Radiation condition for a non smooth interface between a dielectric and a metamaterial

Waves 2011

A.-S. Bonnet-Ben Dhia[†], <u>L. Chesnel[†]</u>, X. Claeys[‡] [†]POems team, Ensta, Paris, France [‡]DMIA, ISAE, Toulouse, France

Simon Fraser University, Vancouver, Canada, July 25, 2011

Time-harmonic problem in electromagnetism (at a given frequency) set in a heterogeneous bounded domain:

Time-harmonic problem in electromagnetism (at a given frequency) set in a heterogeneous bounded domain:

Negative metamaterial

 $\begin{array}{l} \mbox{Structure with } {\bf negative } \mbox{ permittivity} \\ {\pmb \varepsilon} \mbox{ and permeability } {\pmb \mu} \end{array}$

Time-harmonic problem in electromagnetism (at a given frequency) set in a heterogeneous bounded domain:

Negative metamaterial

 $\begin{array}{l} \mbox{Structure with negative permittivity}\\ \pmb{\varepsilon} \mbox{ and permeability } \mu \end{array}$

Combination Dielectric + Metamaterial \Rightarrow interesting applications Example: the "superlens"

Time-harmonic problem in electromagnetism (at a given frequency) set in a heterogeneous bounded domain:

Unusual transmission problem because the sign of the coefficients ε and μ changes.

$$(\mathscr{P}) \ \left| \begin{array}{c} \mathrm{Find} \ u \in H^1_0(\Omega) \ \mathrm{such} \ \mathrm{that}: \\ -\mathrm{div}(\sigma \, \nabla u) = f \quad \mathrm{in} \ \Omega. \end{array} \right.$$

$$(\mathscr{P}) \mid \text{Find } u \in H_0^1(\Omega) \text{ such that:} \\ -\operatorname{div}(\sigma \nabla u) = f \quad \text{in } \Omega.$$

- $\bullet \ H^1_0(\Omega) = \{ v \in L^2(\Omega) \, | \, \nabla v \in L^2(\Omega); \, v|_{\partial\Omega} = 0 \}$
- f is the source term in $H^{-1}(\Omega)$

$$\mathscr{P}) \left| \begin{array}{c} \operatorname{Find} u \in H_0^1(\Omega) \text{ such that:} \\ -\operatorname{div}(\sigma \nabla u) = f \quad \text{in } \Omega. \end{array} \right.$$

- $\bullet \ H^1_0(\Omega) = \{ v \in L^2(\Omega) \, | \, \nabla v \in L^2(\Omega); \, v|_{\partial\Omega} = 0 \}$
- f is the source term in $H^{-1}(\Omega)$

Difficulty of the scalar problem concentrated in the study of the problem:

 $(\mathscr{P}) \ \left| \begin{array}{c} \mathrm{Find} \ u \in H^1_0(\Omega) \ \mathrm{such} \ \mathrm{that:} \\ -\mathrm{div}(\sigma \, \nabla u) = f \quad \mathrm{in} \ \Omega. \end{array} \right.$

- $H^1_0(\Omega) = \{ v \in L^2(\Omega) \mid \nabla v \in L^2(\Omega); v \mid_{\partial \Omega} = 0 \}$
- f is the source term in $H^{-1}(\Omega)$

Difficulty of the scalar problem concentrated in the study of the problem:

$$(\mathscr{P}) \mid \text{Find } u \in H_0^1(\Omega) \text{ such that:} \\ -\operatorname{div}(\sigma \nabla u) = f \quad \text{in } \Omega.$$

•
$$H_0^1(\Omega) = \{ v \in L^2(\Omega) \mid \nabla v \in L^2(\Omega); v|_{\partial\Omega} = 0 \}$$

• f is the source term in $H^{-1}(\Omega)$

$$(\mathscr{P}) \Leftrightarrow \quad (\mathscr{P}_V) \ \left| \begin{array}{c} \operatorname{Find} \ u \in H^1_0(\Omega) \ \text{such that}:\\ a(u,v) = l(v), \ \forall v \in H^1_0(\Omega). \end{array} \right.$$

$$(\mathscr{P}) \mid \text{Find } u \in H_0^1(\Omega) \text{ such that:} \\ -\operatorname{div}(\sigma \nabla u) = f \quad \text{in } \Omega.$$

$$(\mathscr{P}) \Leftrightarrow \qquad (\mathscr{P}_V) \mid \begin{array}{c} \operatorname{Find} \ u \in H^1_0(\Omega) \text{ such that:} \\ a(u,v) = l(v), \ \forall v \in H^1_0(\Omega). \end{array}$$

$$\begin{array}{c} \Sigma\\ \Omega_1\\ \sigma_1 = \sigma|_{\Omega_1} > 0\\ \sigma_2 = \sigma|_{\Omega_2} < 0\\ (\text{constant}) \end{array}$$

with
$$a(u, v) = \int_{\Omega} \sigma \nabla u \cdot \nabla v$$
 and $l(v) = \langle f, v \rangle$.

Difficulty of the scalar problem concentrated in the study of the problem:

$$(\mathscr{P}) \mid \text{Find } u \in H_0^1(\Omega) \text{ such that:} \\ -\operatorname{div}(\sigma \nabla u) = f \quad \text{in } \Omega.$$

$$(\mathscr{P}) \Leftrightarrow \left((\mathscr{P}_V) \middle| \begin{array}{c} \operatorname{Find} u \in H_0^1(\Omega) \text{ such that:} \\ a(u,v) = l(v), \, \forall v \in H_0^1(\Omega). \end{array} \right.$$

$$\begin{array}{c|c} \Sigma \\ \Omega_1 \\ & \Omega_2 \\ \hline \\ \sigma_1 = \sigma|_{\Omega_1} > 0 \\ \sigma_2 = \sigma|_{\Omega_2} < 0 \\ (\text{constant}) \end{array}$$

with
$$a(u, v) = \int_{\Omega} \sigma \nabla u \cdot \nabla v$$
 and $l(v) = \langle f, v \rangle$.

DEFINITION. We will say that the problem (\mathscr{P}) is well-posed if the operator $A = \operatorname{div}(\sigma \nabla \cdot)$ is an isomorphism from $H_0^1(\Omega)$ to $H^{-1}(\Omega)$.

• Classical case $\sigma > 0$ everywhere :

• Classical case $\sigma > 0$ everywhere :

$$a(u,u) = \int_{\Omega} \sigma \, |\nabla u|^2$$

• Classical case $\sigma > 0$ everywhere :

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \ge \min(\sigma) ||u||^2_{H^1_0(\Omega)}$$
 coercivity

• Classical case $\sigma > 0$ everywhere :

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \ge \min(\sigma) ||u||^2_{H^1_0(\Omega)}$$
 coercivity

Lax-Milgram theorem \Rightarrow (\mathscr{P}) well-posed.

• Classical case $\sigma > 0$ everywhere :

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \ge \min(\sigma) ||u||^2_{H^1_0(\Omega)}$$
 coercivity

Lax-Milgram theorem \Rightarrow (\mathscr{P}) well-posed.

----- VS. ------

• The case σ changes sign :

• Classical case $\sigma > 0$ everywhere :

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \ge \min(\sigma) ||u||^2_{H^1_0(\Omega)}$$
 coercivity

----- VS. ------

Lax-Milgram theorem \Rightarrow (\mathscr{P}) well-posed.

• The case σ changes sign :

• Classical case $\sigma > 0$ everywhere :

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \ge \min(\sigma) ||u||^2_{H^1_0(\Omega)}$$
 coercivity

Lax-Milgram theorem \Rightarrow (\mathscr{P}) well-posed.

• The case σ changes sign :

$$a(u, u) = \int_{\Omega} \sigma |\nabla u|^2 \ge C ||u||_{H_0^1(\Omega)}^2 \text{ loss of coercivity}$$

For a symmetric domain (w.r.t. Σ) with $\sigma_2 = -\sigma_1$, we can build a kernel of infinite dimension.

Outline of the talk

1) A presentation of the T-coercivity method to find a criterion on σ to ensure that problem (\mathscr{P}) is well-posed in $H_0^1(\Omega)$.

1 A variational technique: the T-coercivity approach

Outline of the talk

1) A presentation of the T-coercivity method to find a criterion on σ to ensure that problem (\mathscr{P}) is well-posed in $H_0^1(\Omega)$.

2) A definition of a new functional framework when the problem (\mathscr{P}) is not wellposed in $H_0^1(\Omega)$.

1 A variational technique: the **T**-coercivity approach

- 2 A new functional framework in the critical interval
 - Analogy with a waveguide problem
 - Statement of the result

Outline of the talk

1) A presentation of the T-coercivity method to find a criterion on σ to ensure that problem (\mathscr{P}) is well-posed in $H_0^1(\Omega)$.

2) A definition of a new functional framework when the problem (\mathscr{P}) is not wellposed in $H_0^1(\Omega)$.

3) An approximation of the solution in the new functional framework using PML in the neighbourhood of the corner.

I A variational technique: the T-coercivity approach

- 2 A new functional framework in the critical interval
 - Analogy with a waveguide problem
 - Statement of the result
- 3 Numerical approximation

1 A variational technique: the T-coercivity approach

2 A new functional framework in the critical interval

- Analogy with a waveguide problem
- Statement of the result

Let T be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \middle| \begin{array}{c} \operatorname{Find} u \in H^1_0(\Omega) \text{ such that:} \\ a(u,v) = l(v), \, \forall v \in H^1_0(\Omega). \end{array}$$

Let T be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \operatorname{Find} u \in H_0^1(\Omega) \text{ such that:} \\ a(u, \operatorname{T} v) = l(\operatorname{T} v), \, \forall v \in H_0^1(\Omega).$$

Let **T** be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \operatorname{Find} u \in H^1_0(\Omega) \text{ such that:} \\ a(u, \mathsf{T}v) = l(\mathsf{T}v), \, \forall v \in H^1_0(\Omega).$$

Goal: Find **T** such that *a* is **T**-coercive: $\int_{\Omega} \sigma \nabla u \cdot \nabla(\mathbf{T}u) \ge C \|u\|_{H_0^1(\Omega)}^2.$ In this case, Lax-Milgram $\Rightarrow (\mathscr{P}_V)$ (and so (\mathscr{P}_V)) is well-posed.

Let **T** be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \operatorname{Find} u \in H^1_0(\Omega) \text{ such that:} \\ a(u, \mathsf{T}v) = l(\mathsf{T}v), \, \forall v \in H^1_0(\Omega).$$

Goal: Find **T** such that *a* is **T**-coercive: $\int_{\Omega} \sigma \nabla u \cdot \nabla(\mathbf{T}u) \ge C \|u\|_{H_0^1(\Omega)}^2.$ In this case, Lax-Milgram $\Rightarrow (\mathscr{P}_V^{\mathsf{T}})$ (and so (\mathscr{P}_V)) is well-posed.

1 Define
$$T_1 u = \begin{vmatrix} u_1 & \text{in } \Omega_1 \\ -u_2 + \dots & \text{in } \Omega_2 \end{vmatrix}$$

Let **T** be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \operatorname{Find} u \in H^1_0(\Omega) \text{ such that:} \\ a(u, \mathsf{T}v) = l(\mathsf{T}v), \, \forall v \in H^1_0(\Omega).$$

Goal: Find **T** such that *a* is **T**-coercive: $\int_{\Omega} \sigma \nabla u \cdot \nabla(\mathbf{T}u) \ge C \|u\|_{H_0^1(\Omega)}^2.$ In this case, Lax-Milgram $\Rightarrow (\mathscr{P}_V^{\mathsf{T}})$ (and so (\mathscr{P}_V)) is well-posed.

1 Define
$$T_1 u = \begin{vmatrix} u_1 & \text{in } \Omega_1 \\ -u_2 + 2R_1u_1 & \text{in } \Omega_2 \end{vmatrix}$$
, with

 R_1 transfer/extension operator

Let **T** be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \operatorname{Find} u \in H^1_0(\Omega) \text{ such that:} \\ a(u, \mathsf{T}v) = l(\mathsf{T}v), \, \forall v \in H^1_0(\Omega).$$

Goal: Find T such that *a* is T-coercive: $\int_{\Omega} \sigma \, \nabla u \cdot \nabla(\mathsf{T} u) \geq C \, \|u\|_{H_0^1(\Omega)}^2.$ In this case, Lax-Milgram $\Rightarrow (\mathscr{P}_V)$ (and so (\mathscr{P}_V)) is well-posed.

1 Define
$$T_1 u = \begin{vmatrix} u_1 & \text{in } \Omega_1 \\ -u_2 + 2R_1 u_1 & \text{in } \Omega_2 \end{vmatrix}$$
, with
 R_1 transfer/extension operator continuous from Ω_1 to Ω_2
 R_1
 Ω_1
 Σ
 Ω_2
 $R_1 u_1 = u_1$ on Σ
 $R_1 u_1 = 0$ on $\partial \Omega_2 \setminus \Sigma$

Let **T** be an isomorphism of $H_0^1(\Omega)$.

$$(\mathscr{P}) \Leftrightarrow (\mathscr{P}_V) \Leftrightarrow (\mathscr{P}_V^{\mathsf{T}}) \middle| \operatorname{Find} u \in H^1_0(\Omega) \text{ such that:} \\ a(u, \mathsf{T}v) = l(\mathsf{T}v), \, \forall v \in H^1_0(\Omega).$$

Goal: Find **T** such that *a* is **T**-coercive: $\int_{\Omega} \sigma \nabla u \cdot \nabla(\mathbf{T}u) \geq C \|u\|_{H_0^1(\Omega)}^2.$ In this case, Lax-Milgram $\Rightarrow (\mathscr{P}_V)$ (and so (\mathscr{P}_V)) is well-posed.

1 Define
$$T_1 u = \begin{vmatrix} u_1 & \text{in } \Omega_1 \\ -u_2 + 2R_1 u_1 & \text{in } \Omega_2 \end{vmatrix}$$
, with
 R_1 transfer/extension operator continuous from Ω_1 to Ω_2
 $R_1 u_1 = u_1$ on Σ
 $R_1 u_1 = 0$ on $\partial \Omega_2 \setminus \Sigma$
2 $T_1 \circ T_1 = Id$ so T_1 is an isomorphism of $H_0^1(\Omega)$

3 One has
$$a(u, \mathtt{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - 2 \int_{\Omega_2} \sigma_2 \, \nabla u \cdot \nabla (R_1 \, u_1)$$

3 One has
$$a(u, \mathtt{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla (R_1 u_1)$$

Young's inequality $\Rightarrow a$ is **T-coercive** when $\sigma_1 > ||R_1||^2 |\sigma_2|$.

3 One has
$$a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla (R_1 u_1)$$

Young's inequality $\Rightarrow a$ is **T-coercive** when $\sigma_1 > ||R_1||^2 |\sigma_2|$.

4 Working with
$$T_2 u = \begin{vmatrix} u_1 - 2R_2u_2 & \text{in }\Omega_1 \\ -u_2 & \text{in }\Omega_2 \end{vmatrix}$$
, where $R_2 : \Omega_2 \to \Omega_1$, one proves that a is **T-coercive** when $|\sigma_2| > ||R_2||^2 \sigma_1$.

3 One has
$$a(u, \mathsf{T}_1 u) = \int_{\Omega} |\sigma| |\nabla u|^2 - 2 \int_{\Omega_2} \sigma_2 \nabla u \cdot \nabla (R_1 u_1)$$

Young's inequality $\Rightarrow a$ is T-coercive when $\sigma_1 > ||R_1||^2 |\sigma_2|$.

4 Working with
$$T_2 u = \begin{vmatrix} u_1 - 2R_2u_2 & \text{in }\Omega_1 \\ -u_2 & \text{in }\Omega_2 \end{vmatrix}$$
, where $R_2 : \Omega_2 \to \Omega_1$, one proves that *a* is **T-coercive** when $|\sigma_2| > ||R_2||^2 \sigma_1$.

THEOREM. If the contrast $\kappa_{\sigma} = \sigma_2/\sigma_1 \notin [-\|R_2\|^2; -1/\|R_1\|^2]$ (critical interval) then div $(\sigma \nabla \cdot)$ is an isomorphism from $H_0^1(\Omega)$ to $H^{-1}(\Omega)$.

Choice of R_1, R_2 ?

► A simple case: symmetric domain

Choice of R_1, R_2 ?

► A simple case: symmetric domain

► A simple case: symmetric domain

▶ Our model geometry: corner domain

► A simple case: symmetric domain

symmetry w.r.t.
$$\Sigma$$

 $R_1 = S_{\Sigma}$ and $R_2 = S_{\Sigma}$
 (\mathscr{P}) well-posed $\Leftrightarrow \kappa_{\sigma} \neq -1$

▶ Our model geometry: corner domain

Action of R_1 :

► A simple case: symmetric domain

symmetry w.r.t.
$$\Sigma$$

 $R_1 = S_{\Sigma}$ and $R_2 = S_{\Sigma}$
 (\mathscr{P}) well-posed $\Leftrightarrow \kappa_{\sigma} \neq -1$

• Our model geometry: corner domain

Action of
$$R_1$$
: symmetry w.r.t θ

► A simple case: symmetric domain

symmetry w.r.t.
$$\Sigma$$

 $R_1 = S_{\Sigma}$ and $R_2 = S_{\Sigma}$
 (\mathscr{P}) well-posed $\Leftrightarrow \kappa_{\sigma} \neq -1$

▶ Our model geometry: corner domain

Action of R_1 : symmetry + dilatation w.r.t θ

► A simple case: symmetric domain

symmetry w.r.t.
$$\Sigma$$

 $R_1 = S_{\Sigma}$ and $R_2 = S_{\Sigma}$
 (\mathscr{P}) well-posed $\Leftrightarrow \kappa_{\sigma} \neq -1$

• Our model geometry: corner domain

 R_1 : symmetry + dilatation w.r.t θ R_2 : symmetry w.r.t θ + extension by 0

A simple case: symmetric domain

symmetry w.r.t.
$$\Sigma$$

 $R_1 = S_{\Sigma}$ and $R_2 = S_{\Sigma}$
 (\mathscr{P}) well-posed $\Leftrightarrow \kappa_{\sigma} \neq -1$

• Our model geometry: corner domain

 $\frac{R_1: \text{ symmetry } + \text{ dilatation w.r.t } \theta}{R_2: \text{ symmetry w.r.t } \theta + \text{ extension by } 0}$

PROPOSITION. If the contrast $\kappa_{\sigma} = \sigma_2/\sigma_1 \notin [-1, -1/3]$ (critical interval) then the problem (\mathscr{P}) is well-posed.

A simple case: symmetric domain

symmetry w.r.t.
$$\Sigma$$

 $R_1 = S_{\Sigma}$ and $R_2 = S_{\Sigma}$
 (\mathscr{P}) well-posed $\Leftrightarrow \kappa_{\sigma} \neq -1$

• Our model geometry: corner domain

 $\frac{R_1: \text{ symmetry } + \text{ dilatation w.r.t } \theta}{R_2: \text{ symmetry w.r.t } \theta + \text{ extension by } 0}$

PROPOSITION. If the contrast $\kappa_{\sigma} = \sigma_2/\sigma_1 \notin [-1, -1/3]$ (critical interval) then the problem (\mathscr{P}) is well-posed.

KEY REMARK. For a general curvilinear polygonal interface, the critical interval reduces to $\{-1\}$ if and only if there is no corner in Σ .

9

Transition: from variational methods to Fourier/Mellin techniques

What happens in the critical interval, i.e. for $\kappa_{\sigma} \in [-1, -1/3]$???

Transition: from variational methods to Fourier/Mellin techniques

What happens in the critical interval, i.e. for $\kappa_{\sigma} \in [-1, -1/3]$???

 \Rightarrow Fourier/Mellin tool (Dauge-Texier 97, Nazarov)

1 A variational technique: the T-coercivity approach

2 A new functional framework in the critical interval

- Analogy with a waveguide problem
- Statement of the result

• Bounded sector Ω

• Half-strip ${\cal B}$

• Bounded sector Ω

• Half-strip ${\cal B}$

• Bounded sector Ω

• Half-strip ${\cal B}$

• Helmholtz equation: $\underbrace{-\operatorname{div}(\sigma \nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_{\theta}\sigma \partial_{\theta})u} = f$ • Helmholtz equation: $\underbrace{-\operatorname{div}(\sigma \nabla u)}_{-(\sigma \partial_z^2 + \partial_\theta \sigma \partial_\theta)u} = e^{-2z} f$

• Bounded sector Ω

• Half-strip ${\cal B}$

- Helmholtz equation: $\underbrace{-\operatorname{div}(\sigma \nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$
- Singularities in the sector $s(r, \theta) = r^{\lambda} \varphi(\theta)$

- Helmholtz equation: $\underbrace{-\operatorname{div}(\sigma \nabla u)}_{-(\sigma \partial_z^2 + \partial_\theta \sigma \partial_\theta)u} = e^{-2z} f$
- Modes in the strip $m(z,\theta) = e^{-\lambda z} \varphi(\theta)$

• Bounded sector Ω

• Half-strip ${\cal B}$

- Helmholtz equation: $\underbrace{-\operatorname{div}(\sigma \nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$
- Singularities in the sector $s(r, \theta) = r^{\lambda} \varphi(\theta)$

- Helmholtz equation: $\underbrace{-\operatorname{div}(\sigma \nabla u)}_{-(\sigma \partial_z^2 + \partial_\theta \sigma \partial_\theta)u} = e^{-2z} f$
- Modes in the strip $m(z,\theta) = e^{-\lambda z} \varphi(\theta)$
- $s \in H^1(\Omega)$ $\Re e \lambda > 0$ m is evanescent

• Bounded sector Ω

• Half-strip ${\cal B}$

• Helmholtz equation: $\underbrace{-\operatorname{div}(\sigma \nabla u)}_{-r^{-2}(\sigma(r\partial_r)^2 + \partial_\theta \sigma \partial_\theta)u} = f$

- Helmholtz equation: $\underbrace{-\operatorname{div}(\sigma \nabla u)}_{-(\sigma \partial_z^2 + \partial_\theta \sigma \partial_\theta)u} = e^{-2z} f$
- Singularities in the sector $s(r,\theta) = r^{\lambda}\varphi(\theta) = e^{-\lambda z}\varphi(\theta)$ $= p^{\alpha} (\cos b \ln r + i \sin b \ln r)\varphi(\theta) = e^{-\lambda z}\varphi(\theta)$ $(\Re e^{\lambda} = a, |\Im m^{\lambda} = b)$ $s \in H^{1}(\Omega) \qquad \Re e^{\lambda} > 0 \qquad m \text{ is evanescent}$ $s \notin H^{1}(\Omega) \qquad \Re e^{\lambda} = 0 \qquad m \text{ is propagative}$

This encourages us to use modal decomposition in the half-strip.

1	
	10

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 Outside the critical interval. All the modes are exponentially growing or decaying. → the decomposition on the outgoing modes leads to look for an exponentially decaying solution.

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

 $W_{-\beta} = \{ v \, | \, e^{\beta z} v \in H_0^1(\mathcal{B}) \}$ space of exponentially decaying functions

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

 $W_{-\beta} = \{ v \, | \, e^{\beta z} v \in H_0^1(\mathcal{B}) \}$ space of exponentially decaying functions

 $W_{\beta} = \{ v | e^{-\beta z} v \in H^1_0(\mathcal{B}) \}$ space of exponentially growing functions

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

 $\begin{aligned} W_{-\beta} &= \{ v \,|\, e^{\beta z} v \in H_0^1(\mathcal{B}) \} \\ W^+ &= \operatorname{span}(\zeta \varphi_1 \, e^{\lambda_1 z}) \oplus W_{-\beta} \\ W_\beta &= \{ v \,|\, e^{-\beta z} v \in H_0^1(\mathcal{B}) \} \end{aligned}$

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

 $\begin{array}{ll} W_{-\beta} &= \{ v \, | \, e^{\beta z} v \in H_0^1(\mathcal{B}) \} \\ W^+ &= \operatorname{span}(\zeta \varphi_1 \, e^{\lambda_1 z}) \oplus W_{-\beta} \\ \bigcap \\ W_\beta &= \{ v \, | \, e^{-\beta z} v \in H_0^1(\mathcal{B}) \} \end{array}$

space of exponentially decaying functions
propagative part + evanescent part
space of exponentially growing functions

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

 $\begin{array}{ll} W_{-\beta} &= \{ v \, | \, e^{\beta z} v \in H_0^1(\mathcal{B}) \} \\ W^+ &= \operatorname{span}(\zeta \varphi_1 \, e^{\lambda_1 z}) \oplus W_{-\beta} \\ \bigcap \\ W_\beta &= \{ v \, | \, e^{-\beta z} v \in H_0^1(\mathcal{B}) \} \end{array}$

space of exponentially decaying functions
propagative part + evanescent part
space of exponentially growing functions

THEOREM. Let $\kappa_{\sigma} \in (-1, -1/3)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\sigma \nabla \cdot)$ from W^+ to W_{β}^* is an isomorphism.

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

 $\begin{array}{ll} W_{-\beta} &= \{v \,|\, e^{\beta z} v \in H_0^1(\mathcal{B})\} \\ W^+ &= \operatorname{span}(\zeta \varphi_1 \, e^{\lambda_1 z}) \oplus W_{-\beta} \\ \bigcap \\ W_\beta &= \{v \,|\, e^{-\beta z} v \in H_0^1(\mathcal{B})\} \end{array}$

space of exponentially decaying functions
propagative part + evanescent part
space of exponentially growing functions

THEOREM. Let $\kappa_{\sigma} \in (-1, -1/3)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\sigma \nabla \cdot)$ from W^+ to W_{β}^* is an isomorphism.

IDEAS OF THE PROOF:

• $A_{-\beta}$: div $(\sigma \nabla \cdot)$ from $W_{-\beta}$ to W_{β}^* is injective but not surjective.

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

 $\begin{array}{ll} W_{-\beta} &= \{v \mid e^{\beta z} v \in H_0^1(\mathcal{B})\} \\ W^+ &= \operatorname{span}(\zeta \varphi_1 e^{\lambda_1 z}) \oplus W_{-\beta} \\ \bigcap \\ W_\beta &= \{v \mid e^{-\beta z} v \in H_0^1(\mathcal{B})\} \end{array}$

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

THEOREM. Let $\kappa_{\sigma} \in (-1, -1/3)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\sigma \nabla \cdot)$ from W^+ to W_{β}^* is an isomorphism.

IDEAS OF THE PROOF:

• $A_{-\beta}$: div $(\sigma \nabla \cdot)$ from $W_{-\beta}$ to W_{β}^* is injective but not surjective.

2 A_{β} : div $(\sigma \nabla \cdot)$ from W_{β} to $W_{-\beta}^*$ is surjective but not injective.

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

 $\begin{array}{ll} W_{-\beta} &= \{ v \,|\, e^{\beta z} v \in H^1_0(\mathcal{B}) \} \\ W^+ &= \operatorname{span}(\zeta \varphi_1 \, e^{\lambda_1 z}) \oplus W_{-\beta} \\ \bigcap &\\ W_\beta &= \{ v \,|\, e^{-\beta z} v \in H^1_0(\mathcal{B}) \} \end{array}$

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

THEOREM. Let $\kappa_{\sigma} \in (-1, -1/3)$ and $0 < \beta < 2$. The operator A^+ : div $(\sigma \nabla \cdot)$ from W^+ to W_{β}^* is an isomorphism.

IDEAS OF THE PROOF:

- $A_{-\beta}$: div $(\sigma \nabla \cdot)$ from $W_{-\beta}$ to W_{β}^* is injective but not surjective.
- 2 A_{β} : div $(\sigma \nabla \cdot)$ from W_{β} to $W_{-\beta}^*$ is surjective but not injective.

③ The intermediate operator A^+ is injective (energy integral) and surjective (\blacklozenge residual theorem).

Consider $0 < \beta < 2$, ζ a cut-off function (equal to 1 in $+\infty$) and define

 $\begin{array}{ll} W_{-\beta} &= \{ v \,|\, e^{\beta z} v \in H^1_0(\mathcal{B}) \} \\ W^+ &= \operatorname{span}(\zeta \varphi_1 \, e^{\lambda_1 z}) \oplus W_{-\beta} \\ \bigcap &\\ W_\beta &= \{ v \,|\, e^{-\beta z} v \in H^1_0(\mathcal{B}) \} \end{array}$

space of exponentially decaying functions propagative part + evanescent part space of exponentially growing functions

THEOREM. Let $\kappa_{\sigma} \in (-1, -1/3)$ and $0 < \beta < 2$. The operator A^+ : $\operatorname{div}(\sigma \nabla \cdot)$ from W^+ to W_{β}^* is an isomorphism.

IDEAS OF THE PROOF:

- $A_{-\beta}$: div $(\sigma \nabla \cdot)$ from $W_{-\beta}$ to W_{β}^* is injective but not surjective.
- 2 A_{β} : div $(\sigma \nabla \cdot)$ from W_{β} to $W_{-\beta}^*$ is surjective but not injective.
- **3** The intermediate operator A^+ is injective (energy integral) and surjective (\blacklozenge residual theorem).
- **(**Limiting absorption principle to select the outgoing mode.

1 A variational technique: the T-coercivity approach

2 A new functional framework in the critical interval

- Analogy with a waveguide problem
- Statement of the result

A funny use of PMLs

• We use PMLs (*Perfectly Matched Layers*) to bound the domain \mathcal{B} + finite elements in the truncated strip

 $\kappa_{\sigma} = 1/1.05$

A black hole phenomenon in the critical interval

$$\kappa_{\sigma} = -1/1.3 \in (-1, -1/3)$$

 (\dots)

► Analogous phenomena occur in cuspidal domains in the theory of water-waves and in elasticity.

Besilve For $\kappa_{\sigma} \in \mathbb{C} \setminus \mathbb{R}_{-}$, (\mathscr{P}) well-posed in $H_0^1(\Omega)$ (Lax-Milgram)

For $\kappa_{\sigma} \in \mathbb{R}^*_{-} \setminus [-1, -1/3], (\mathscr{P})$ wellposed in $H^1_0(\Omega)$ (**T-coercivity**)

For $\kappa_{\sigma} \in \mathbb{C} \setminus \mathbb{R}_{-}$, (\mathscr{P}) well-posed in $H_0^1(\Omega)$ (Lax-Milgram)

For $\kappa_{\sigma} \in \mathbb{R}^* \setminus [-1, -1/3], (\mathscr{P})$ wellposed in $H_0^1(\Omega)$ (**T**-coercivity)

For $\kappa_{\sigma} \in (-1, -1/3)$, (\mathscr{P}) is not well-posed in the Fredholm sense in $H_0^1(\Omega)$ but well-posed in V^+ (PMLs)

For $\kappa_{\sigma} \in \mathbb{C} \setminus \mathbb{R}_{-}$, (\mathscr{P}) well-posed in $H_0^1(\Omega)$ (Lax-Milgram)

For $\kappa_{\sigma} \in \mathbb{R}^* \setminus [-1, -1/3], (\mathscr{P})$ wellposed in $H_0^1(\Omega)$ (**T**-coercivity)

For $\kappa_{\sigma} \in (-1, -1/3)$, (\mathscr{P}) is not well-posed in the Fredholm sense in $H_0^1(\Omega)$ but well-posed in V^+ (PMLs)

•
$$\kappa_{\sigma} = -1$$
, (\mathscr{P}) ill-posed in $H_0^1(\Omega)$

Generalizations

✓ T-coercivity approach can be used for non-constant σ (L[∞]) and other problems (Maxwell's equations (joint work with A.-S. Bonnet-Ben Dhia and P. Ciarlet Jr.), the ITEP (joint work with A.-S. Bonnet-Ben Dhia and H. Haddar) ...).

✓ One can justify convergence of standard finite elements method for simple meshes (*joint work with P. Ciarlet Jr.*).

Generalizations

✓ T-coercivity approach can be used for non-constant σ (L[∞]) and other problems (Maxwell's equations (joint work with A.-S. Bonnet-Ben Dhia and P. Ciarlet Jr.), the ITEP (joint work with A.-S. Bonnet-Ben Dhia and H. Haddar) ...).

✓ One can justify convergence of standard finite elements method for simple meshes (*joint work with P. Ciarlet Jr.*).

Open problems

♦ The case κ_σ = -1 (the most interesting for applications) is not understood yet: there appear singularities all over the interface.
⇒ Is there a functional framework in which (𝒫) is well-posed?

 ♠ More generally, can we reconsider the homogenization process to take into account interfacial phenomena?
⇒ METAMATH project (ANR) directed by S. Fliss.

Thank you for your attention.

- A.-S. Bonnet-Ben Dhia, L. Chesnel, P. Ciarlet Jr., Optimality of T-coercivity for scalar interface problems between dielectrics and metamaterials, http://hal.archives-ouvertes.fr/hal-00564312_v1/, 2011.
- A.-S. Bonnet-Ben Dhia, P. Ciarlet Jr., C.M. Zwölf, Time harmonic wave diffraction problems in materials with sign-shifting coefficients, J. Comput. Appl. Math, 234:1912–1919, 2010, Corrigendum J. Comput. Appl. Math., 234:2616, 2010.
- M. Dauge, B. Texier, Problèmes de transmission non coercifs dans des polygones, http://hal.archives-ouvertes.fr/docs/00/56/23/29/PDF/ BenjaminT_arxiv.pdf, 1997.
- S.A. Nazarov, J. Taskinen, Radiation conditions at the top of a rotational cusp in the theory of water-waves, ESAIM: Mathematical Modelling and Numerical Analysis, 45:947-979, 2011.