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Introduction: general framework
I Scattering by a metal in electromagnetism in time-harmonic regime at
optical frequency.
I For metals at optical frequency, <e ε(ω) < 0 and =m ε(ω) << |<e ε(ω)|.

⇒ We neglect losses and study the ideal case ε(ω) ∈ (−∞; 0).

Negative metal
ε< 0

and µ> 0

Positive material
ε> 0

and µ> 0

I Waves called Surface Plasmon Polaritons can propagate at the interface
between a dielectric and a negative metal.
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Introduction: applications
I Surface Plasmons Polaritons can propagate information. Physicists hope
to exploit them to reduce the size of computer chips.

Figures from O’Connor et al., Appl. Phys. Lett. 95, 171112 (2009)

I In this context, physicists use singular geometries to focus energy. It
allows to stock information.

Metal

Dielectric
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Introduction: in this talk
I We study a scalar model problem set in a bounded domain Ω ⊂ R2:

Ω2

Ω1 Σ

σ|Ω1 = σ1 >0
σ|Ω2 = σ2 <0
(constant)

(P) Find u ∈ H1
0(Ω) s.t.:

−div(σ∇u) = f in Ω.

H1
0(Ω) = {v ∈ L2(Ω) | ∇v ∈ L2(Ω); v|∂Ω = 0}

f is the source term in H−1(Ω)

I We slightly round the interface Σ:

Ωδ2

Ωδ1 Σδ

σδ|Ω1 = σ1 >0
σδ|Ω2 = σ2 <0

(
Pδ
) Find uδ ∈ H1

0(Ω) s.t.:
−div(σδ∇uδ) = f in Ω.

δ denotes the radius of curvature of the
rounded interface at the origin.

What is the behaviour of the sequence (uδ)δ when δ tends to zero?
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Outline of the talk

1 Numerical experiments

To get an intuition, we discretize
(
Pδ
)
and observe what happens when

δ → 0.

2 Properties of the limit problem

We present the properties of the limit problem in the geometry with the
real corner (δ = 0). Since σ changes sign, original phenomena appear.

3 Asymptotic analysis

We prove a curious instability phenomenon: for certain configurations,
(Pδ) critically depends on δ.
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1 Numerical experiments

2 Properties of the limit problem

3 Asymptotic analysis
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Setting

δ is the rounding
parameter

I For the numerical experiments, we round the corner in a particular way

(in this domain, we can separate variables).

Σ

Ω1
σ1 > 0

Ω2
σ2 < 0O

I Our goal is to study the behaviour of the solution, if it is well-defined, of
the problem

(
Pδ
) Find uδ ∈ H1

0(Ωδ) such that:
−div(σδ∇uδ) = f in Ωδ.

I We approximate by a usual P1 Finite Element Method this uδ, assuming
it is well-defined. The solution of the discretized problem is called uδh.

We display the behaviour of uδh as δ → 0.
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Numerical experiments 1/2

σ1 = 1 and σ2 = 1 (positive materials)
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1−δ

uδh w.r.t. δ ‖∇uδh‖Ωδ w.r.t. 1− δ

I For positive materials, it is well-known that (uδ)δ converges to u, the
solution in the limit geometry.
I The rate of convergence depends on the regularity of u.
I To avoid to mesh Ωδ, we can approximate uδ by uh.
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Numerical experiments 2/2
... and what about for a sign-changing σ???

σ1 = 1 and σ2 = −0.9999
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I For this configuration, uδ seems to depend critically on δ.

In this talk, our goal is to explain this behaviour.
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1 Numerical experiments

2 Properties of the limit problem

3 Asymptotic analysis
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Problems with a sign changing coefficient

(P) Find u ∈ H1
0(Ω) such that:

−div(σ∇u) = f in Ω.

I We have the following properties (see Costabel and Stephan 85,
Dauge and Texier 97, Bonnet-Ben Dhia et al. 99,10,12,13):

Smooth interface Σ Interface Σ with a corner

σ2 < 0

σ1 > 0

ϑσ2 < 0

σ1 > 0

4 (P) well-posed in the Fredholm
sense iff κσ = σ2/σ1 6= −1.

4 (P) well-posed in the Fredholm sense
iff κσ /∈ Ic = [−`;−1/`], ` = (2π − ϑ)/ϑ.

Well-posedness depends on the smoothness of Σ and on σ.
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The problematic of the rounded corner

(P) Find u ∈ H1
0(Ω) such that:

−div(σ∇u) = f in Ω.

I When the interface has a corner, (P) is well-posed in
the Fredholm sense iff κσ /∈ Ic (the critical interval).

I When the interface is smooth, (P) is well-posed in the
Fredholm sense iff κσ 6= −1.

What happens for a slightly rounded corner when
κσ ∈ Ic \ {−1}?

I We need to precise the properties of (P) when
the interface has a corner in the case κσ ∈ Ic\{−1}.
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Properties of the limit problem inside the
critical interval

(P) Find u ∈ H1
0(Ω) such that:

−div(σ∇u) = f in Ω.

I To simplify the presentation, we work on a particular configuration.

Σ

Ω1
σ1 > 0

Ω2
σ2 < 0O

I Using the variational method of the T-coercivity, we prove the

Proposition. The problem (P) is well-posed as soon as the contrast κσ =
σ2/σ1 satisfies κσ /∈ Ic = [−1;−1/3].

What happens when κσ ∈ (−1;−1/3]?
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Analogy with a waveguide problem

(z, θ) = (− ln r , θ)

(r , θ) = (e−z , θ)

(<e λ = a, =m λ = b)

s∈ H1(Ω) <e λ > 0 m is evanescent
s/∈ H1(Ω) <e λ = 0 m is propagative

• Bounded sector Ω

Σ

π/4

Ω1 Ω2

O (r, θ)

• Equation:
−div(σ∇u)︸ ︷︷ ︸

−r−2(σ(r∂r )2+∂θσ∂θ)u

= f

• Singularities in the sector
s(r , θ) = rλϕ(θ)

s(r , θ) = ra (cos b ln r + i sin b ln r)ϕ(θ)

• Half-strip B

z

θ

B1

B2
Σ θ = π/4

• Equation:
−div(σ∇u)︸ ︷︷ ︸

−(σ∂2
z +∂θσ∂θ)u

= e−2z f

• Modes in the strip
m(z, θ) = e−λzϕ(θ)

m(z, θ) = e−az (cos bz − i sin bz)ϕ(θ)

I This encourages us to use modal decomposition in the half-strip.

r0

r 7→ <e rλ
1

−1

z0

z 7→ <e e−λz
1

−1

We compute the singularities s(r , θ) = rλϕ(θ) and we observe two cases:

I Outside the critical interval

λ1−λ1 λ2−λ2

1-1 2-2

1

-1

κσ = −1/4

H1not H1

r0

r 7→ rλ1

1

−1

I Inside the critical interval

λ1

−λ1

λ2−λ2

1-1 2-2

1

-1

κσ = −1/2

H1not H1

r0

r 7→ <e rλ1

1

−1 not H1

How to deal with the propagative singularities inside the critical interval?
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Modal analysis in the waveguide

λ1−λ1 λ2−λ2

1-1 2-2

1

-1

κσ = −1/4
I Outside the critical interval . All the
modes are exponentially growing or decaying.
→ We look for an exponentially decaying
solution. H1 framework

λ1

−λ1

λ2−λ2

1-1 2-2

1

-1

κσ = −1/2
I Inside the critical interval . There are
exactly two propagative modes.
→ The decomposition on the outgoing modes
leads to look for a solution of the form

u = c1 ϕ1 eλ1 z︸ ︷︷ ︸
propagative part

+ ue.︸︷︷︸
evanescent part

non H1 framework
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How to approximate the solution?
I We use a PML (Perfectly Matched Layer) to bound the domain B

+ finite elements in the truncated strip (κσ = −0.999 ∈ (−1;−1/3)).

Without the PML, the solution in the truncated strip of length
L does not converge when L →∞. This is what we observed in
our numerical experiment for the rounded corner.

PML

PM
L
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1 Numerical experiments

2 Properties of the limit problem

3 Asymptotic analysis
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Asymptotic analysis

Ωδ2
Ωδ1

Ω2

Ω1

(
Pδ
) Find uδ ∈ H1

0(Ω) s.t.:
−div(σδ∇uδ) = f in Ω. (P) Find u ∈ H1

0(Ω) s.t.:
−div(σ∇u) = f in Ω.

I The behaviour of (uδ)δ depends on the properties of the limit problem.

If (P) well-posed (in H1
0(Ω)), then uδ is uniquely defined for δ small enough

and (uδ)δ converges to u (as for positive materials).

If the limit problem is well-posed only in the exotic framework, then (Pδ)
critically depends on the value of the rounding parameter δ.
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and (uδ)δ converges to u (as for positive materials).

If the limit problem is well-posed only in the exotic framework, then (Pδ)
critically depends on the value of the rounding parameter δ.

Idea of the approach:
1 We prove an a priori estimate for uδ for all δ in some set S which
excludes a discrete set accumulating in zero (♠ hard part of the proof,
S.A. Nazarov’s technique).

ln δ

lnS = {ln δ, δ ∈ S }

2 We provide an asymptotic expansion of uδ, denoted ûδ with the
error estimate, for some β > 0,

‖uδ − ûδ‖H1
0(Ωδ) ≤ c δβ‖f ‖Ωδ , ∀δ ∈ S .

3 The behaviour of (ûδ)δ can be explicitly examined as δ → 0. The
sequence (ûδ)δ does not converge, even for the L2-norm!
4 Conclusion.

The sequence (uδ)δ does not converge, even for the L2-norm!
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Idea of the approach:
1 We prove an a priori estimate for uδ for all δ in some set S which
excludes a discrete set accumulating in zero (♠ hard part of the proof,
S.A. Nazarov’s technique).

ln δ

lnS = {ln δ, δ ∈ S }

2 We provide an asymptotic expansion of uδ, denoted ûδ with the
error estimate, for some β > 0,

‖uδ − ûδ‖H1
0(Ωδ) ≤ c δβ‖f ‖Ωδ , ∀δ ∈ S .

3 The behaviour of (ûδ)δ can be explicitly examined as δ → 0. The
sequence (ûδ)δ does not converge, even for the L2-norm!
4 Conclusion.

The sequence (uδ)δ does not converge, even for the L2-norm!
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Conclusion

Let us remind the initial question:

What is the behaviour of (uδ)δ when δ tends to zero?

This depends on the features of the limit problem.

κσ = −1.0001 /∈ Ic κσ = −0.9999 ∈ Ic

When κσ ∈ Ic, (uδ)δ does not converge, even for the L2-norm!

In this case, it is impossible to simulate the fields since it is impossible
to measure exactly δ. ⇒ What happens physically?
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Thank you for your attention!!!
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Naive approximation
I Let us try a usual Finite Element Method (P1 Lagrange Finite
Element). We solve the problem

Find uh ∈ Vh s.t.:∫
Ω
σ∇uh · ∇vh =

∫
Ω
fvh, ∀v ∈ Vh,

where Vh approximates H1
0(Ω) as h → 0 (h is the mesh size).

I We display uh as h → 0.

Contrast κσ = −0.999 ∈ (−1;−1/3).

The sequence (uh) does not converge as h → 0!!!
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Naive approximation

I Outside the critical interval, the sequence (uh) converges.

(. . . ) (. . . )

Contrast κσ = −1.001 /∈ (−1;−1/3).

23 / 21


FilmHICwmv.wmv
Media File (video/x-ms-wmv)


FilmHICMaillage.avi
Media File (video/avi)


	Numerical experiments
	Properties of the limit problem
	Asymptotic analysis

