
Radiation condition for a non smooth interface

between a dielectric and a metamaterial

Waves 2011

A.-S. Bonnet-Ben Dhia†, L. Chesnel†, X. Claeys‡
†
POems team, Ensta, Paris, France
‡
DMIA, ISAE, Toulouse, France

Simon Fraser University, Vancouver, Canada, July 25, 2011 1 / 20



Introduction: setting of the problem

Time-harmonic problem in electromagnetism (at a given frequency)

set in a heterogeneous bounded domain:

Negative metamaterial
=

Structure with negative permittivity
ε and permeability µ

Combination
Dielectric + Metamaterial

⇒ interesting applications
Example: the �superlens�

Unusual transmission problem because the sign of the coe�cients ε
and µ changes.
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Introduction: modelization of the problem

Di�culty of the scalar problem concentrated in the study of the problem:

(P)
Find u ∈ H1

0 (Ω) such that:

−div(σ∇u) = f in Ω.

H1
0 (Ω) = {v ∈ L2(Ω) | ∇v ∈ L2(Ω); v|∂Ω = 0}

f is the source term in H−1(Ω)

(P)⇔ (PV )
Find u ∈ H1

0 (Ω) such that:

a(u, v) = l(v), ∀v ∈ H1
0 (Ω).

with a(u, v) =

∫
Ω

σ∇u · ∇v and l(v) = 〈f, v〉.

Definition. We will say that the problem (P) is well-posed if the operator
A = div (σ∇·) is an isomorphism from H1

0 (Ω) to H−1(Ω).
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Introduction: mathematical di�culty

Classical case σ > 0 everywhere :

a(u, u) =

∫
Ω
σ |∇u|2 ≥ min(σ) ‖u‖2H1

0 (Ω) coercivity

Lax-Milgram theorem ⇒ (P) well-posed.

VS.

The case σ changes sign :

a(u, u) =

∫
Ω
σ |∇u|2 ≥ C ‖u‖2H1

0 (Ω)
loss of coercivity

I For a symmetric domain (w.r.t. Σ) with σ2 = −σ1, we can build a
kernel of in�nite dimension.
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Outline of the talk

1) A presentation of the T-coercivity method to �nd a criterion on σ to ensure that
problem (P) is well-posed in H1

0 (Ω).

2) A de�nition of a new functional framework when the problem (P) is not well-
posed in H1

0 (Ω).

3) An approximation of the solution in the new functional framework using PML in
the neighbourhood of the corner.

1 A variational technique: the T-coercivity approach

2 A new functional framework in the critical interval

Analogy with a waveguide problem

Statement of the result

3 Numerical approximation
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Idea of the T-coercivity 1/2

Let T be an isomorphism of H1
0 (Ω).

(P) ⇔ (PV )
Find u ∈ H1

0 (Ω) such that:
a(u, v) = l(v), ∀v ∈ H1

0 (Ω).

Goal: Find T such that a is T-coercive:

∫
Ω

σ∇u · ∇(Tu) ≥ C ‖u‖2H1
0 (Ω).

In this case, Lax-Milgram ⇒ (PT

V ) (and so (PV )) is well-posed.

1 De�ne

R1 transfer/extension operator

2 T1 ◦ T1 = Id so T1 is an isomorphism of H1
0 (Ω)

7 / 20



Idea of the T-coercivity 1/2

Let T be an isomorphism of H1
0 (Ω).

(P) ⇔ (PV ) ⇔ (PT

V )
Find u ∈ H1

0 (Ω) such that:
a(u, Tv) = l(Tv), ∀v ∈ H1

0 (Ω).

Goal: Find T such that a is T-coercive:

∫
Ω

σ∇u · ∇(Tu) ≥ C ‖u‖2H1
0 (Ω).

In this case, Lax-Milgram ⇒ (PT

V ) (and so (PV )) is well-posed.

1 De�ne

R1 transfer/extension operator

2 T1 ◦ T1 = Id so T1 is an isomorphism of H1
0 (Ω)

7 / 20



Idea of the T-coercivity 1/2

Let T be an isomorphism of H1
0 (Ω).

(P) ⇔ (PV ) ⇔ (PT

V )
Find u ∈ H1

0 (Ω) such that:
a(u, Tv) = l(Tv), ∀v ∈ H1

0 (Ω).

Goal: Find T such that a is T-coercive:

∫
Ω

σ∇u · ∇(Tu) ≥ C ‖u‖2H1
0 (Ω).

In this case, Lax-Milgram ⇒ (PT

V ) (and so (PV )) is well-posed.

1 De�ne

R1 transfer/extension operator

2 T1 ◦ T1 = Id so T1 is an isomorphism of H1
0 (Ω)

7 / 20



Idea of the T-coercivity 1/2

Let T be an isomorphism of H1
0 (Ω).

(P) ⇔ (PV ) ⇔ (PT

V )
Find u ∈ H1

0 (Ω) such that:
a(u, Tv) = l(Tv), ∀v ∈ H1

0 (Ω).

Goal: Find T such that a is T-coercive:

∫
Ω

σ∇u · ∇(Tu) ≥ C ‖u‖2H1
0 (Ω).

In this case, Lax-Milgram ⇒ (PT

V ) (and so (PV )) is well-posed.

1 De�ne T1 u =
u1 in Ω1

−u2 + ... in Ω2

R1 transfer/extension operator

2 T1 ◦ T1 = Id so T1 is an isomorphism of H1
0 (Ω)

7 / 20



Idea of the T-coercivity 1/2

Let T be an isomorphism of H1
0 (Ω).

(P) ⇔ (PV ) ⇔ (PT

V )
Find u ∈ H1

0 (Ω) such that:
a(u, Tv) = l(Tv), ∀v ∈ H1

0 (Ω).

Goal: Find T such that a is T-coercive:

∫
Ω

σ∇u · ∇(Tu) ≥ C ‖u‖2H1
0 (Ω).

In this case, Lax-Milgram ⇒ (PT

V ) (and so (PV )) is well-posed.

1 De�ne T1 u =
u1 in Ω1

−u2 + 2R1u1 in Ω2
, with

R1 transfer/extension operator

2 T1 ◦ T1 = Id so T1 is an isomorphism of H1
0 (Ω)

7 / 20



Idea of the T-coercivity 1/2

Let T be an isomorphism of H1
0 (Ω).

(P) ⇔ (PV ) ⇔ (PT

V )
Find u ∈ H1

0 (Ω) such that:
a(u, Tv) = l(Tv), ∀v ∈ H1

0 (Ω).

Goal: Find T such that a is T-coercive:

∫
Ω

σ∇u · ∇(Tu) ≥ C ‖u‖2H1
0 (Ω).

In this case, Lax-Milgram ⇒ (PT

V ) (and so (PV )) is well-posed.

1 De�ne T1 u =
u1 in Ω1

−u2 + 2R1u1 in Ω2
, with

R1 transfer/extension operator continuous from Ω1 to Ω2

2 T1 ◦ T1 = Id so T1 is an isomorphism of H1
0 (Ω)

7 / 20



Idea of the T-coercivity 1/2

Let T be an isomorphism of H1
0 (Ω).

(P) ⇔ (PV ) ⇔ (PT

V )
Find u ∈ H1

0 (Ω) such that:
a(u, Tv) = l(Tv), ∀v ∈ H1

0 (Ω).

Goal: Find T such that a is T-coercive:

∫
Ω

σ∇u · ∇(Tu) ≥ C ‖u‖2H1
0 (Ω).

In this case, Lax-Milgram ⇒ (PT

V ) (and so (PV )) is well-posed.

1 De�ne T1 u =
u1 in Ω1

−u2 + 2R1u1 in Ω2
, with

R1 transfer/extension operator continuous from Ω1 to Ω2

2 T1 ◦ T1 = Id so T1 is an isomorphism of H1
0 (Ω)

7 / 20



Idea of the T-coercivity 2/2

3 One has a(u, T1u) =

∫
Ω

|σ||∇u|2 − 2

∫
Ω2

σ2∇u · ∇(R1 u1)

Young's inequality ⇒ a is T-coercive when σ1 > ‖R1‖2 |σ2| .

4 Working with T2u =
u1 − 2R2u2 in Ω1

−u2 in Ω2
, where R2 : Ω2 → Ω1, one

proves that a is T-coercive when |σ2| > ‖R2‖2 σ1 .

5 Conclusion:

Theorem. If the contrast κσ = σ2/σ1 /∈ [−‖R2‖2;−1/‖R1‖2] (critical
interval) then div (σ∇·) is an isomorphism from H1

0 (Ω) to H−1(Ω).
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Choice of R1,R2?

I A simple case: symmetric domain

symmetry w.r.t. Σ
R1 = SΣ and R2 = SΣ

(P) well-posed ⇔ κσ 6= −1

I Our model geometry: corner domain

Proposition. If the contrast κσ = σ2/σ1 /∈ [−1,−1/3] (critical interval)
then the problem (P) is well-posed.

Key remark. For a general curvilinear polygonal interface, the critical
interval reduces to {−1} if and only if there is no corner in Σ.
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then the problem (P) is well-posed.

Key remark. For a general curvilinear polygonal interface, the critical
interval reduces to {−1} if and only if there is no corner in Σ.
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Transition: from variational methods to
Fourier/Mellin techniques

What happens in the critical interval, i.e. for κσ ∈ [−1,−1/3] ???

⇒ Fourier/Mellin tool (Dauge-Texier 97, Nazarov)
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1 A variational technique: the T-coercivity approach

2 A new functional framework in the critical interval

Analogy with a waveguide problem

Statement of the result

3 Numerical approximation
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Analogy with a waveguide problem

(<e λ = a, =mλ = b)

<e λ > 0
<e λ = 0

• Bounded sector Ω

• Helmholtz equation:
−div(σ∇u)︸ ︷︷ ︸

−r−2(σ(r∂r)2+∂θσ∂θ)u

= f

• Singularities in the sector

s(r, θ) = rλϕ(θ)

s(r, θ) = ra (cos b ln r + i sin b ln r)ϕ(θ)

s∈ H1(Ω)
s/∈ H1(Ω)

• Half-strip B

• Helmholtz equation:
−div(σ∇u)︸ ︷︷ ︸
−(σ∂2

z+∂θσ∂θ)u

= e−2z f

• Modes in the strip

m(z, θ) = e−λzϕ(θ)

m(z, θ) = e−az (cos bz − i sin bz)ϕ(θ)

m is evanescent
m is propagative

I This encourages us to use modal decomposition in the half-strip.
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Modal analysis in the waveguide

We look for the solutions of the form eλzϕ(θ) to the homogeneous
problem (these modes can be computed explicitly for this geometry).

1

−1

1 2−1−2

b
λ1

b
−λ1

b
λ2

b
−λ2

I Outside the critical interval . All the
modes are exponentially growing or decaying.

→ the decomposition on the outgoing modes
leads to look for an exponentially decaying

solution.

H1 framework

1

−1

1 2−1−2

b λ1

b−λ1

b
λ2

b
−λ2

I Inside the critical interval . There are
exactly two propagative modes.

→ the decomposition on the outgoing modes
leads to look for a solution of the form

u = c1 ϕ1 e
λ1 z︸ ︷︷ ︸

propagative part

+ ue.︸︷︷︸
evanescent part

non H1 framework

κσ = −1/4

κσ = −1/2
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The new functional framework

Consider 0 < β < 2, ζ a cut-o� function (equal to 1 in +∞) and de�ne

W−β = {v | eβzv ∈ H1
0 (B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescentpart

Wβ = {v | e−βzv ∈ H1
0 (B)} space of exponentially growing functions

W−β = {v | eβzv ∈ H1
0 (B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescent part

Wβ = {v | e−βzv ∈ H1
0 (B)} space of exponentially growing functions

Theorem. Let κσ ∈ (−1,−1/3) and 0 < β < 2. The operator A+ :
div(σ∇·) from W+ to Wβ

∗ is an isomorphism .

Ideas of the proof:

1 A−β : div(σ∇·) from W−β to Wβ
∗ is injective but not surjective.

2 Aβ : div(σ∇·) from Wβ to W−β
∗ is surjective but not injective.

3 The intermediate operator A+ is injective (energy integral) and
surjective (♠ residual theorem).

4 Limiting absorption principle to select the outgoing mode.

∩
∩

14 / 20



The new functional framework

Consider 0 < β < 2, ζ a cut-o� function (equal to 1 in +∞) and de�ne

W−β = {v | eβzv ∈ H1
0 (B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescentpart

Wβ = {v | e−βzv ∈ H1
0 (B)} space of exponentially growing functions

W−β = {v | eβzv ∈ H1
0 (B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescent part

Wβ = {v | e−βzv ∈ H1
0 (B)} space of exponentially growing functions

Theorem. Let κσ ∈ (−1,−1/3) and 0 < β < 2. The operator A+ :
div(σ∇·) from W+ to Wβ

∗ is an isomorphism .

Ideas of the proof:

1 A−β : div(σ∇·) from W−β to Wβ
∗ is injective but not surjective.

2 Aβ : div(σ∇·) from Wβ to W−β
∗ is surjective but not injective.

3 The intermediate operator A+ is injective (energy integral) and
surjective (♠ residual theorem).

4 Limiting absorption principle to select the outgoing mode.

∩
∩

14 / 20



The new functional framework

Consider 0 < β < 2, ζ a cut-o� function (equal to 1 in +∞) and de�ne

W−β = {v | eβzv ∈ H1
0 (B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescent part

Wβ = {v | e−βzv ∈ H1
0 (B)} space of exponentially growing functions

W−β = {v | eβzv ∈ H1
0 (B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescent part

Wβ = {v | e−βzv ∈ H1
0 (B)} space of exponentially growing functions

Theorem. Let κσ ∈ (−1,−1/3) and 0 < β < 2. The operator A+ :
div(σ∇·) from W+ to Wβ

∗ is an isomorphism .

Ideas of the proof:

1 A−β : div(σ∇·) from W−β to Wβ
∗ is injective but not surjective.

2 Aβ : div(σ∇·) from Wβ to W−β
∗ is surjective but not injective.

3 The intermediate operator A+ is injective (energy integral) and
surjective (♠ residual theorem).

4 Limiting absorption principle to select the outgoing mode.

∩
∩

14 / 20



The new functional framework

Consider 0 < β < 2, ζ a cut-o� function (equal to 1 in +∞) and de�ne

W−β = {v | eβzv ∈ H1
0 (B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescent part

Wβ = {v | e−βzv ∈ H1
0 (B)} space of exponentially growing functions

Theorem. Let κσ ∈ (−1,−1/3) and 0 < β < 2. The operator A+ :
div(σ∇·) from W+ to Wβ

∗ is an isomorphism .

Ideas of the proof:

1 A−β : div(σ∇·) from W−β to Wβ
∗ is injective but not surjective.

2 Aβ : div(σ∇·) from Wβ to W−β
∗ is surjective but not injective.

3 The intermediate operator A+ is injective (energy integral) and
surjective (♠ residual theorem).

4 Limiting absorption principle to select the outgoing mode.

∩
∩

14 / 20



The new functional framework

Consider 0 < β < 2, ζ a cut-o� function (equal to 1 in +∞) and de�ne

W−β = {v | eβzv ∈ H1
0 (B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescent part

Wβ = {v | e−βzv ∈ H1
0 (B)} space of exponentially growing functions

Theorem. Let κσ ∈ (−1,−1/3) and 0 < β < 2. The operator A+ :
div(σ∇·) from W+ to Wβ

∗ is an isomorphism .

Ideas of the proof:

1 A−β : div(σ∇·) from W−β to Wβ
∗ is injective but not surjective.

2 Aβ : div(σ∇·) from Wβ to W−β
∗ is surjective but not injective.

3 The intermediate operator A+ is injective (energy integral) and
surjective (♠ residual theorem).

4 Limiting absorption principle to select the outgoing mode.

∩
∩

14 / 20



The new functional framework

Consider 0 < β < 2, ζ a cut-o� function (equal to 1 in +∞) and de�ne

W−β = {v | eβzv ∈ H1
0 (B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescent part

Wβ = {v | e−βzv ∈ H1
0 (B)} space of exponentially growing functions

Theorem. Let κσ ∈ (−1,−1/3) and 0 < β < 2. The operator A+ :
div(σ∇·) from W+ to Wβ

∗ is an isomorphism .

Ideas of the proof:

1 A−β : div(σ∇·) from W−β to Wβ
∗ is injective but not surjective.

2 Aβ : div(σ∇·) from Wβ to W−β
∗ is surjective but not injective.

3 The intermediate operator A+ is injective (energy integral) and
surjective (♠ residual theorem).

4 Limiting absorption principle to select the outgoing mode.

∩
∩

14 / 20



The new functional framework

Consider 0 < β < 2, ζ a cut-o� function (equal to 1 in +∞) and de�ne

W−β = {v | eβzv ∈ H1
0 (B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescent part

Wβ = {v | e−βzv ∈ H1
0 (B)} space of exponentially growing functions

Theorem. Let κσ ∈ (−1,−1/3) and 0 < β < 2. The operator A+ :
div(σ∇·) from W+ to Wβ

∗ is an isomorphism .

Ideas of the proof:

1 A−β : div(σ∇·) from W−β to Wβ
∗ is injective but not surjective.

2 Aβ : div(σ∇·) from Wβ to W−β
∗ is surjective but not injective.

3 The intermediate operator A+ is injective (energy integral) and
surjective (♠ residual theorem).

4 Limiting absorption principle to select the outgoing mode.

∩
∩

14 / 20



The new functional framework

Consider 0 < β < 2, ζ a cut-o� function (equal to 1 in +∞) and de�ne

W−β = {v | eβzv ∈ H1
0 (B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescent part

Wβ = {v | e−βzv ∈ H1
0 (B)} space of exponentially growing functions

Theorem. Let κσ ∈ (−1,−1/3) and 0 < β < 2. The operator A+ :
div(σ∇·) from W+ to Wβ

∗ is an isomorphism .

Ideas of the proof:

1 A−β : div(σ∇·) from W−β to Wβ
∗ is injective but not surjective.

2 Aβ : div(σ∇·) from Wβ to W−β
∗ is surjective but not injective.

3 The intermediate operator A+ is injective (energy integral) and
surjective (♠ residual theorem).

4 Limiting absorption principle to select the outgoing mode.

∩
∩

14 / 20



The new functional framework

Consider 0 < β < 2, ζ a cut-o� function (equal to 1 in +∞) and de�ne

W−β = {v | eβzv ∈ H1
0 (B)} space of exponentially decaying functions

W+ = span(ζϕ1 e
λ1z)⊕W−β propagative part + evanescent part

Wβ = {v | e−βzv ∈ H1
0 (B)} space of exponentially growing functions

Theorem. Let κσ ∈ (−1,−1/3) and 0 < β < 2. The operator A+ :
div(σ∇·) from W+ to Wβ

∗ is an isomorphism .

Ideas of the proof:

1 A−β : div(σ∇·) from W−β to Wβ
∗ is injective but not surjective.

2 Aβ : div(σ∇·) from Wβ to W−β
∗ is surjective but not injective.

3 The intermediate operator A+ is injective (energy integral) and
surjective (♠ residual theorem).

4 Limiting absorption principle to select the outgoing mode.

∩
∩

14 / 20



1 A variational technique: the T-coercivity approach

2 A new functional framework in the critical interval

Analogy with a waveguide problem

Statement of the result

3 Numerical approximation

15 / 20



A funny use of PMLs

I We use PMLs (Perfectly Matched Layers) to bound the domain B
+ �nite elements in the truncated strip

κσ = 1/1.05
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A black hole phenomenon in the critical interval

κσ = −1/1.3 ∈ (−1,−1/3)

(. . . )

I Analogous phenomena occur in cuspidal domains in the theory of

water-waves and in elasticity.
17 / 20
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Conclusion : summary of the results

(P)
Find u ∈ H1

0 (Ω) s. t.:
−div (σ∇u) = f in Ω.
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• κσ = −1, (P) ill-posed in H1
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Generalizations

" T-coercivity approach can be used for non-constant σ (L∞) and other
problems (Maxwell's equations (joint work with A.-S. Bonnet-Ben Dhia
and P. Ciarlet Jr.), the ITEP (joint work with A.-S. Bonnet-Ben Dhia
and H. Haddar) ...).

" One can justify convergence of standard �nite elements method for
simple meshes (joint work with P. Ciarlet Jr.).

Open problems

♠ The case κσ = −1 (the most interesting for applications) is not
understood yet: there appear singularities all over the interface.
⇒ Is there a functional framework in which (P) is well-posed?

♠ More generally, can we reconsider the homogenization process to take
into account interfacial phenomena?
⇒METAMATH project (ANR) directed by S. Fliss.
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Thank you for your attention.
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