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e<0
w<0

Negative metamaterial Combination

Dielectric + Metamaterial
= interesting applications
Example: the “superlens”

Structure with negative permittivity
¢ and permeability 1

Unusual transmission problem because the sign of the coefficients e
and p changes.
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Introduction: modelization of the problem

Difficulty of the scalar problem concentrated in the study of the problem:
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Find u € H}(Q) such that:
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o HIQ) = {ve L2(Q)| Vv € L2(Q); v|pg = 0}

@ f is the source term in H~1(() Q
o1 =0lg, >0

o9 =0lg, <0
Find u € H(Q) such that: (constant)

(Z2) = | (Pv) a(u,v) = 1(v), Yo € HE(R).

with a(u,v) = / o Vu - Vv and l(v) = (f,v).
Q

DEFINITION. We will say that the problem (£2) is well-posed if the operator
A =div(oV-) is an isomorphism from H}(Q) to H~ ().
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Introduction: mathematical difficulty
o Classical case o > 0 everywhere :
2 . 2 _
a(u,u) :/Qa|Vu\ > min(o) H“”H&(Q) coercivity

Lax-Milgram theorem = (%) well-posed.

C HUH%I&(Q) loss of coercivity

» For a symmetric domain (w.r.t. ¥) with 0o = —07, we can build a
kernel of infinite dimension.
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Outline of the talk

1) A presentation of the T-coercivity method to find a criterion on o to ensure that
problem (£?) is well-posed in H (£2).

V.

2) A definition of a new functional framework when the problem (&) is not well-
posed in Hg ().

V.

3) An approximation of the solution in the new functional framework using PML in
the neighbourhood of the corner.

v

@ A variational technique: the T-coercivity approach

© A new functional framework in the critical interval
o Analogy with a waveguide problem
@ Statement of the result

© Numerical approximation
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Q Q2

Young’s inequality = = a is T-coercive when o1 > ||R;||? |o2| -

uy — 2R2u2 in Ql

. where Rs : Q3 — Q4, one
—us in QQ ) 2 2 15

e Working with Tou =

proves that a is T-coercive when |oa| > ||Rz||? o1 .

e Conclusion:

THEOREM. If the contrast r, = o3/o1 & [—||R2|?*; —1/||R1|*] (critical
interval) then div (o V+) is an isomorphism from Hg () to H~1(Q).
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» A simple case: symmetric domain

w1 symmetry w.r.t. X
E R1:SE and RQZSE
w2 () well-posed < £k, # —1

» Our model geometry: corner domain

O
Ry: symmetry + dilatation w.r.t 0
‘m Ry: symmetry w.r.t 6 + extension by 0
]

PRrROPOSITION. If the contrast k, = o2/01 ¢ [—1,—1/3] (critical interval)
then the problem (&) is well-posed.

4 )
KEY REMARK. For a general curvilinear polygonal interface, the critical

interval reduces to {—1} if and only if there is no corner in X.

\
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Transition: from variational methods to
Fourier /Mellin techniques

[ What happens in the critical interval, i.e. for s, € [-1,—1/3] 7?7 J

= Fourier/Mellin tool (Dauge-Texier 97, Nazarov)
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© A new functional framework in the critical interval
@ Analogy with a waveguide problem
e Statement of the result
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Analogy with a waveguide problem

e Bounded sector €2

/4 (2,0) = (1
o 9 (r,0) =i(4
e Helmholtz equation:
—div(o Vu) =f
——

—r72(0(r0r)?+090 0 )u

e Singularities in the sector
s(r,0) = ro(0)
:><(cos blnr +isinblnr)p(d)

(Re X = a,
se HY(Q) Re A S
s¢ H(Q) Re A =

» This encourages us to use modal decomposition in the half-strip.

o Half-strip B

[4

Inr,0)

L

72,0) 0=m/4

o Helmholtz equation:
—div(cVu) =e 2* f
———

—(0024+0p00p)u
e Modes in the strip
m(z,0) = e p(0)
:}'{(005 bz — isinbz)p(H)

mX =b)
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Modal analysis in the waveguide

@ We look for the solutions of the form e**¢(f) to the homogeneous

problem (these modes can be computed explicitly for this geometry).
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— the decomposition on the outgoing modes

leads to look for a solution of the form
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@ The intermediate operator is injective (energy integral) and
surjective (# residual theorem).

© Limiting absorption principle to select the outgoing mode.
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© Numerical approximation
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A funny use of PMLs

» We use PMLs (Perfectly Matched Layers) to bound the domain B
+ finite elements in the truncated strip

a—h =

s

ke = 1/1.05
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A black hole phenomenon in the critical interval

ke = —1/1.3 € (—1,—-1/3)

» Analogous phenomena occur in cuspidal domains in the theory of

water-waves and in elasticity. 7/ 20
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well-posed in the Fredholm sense in Hg ()
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® i, =-1,(2)ill-posed in Hj ()
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Generalizations

v T-coercivity approach can be used for non-constant o (L°°) and other
problems (Maxwell’s equations (joint work with A.-S. Bonnet-Ben Dhia
and P. Ciarlet Jr.), the ITEP (joint work with A.-S. Bonnet-Ben Dhia
and H. Haddar) ...).

v One can justify convergence of standard finite elements method for
simple meshes (joint work with P. Ciarlet Jr.).
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and H. Haddar) ...).

v One can justify convergence of standard finite elements method for
simple meshes (joint work with P. Ciarlet Jr.).

Open problems

& The case k, = —1 (the most interesting for applications) is not
understood yet: there appear singularities all over the interface.
= Is there a functional framework in which (&?) is well-posed?

& More generally, can we reconsider the homogenization process to take
into account interfacial phenomena?
=METAMATH project (ANR) directed by S. Fliss.
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Thank you for your attention.
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