL

∇uh
+ · ∇vh − k2uh

+v
h dxdy −

M∑
n=1

iβn (uh
+, φn)L2(ΣL) (vh, φn)L2(ΣL)

−
M∑

n=1
iβn (uh

+, φn)L2(Σ−L) (vh, φn)L2(Σ−L) = −2iβ1

∫
Σ−L

w+vh dy.

(I.51)
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One can show that for h small enough, L large enough (actually one has exponential convergence
with respect to L), uh

+ yields a good approximation of u+. Then replacing u+ by uh
+ in the exact

formulas
R+ =

∫
Σ−L

(u+ − w+)w+ dy, T =
∫

ΣL

u+w− dy,

we obtain good approximations of the scattering coefficients.

4 Neumann problem

In acoustics, we are led to study the same Helmholtz equation as in (I.3) but with homogeneous
Neumann BCs which model sound hard walls. This yields the problem

∆u+ k2u = 0 in Ω
∂νu = 0 on ∂Ω,

(I.52)

where u stands for the pressure of the fluid in Ω and ∂ν refers to the outward normal derivative
on ∂Ω. As seen in the study of the Dirichlet case, the modes play a key role in the analysis. This
time, we need to compute the solutions of (I.52) with separate variables in the reference strip S.
Reproducing what has been done in §3.1, we find that they coincide with the family {w±

n }n∈N
where

w±
n (x, y) = e±iβnxφn(y), βn :=

√
k2 − n2π2, φn(y) = 1 if n = 0√

2 cos(nπy) for n > 0. (I.53)

In particular for all k > 0, we have w±
0 (x, y) = e±ikx, which shows that unlike the Dirichlet case,

propagating modes always exist (this is also related to the fact that we have no Poincaré inequality
as (I.14) in H1(I)). As a consequence, for all k > 0, H1(Ω) is not an adapted functional framework
to study (I.53). The solution must decompose on the propagating modes and radiation conditions
must be imposed to select the outgoing behaviour. The method, based in particular on the limiting
absorption principle, is completely similar to what has been done in §3.3, 3.4, 3.5. We do not de-
tail it and instead simply present the main results concerning the corresponding scattering problem.

To stick to the simplest setting, we assume that k belongs to (0;π) so that only the modes w±
0 can

propagate. We denote them by w±, so that

w±(x, y) = e±ikx. (I.54)

Note that w± are plane waves, they do not depend on the variable y (which was not the case
for the Dirichlet problem). The scattering of the rightgoing wave w+ in Ω leads to consider the
solution u+ ∈ H1

loc(Ω) of (I.52) admitting the expansion

u+ =
w+ +R+w− + ũ+ for x < −L

T+w+ + ũ+ for x > L,
(I.55)

with R+, T+ ∈ C and ũ+ ∈ H1(Ω). More precisely, by adapting what has been done in (3.6), one
can show that (I.52) always admits a solution with the expansion (I.55). This solution is uniquely
defined if trapped modes (solutions of (I.52) in H1(Ω)) do not exist. Besides, by working as in
Proposition I.12, one shows that trapped modes, if they exist, decay as O(e−

√
π2−k2|x|) as x → ±∞

so that the scattering coefficients R+, T+ in (I.55) are always uniquely defined.

Similarly, the scattering of the leftgoing plane wave w− in Ω leads to consider the solution
u− ∈ H1

loc(Ω) of (I.52) admitting the expansion

u− =
T−w− + ũ− for x < −L

w− +R−w+ + ũ− for x > L,
(I.56)

22



with R−, T− ∈ C and ũ− ∈ H1(Ω).

As in Proposition I.15, one proves that T+ = T− and we set T := T+ = T−. The scattering
matrix

S =
(
R+ T

T R−

)
∈ C2×2

is symmetric and unitary (SS⊤ = Id2×2). In particular, we have the relations of conservation of
energy

|R±|2 + |T |2 = 1. (I.57)

As in the proof of Proposition I.16, one establishes the following statement:

Proposition I.17. For k ∈ (0;π), the coefficients R±, T appearing in (I.55), (I.56) in the de-
compositions of u+, u− satisfy

R± =
1

2ik

∫
ΣL∪Σ−L

∂u±

∂ν
w∓ − u±

∂w∓

∂ν
dy and T =

1
2ik

∫
ΣL∪Σ−L

∂u±

∂ν
w± − u±

∂w±

∂ν
dy.

For the numerics, we work with a formulation very similar to (I.51) where the modes are replaced
by the ones obtained in (I.53).

5 Invisibility questions

In the following, our general goal will be to find situations, by playing with the geometry, the
wavenumber k, ... where we have some sort of invisibility.

The weakest invisibility that one can look for is R± = 0. In the sequel, we shall say that one
has zero reflection or that the defect is non reflecting. In such a situation, an observer generat-
ing an incident plane wave, located a bit far from the defect in the geometry and measuring the
resulting backscattering field will only measure the evanescent component. Due to noise, one will
get something similar to the field in the reference strip and therefore will be unable to detect the
presence of the obstacle. Note that due to conservation of energy ((I.50) or (I.57)), the fact that
R± = 0 implies |T | = 1 and so T = eiθ for a certain θ ∈ R. As a consequence in general there is
a phase shift in the transmitted field which can reveal the presence of the defect if one probes the
field in that part of the guide.

A more demanding definition of invisibility is to have T = 1. In that situation, we shall say
that the defect is perfectly invisible or that we have perfect transmission without phase shift.

Figure I.5: Cloaking by transformation optics.

The problem of cloaking an object has a large number of applications and has been the subject
of intense studies over the last decade in the theory of waves propagation. Let us mention that
different notions of invisibility exist in literature. In particular, our approach is different from the
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cloaking via transformation optics pictured in Figure I.5 (see [34, 28]). Let us describe this latter
device. Imagine that one wish to hide a given obstacle. One technique consists in surrounding
it by a well chosen penetrable material, localized in the annulus around the green region on the
picture, so that an incoming wave leaves the whole device as if there was nothing. Said differently,
on the picture, an observer probing the field outside of the larger disk marked by the white thin
circle obtains the same measurements as in free space and so cannot detect the presence of the
obstacle. Mathematically, this idea is quite simple to implement, it boils down to a change of
variable. However this change of variable is singular and for this reason the physical parameters
of the ad hoc material in the cloaking device should take infinite values. For this reason, for the
moment designing such structures, even working with so-called metamaterials, is still unreachable,
in particular due to the presence of important losses.

What we propose is less ambitious because we only wish to control the scattering coefficients
and not the inner field. In short, what we aim for is only cloaking at infinity. For this reason, it
is more easily doable. Actually, we will not even need to play with penetrable materials. We will
see that by working with a homogeneous material and acting only on the geometry is sufficient.
On the other hand, though our setting is less ambitious, it is still relevant in numerous applica-
tions. Indeed, the evanescent part of the field that we neglect is exponentially decaying at infinity
and therefore is really difficult to distinguish from noise a few wavelengths far from the obstacle.
Finally, though we simply wish to control a finite number of complex coefficients, this problem
is not trivial because the link between the variation of the parameters (geometry, k, ...) and the
variation of the scattering coefficients is non linear and not explicit. Additionally, let us emphasize
that due to the fact that there is no coercivity in the problem, optimization methods fail due to
the presence of local minima.

In the next three chapters, we present several ideas to reach invisibility.

24



Chapter II

Invisible perturbations of the
reference geometry

S

1 + h(x)

Ω(h)

Figure II.1: Reference strip S (left) and perturbed waveguide Ω(h) (right).

In this chapter, we work with techniques of perturbations to construct invisible obstacles. The idea,
proposed in the article [13], is as follows: in the reference strip S = R×I, we have no reflection and
perfect transmission, the total field is equal to the incident field, and so R± = 0, T = 1. How to
slightly modify the geometry while keeping these values for the scattering coefficients? To proceed,
we will adapt the proof of the implicit function theorem.

1 General scheme

Let us describe the method for the simplest problem, namely obtaining R± = 0. At this stage,
the approach is the same whether one considers Problem (I.46) with Dirichlet BCs or Problem
(I.52) with Neumann BCs (pick k ∈ (π; 2π) in the first case, k ∈ (0;π) in the second situation).
Let us focus our attention on R+ and simply write R instead of R+. Note that from conservation
of energy, R+ = 0 implies R− = 0. Consider some real valued profile function h ∈ C ∞

0 (R) and
let Ω(h) be the waveguide whose upper boundary coincides with the graph of the function 1 + h
(see Figure II.1 right). Note that we make some assumption of smoothness here for simplicity but
C 2

0 (R) would be enough. Let R(h) be the reflection coefficient of the scattering solution u+ in the
geometry Ω(h). Importantly, we have R(0) = 0 because when h ≡ 0, Ω(h) is simply the reference
strip S. With this notation, the problem we consider writes

Find h ̸≡ 0 such that
R(h) = 0.

Let us look for non reflecting geometries which are small perturbations of S. To proceed, let us
look for h = εµ with ε > 0 small and µ ∈ C ∞

0 (R) to be determined. Since ε is small, we can write
an asymptotic expansion of R with respect to ε. We obtain

R(εµ) = R(0) + εdR(0)(µ) + ε2R̃(εµ)
= εdR(0)(µ) + ε2R̃(εµ)

(II.1)
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where dR(0)(µ) stands for the differential of R at zero in the direction µ and R̃(εµ) is an abstract
remainder. Since dR(0) : C ∞

0 (R) → C is a linear map from a space of infinite dimension to a space
of dimension two (remember that we work with real valued functions h), we have dim ker dR(0) =
+∞. Therefore, we can pick µ0 ̸≡ 0 such that

dR(0)(µ0) = 0. (II.2)

By choosing h = εµ = εµ0, we obtain a perturbation of order ε which produces a reflection in
O(ε2). This is interesting because this is almost zero reflection but not completely satisfactory
yet. To compensate for the remainder, we need to work a bit more. Below we will explain how
to compute dR(0) and prove that dR(0) : C ∞

0 (R) → C is onto. This allows us to introduce
µ1 ∈ C ∞

0 (R) and µ2 ∈ C ∞
0 (R) such that

dR(0)(µ1) = 1 and dR(0)(µ2) = i. (II.3)

Finally, we look for µ of the form
µ = µ0 + τ1µ1 + τ2µ2

where τ1, τ2 ∈ R are parameters to tune. Inserting this µ in the expansion (II.1), to get R(εµ) = 0,
we see that we must have

0 = εdR(0)(µ0 + τ1µ1 + τ2µ2) + ε2R̃(ε(µ0 + τ1µ1 + τ2µ2)).

By exploiting (II.3), this yields

0 = τ1 + iτ + εR̃(ε(µ0 + τ1µ1 + τ2µ2)).

In other words, we find that the vector τ⃗ := (τ1, τ2)⊤ ∈ R2 must satisfy the fixed point equation

τ⃗ = Gε(τ⃗) with Gε(τ⃗) = −ε(ℜe R̃(ε(µ0 + τ1µ1 + τ2µ2)),ℑmR̃(ε(µ0 + τ1µ1 + τ2µ2)))⊤. (II.4)

Now by proving uniform (with respect to τ⃗) error estimates in the asymptotic expansions as ε
tends to zero, one can show that for any r > 0, there is ε0 > 0 such that the map τ⃗ 7→ Gε(τ⃗) is a
contraction from B(O, r) to B(O, r) for all ε ∈ (0; ε0]. Here B(O, r) denotes the open ball of R2

centered at O of radius r. Therefore the Banach fixed point theorem guarantees that (II.4) admits
a unique solution τ⃗ sol ∈ B(O, r). Then for h sol = ε(µ0 + τ sol

1 µ1 + τ sol
2 µ2), we have R(hsol) = 0.

This proves the existence of non reflecting geometries.

Let us comment a bit this method.
1) First, it is important to prove that the constructed h sol is not trivial. To proceed, let us work
by contradiction and assume that h sol ≡ 0. Then we get

0 = dR(0)(h sol) = dR(0)(ε(µ0 + τ sol
1 µ1 + τ sol

2 µ2)) = ε(τ sol
1 + iτ sol

2 ),

and so τ sol
1 = τ sol

2 = 0. This implies h sol = εµ0 ≡ 0 which is not true due to our choice for µ0.
2) Observe that this technique guarantees the existence of an infinite number of non reflecting
perturbations. Indeed, first, h sol depends on ε ∈ (0; ε0] (remark that it is not only a scaling
because there are non linear terms involved). Additionally, for µ0 we have some freedom because
dim ker dR(0) = +∞.
3) We can establish that there is a constant C > 0 independent of ε such that we have |Gε(τ⃗)| ≤ Cε
in B(O, r). As a consequence, as ε tends to zero, we have |τ⃗ sol| = O(ε) and the shape of the
perturbation εµ = ε(µ0 + τ1µ1 + τ2µ2) is mainly characterized by µ0.
4) Let us clarify the connection with the implicit function theorem. Introduce the functional

T : R × R2 → R2

(τ0, τ⃗) 7→ (ℜeR(τ0µ0 + τ1µ1 + τ2µ2),ℑmR(τ0µ0 + τ1µ1 + τ2µ2))
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which is of class C 1 in a neighbourhood of 0R3 . From what will be shown below, we will be able to
deduce that ∂τ⃗T (0, 0) : R2 → R2 is well-defined and bijective. On the other hand, we remark that
T (0R3) = 0R2 . The implicit function theorem applies: there are some neighbourhoods U ⊂ R,
V ⊂ R2 of 0, 0R2 and a unique function φ : U → V of class C 1 such that

[ (τ0, τ⃗) ∈ U × V and T (τ0, τ⃗) = 0 ] ⇔ τ⃗ = φ(τ0).

2 Zero reflection for the Dirichlet problem

Let us apply the generic strategy described above to Problem (I.46) with Dirichlet BCs. Pick some
k ∈ (π; 2π). First, we need to compute dR(0).

Proposition II.1. For µ ∈ C ∞
0 (R), we have

dR(0)(µ) =
iπ2

β1

∫
R
µ(x)e2iβ1x dx.

As a consequence, dR(0) : C ∞
0 (R) → C is onto.

Proof. The quantity dR(0) corresponds to the derivative of R with respect to the geometry. To
identify it, we have to understand how R is changed when the boundary of the waveguide is
perturbed around the reference situation (Ω = S). Such results are met classically in shape opti-
mization. To obtain dR(0), we work with techniques of asymptotic analysis.

For ε > 0 small and a given µ ∈ C ∞
0 (R) supported in (−L;L) (change L if necessary), denote by

Ωε the domain Ω(h) with h = εµ. Let uε stand for the solution u+ introduced in (I.46) in the
geometry Ωε. It satisfies

Find uε ∈ H1
0,loc(Ω) such that uε − w+ is outgoing and

∆uε + k2uε = 0 in Ωε

uε = 0 on ∂Ωε.

(II.5)

For uε, as ε tends to zero, we consider the ansatz

uε = u0 + εu1 + . . . (II.6)

where u0, u1 are functions to be determined and the dots correspond to higher order terms. On
the upper part of ∂Ωε, we have, formally,

0 = uε(x, 1 + h(x)) = uε(x, 1) + εh(x)∂yu
ε(x, 1) + . . .

= u0(x, 1) + ε (u1(x, 1) + h(x)∂yu0(x, 1)) + . . . .
(II.7)

Now by inserting (II.6) in (II.5) and by exploiting (II.7), collecting the terms of orders ε0, ε1, we
find that u0, u1 satisfy respectively the problems

Find u0 ∈ H1
0,loc(Ω) such that u0 − w+ is outgoing and

∆u0 + k2u0 = 0 in S

u0 = 0 on ∂S

(II.8)

Find u1 ∈ H1
0,loc(Ω) such that u1 is outgoing and

∆u1 + k2u1 = 0 in S

u1 = 0 on R × {0}
u1 = −µ∂yu0 on R × {1}.

(II.9)
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Solving (II.8), we obtain
u0(x, y) = w+(x, y) = eiβ1xφ1(y). (II.10)

Denote by Rε the reflection coefficient of uε. According to Proposition I.16, we have

Rε =
1

2iβ1

∫
ΣL∪Σ−L

∂uε

∂ν
w+ − uε∂w+

∂ν
dy.

Inserting the expansion (II.6) of uε in the above identity and using that u0 = w+, this gives

Rε =
1

2iβ1

∫
ΣL∪Σ−L

∂u0

∂ν
w+ − u0

∂w+

∂ν
dy +

ε

2iβ1

∫
ΣL∪Σ−L

∂u1

∂ν
w+ − u1

∂w+

∂ν
dy + . . .

= 0 +
ε

2iβ1

∫
ΣL∪Σ−L

∂u1

∂ν
w+ − u1

∂w+

∂ν
dy + . . . ,

where again the dots correspond to higher order terms. We deduce that

dR(0)(µ) =
1

2iβ1

∫
ΣL∪Σ−L

∂u1

∂ν
w+ − u1

∂w+

∂ν
dy.

Integrating by parts in SL := (−L;L) × I, and using the third line of (II.9), this gives

dR(0)(µ) =
1

2iβ1

∫
∂S
u1
∂w+

∂y
dx =

i

2β1

∫
R
µ(x)

(
∂w+

∂y

)2
(x, 1) dx.

Finally, from (II.10) (remember that φ1(y) =
√

2 sin(πy)), we obtain the formula

dR(0)(µ) =
iπ2

β1

∫
R
µ(x)e2iβ1x dx.

Since the real part of x 7→ e2iβ1x is even while its imaginary part is odd, we see that it is easy to
find functions µ1, µ2 satisfying the relations (II.3), which ensures that dR(0) : C ∞

0 (R) → C is onto.

The formal calculus above can be rigorously justified by proving error estimates. To proceed,
one method consists in rectifying the boundary of Ωε using “almost identical” diffeomorphisms to
transform the perturbed domain into the reference strip S (see e.g. [23, Chap. 7, §6.5]). Then one
can prove the estimate, for ε small enough,

∥uε − (u0 + εu1)∥H1(SL\ω) ≤ Cε2,

where C is a constant independent of ε and ω is a neighbourhood of supp(µ) × {1}.

3 Numerical implementation

The theoretical approach presented above leads very naturally to an algorithm to construct nu-
merically non reflecting perturbations. Let us describe the strategy.

The main idea consists in solving the fixed point equation

τ⃗ = Gε(τ⃗)

(see (II.4)) using an iterative procedure. First, we choose µ0, µ1, µ2 once for all. Then we start
with τ⃗ 0 = (0, 0) and for p ∈ N, we set τ⃗ p+1 = Gε(τ⃗ p). Denote µp := µ0 + τp

1µ1 + τp
2µ2. From

(II.4), we have
Gε(τ⃗ p) = −ε(ℜe R̃(εµp),ℑmR̃(εµp))⊤

= τ⃗ p − ε−1(ℜeR(εµp),ℑmR(εµp)).
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Therefore, for τ⃗ p we obtain the recursive equation

τ⃗ p+1 = τ⃗ p − ε−1(ℜeR(εµp),ℑmR(εµp)). (II.11)

We stop the loop when we have |R(εµp)| ≤ η where η > 0 is a small given criterion. We then
define τ⃗ sol as the last value of τ⃗ p. If the iterative process does not converge, we try again with a
smaller value of ε > 0. Note that at each step p ≥ 0, we need to solve a scattering problem of the
form

Find u such that u− w+ is outgoing and
∆u+ k2u = 0 in Ωp := Ω(εµp)

u = 0 on ∂Ωp.

(II.12)

To proceed, we approximate the solution of (II.12) by working with Formulation (I.51). We use
a P2 finite element method in Ωp

5 := {(x, y) ∈ Ωp | |x| < 5}. At x = ±5, a truncated Dirichlet-to-
Neumann map with 10 terms serves as a transparent boundary condition. In other words, we take
q = 2, L = 5, M = 10 in (I.51). Note that at each step, it is necessary to mesh a new domain. For
the computations, we use the FreeFem++1 software while we display the results with Paraview2.

Figure II.2: Example of non reflecting obstacle for the problem (I.46) with Dirichlet BCs. Top:
ℜe u. Middle: ℜe us. Bottom: ℜew+ in the reference strip. Here k = 1.5π.

Let us give a concrete application. Set δ := π/β1, Idefect := (−δ; δ) and for µ0, µ1, µ2, let us work
with the functions such that

µ0(x) = sin(β1x), µ1(x) = −
β2

1
π3 sin(2β1x), µ2(x) =

7β2
1

12π2 cos(3β1x/2), for x ∈ Idefect,

µ0 = µ1 = µ2 = 0 in R \ Idefect. These functions are continuous and compactly supported but do
not belong to C ∞

0 (R). However this is not actually needed for the above theory. On the other
hand, one can check that they indeed satisfy relations (II.2), (II.3) (remark in particular that µ0,
µ1 are odd while µ2 is even). We set η = 10−4, k = 1.5π. In Figure II.2, we display the geometry at
the end of the iterative procedure for ε = 0.2. We have obtained |R| ≈ 8.10−5 in 24 iterations. As
expected, we observe that the scattered field is exponentially decaying as x → −∞ (the incident
wave comes from the left). We note that for the transmitted field, there is a small shift of phase.
This is not surprising because R = 0 only implies |T | = 1 and not T = 1. Interestingly, since there
is only one complex coefficient to cancel, the algorithm converges though ε is not that small. This
allows us to get not so small non reflecting perturbations of the reference strip.

1FreeFem++, https://freefem.org/.
2Paraview, http://www.paraview.org/.
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4 Perfect transmission for the Dirichlet problem

Can we hope for more and obtain T = 1 with the above approach? To proceed, a natural idea is
to work with the quantity T − 1. More precisely, in the reference strip we have T − 1 = 0. Is it
possible to perturb the geometry while keeping T − 1 = 0? Let us compute the differential of T
with respect to the geometry.

Proposition II.2. For µ ∈ C ∞
0 (R), we have

dT (0)(µ) =
iπ2

β1

∫
R
µ(x) dx.

As a consequence, dT (0) : C ∞
0 (R) → C is not onto.

Proof. To show this result, one works as for R in Proposition II.1. Let us keep the same notation.
According to Proposition I.16, we have

T ε − 1 =
1

2iβ1

∫
ΣL∪Σ−L

∂uε

∂ν
w− − uε∂w−

∂ν
dy.

Inserting the expansion (II.6) of uε in the above identity and using that u0 = w+, this gives

T ε − 1 =
1

2iβ1

∫
ΣL∪Σ−L

∂u0

∂ν
w− − u0

∂w−

∂ν
dy +

ε

2iβ1

∫
ΣL∪Σ−L

∂u1

∂ν
w− − u1

∂w−

∂ν
dy + . . .

= 0 +
ε

2iβ1

∫
ΣL∪Σ−L

∂u1

∂ν
w− − u1

∂w−

∂ν
dy + . . . ,

where the dots correspond to higher order terms. We deduce that

dT (0)(µ) =
1

2iβ1

∫
ΣL∪Σ−L

∂u1

∂ν
w− − u1

∂w−

∂ν
dy.

Integrating by parts in SL = (−L;L) × I, and using the third line of (II.9), this gives

dT (0)(µ) =
1

2iβ1

∫
∂S
u1
∂w−

∂y
dx =

i

2β1

∫
R
µ(x)

∂w+

∂y
(x, 1)

∂w−

∂y
(x, 1) dx =

iπ2

β1

∫
R
µ(x) dx.

Since the real part of dT (0)(µ) is null for all µ ∈ C ∞
0 (R), this shows that dT (0) : C ∞

0 (R) → C is
not onto.

Remark II.3. The fact that the real part of dT (0) is necessarily null could have been guessed
from conservation of conservation. Indeed, otherwise by linearity of dT (0), we could find some
µ ∈ C ∞

0 (R) such that dT (0)(µ) > 0. Then for ε > 0 small enough, T (εµ) would have a real part
larger than one. This is impossible due to conservation of energy.

Though dT (0) : C ∞
0 (R) → C is not onto, Proposition II.2 proves that we can control the imaginary

part of T . Let us exploit this property.

Define the map
F : C ∞

0 (R) → R3

h 7→ (ℜeR(h),ℑmR(h),ℑmT (h))⊤.
(II.13)

We have F (0) = 0 and we wish to find some h ̸≡ 0 such that F (h) = 0. From Propositions II.1
and II.2, we know that dF (0) : C ∞

0 (R) → R3 is onto. Therefore there are µ0, . . . , µ3 ∈ C ∞
0 (R)

such that
dF (0)(µ0) = 0, [dF (0)(µ1), dF (0)(µ2), dF (0)(µ3)] = Id3×3.

30



Set τ⃗ := (τ1, τ2, τ3)⊤ ∈ R3 and consider the new fixed point equation

τ⃗ = F ε(τ⃗) (II.14)

with
F ε(τ⃗) := −ε(ℜe R̃(εµ(τ⃗)),ℑmR̃(εµ(τ⃗)),ℑmT̃ (εµ(τ⃗))⊤

µ(τ⃗) := µ0 + τ1µ1 + τ2µ2 + τ3µ3.

Here R̃, T̃ are the remainders in the expansions

R(εµ) = εdR(0)(µ) + ε2R̃(εµ)
T (εµ) = 1 + εdT (0)(µ) + ε2T̃ (εµ).

Then for any given r > 0, one can show that (II.14) admits a unique solution τ⃗ sol ∈ B(O, r) for ε
small enough (here B(O, r) denotes the open ball of R3 centered at O of radius r). Defining

h sol = ε

(
µ0 +

3∑
p=1

τ sol
p µp

)
,

we obtain F (h sol) = 0.

Why does this imply T ε = 1? Conservation of energy imposes |Rε|2 + |T ε|2 = 1. Therefore
when Rε = 0 and ℑmT ε = 0, the only possibility is to have either T ε = −1 or T ε = 1. Since we
made a small perturbation of the reference strip, error estimates for the asymptotic expansion of
uε imply that for ε small, T ε is close too one. Therefore, for ε small enough, necessarily we must
have T ε = 1 exactly.

In Figure II.3, we give an example of perfectly invisible perturbation of the reference strip for
the problem (I.46). This time, compared to Figure II.2 where we imposed only zero reflection, we
observe that the scattered field is indeed exponentially decaying both as x → −∞ and as x → +∞.

Figure II.3: Example of perfectly invisible obstacle for the problem (I.46) with Dirichlet BCs. Top:
ℜe u. Middle: ℜe us. Bottom: ℜew+ in the reference strip. Here k = 1.5π.

5 Study of the Neumann problem

Assume now that we wish to apply the strategy described in §1 to Problem (I.52) with Neumann
BCs. Pick some k ∈ (0;π) so that only w±(x, y) = e±ikx are propagating modes.
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Let us compute dR(0) and dT (0). As above, for ε > 0 and a given µ ∈ C ∞
0 (R), denote by

Ωε the domain Ω(εµ). Let uε stand for the solution introduced in (I.55) corresponding to the
scattering of the incident rightgoing wave w+ in the geometry Ωε. It satisfies

∆uε + k2uε = 0 in Ωε

∂νεuε = 0 on ∂Ωε.
(II.15)

Let us emphasize that νε, the outward unit normal vector to ∂Ωε, depends on ε. For uε, as ε tends
to zero, we consider the ansatz

uε = u0 + εu1 + . . . (II.16)

where u0, u1 are functions to be determined and the dots correspond to higher order terms. On
∂Ωε, we have the expansions

νε =
1√

1 + ε2(µ′(x))2

(
−εµ′(x)

1

)
=
(

0
1

)
+ ε

(
−µ′(x)

0

)
+ . . . (II.17)

∇uε(x, 1 + εµ(x)) = ∇uε(x, 1) + εµ(x)
(
∂2

xyuε(x, 1)
∂2

yyuε(x, 1)

)
+ . . . . (II.18)

Now we insert (II.16) in (II.15) and exploit (II.17), (II.18). Collecting the terms of orders ε0, ε1,
we find that u0, u1 satisfy respectively the problems

∆u0 + k2u0 = 0 in S

∂νu0 = 0 on ∂S

∆u1 + k2u1 = 0 in S

∂νu1 = 0 on R × {0}
∂νu1 = µ′(x)∂xu0 − µ(x)∂2

yyu0 on R × {1}.

Using additionally that uε − w+ is outgoing, we get first

u0(x, y) = w+(x, y) = eikx.

Since w+ is independent of y, we deduce that u1 satisfies the condition

∂νu1 = µ′(x)∂xw+ on R × {1}. (II.19)

Denote by Rε, T ε the scattering coefficients of uε. Assuming that µ is supported in (−L;L), from
Proposition I.17, we know that

2ikRε =
∫

Σ−L∪ΣL

∂uε

∂ν
uεw+ − uε∂w+

∂ν
dy, 2ikT ε =

∫
Σ−L∪ΣL

∂uε

∂ν
w− − uε∂w−

∂ν
dy. (II.20)

Inserting the expansion (II.16) of uε in (II.20), integrating by parts and exploiting (II.19), we
obtain

Rε = 0 −
ε

2ik

∫
R
µ′(x)∂xw+(x)w+(x) dx, T ε = 1 +

ε

2ik

∫
R
µ′(x)∂xw+(x)w−(x) dx.

This gives the formulas

dR(0)(µ) =
− 1
2ik

∫
R
µ′(x)∂xw+w+ dx =

− 1
2

∫
R
µ′(x)e2ikx dx = ik

∫
R
µ(x)e2ikx dx

dT (0)(µ) =
1

2ik

∫
R
µ′(x)∂xw+w− dx =

1
2

∫
R
µ′(x) dx = 0.

(II.21)

As in the Dirichlet case, exploiting that the real part of x 7→ e2ikx is even while its imaginary part
is odd, we see that it is easy to find functions µ1, µ2 satisfying the relations (II.3), which ensures
that dR(0) : C ∞

0 (R) → C is onto. Then by applying what has been done in §1, one can construct
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perturbations of the reference strip which are non reflecting at a given k ∈ (0;π).

Let us give two examples. Set δ := π/k, Idefect := (−δ; δ) and for µ0, µ1, µ2, let us work first with
the functions such that

µ0(x) = sin(kx), µ1(x) = −
1
π

sin(2kx), µ2(x) =
7
12 cos(3kx/2), for x ∈ Idefect, (II.22)

µ0 = µ1 = µ2 = 0 in R \ Idefect. One can check that they indeed satisfy relations (II.2), (II.3).
We set η = 10−4, k = 0.8π. In Figure II.4, we display the geometry at the end of the iterative
procedure for ε = 0.4. For this choice of functions µ0, µ1, µ2, we are able to obtain a rather large
non reflecting perturbation of the reference strip. Here |R| ≈ 4.10−5 in 15 iterations.

Figure II.4: Example of non reflecting geometry for Problem (I.52) with Neumann BCs. Top:
ℜe u. Middle: ℜe us. Bottom: ℜew+ in the reference strip. Here k = 0.8π.

In Figure II.5, we display another example of non reflecting defect. It has been obtained by
changing the µ0 in (II.22) to

µ0(x) = |x| − δ, for x ∈ Idefect,

µ0 = 0 in R \ Idefect. Here the defect lies entirely in the region y < 1. Because of this property,
we can use symmetry with respect to the line y = 1 to create a non reflecting obstacle completely
embedded in the waveguide (see Figure II.6).

In §4 for the Dirichlet problem, by exploiting conservation of energy, we explained how to construct
waveguide where T = 1. Can we adapt this to the Neumann problem? Well, from the computation
of dT (0) in (II.21) we see that it is impossible because dT (0) is null. It means that a perturbation
of order ε of the reference strip gives a transmission coefficient T ε such that T ε − 1 is in O(ε2).
This looks appealing for perfect transmission. The problem is that since dT (0) is null, one cannot
use this term which has a linear dependence with respect to the perturbation of the reference strip
to cancel the whole (non linear) expansion of T ε via the resolution of the fixed point problem. As
a consequence, our technique fails to design perfectly invisible defects in the Neumann case.
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Figure II.5: Example of non reflecting obstacle for Problem (I.52) with Neumann BCs. Top: ℜe u.
Middle: ℜe us. Bottom: ℜew+ in the reference strip. Here k = 0.8π.

Figure II.6: Example of non reflecting obstacle for Problem (I.52) with Neumann BCs. Here
k = 0.8π.

Above we showed how to construct invisible smooth perturbations of the reference strip S. In the
remaining part of this chapter, we wish to explain how to design invisible non smooth perturbations
of S. The terminology smooth/not smooth here does not refer to the regularity of the domain but
to the form of the asymptotic expansion involved in the asymptotic procedure. In the non smooth
case, the field uε exhibits rapid variations in a neighborhood of the perturbation that must be
caught with adapted variables. In that situation, the asymptotics of the scattering coefficients is
in general more complicated to obtain. The interesting point is that it can bring new useful terms,
for example non zero differentials for T for the Neumann problem. Below we consider two types
of non smooth perturbations of the reference strip.

6 Non reflecting clouds of small obstacles

Ω0

Oε
1

Oε
2

Ωε

O

Figure II.7: Unperturbed waveguide (left), perturbed waveguide with two small obstacles (middle),
set O (right).

Let us work first with clouds of small obstacles. To simplify the asymptotic analysis, we work
in 3D with Dirichlet boundary conditions. Note that in 2D, the Green function of the Laplace
operator, whose behavior dictates the form of the asymptotic expansions as ε tends to zero, has a
logarithmic singularity which does not appear in 3D. Let

Ω0 := {z = (x, y) |x ∈ R and y ∈ ω}
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be a cylinder of R3 whose transverse section ω ⊂ R2 is a bounded domain with Lipschitz boundary
(see Figure II.7 left). Consider O ⊂ R3 a bounded domain with Lipschitz boundary and for M1 a
point located in Ω0, set, for ε small,

Oε
1 := {z ∈ R3 | ε−1(z −M1) ∈ O}.

Finally define the perturbed waveguide

Ωε := Ω0 \ Oε
1.

To begin with, for the moment we assume that there is only one obstacle and not a cloud. The
problem we consider writes

∆uε + k2uε = 0 in Ωε

uε = 0 on ∂Ωε.
(II.23)

We fix the wavenumber k > 0 such that only two modes w± can propagate in Ωε. These w± are
not exactly the same as the ones in (I.54), they involve the eigenfunctions associated with the first
eigenvalue of the Dirichlet Laplacian in ω, but the situation is similar. As in §3.6, Problem (II.23)
admits a solution with the expansion

uε =
w+ +Rεw− + ũε for x ≤ −d

T εw+ + ũε for x ≥ d,

where Rε, T ε ∈ C and ũε decays exponentially at infinity (we denote Rε instead of Rε
+ to simplify).

Again d > 0 is such that Ωε = Ω0 for |x| > d. The first step in the approach is to compute an
asymptotic expansion of uε as ε tends to zero. This is a rather long work that we will not present
here (one may consult the reference [31, §2.2] for more details). Let us simply stress that it appears
that uε has a rapid variation in a neighborhood of the obstacle to satisfy the constraint of being null
on ∂Oε

1. This rapid variation must be caught with adapted variables. Then it is necessary to work
both with some inner field and outer field expansions of uε that we match in some intermediate
region. This is the method of matched asymptotic expansions which is well documented in the
literature. At the end of the procedure, when ε tends to zero, we obtain

Rε = 0 + ε 4iπcap(O)w+(M1)2 +O(ε2), T ε = 1 + ε 4iπcap(O)|w+(M1)|2 +O(ε2).

Here cap(O) stands for the capacity of the domain O, a constant which appears classically in
asymptotic analysis. An important point for our study is that we always have cap(O) > 0. Ad-
ditionally, one finds that w+ does not vanish in Ω0. From these two properties, we infer that one
single small obstacle cannot even be non reflecting: whatever the choice for M1 or for the shape
O, Oε

1 will always generate a reflection whose amplitude is of order ε.

Let us add a second small obstacle

Oε
2 := {z ∈ R3 | ε−1(z −M2) ∈ O}

in the waveguide, centred at the point M2 ∈ Ω0 with M2 ̸= M1. Still denoting by Rε, T ε the
scattering coefficients in this new geometry, we obtain the expansions, as ε → 0+,

Rε = 0+ε 4iπcap(O)
2∑

j=1
w+(Mj)2 +O(ε2), T ε = 1+ε 4iπcap(O)

2∑
j=1

|w+(Mj)|2 +O(ε2). (II.24)

Observe that the interactions between the small objects do not appear at order ε, only at higher
orders. The interesting point is that now, using the known expression of w+, we can find positions
M1, M2 of the obstacles such that

2∑
j=1

w+(Mj)2 = 0. (II.25)
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In that case, we have a perturbation of Ω0 of order ε which produces a reflection in O(ε2). As
mentioned above, this is almost no reflection. But by working a bit harder, we can achieve more.
Pick M1, M2 such that relation (II.25) is satisfied. Then by slightly perturbing the position of one
obstacle, we can get Rε = 0 exactly. More precisely, for τ ∈ R3, define M ετ

1 = M1 + ετ and

Oετ
1 := {z ∈ R3 | ε−1(z −M ετ

1 ) ∈ O}.

One can show that there is τ , which is defined as the solution of a fixed point problem similar to
(II.4), such that the reflection coefficient in the corresponding waveguide is zero (for more details,
see [17]). Note that since τ ∈ R3, we have enough degrees of freedom to cancel one single complex
number.

Can we get perfect invisibility, i.e. T ε = 1, with this approach? From (II.24) we see that the
answer is no. Indeed, whatever the position of the small obstacles or their number, we always have
a phase shift for the transmitted wave.

One can also study what happens at higher wavenumbers k. In that situation, as can be seen
in the particular case (I.22), more modes can propagate. The reflection and transmission coeffi-
cients then become respectively reflection and transmission matrices Rε, Tε. One can prove that
by working with a sufficiently large number of small obstacles, we can cancel exactly the whole
reflection matrix. The idea is the same as above. First we compute an asymptotic expansion of Rε

as ε → 0. Then we find positions M1, M2,... , Mk of the obstacles to cancel the term of order ε in
the expansion of Rε. Then by slightly perturbing the position of one group of obstacles by solving
a fixed point problem in RN , for a certain N depending on the number of propagating modes, we
get Rε = 0. The higher the number of propagating modes, the more obstacles we need.

To conclude this section, let us mention that in this work, the main difficulty mathematically
consists in proving error estimates in the asymptotic expansions which are uniform with respect
to the parameter τ in a closed ball to justify that the map appearing in the fixed point problem is
indeed a contraction for ε small enough. We will not elaborate more on that topic here and refer
the interesting reader to [17].

7 Perfect transmission for the Neumann problem

The different strategies presented above fail to provide examples of waveguides where T = 1
(perfect transmission without phase shift) for the problem with Neumann BCs. Is there some
fundamental obstruction to get T = 1 in that case? In this section, we answer negatively to that
question. To proceed, we work with another singular perturbation of the reference strip.

Consider the waveguide Ωε pictured in Figure II.8. It is made of the reference strip S to which
we have glued at the points M1 := (x1, 1), M2 := (x2, 1), M3 := (x3, 1), thin chimneys of width
ε > 0 small and heights respectively equal to h1, h2, h3. We fix k ∈ (0;π) so that only the
modes w±(x, y) = eikx can propagate. The first step is to compute an asymptotic expansion of
the scattering coefficients as ε, the width of the thin rectangles, tends to zero. Again, this is a
rather long work that we will not present here, the reason being that the fields vary rapidly in
some zone around the Mn, n = 1, 2, 3. We refer the reader to [11] for more details. In this article,
by using the method of matched asymptotic expansions, it is shown that when the hn are such
that khn ∈ {π/2 + πN}, when ε tends to zero, we have

Rε = 0 + ε
(
ik

3∑
n=1

(w+(Mn))2 tan(khn)
)

+O(ε2)

T ε = 1 + ε
(
ik

3∑
n=1

tan(khn)
)

+O(ε2).
(II.26)
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h2
h3
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Ωε

Figure II.8: Geometry of Ωε.

Remark II.4. When khn ∈ {π/2 + πN}, resonant phenomena appears in the chimneys and the
asymptotics (II.26) is no more valid. This regime will be exploited in Chapter III (see Section 2).

The crucial point to observe in (II.26) compared to the other perturbations of the reference strip
above is the appearance of the term of order ε in the expansion of T ε. Its imaginary part is non
zero and can change sign according to the value of the hn. Thus by considering another type of
perturbation of S, we have been able to obtain a non zero dT (0).

By using that (w+(Mn))2 = e2ikxn , we can find positions and heights of the chimneys such that
Rε = O(ε2) and T ε − 1 = O(ε2). Then perturbing slightly the hn around these particular values,
by solving a fixed point problem in R3 similar to (II.4), we can achieve

Rε = 0 and ℑmT ε = 0

in the new geometry. Finally, by exploiting the relation of conservation of energy |Rε|2 + |T ε|2 = 1
as in (4), one shows that this implies T ε = 1 for ε > 0 sufficiently small.

Initially we have to control two complex numbers (Rε and T ε), so a priori we need four real
degrees of freedom. But due to the constraint of conservation of energy, three parameters are suf-
ficient. This explains why three chimneys are involved here. We could also have probably worked
with only two chimneys, by perturbing their heights and the gap between them.

Figure II.9: Top: real part of uε in the geometry obtained at the end of the iterative procedure.
Bottom: real part of w+ in the reference strip.
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This approach can be implemented numerically very naturally. First we set the Mn and the hn to
kill the terms of order ε in (II.26). Then we tune slightly the length of the ligaments by solving
the corresponding fixed point problem iteratively as in (II.11). At each step, we solve a scattering
problem in a new geometry. One can see this procedure as acting on the pistons on a trumpet
to achieve T ε = 1. In Figure II.9 we display a geometry obtained with this method. A bit far
from the chimneys so that evanescent terms can be decently neglected, we remark that the field is
the same as in the reference strip. Again, numerically one observes that the algorithm converges
though ε, the width of the ligaments, is not that small.

8 Concluding remarks

In this chapter, we constructed smooth and non-smooth perturbations of the reference geometry
which are invisible, in a broad sense (non reflecting or perfectly invisible). We worked at a given
wavenumber k. We could proceed similarly to impose invisibility at given k1, . . . , kN . However we
emphasize that the set of wavenumbers must be discrete and finite. Imposing zero reflection for
a continuum of k is probably impossible in general due to the analyticity of the map k 7→ R(k).
In the numerical results we presented, we were interested in controlling only R and sometimes
ℑmT at one k. As a consequence, we had very few constraints and for this reason, the fixed point
algorithm converges with not so small values of ε, which allowed us to obtain rather large invisible
defects. When the number of constraints increases, for example when working at higher k so that
there are more scattering coefficients to control, in practice we find that ε must be chosen smaller
to have convergence of the method. A natural idea then is to try to reiterate the procedure to
obtain larger invisible defects: once an invisible obstacle has been constructed, we can consider
it as a new starting configuration and perturb it while keeping the same scattering coefficients.
This is usually called a continuation method which allows one to explore the variety (of infinite
dimension) of invisible obstacles. We will not implement it here (see [8] for more details). Instead,
we simply illustrate the method in Figure II.10 in finite dimension. More precisely, instead of
working with F : C ∞

0 (R) → R3 as in the case of perfect invisibility (see (II.13)), we consider some
smooth

F : R2 → R
(h1, h2) 7→ F (h1, h2)

such that F (0) = 0, ∇F (0) ̸= 0.

O
h1

h2 Variety of invisible h
{(h1, h2) ∈ R2 | F (h1, h2) = 0}

ε µ0
0 hsol,1 = ε (µ0

0 + τ sol,0µ0
1)

hsol,2 = hsol,1 + ε (µ1
0 + τ sol,1µ1

1)

hsol,3

hsol,0

Figure II.10: Illustration of the continuation method. Here for n ∈ N, µn
0 , µ

n
1 ∈ span(h0, h1) are

such that dF (hsol,n)(µn
0 ) = 0 and dF (hsol,n)(µn

1 ) = 1.
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Chapter III

Playing with resonances to reach
invisibility

In the previous chapter, we showed how to construct small non reflecting or invisible defects of the
reference strip by using variants of the implicit functions theorem. The goal of the present chapter is
to create larger invisible obstacles. To proceed, we have to act strongly on scattering coefficients.
We will do that by working with resonant phenomena. More precisely, in the first section we
explain how to exploit the Fano resonance phenomenon together with symmetry considerations to
construct large non reflecting obstacles in monomode regime. Then, we modify a bit the point of
view and for a given waveguide in acoustics, we show how to perturb its boundary with resonant
ligaments to get approximately T = 1 in the new geometry.

1 Playing with the Fano resonance

Ω0 Ωε

∂Ωε = (x, 1 + εH(x))

Figure III.1: Original waveguide Ω0 (left) and perturbed geometry Ωε (right).

The Fano resonance, named from the physicist Ugo Fano (1912-2001), is a classical phenomenon
that arises in many situations in physics. For our particular concern, it appears as follows. Assume
that the geometry of our waveguide is characterized by a real parameter ε. Below, ε will be the
amplitude of a local perturbation of the walls (see Figure III.1). To simplify notation, set λ := k2

so that Problem (I.3) writes
∆u+ λu = 0 in Ωε

∂νu = 0 on ∂Ωε.
(III.1)

Assume that trapped modes exist for Problem (III.1) with ε = 0 and λ = λ0 ∈ R. Then, for ε ̸= 0
small, the scattering matrix S, which is of size 2 × 2 in monomode regime, exhibits a rapid change
for real λ varying in a neighbourhood of λ0. The justification of this result requires adapted tools
(see [36, 35, 37, 1, 18]) and we will not detail this aspect. Our goal is to exploit this rapid change
together with symmetry considerations of the geometry to provide examples of waveguides where
R = 0 or T = 0. Note that the case T = 0, that we will call zero transmission, is not related
to invisibility. It corresponds to a situation where the energy of an incident wave is completely
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backscattered, like for a mirror.

To understand more this Fano resonance phenomenon, let us work on a 1D toy problem.

1.1 A 1D toy problem

Unperturbed case

x

y

Ω1

Ω2

Ω3O

Figure III.2: A 1D geometry.

Consider the geometry

Ω := Ω1 ∪ Ω2 ∪ Ω3 with Ω1 := (−∞; 0) × {0}, Ω2 := {0} × (0; 1), Ω3 := (0; 1) × {0}

(see Figure III.2). For a function φ defined in Ω, set φi := φ|Ωi . Working in suitable coordinates,
we can see the Ωi as 1D domains. Similarly to (III.1), we study the Helmholtz problem with
Neumann boundary conditions

−φ′′ = k2φ in Ω,
φ1(0) = φ2(0) = φ3(0),
φ′

1(0) = φ′
2(0) + φ′

3(0),
φ′

2(1) = φ′
3(1) = 0.

(III.2)

In particular, at the junction point O, we impose continuity of the field and conservation of the flux
(Kirchhoff law). We are interested in the scattering of the rightgoing incident wave φi(x) = eikx.
We denote by φ and φs = φ−φi the corresponding total and scattered fields. We impose that φs

is outgoing at infinity. For the simple problem considered here, the radiation condition boils down
to assume that φs writes as φs(x) = Re−ikx where R ∈ C is the reflection coefficient. Using the
two boundary conditions of (III.2), we are led to look for a solution φ such that

φ1(x) = eikx +Re−ikx, φ2(y) = A cos(k(y − 1)), φ3(x) = B cos(k(x− 1)),

where A, B ∈ C. Writing the transmission conditions at the junction point O, we obtain that R,
A, B must solve the system

M(k)Φ = F with M(k) :=

 1 − cos k 0
0 cos k − cos k
i sin k sin k

 , Φ :=

 R
A
B

 , F :=

 −1
0
i

 . (III.3)

One finds
detM(k) = cos k(2 sin k + i cos k).

Therefore this system (and so Problem (III.2) with the above mentioned radiation condition) is
uniquely solvable if and only k ̸∈ (2N + 1)π/2. When k ∈ (2N + 1)π/2, the kernel of Problem
(III.2) coincides with span(φtr) where φtr is the trapped mode such that

φtr(x) =
0 in Ω1

sin(ky) in Ω2

− sin(kx) in Ω3.
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On the other hand, for any k > 0, one can check that System (III.3) (and so Problem (III.2))
admits a solution because F ∈ (ker tM)⊥ (this can be verified by an explicit calculus). Moreover,
as in (I.48) the coefficient R is always uniquely defined (even when k ∈ (2N+1)π/2) and such that

R =
cos k + 2i sin k
cos k − 2i sin k. (III.4)

The map k 7→ R(k) is π-periodic and |R(k)| = 1. The latter relation, which is due to conservation
of energy, guarantees that R(k) = eiθ(k) for some phase θ(k) ∈ R/(2πZ).

Perturbed case

Now we consider the same problem in the perturbed geometry Ωε := Ω1 ∪ Ω2 ∪ Ωε
3 with Ωε

3 :=
(0; 1 + ε) × {0} and ε ∈ R small. We denote with a superscript ε all the above quantities. In Ωε,
the resolution of the previous scattering problem leads to solve the system

Mε(k)Φε = F with Mε(k) :=

 1 − cos k 0
0 cos k − cos(k(1 + ε))
i sin k sin(k(1 + ε))

 , Φε :=

 Rε

Aε

Bε

 .
The vector F is the same as in (III.3). We find

detMε(k) = sin(k(2 + ε)) + i cos k cos(k(1 + ε)).

Therefore we find that for ε ̸= 0 small, the determinant of Mε does not vanish when k > 0. As a
consequence, Problem (III.2) set in Ωε has a unique solution. One finds

Rε =
cos k cos(k(1 + ε)) + i sin(k(2 + ε))
cos k cos(k(1 + ε)) − i sin(k(2 + ε)).

Again, we have |Rε(k)| = 1 (conservation of energy) so we can write Rε(k) = eiθε(k) for some
θε(k) ∈ R/(2πZ). Note that θ0 = θ where θ appears after (III.4). The map k 7→ θε(k) is displayed
in Figure III.3 for several values of ε (see also the alternative representation (III.4)). We observe
that for ε ̸= 0, the curve k 7→ θε(k) has a fast variation for k close to π/2. The variation is even
faster as ε ̸= 0 gets small. On the other hand, for ε = 0 the curve k 7→ θ0(k) has a very smooth
behaviour. We emphasize that for (ε, k) = (0, π/2), as mentioned above, trapped modes exist for
Problem (III.2).
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ε = 0
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Figure III.3: Maps k 7→ θε(k) for several values of ε. The right picture is a zoom on the left picture
around k = π/2 (marked by the vertical black dotted line). The vertical coloured dashed lines
indicate the values of k such that θε(k) = 0.
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Figure III.4: Parametric curves k 7→ (ℜeRε(k),ℑmRε(k)) for k ∈ (0;π).

In order to study the variations of the reflection coefficient with respect to the frequency and the
geometry, we define the map R : R2 → C such that

R(ε, k) =
cos(k) cos(k(1 + ε)) + i sin(k(2 + ε))
cos(k) cos(k(1 + ε)) − i sin(k(2 + ε)) . (III.5)

With such a notation, we have Rε(k) = R(ε, k) and R(k) = R(0, k). For all k ∈ (0;π), there
holds limε→0 R(ε, k) = R(0, k). Now assume that the frequency and the geometry are related by
some prescribed law in a neighbourhood of the point (ε, k) = (0, π/2) corresponding to a setting
supporting trapped modes. For example, assume that

k = π/2 + εk′

for a given k′ ∈ R. Then for k′ ̸= −π/4, starting from expression (III.5), we find as ε → 0 the
expansion

R(ε, π/2 + εk′) = −1 + ε
( − 2ik′(π + 2k′)

π + 4k′

)
+O(ε2). (III.6)

Note that we have R(0, π/2) = −1. For k′ = −π/4 and more generally, for

k = π/2 − επ/4 + ε2µ

with µ ∈ R, we obtain

R(ε, π/2 − επ/4 + ε2µ) = g(µ) +O(ε) with g(µ) =
π2 + i(32µ− 4π)
π2 − i(32µ− 4π). (III.7)

Classical results concerning the Möbius transform (see e.g. [20, Chap. 5]) guarantee that g is a
bijection between R and C (0, 1) \ {−1 + 0i} (C (0, 1) is the unit circle of the complex plane). Thus
for any z0 ∈ C (0, 1), we can find a path {γ(s), s ∈ (0; 1)} ⊂ R2 such that

lim
s→1

γ(s) = (0, π/2) and lim
s→1

R(γ(s)) = z0

(see Figure III.5 right). This proves that the map R(·, ·) : R2 → C is not continuous at (0, π/2).
This shows also that for ε0 ̸= 0 small fixed (see the vertical red dashed line in Figure III.5 left),
the curve k 7→ R(ε0, k) must exhibit a rapid change. Indeed, µ varying in [−Cε−1

0 ;Cε−1
0 ] for some

arbitrary C > 0 (which is only a small change for k) leads to a large change for R(ε0, π/2−ε0π/4+
ε2

0µ). This is exactly what we observed in Figure III.3.
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ε

k

π/2

ε0

Figure III.5: Left: several parabolic paths {γ(s), s ∈ (0; 1)} ⊂ R2 such that lims→1 γ(s) = (0, π/2).
According to the path, the limit of the coefficient R(γ(s)) defined in (III.5) as s → 1 is different.
Right: the colours indicate the phase of R(ε, k). This phase is valued in [0; 2π).

1.2 Fano resonance in the 2D waveguide

Let us come back to the problem (III.1) in 2D. We assume that Ω0 is such that the Neumann
Laplacian has a simple eigenvalue λ0 ∈ (0;π) (geometric multiplicity equal to one). We perturb
the geometry from some smooth compactly supported profile function H with amplitude ε ≥ 0
as in Figure III.1 right. We denote by Ωε the new waveguide and S(ε, λ), T (ε, λ), R±(ε, λ) the
scattering matrix/coefficients in the geometry Ωε at frequency λ. For short, we set S0 = S(0, λ0),
T 0 = T (0, λ0), R0

± = R±(0, λ0). Introduced u0 an eigenfunction associated with λ0 such that
∥u0∥L2(Ω) = 1. Decomposition in Fourier series as in Chapter I guarantees that as |x| → +∞, we
have the expansion

u0(x, y) = K±e
−

√
π2−λ0|x| cos(πy) + . . .

where K± ∈ C. In [18], the following theorem is proved.

Theorem III.1. Assume that (K+,K−) ̸= (0, 0). There is a quantity ℓ(H) ∈ R, which depends
linearly on H, such that when ε → 0,

S(ε, λ0 + ελ′) = S0 +O(ε) for λ′ ̸= ℓ(H), (III.8)

and, for any µ ∈ R,

S(ε, λ0 + εℓ(H) + ε2µ) = S0 +
τ⊤τ

iµ̃− |τ |2/2 +O(ε). (III.9)

In this expression τ = (a, b) ∈ C×C depends only on Ω and µ̃ = Aµ+B for some unessential real
constants A, B with A ̸= 0.

Observe that (III.8) and (III.9) are respectively the analogous of (III.6) and (III.7). As explained
above, Theorem III.1 shows that the mapping S(·, ·) is not continuous at (0, λ0) (setting where
trapped modes exist). Moreover for ε0 small fixed, it proves that the scattering matrix λ 7→ S(ε0, λ)
exhibits a quick change in a neighbourhood of λ0+ε0ℓ(H): this is the Fano resonance phenomenon.
When (K+,K−) = (0, 0) a faster Fano resonance phenomenon occurs.

1.3 Zero reflection and zero transmission

In the sequel, to simplify we denote by Sε(µ), T ε(µ), Rε
±(µ) the values of S, T , R± in Ωε at the

frequency λ = λ0 + εℓ(H) + ε2µ.
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Assume now that Ωε is symmetric with respect to the vertical axis, i.e. such that

Ωε = {(−x, y) | (x, y) ∈ Ωε}.

Then we can decompose the problem into two half-waveguide problems with Neumann/Dirichlet
boundary conditions at x = 0.

Ωε ωε

Figure III.6: Domain Ωε (left) and ωε (right).

More precisely, define the half-waveguide

ωε := {(x, y) ∈ Ωε |x < 0}

(see Figure III.6 right). Introduce the problem with Neumann BCs

∆v + k2v = 0 in ωε

∂νv = 0 on ∂ωε
(III.10)

as well as the problem with mixed BCs

∆V + k2V = 0 in ωε

∂νV = 0 on ∂ωε ∩ ∂ΩL

V = 0 on ΣL := ∂ωε \ ∂ΩL.

(III.11)

Problems (III.10) and (III.11) admit respectively the solutions

vε = w+ +Rε
N w− + ṽε,

V ε = w+ +Rε
D w− + Ṽ ε,

where Rε
N , Rε

D ∈ C and ṽε, Ṽ ε ∈ H1(ωε). Due to conservation of energy, one has

|Rε
N | = |Rε

D| = 1

(since there is only one output in ωε, all the energy propagated by the incident wave is backscat-
tered). Now, direct inspection shows that if uε is a solution of Problem (III.1) associated to an
incident wave coming from left or right, then we have

uε(x, y) =
vε(x, y) + V ε(x, y)

2 in ωε, uε(x, y) =
vε(−x, y) − V ε(−x, y)

2 in Ωε \ ωε

(up possibly to a term which is exponentially decaying at ±∞ if there are trapped modes at the
given wavenumber k). We deduce that the scattering coefficients Rε

±, T ε for Problem (III.1) are
such that

Rε
+ = Rε

− = Rε
N +Rε

D

2 and T ε = Rε
N −Rε

D

2 .

If we indicate the dependence with respect to µ as in §1.2, this writes

Rε
+(µ) = Rε

−(µ) = Rε
N (µ) +Rε

D(µ)
2 and T ε(µ) = Rε

N (µ) −Rε
D(µ)

2 . (III.12)

To set ideas assume that the trapped modes associated with λ0 are even. In that case, (ε, λ) 7→
RD(ε, λ) is smooth at (0, λ0). As a consequence, for ε small, µ 7→ Rε

D(µ) does not vary much on the
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0.5 + ε

1

Figure III.7: Left: geometry of the half waveguide. Right: real part of a trapped mode for ε = 0
and k0 :=

√
λ0 ≈ 2.7403. The computation has been realized by using Perfectly Matched Layers

(see Chapter Chapter IV Section 2).

unit circle C (0, 1) for µ ∈ (−ε−1/2; ε−1/2). On the other hand, by adapting the result of Theorem
III.1, one establishes that µ 7→ Rε

D(µ) runs once on C (0, 1) for µ ∈ (−ε−1/2; ε−1/2). From formulas
(III.12), this ensures that the curves µ 7→ T ε(µ), µ 7→ Rε

+(µ) for µ ∈ (−ε−1/2; ε−1/2), pass exactly
through zero for ε small enough. This provides examples of geometries where we have either zero
reflection or zero transmission.
Let us illustrate this numerically. In Figure III.7 right, we give an example of geometry supporting
trapped modes for the Neumann problem (III.10) at a particular λ = λ0 ∈ (0;π). Note that the
waveguide is symmetric with respect to the line of equation y = 1/2 which can be used to give some
proofs of existence of such trapped modes in certain circumstances. Then we perturb the domain
by slightly shifting vertically the disk1. Then the symmetry is broken and from the analysis above,
we know that when we sweep in λ in a small neighbourhood of λ0, there is one λ for which one
has zero reflection (see Figure III.8) and one λ for which one gets zero transmission (see Figure
III.9). Let us stress that the smaller ε, the more delicate the adjustment of λ.

Figure III.8: ℜe uε (top) and ℜe (uε − w+) in a setting where Rε
± = 0 (ε = 0.05 and k =

√
λ =

2.751).

Figure III.9: ℜe uε in a setting where T ε = 0 (ε = 0.05 and k =
√
λ = 2.75495).

When the domain Ωε is not symmetric with respect to the vertical axis, we cannot use the decom-
position with the two half-waveguide problems. In that case, for a fixed small ε > 0, in general
the curves µ 7→ Rε

±(µ) do not pass through zero in the complex plane and we do not observe zero
reflection. However we can show, quite surprisingly, that µ 7→ T ε(µ) always vanishes for some
particular µ. Let us give the main ingredients of the proof.

Theorem III.2. Assume that T 0 = T (0, λ0) ̸= 0. Then there is ε0 > 0 such that for all ε ∈ (0; ε0],
there is µ ∈ R such that T ε(µ) = 0.

Proof. Theorem III.1 provides the estimate

|T ε(µ) − T asy(µ)| ≤ C ε (III.13)
1Observe that a horizontal shift of the position of the disk would maintain the decoupling between symmetric

and skew-symmetric modes. As a consequence, the eigenvalue embedded in the continuous spectrum would remain
an eigenvalue embedded in the continuous spectrum and no Fano resonance phenomenon would be observed.
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with T asy(µ) = T 0 +
ab

iµ̃− (|a|2 + |b|2)/2.

For any compact set I ⊂ R, the constant C > 0 in (III.13) can be chosen independent of µ ∈ I.
⋆ First, we study the set {T asy(µ), µ ∈ R}. Classical results concerning the Möbius transform
guarantee that {T asy(µ), µ ∈ R} coincides with C asy \ {T 0} where C asy is a circle passing through
T 0. Let us show that C asy also passes through zero. One finds that T asy(µ) = 0 for some µ ∈ R if
and only if there holds

|a|2 + |b|2

2 = ℜe
(
ab

T 0

)
. (III.14)

An intermediate calculus of [18] implies R0
+ a+ T 0 b = a and T 0 a+ R0

− b = b. From this and the
unitarity of S0 which imposes R0

− = −R0
+T

0/T 0, we can obtain (III.14). Denote µ⋆ the value of µ
such that T asy(µ⋆) = 0 and for ε > 0, define the interval Iε = (µ⋆ −

√
ε;µ⋆ +

√
ε). From (III.13),

for ε > 0 small, we know that the curve {T ε(µ), µ ∈ Iε} passes close to zero. Now, using the
unitary structure of Sε(µ), we show that this curves passes exactly through zero for ε small.
⋆ Assume by contradiction that for all ε > 0, µ 7→ T ε(µ) does not pass through zero in Iε. Since
Sε(µ) is unitary, there holds Rε

+(µ)T ε(µ) + T ε(µ)Rε
−(µ) = 0 and so

−Rε
+(µ)/Rε

−(µ) = T ε(µ)/T ε(µ) ∀µ ∈ Iε.

But if µ 7→ T ε(µ) does not pass through zero on Iε, one can verify that the point T ε(µ)/T ε(µ) =
e2iarg(T ε(µ)) must run rapidly on the unit circle for µ ∈ Iε as ε → 0. On the other hand,
Rε

+(µ)/Rε
−(µ) tends to a constant on Iε as ε → 0. This way we obtain a contradiction.

Remark III.3. The fact that C asy passes through zero is quite mysterious. It is related to the
rigid structure of the scattering matrix. Without assumption of symmetry, we do not have physical
reason to explain this miracle.

We illustrate this result in Figure III.10. First we find that trapped modes exist for ε = 0 and√
λ0 ≈ 1.2395 ∈ (0;π). Then we compute T (ε, λ) (×) and R+(ε, λ) ( ) for

√
λ ∈ (1.2; 1.3) and

ε = 0.05. As predicted, we observe that λ 7→ T (ε, λ) passes through zero around λ0. Finally, we
display the real part of u+ in Ωε for ε = 0.05 and

√
λ = 1.2449, a configuration where T (ε, λ) ≈ 0.
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Figure III.10: Zero transmission in a waveguide via the Fano resonance mechanism.

In this study concerning the exploitation of the Fano resonance mechanism to obtain zero reflec-
tion/zero transmission, we considered the case of Neumann BCs. Let us mention that Dirichlet
BCs can be studied completely similarly.
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ℓε

A

Ωε

Figure III.11: Left: initial setting. Right: geometry with one thin outer resonator.

2 Cloaking of a given obstacle by using thin resonant ligaments

In this section, we change the point of view. Instead of constructing invisible objects, we assume
that some obstacle is given and explain how to hide it (or to cloak if we use the terminology of
physicists). More precisely, starting from a setting where T ̸= 1, we show how to perturb the initial
geometry by working with ligaments as pictured in Figure III.11 to obtain a new waveguide where
T ≈ 1. Let us mention that we do not work with ad hoc penetrable materials as in transformation
optics. Additionally, we do not add active sources in the system as people do in active cloaking
[32, 15]. What we realize is passive cloaking at infinity by perturbing the shape of the waveguide.

As in Chapter I, the main difficulty of the problem lies in the fact that the dependence of the
scattering coefficients with respect to the geometry is not explicit and not linear. In order to
address it, techniques of optimization have been considered. We refer the reader in particular to
[3, 26, 27]. However, due to the features of the Helmholtz equation, the functionals involved in
the analysis are non convex and unsatisfying local minima exist. Moreover, these methods do not
allow the user to control the main features of the shape compare to the approach we present and
which has been developed in [16].

To cloak obstacles, we work with thin outer resonators, that we also call ligaments, of width
ε > 0 small compared to the wavelength (see again Figure III.11 right). These ligaments are inter-
esting because they are almost 1D objects, which allows us to explicit their influence on the fields
and so on the scattering coefficients. However in general, i.e. for most lengths, they produce only
perturbations of order ε which is not sufficient to compensate for the scattering due to the initial
object. But by working around the resonance lengths (see (III.16)) of the resonators, we can get
effects of order one. This is a key aspect in our approach which makes it in particular different
from the technique presented in Chapter II, Section 7. Note that thin ligaments around resonance
lengths have been studied for example in [25, 14, 30, 29] in a context close to ours, namely in the
analysis of the scattering of an incident wave by a periodic array of subwavelength slits. The core
of our approach is based on an asymptotic expansion of the scattering solutions with respect to ε
as ε tends to zero. This allow us to derive formula for the scattering coefficients with a relatively
explicit dependence on the geometrical features. To obtain the expansions, we apply again tech-
niques of matched asymptotic expansions. For related methods, we refer the reader to [6, 24].

Let us describe the general strategy. We consider the acoustic problem (I.52) with Neumann
BCs and assume that k ∈ (0;π) (the height of the guide is stille one outside of some compact
region). Denote by uε

+ the solution of (I.52) corresponding to the scattering of the rightgoing
plane wave w+ in Ωε. The first step is to compute an asymptotic expansion of uε

+ as ε tends to
zero. As usual in asymptotic analysis, we work with different ansatz for uε

+, depending on the
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region. More precisely, we consider the outer expansions

uε
+(x, y) = u0(x, y) + . . . in Ω0

uε
+(x, y) = ε−1v−1(y) + v0(y) + . . . in the resonator

(III.15)

where Ω0 denotes the initial waveguide without the ligament and u0, v−1, v0 denote unknown
functions which are independent of ε. To begin with, suppose that the ligament has a length ℓ > 0
independent of ε. Considering the restriction of Problem (I.3) in Ωε to the thin resonator, when ε
tends to zero, we find that v−1 must solve the homogeneous 1D problem

(P1D)
∂2

yv + k2v = 0 in (1; 1 + ℓ)
v(1) = ∂yv(1 + ℓ) = 0.

An important message is that the features of (P1D) play a key role in the physical phenomena
and so in the asymptotic analysis. We denote by ℓres (resonance lengths), the values of ℓ, given by

ℓres := π(m+ 1/2)/k, m ∈ N, (III.16)

such that (P1D) admits a non zero solution. Note that the non zero functions solving (P1D)
coincide, up to a multiplicative constant, with sin(k(y − 1)).

Assume first that ℓ ̸= ℓres. Then we find v−1 ≡ 0 in (III.15) and when ε → 0, we can show
that

uε
±(x, y) = u± + o(1) in Ω0

uε
±(x, y) = u±(A) v0(y) + o(1) in the resonator

(III.17)

where u± stands for the scattering solution corresponding to an incident plane wave coming from
∓∞ and A = (xA, 1) is the attachment point of the ligament. Moreover in (III.17),

v0(y) = cos(k(y − 1)) + tan(k(y − ℓ)) sin(k(y − 1))

(observe that we have ∂2
yv + k2v = 0 in (1; 1 + ℓ) as well as v0(1) = 1 and ∂xv0(1 + ℓ) = 0). From

this, we deduce that
Rε

± = R± + o(1), T ε = T + o(1),
where R±, T are the scattering coefficients in the geometry without the ligament. In that situa-
tion, we see that the resonator has no influence at order ε0, which is not interesting for our purpose.

Assume now that ℓ = ℓres. In that case, the asymptotic analysis is more involved. At the end of
the (long) procedure, see [16] for the details, we obtain, when ε → 0,

uε
+(x, y) = u+(x, y) + akγ(x, y) + o(1) in Ω0

uε
+(x, y) = ε−1a sin(k(y − 1)) +O(1) in the resonator

(III.18)

where γ denotes the outgoing Green function such that

∆γ + k2γ = 0 in Ω
∂νγ = δA on ∂Ω.

Moreover in (III.18), we find that a is given by

ak = −
u+(A)

Γ + π−1 ln |ε| + CΞ

where Γ and CΞ are some constants which depend only on the initial geometry Ω0. Observe that
in (III.18), the field blows up as O(ε−1) in the resonator, which is directly related to the fact that
there is a complex resonance close to the considered real k. From (III.18), we obtain

Rε
+ = R+ + iau+(A)/2 + o(1), T ε = T + iau−(A)/2 + o(1).

48



This time the thin resonator has an influence at order ε0. Let us make a small variant by assuming
that the length of the ligament is equal to ℓε = ℓres + εη, where η ∈ R is a parameter that we set
as we wish. In that situation the analysis is very similar to the previous case and when ε → 0, we
find

uε
+(x, y) = u+(x, y) + a(η)kγ(x, y) + o(1) in Ω0

uε
+(x, y) = ε−1a(η) sin(k(y − 1)) +O(1) in the resonator

(III.19)

with
a(η)k = −

u+(A)
Γ + π−1 ln |ε| + CΞ + η

.

This gives
Rε

+ = Rasy
+ (η) + o(1), T ε = T asy(η) + o(1) (III.20)

with
Rasy

+ (η) := R+ + ia(η)u+(A)/2, T asy(η) := T + ia(η)u−(A)/2 + o(1).

Thus, not only the resonator has an influence at order ε0, but additionally the latter depends on
the choice made for η. We get something similar to what has been shown in Section 1 (see in
particular Figure III.5): for all η ∈ R, the resonator tends to the 1D segment (1; 1 + ℓres), but
depending on the choice of η, the limit of the corresponding scattering coefficients is not the same.
As a consequence, the scattering coefficients, considered as functions of the two variables (ε, ℓ), are
not continuous at the point (0, ℓres). Moreover, for ε0 fixed small, varying slightly ℓ around ℓres,
which corresponds for example to sweep η ∈ [−ε−1/2

0 ; ε−1/2
0 ], we obtain a large variation for Rε0

+ ,
T ε0 (again see the illustration of Figure III.5). More precisely, working with the Möbius transform,
one shows that the sets

{Rasy
+ (η), η ∈ R}, {T asy(η), η ∈ R}

where R := R∪{+∞}∪{−∞}, coincide with circles. We deduce that asymptotically, when ε → 0,
when perturbing the length of the ligament around ℓres, Rε

+, T ε run on circles. Interestingly for
our purpose, the features of these circles depend on A, the attachment point of the ligament.

In view of achieving zero reflection, by using the expansions of u±(A) far from the obstacle,
the following statement is established in [16]:

Proposition III.4. Assume that R+ ̸= 0 and T ̸= 0. There are some A = (xA, 1) such that there
exists η such that Rasy

+ (η) = 0. In that case, when ε → 0, we have Rε
+ = 0 + o(1).

Remark III.5. Note that we exclude the case R+ = 0 because in this situation we already have zero
reflection in the initial geometry and there is no need for adding a resonator. In the case T = 0,
i.e. |R+| = 1 due to conservation of energy, the most challenging situation, our approach does
not work. However, one possibility to get zero reflection is to add first one or several resonators
to obtain a transmission coefficient quite different from zero. And then to add another well-tuned
resonator to kill the reflection. Let us mention that this strategy is also interesting when T is small
but non zero because in this case achieving almost zero reflection with only one resonator is quite
unstable.

Remark III.6. It is important to emphasize that compared to what we presented in the previous
sections, we do not reach exactly Rε

+ = 0 but simply get Rasy
+ (η) = 0. In other words, there is

a residue due to the error in the expansion. This analysis encourages us to take ε as small as
possible. However when ε becomes small, the amplitude of the field in the resonator gets very high
and the tuning procedure of the features of the ligament is very sensitive. Thus one must find a
compromise between small reflection and robustness with respect to perturbations of the geometry.

In Figures III.12–III.13, we consider the scattering of the rightgoing plane wave by a sound hard
obstacle (the fish). We have added a well-tuned ligament to obtain almost zero reflection. In Figure
III.13, we observe that by working with a smaller ε, as expected we can reduce the reflection.
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Figure III.12: Real parts of uε
+ (left) and of uε

+ −w+ (right). The length of the resonator is tuned
to get almost zero reflection. Here ε = 0.3.

Figure III.13: Same quantities as in Figure III.12 but with a thinner resonator (here ε = 0.01).

Once almost zero reflection has been obtained, it remains to compensate for the phase shift. To
proceed, one method consists in coupling the previous waveguide with what we call a phase-shifter.
This is a device where one has zero reflection and any prescribed phase. We have shown that such
phase shifters can be designed by working with two well-tuned resonant ligaments added to the
reference strip R × (0; 1). At the end, we obtain T ε ≈ 1 with three well-tuned resonant ligaments.

On the other hand, by exploiting again the results of the asymptotic analysis (III.19), (III.20),
we have established that we can get T ε ≈ 1 with only two well-tuned ligaments. Let us assess
the degrees of freedom which are involved. We wish to control two complex coefficients, Rε, T ε,
and so four real parameters. The relation of conservation of energy imposes one constraint. As a
consequence, there are three real degrees of freedom. In our strategy here, we play with the two
lengths of the resonators and with the distance between them.

In Figures III.14, III.15, we cloak two different obstacles/defects by working with two resonant
ligaments. In each case, on the first line we display the field corresponding to the scattering of a
rightgoing plane wave without the resonators. The setting of Figure III.15 is particularly challeng-
ing because the initial transmission coefficient is very small. To restore a good transmission, we
observe that we have to excite strongly the resonances. Practically, this is probably a limitation
because we can imagine that dissipation will then become important.

Figure III.14: Real parts of u+ (top), uε
+ (middle) and uε

+ − w+ (bottom). The resonators are
tuned to get T ε ≈ 1. Here ε = 0.01.
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Figure III.15: Real parts of u+ (top), uε
+ (middle) and uε

+ − w+ (bottom). The resonators are
tuned to get T ε ≈ 1. Here ε = 0.05.
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Chapter IV

A spectral problem characterizing
zero reflection

ui

us us++

Figure IV.1: Schematic picture of a reflectionless mode. The propagating wave (blue) is not
reflected. The backscattered field is purely evanescent (green).

Let us adopt another point of view concerning questions of invisibility. Instead of considering
the wavenumber k fixed in the problem and try to find geometries where we have zero reflection
or perfect invisibility, we assume that the geometry is fixed and we look for k such that there
is an incident field whose energy is completely transmitted through the waveguide. To proceed,
we present the results of [12] (see also the related works ([21, 39]) where it is shown that such
reflectionless modes can be characterized as eigenfunctions of an original non-selfadjoint spectral
problem. The approach is based on the following basic observation: if for an incident wave, the
backscattered field is evanescent, then the total field is ingoing in the input lead and outgoing in
the output lead. To select ingoing waves on one side of the obstacle and outgoing waves on the
other side, we use complex scalings [2, 5] (or Perfectly Matched Layers [9]) with imaginary parts of
different signs. We prove that the real eigenvalues of the obtained spectrum correspond either to
trapped modes (also called Bound States in the Continuum, BSCs or BICs, in quantum mechanics)
or to reflectionless modes. Interestingly, complex eigenvalues also contain useful information on
weak reflection cases. When the geometry has certain symmetries, the new spectral problem enters
the class of PT-symmetric problems. Let us describe this in more details.

1 Setting

−L L

γ = 5γ = 1

(a)

γ = 5γ = 1
x

y

−L L(b)

Figure IV.2: Symmetric (a) and non-symmetric (b) obstacles considered in the numerics below.

To make the presentation as simple as possible, we study the scattering of waves in 2D by a
penetrable obstacle. The waveguide coincides with the region Ω := {(x, y) ∈ R2 | 0 < y < 1} and
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we consider the problem
∆u+ k2γu = 0 in Ω

∂yu = 0 on ∂Ω
(IV.1)

with Neumann BCs. The coefficient γ corresponds to the material index of the medium filling Ω.
We assume that γ is a positive and bounded function such that γ = 1 for |x| ≥ L where L > 0 is
given. In other words, the obstacle is located in the region ΩL := {(x, y) ∈ Ω | |x| < L} (see Figure
IV.2). Pick k ∈ (Nπ; (N + 1)π), with N ∈ N := {0, 1, . . . }. Let us change a bit the definition of
the modes (I.53) by modifying the normalization and set

w±
n (x, y) =

e±iβnxφn(y)
(2|βn|)1/2 , βn :=

√
k2 − n2π2, φn(y) = 1 if n = 0√

2 cos(nπy) for n > 0. (IV.2)

For n = 0, . . . , N , the wave w±
n propagates along the (Ox) axis from ∓∞ to ±∞. On the other

hand, for n > N , w±
n is exponentially growing at ∓∞ and exponentially decaying at ±∞. For

n = 0, . . . , N , we consider the scattering of the wave w+
n by the obstacle located in Ω. By adapting

Proposition I.14, one shows that Problem (IV.1) admits a solution un = w+
n +us

n with the outgoing
scattered field us

n written as

us
n =

+∞∑
p=0

s±
npw

±
p for ± x ≥ L (IV.3)

with (s±
np) ∈ CN. The solution un is uniquely defined if and only if Trapped Modes (TMs) do

not exist at the wavenumber k. We remind the reader that trapped modes are non zero functions
u ∈ L2(Ω) satisfying (IV.1). We denote by Kt the set of k2 such that TMs exist at the wavenumber
k. On the other hand, as already mentioned after (I.48), the scattering coefficients s±

np in (IV.3) are
always uniquely defined, including for k2 ∈ Kt. In the following, we will be particularly interested
in the features of the reflection matrix (whose size, determined by the number of propagative
modes, depends on k)

R(k) := (s−
np)0≤n,p≤N ∈ CN+1×N+1. (IV.4)

Definition IV.1. We say that the wavenumber k ∈ (0; +∞)\πN is reflectionless if kerR(k) ̸= {0}.

Let us explain this definition. In general, by linearity, for an incident field (coming from the left)

ui =
N∑

n=0
anw

+
n , (an)N

n=0 ∈ CN+1, (IV.5)

Problem (IV.1) admits a solution u such that u = ui + us with

us =
+∞∑
p=0

b±
p w

±
p for ± x ≥ L and b±

p =
N∑

n=0
ans

±
np ∈ C. (IV.6)

The above definition says that, if k is reflectionless, then there are (an)N
n=0 ∈ CN+1 \ {0} such that

the b−
p in (IV.6) satisfy b−

p = 0, p = 0, . . . , N . In other words, the scattered field is exponentially
decaying for x ≤ −L. Finally notice that the corresponding total field u = ui + us decomposes as

u =
N∑

n=0
anw

+
n + ũ for x ≤ −L

u =
N∑

n=0
tnw

+
n + ũ for x ≥ L

(IV.7)

where tn = an + b+
n and where ũ decays exponentially for ±x ≥ L. In other words, the total field

is ingoing for x ≤ −L and outgoing for x ≥ L.
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In the following, we call Reflectionless Modes (RMs) the functions u satisfying (IV.1) and admit-
ting expansion (IV.7). We denote by Kr the set of k2 such that the wavenumber k is reflectionless.
Our objective is to explain how to determine directly the set Kr and the corresponding RMs by
solving an eigenvalue problem, instead of computing the reflection matrix for all values of k.

2 Classical complex scaling

As a first step, we remind briefly how to use a complex scaling to compute trapped modes. Define
the unbounded operator A of L2(Ω) such that

Au = −
1
γ

∆u

with Neumann boundary conditions ∂yu = 0 on y = 0 and y = 1. It is known that A is a
selfadjoint operator (L2(Ω) is endowed with the inner product (γ ·, ·)L2(Ω)) whose spectrum σ(A)
coincides with [0; +∞). More precisely, we have σess(A) = [0; +∞) where σess(A) denotes the
essential spectrum of A. By definition, σess(A) corresponds to the set of λ ∈ C for which there
exists a so-called singular sequence (u(m)), that is an orthonormal sequence (u(m)) ∈ L2(Ω)N such
that ((A − λ)u(m)) converges to 0 in L2(Ω). Besides, σ(A) may contain eigenvalues (at most a
sequence accumulating at +∞) corresponding to TMs. In order to reveal these eigenvalues which
are embedded in σess(A), one can use a complex change of variables. For 0 < θ < π/2, set η = eiθ

and define the function Iθ : R → C such that

Iθ(x) =
−L+ (x+ L) η for x ≤ −L
x for |x| < L
+L+ (x− L) η for x ≥ L.

(IV.8)

For the sake of simplicity, we will use abusively the same notation Iθ for the following map:
{Ω → C × (0; 1), (x, y) 7→ (Iθ(x), y)}. Note that with this definition, the left inverse I−1

θ of Iθ,
acting from Iθ(Ω) to Ω, is equal to I−θ. One can easily check that for all n ≥ 0, w+

n ◦ Iθ is
exponentially decaying for x ≥ L, while w−

n ◦ Iθ is exponentially decaying for x ≤ −L. As a
consequence, defining from expansion (IV.6) the function vθ = us ◦ Iθ, one has vθ = us for |x| < L
and vθ ∈ L2(Ω) (which is in general not true for us). Moreover vθ satisfies the following equation
in Ω:

αθ
∂

∂x

(
αθ
∂vθ

∂x

)
+ ∂2vθ

∂y2 + k2γvθ = k2(1 − γ)ui (IV.9)

with αθ(x) = 1 for |x| < L and αθ(x) = η−1 = η for ±x ≥ L. In particular, for a TM, vθ solves
(IV.9) with ui = 0. This leads us to consider the unbounded operator Aθ of L2(Ω) such that

Aθvθ = −
1
γ

(
αθ

∂

∂x

(
αθ
∂vθ

∂x

)
+ ∂2vθ

∂y2

)
(IV.10)

again with homogeneous Neumann boundary conditions. Since αθ is complex valued, the operator
Aθ is not selfadjoint. However, we use the same definition as above for σess(Aθ), which is licit for
this operator. We recall below the main spectral properties of Aθ [38]:

Theorem IV.2. i) There holds

σess(Aθ) =
⋃

n∈N, t≥0
{n2π2 + te−2iθ}. (IV.11)

ii) The spectrum of Aθ satisfies σ(Aθ) ⊂ R−
θ with

R−
θ := {z ∈ C | − 2θ ≤ arg(z) ≤ 0}.
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iii) σ(Aθ) \ σess(Aθ) is discrete and contains only eigenvalues of finite multiplicity.
iv) Assume that k2 ∈ σ(Aθ) \ σess(Aθ). Then k2 is real if and only if k2 ∈ Kt. Moreover if vθ is
an eigenfunction associated to k2 such that ℑmk2 < 0, then vθ ◦ I−θ is a solution of the original
problem (IV.1) whose amplitude is exponentially growing at +∞ or at −∞.

The interesting point is that now TMs correspond to isolated eigenvalues of Aθ, and as such, they
can be computed numerically as illustrated below. Note that the elements k2 of σ(Aθ) \ σess(Aθ)
such that ℑmk2 < 0, if they exist, correspond to complex resonances (quasi normal modes). Let us
point out that the complex scaling is just a technique to reveal them. Indeed complex resonances
are intrinsic objects defined as the poles of the meromorphic extension from {z ∈ C | ℑmz > 0}
to {z ∈ C | ℑmz ≤ 0} of the operator valued map z 7→ (∆ + zγ)−1. For more details, we refer the
reader to [4].

3 Conjugated complex scaling

Now, we show that replacing the classical complex scaling by an unusual conjugated complex
scaling, and proceeding as in the previous section, we can define a new complex spectrum which
contains the reflectionless values k2 ∈ Kr we are interested in. We define the map Jθ : Ω → C×(0; 1)
using the following complex change of variables

Jθ(x) =
−L+ (x+ L) η for x ≤ −L
x for |x| < L
+L+ (x− L) η for x ≥ L,

(IV.12)

with again η = eiθ (0 < θ < π/2). Note the important difference in the definitions of Jθ and Iθ for
x ≤ −L: η has been replaced by the conjugated parameter η to select the ingoing modes instead
of the outgoing ones in accordance with (IV.7). Now, if u is a RM associated to k2 ∈ Kr, setting
wθ = u◦Jθ, one has wθ = u for |x| < L and wθ ∈ L2(Ω) (which is not the case for u). The function
wθ satisfies the following equation in Ω:

βθ
∂

∂x

(
βθ
∂wθ

∂x

)
+ ∂2wθ

∂y2 + k2γwθ = 0 (IV.13)

with βθ(x) = 1 for |x| < L, βθ(x) = η for x ≤ −L and βθ(x) = η for x ≥ L. This leads us to define
the unbounded operator Bθ of L2(Ω) such that

Bθwθ = −
1
γ

(
βθ

∂

∂x

(
βθ
∂wθ

∂x

)
+ ∂2wθ

∂y2

)
(IV.14)

with homogeneous Neumann boundary conditions. As Aθ, the operator Bθ is not selfadjoint. Its
spectral properties are summarized in the following theorem.

Theorem IV.3. i) There holds

σess(Bθ) =
⋃

n∈N, t≥0
{n2π2 + te−2iθ, n2π2 + te+2iθ}. (IV.15)

ii) The spectrum of Bθ satisfies σ(Bθ) ⊂ Rθ with

Rθ := {z ∈ C | − 2θ ≤ arg(z) ≤ 2θ}. (IV.16)

iii) Assume that k2 ∈ σ(Bθ)\σess(Bθ). Then k2 is real if and only if k2 ∈ Kt ∪Kr. Moreover if wθ

is an eigenfunction associated to k2 such that ±ℑmk2 < 0, then wθ ◦ J−θ is a solution of (IV.1)
whose amplitude is exponentially growing at ±∞ and exponentially decaying at ∓∞.
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The important result is that isolated real eigenvalues of Bθ correspond precisely to TMs and RMs.
The following proposition provides a criterion to determine whether an eigenfunction associated
to a real eigenvalue of Bθ is a TM or a RM.

Proposition IV.4. Assume that (k2, wθ) ∈ R × L2(Ω) is an eigenpair of Bθ such that k ∈
(Nπ; (N + 1)π), N ∈ N. Set

ρ(wθ) =
N∑

n=0

∣∣∣ ∫ 1

0
wθ(−L, y)φn(y) dy

∣∣∣2 (IV.17)

where φn is defined in (IV.2). If ρ(wθ) = 0 then wθ ◦ J−θ is a TM (k2 ∈ Kt). If ρ(wθ) > 0 then
wθ ◦ J−θ is a RM (k2 ∈ Kr). In this case, the incident field ui defined in (IV.5) with

an =
∫ 1

0
wθ(−L, y)φn(y) dy, n = 0, . . . , N,

yields a scattered field which decays exponentially for x ≤ −L.

The next proposition tells that Bθ satisfies the celebrated PT symmetry property when the obstacle
is symmetric with respect to the (Oy) axis. This ensures in particular the stability of simple real
eigenvalues, with respect to perturbations of the obstacle satisfying the same symmetry constraint.

Proposition IV.5. Assume that γ satisfies γ(x, y) = γ(−x, y) for all (x, y) ∈ Ω. Then the
operator Bθ is PT-symmetric (PTBθPT = Bθ) with Pφ(x, y) = φ(−x, y), Tφ(x, y) = φ(x, y) for
φ ∈ L2(Ω). Therefore, we have σ(Bθ) = σ(Bθ).

The proof is straightforward observing that the βθ defined after (IV.13) satisfies βθ(−x, y) =
βθ(x, y).

Finally let us mention a specific difficulty which appears in the spectral analysis of Bθ. While
Theorem IV.2 guarantees that σ(Aθ) \ σess(Aθ) is discrete, we do not write such a statement for
the operator Bθ in Theorem IV.3. A major difference between both operators is that C \ σess(Aθ)
is connected whereas C \ σess(Bθ) has a countably infinite number of connected components. As a
consequence, to prove that σ(Bθ) \ σess(Bθ) is discrete using the Fredholm analytic theorem, it is
necessary to find one λ such that Bθ −λ is invertible in each of the components of C \σess(Bθ). In
general, in presence of an obstacle, such a λ probably exists (proofs for certain classes of γ can be
obtained working as in [10]). But for this problem, we can have surprising perturbation results.
Thus, if there is no obstacle (γ ≡ 1 in Ω), then there holds σ(Bθ) = Rθ (see (IV.16)): all connected
components of C \ σess(Bθ), except the one containing the complex half-plane ℜe λ < 0, are filled
with eigenvalues. To show this result, observe that for k2 ∈ σ(Bθ) \ σess(Bθ), the function u ◦ Jθ,
with u(x, y) = eikx, is a non-zero element of kerBθ. Notice that this pathological property is also
true when Ω contains a family of sound hard cracks (homogeneous Neumann boundary condition)
parallel to the (Ox) axis (see the illustration of Figure IV.3).

2θ

2θ

0 ℜe k2

ℑm k2

Figure IV.3: Left: waveguide with horizontal cracks. Right: the spectrum of the corresponding
Bθ fills the whole sector delimited by σess(Bθ). Here the blue lines represent σess(Bθ).
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4 Numerical experiments

4.1 Classical complex scaling: classical complex resonance modes

We first compute the spectrum of the operator Aθ defined in (IV.10) with a classical complex
scaling (complex resonance spectrum). For the numerical experiments, we truncate the computa-
tional domain at some distance of the obstacle and use finite elements. This corresponds to the
so-called Perfectly Matched Layers (PMLs) method. We refer the reader to [22] for the numeri-
cal analysis of the error due to truncation of the waveguide and discretization. The setting is as
follows. We take γ such that γ = 5 in O = (−1; 1) × (0.25; 0.75) and γ = 1 in Ω \ O (see Figure
IV.2 (a)). In the definition of the maps Iθ, αθ (see (IV.8), (IV.9)), we take θ = π/4 (so that
η = eiπ/4) and L = 1. In practice, we use a P2 finite element method in the bounded domain
Ω12 = {(x, y) ∈ Ω | − 12 < x < 12} with Dirichlet boundary condition at x = ±12.

In Figure IV.4 and below, we display the square root of the spectrum (k instead of k2). The
vertical marks on the real axis correspond to the thresholds (0, π, 2π, ...). In accordance with
Theorem IV.2, we observe that

√
σ(Aθ) is located in the region

√
R−

θ = {z ∈ C | −θ ≤ arg(z) ≤ 0}.
Moreover, the discretisation of the essential spectrum σess(Aθ) defined in (IV.11) and forming
branches starting at the threshold points appears clearly. Note that a simple calculation shows
that

√
{n2π2 + te−2iθ, t ≥ 0} is a half-line for n = 0 and a piece of hyperbola for n ≥ 1. This is

precisely what we get. Eigenvalues located on the real axis correspond to trapped modes (k2 ∈ Kt).
In the chosen setting, which is symmetric with respect to the axis R × {0.5}, one can prove that
trapped modes exist [19]. On the other hand, the eigenvalues in the complex plane which are not
the discretisation of the essential spectrum correspond to complex resonances.
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Figure IV.4: Classical complex resonances in the complex k plane corresponding to the spectrum
of Aθ for a symmetric obstacle (Figure IV.2 (a)). The trapped modes are in red, the dashed lines
represent the essential spectrum of Aθ (see (IV.11)). The picture on the right is a zoom-in of that
on the left.

4.2 Conjugated complex scaling: reflectionless modes

Now we compute the spectrum of the operator Bθ defined in (IV.14) with a conjugated complex
scaling. First, we use exactly the same symmetric setting (see Figure IV.2 (a)) as in the previous
paragraph. In Figure IV.5, we display the square root of the spectrum

√
σ(Bθ). Since γ satisfies

γ(x, y) = γ(−x, y), according to Proposition IV.5 we know that Bθ is PT-symmetric and that
therefore its spectrum is stable by conjugation (σ(Bθ) = σ(Bθ)). This is indeed what we obtain.
Note that the mesh has been constructed so that PT-symmetry is preserved at the discrete level.
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PT-symmetry is an interesting property in our case because it guarantees that eigenvalues located
close to the real axis which are isolated (no other eigenvalue in a vicinity) are real. Therefore,
according to Theorem IV.3, they correspond to trapped modes or to reflectionless modes. Remark
that, for the same geometry, the spectrum of Bθ (Figure IV.5) contains more elements on the real
axis than the spectrum of Aθ (Figure IV.4): the additional elements (green points in Figure IV.5)
correspond to reflectionless modes.
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Figure IV.5: Reflectionless eigenvalues in the complex k plane corresponding to the spectrum of
Bθ for a symmetric obstacle (Figure IV.2 (a)). The trapped modes in red are the same as in Figure
IV.4. The reflectionless modes are in green and the dashed lines represent the essential spectrum
of Bθ (see (IV.15)). The picture on the right is a zoom-in of that on the left.
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Figure IV.6: Top: real part of eigenmodes associated with real eigenvalues of Bθ from Figure IV.5.
Bottom: value of k and of the indicator function ρ for each of these 7 eigenmodes. The 3rd and
the 5th eigenmodes are trapped modes, the five others are reflectionless modes.
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In Figure IV.6 top, we represent the real part of eigenfunctions associated with seven real eigen-
values of Bθ. To obtain these pictures, we take L = 4 in the definition of Jθ in (IV.12) and we
display only the restrictions of the eigenfunctions to ΩL = {(x, y) ∈ Ω | − L < x < L}. We rec-
ognize two trapped modes (images 3 and 5). The other modes are reflectionless modes. In Figure
IV.6 bottom, we provide the value of the indicator function ρ defined in (IV.17) for the seven
eigenmodes. We have to mention that eigenmodes are normalized so that their L2 norm is equal
to one. The indicator function ρ offers a clear criterion to distinguish between trapped modes and
reflectionless modes. Moreover, in order to inspect the scattering coefficient, we remark that for
reflectionless modes associated with wavenumbers k smaller than π, the incident field ui in (IV.5)
decomposes only on the piston mode w+

0 (x, y) = eikx/
√

2k (monomode regime). In this case the
reflection matrix R(k) in (IV.4) is nothing but the usual reflection coefficient. In Figure IV.7, we
thus display the modulus of this coefficient R(k) with respect to k ∈ (0.1; 3.1). As expected, we
observe that R vanishes for the values of k obtained in Figure IV.6 solving the spectral problem
for Bθ. Of course obtaining the curve k 7→ |R(k)| is relatively costly and it is precisely what we
want to avoid by computing the reflectionless k as eigenvalues. Here it is simply a way to check
our results.
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Figure IV.7: Curve k 7→ |R(k)| (modulus of the reflection coefficient) for k ∈ (0.1; 3.1). The green
and red dots represent respectively the reflectionless modes and the trapped modes computed in
Figure IV.5. We indeed observe that R(k) is null for reflectionless k.

In Figure IV.8, we represent the modulus of reflectionless mode eigenfunctions of Bθ associated
with one real eigenvalue and two complex conjugated eigenvalues. We observe, and this is true
in general, a symmetry with respect to the (Oy) axis for modes corresponding to real eigenvalues
which disappears for complex ones. This is the so-called broken symmetry phenomenon which is
well-known for PT-symmetric operators (see e.g. the review [7]).

Now, we use the non-symmetric setting (see Figure IV.2 (b)), and we display the square root of
the spectrum of Bθ (in Figure IV.9) for a coefficient γ which is not symmetric in x nor in y. More
precisely, we take γ such that γ = 5 in O = (−1; 0] × (0.25; 0.5) ∪ [0; 1) × (0.25; 0.75) and γ = 1 in
Ω \O. We observe that the spectrum is no longer stable by conjugation (σ(Bθ) ̸= σ(Bθ)) since the
operator Bθ is not PT-symmetric, and there is no “help” for the eigenvalues to be real. However, a
closer look shows the presence of eigenvalues close to the real axis, in particular for k ≈ 1.0+0.13i,
k ≈ 1.9 + 0.005i, k ≈ 2.5 + 0.02i, k ≈ 2.8 + 0.08i and k ≈ 3.0 − 0.008i. In Figure IV.10, we
represent k 7→ |R(k)| for k ∈ (0.1; 3.1) where there is only one propagating mode in the leads. It is
interesting to note that the above computed complex reflectionless modes (located close to the real
axis) have an influence on this curve. More precisely, k 7→ |R(k)| attains minima for k ∈ (0.1; 3.1)
close to the real part of these complex reflectionless modes. Therefore complex reflectionless modes
also have significance for scattering at real frequncies.
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Figure IV.8: Modulus of eigenfunctions of Bθ associated to the eigenvalues k ≈ 5.31 (top), k ≈
5.29 − 0.13i (middle) and k ≈ 5.29 + 0.13i (bottom) obtained in Figure IV.5. The symmetry
x → −x for real k (due to PT-symmetry) disappears for complex k.
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Figure IV.9: Spectrum of Bθ in the complex k plane for a non symmetric obstacle (Figure IV.2
(b)). The dashed lines represent the essential spectrum of Bθ (see (IV.15)). The spectrum is not
stable by conjugation. The picture on the right is a zoom-in of that on the left.
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Figure IV.10: Curve k 7→ |R(k)| (modulus of the reflection coefficient) for k ∈ (0.1; 3.1) and a non
symmetric obstacle. The blue dots and the vertical dashed lines correspond to the real parts of the
eigenvalues of Bθ located close to the real axis computed in Figure IV.9. We observe that |R(k)|
is minimal for these particular k.
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5 Concluding remarks

Determining the scattering coefficients for a range of frequencies to identify the k for which there are
incident fields which produce zero reflection is a tedious work. This chapter shows that reflectionless
frequencies can be directly computed as the eigenvalues of a non-selfadjoint operator Bθ (see
(IV.14)) with conjugated complex scalings enforcing ingoing behaviour in the incident lead and
outgoing behaviour in the other lead. The reflectionless spectrum of this operator Bθ provides
a complementary information to the one contained in the classical complex resonance spectrum
associated with leaky modes which decompose only on outgoing waves (see the operator Aθ in
(IV.10)). Note that eigenvalues corresponding to trapped modes belong to both the reflectionless
spectrum and to the classical complex resonance spectrum because trapped modes do not excite
propagating waves. Let us make a few additional comments and highlight future directions as well
as open questions.
i) We have seen that the non-selfadjoint operator Bθ is PT symmetric when the structure has
mirror symmetry. Interestingly, a direct calculus shows that in the very simple case of a 1D
transmission problem through a slab of constant index, reflectionless frequencies are all real. This
gives an example of a non-selfadjoint PT symmetric operator with only real eigenvalues.
ii) In this work, we investigated scattering problems in waveguides with N = 2 leads for which
two reflectionless spectra exist: one associated with incident waves propagating from the left and
another corresponding to incident waves propagating from the right. The more general case with
N (N ≥ 2) leads can be considered as well. Among the total of 2N different spectra with an
ingoing or an outgoing complex scaling in each lead, two spectra correspond to eigenmodes which
decompose on waves which are all outgoing or all ingoing. As a consequence, there are 2N − 2
reflectionless spectra.

Figure IV.11: Examples of reflectionless modes in waveguides with sound hard walls (Neumann).

iii) Above we computed reflectionless modes in waveguides containing penetrable obstacles. We
can work completely similarly with perturbations of the geometry. In Figure IV.11, we give two
examples of reflectionless modes in such structures. Note that in each case, Bθ is PT symmetric
due to the symmetry of the geometry. Other kinds of BCs (Dirichlet, ...) and higher dimension
(3D) can be dealt with similarly.
There are many open questions with this work. Here we list just of few of them.
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iv) First, it would be nice to obtain criteria on the index material/geometry ensuring that the
spectrum of Bθ is discrete outside of σess(Bθ). In 1D, we have been able to prove rather general
results. In higher dimension this is quite open.
v) On the other hand, could we show that Bθ has always real eigenvalues corresponding to reflec-
tionless modes, at least for PT symmetric problems?
vi) The question of the approximation of the spectrum of Bθ is a field of research in itself, the
reason being that Bθ is a non selfadjoint operator. Indeed, the theory of perturbations of non
selfadjoint operators is not well developed and many phenomena can occur. Here it is easy to
see in the situation where the waveguide contains only (Neumann) horizontal cracks. In that case
we explained before Figure IV.3 that σ(Bθ) fills a whole sector. However when we truncate the
domain at some distance L, we can show that the corresponding spectrum is discrete. This seems
particularly pathological. But even when σ(Bθ) \ σess(Bθ) is discrete, proving that the spectrum
of the problem in the truncated waveguide converges to the one of Bθ when L tends to +∞ is a
challenging task. Additionally, it would be interesting to prove that spurious eigenvalues, which
would converge to some non physical values, do not exist. In practice, we not only truncate the
domain but also approximate the problem by working in finite dimension with finite elements.
This is also an approximation which has to be studied. In this context, it seems that the notion
of pseudo-spectrum, see e.g. [40], which has been developed to understand the properties of non
normal operators, may provide useful information.
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