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Introduction: general framework
» Scattering by a metal in electromagnetism in time-harmonic regime at
optical frequency.

» For metals at optical frequency, Ree(w) < 0 and Sme(w) << |Ree(w)].
= We neglect losses and study the ideal case ¢(w) € (—00;0).

Positive material
e>0
and pu>0

Negative metal
e<0
and p>0
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optical frequency.

» For metals at optical frequency, Ree(w) < 0 and Sme(w) << |Ree(w)].
= We neglect losses and study the ideal case ¢(w) € (—00;0).

Positive material
e>0
and pu>0

Negative metal
e<0
and p>0

» Waves called Surface Plasmon Polaritons can propagate at the interface
between a dielectric and a negative metal.
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Introduction: applications

» Surface Plasmons Polaritons can propagate information. Physicists hope
to exploit them to reduce the size of computer chips.

. 4 Out
Dielectric ﬁ’_’, .

Il

Figures from 0’Connor et al., Appl. Phys. Lett. 95, 171112 (2009)

» In this context, physicists use singular geometries to focus energy. It

allows to stock information. 5/ o1



Introduction: in this talk

» We study a scalar model problem set in a bounded domain © C R2:

(2)

Find u € H}(Q) s.t.:
—div(eVu) = f in Q.

0
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Introduction: in this talk

» We study a scalar model problem set in a bounded domain © C R2:

Find u € H}(Q) s.t.: 0
() —div(eVu) = f in Q. z
> 92(—
o HY(©) = (v e 120) Vo e 120 oo =0} |y, >ﬂ
@ fis the source term in H=1(Q) ola, =02 <0
(constant)

» We slightly round the interface X:

5
U 0 (%) Find u’ € H}(Q) s.t.:
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[05 -0 0 @ ¢ denotes the radius of curvature of the
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o lo, =02 <0 rounded interface at the origin.
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(constant)

» We slightly round the interface X:

9] : 5 1
L oy9 (%) Find v’ € Hy(f2) s.t.:
Q) —div(e’Vu’) = f in Q.

[05 -0 0 @ ¢ denotes the radius of curvature of the
|0, 1>
o lo, =02 <0 rounded interface at the origin.

( ? What is the behaviour of the sequence (u’)s when & tends to zero?)
4/ 21




Outline of the talk

e Numerical experiments

To get an intuition, we discretize (@5 ) and observe what happens when
0 — 0.

5 /21



Outline of the talk

e Numerical experiments

To get an intuition, we discretize (@5 ) and observe what happens when
0 — 0.

© Properties of the limit problem

We present the properties of the limit problem in the geometry with the
real corner (0 = 0). Since o changes sign, original phenomena appear.

5 /21



Outline of the talk

e Numerical experiments

To get an intuition, we discretize (@5 ) and observe what happens when
0 — 0.

© Properties of the limit problem

We present the properties of the limit problem in the geometry with the
real corner (0 = 0). Since o changes sign, original phenomena appear.

© Asymptotic analysis

We prove a curious instability phenomenon: for certain configurations,
(2°) critically depends on 6.
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@ Numerical experiments
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Setting

» For the numerical experiments, we round the corner in a particular way
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Setting

» For the numerical experiments, we round the corner in a particular way
(in this domain, we can separate variables).

d is the rounding
parameter

» Our goal is to study the behaviour of the solution, if it is well-defined, of
the problem

Find «® € H}(Q°) such that:

(#°) —div(e’Vul) =f in Q.

» We approximate by a usual P1 Finite Element Method this u°, assuming
it 1s well-defined. The solution of the discretized problem is called ug.

[We display the behaviour of u as § — 0.]
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Numerical experiments 1/2

o1 =1 and o9 = 1 (positive materials)
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Numerical experiments 1/2

o1 =1 and o9 = 1 (positive materials)

1
b

—~
R
HX norm of the solution

ul w.r.t. & [Vudlls wort. 1 =6

» For positive materials, it is well-known that (u°)s converges to u, the
solution in the limit geometry.
» The rate of convergence depends on the regularity of u.

» To avoid to mesh Q% we can approximate u° by uy,. ,
8 / 21
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Numerical experiments 2/2

... and what about for a sign-changing o777
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Numerical experiments 2/2

... and what about for a sign-changing o777

] o1 =1 and g9 = —0.9999 \

250

—~
~—
HE norm of the soluti

10|
50 £ 1
09 095
5

075 08 085

1-

ul wort. & [Vudlos wort. 1—6

» For this configuration, us seems to depend critically on J.

(In this talk, our goal is to explain this behaviour.)
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© Properties of the limit problem
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Problems with a sign changing coefficient

Find u € H}(Q) such that:

(Z) —div(eVu) =f in Q.

» We have the following properties (see Costabel and Stephan 85,
Dauge and Texier 97, Bonnet-Ben Dhia et al. 99,10,12,13):

’ Smooth interface X ‘ ’Interface ¥ with a corner ‘

o1 >0

v (&) well-posed in the Fredholm
sense iff ko = 02/01 # —1.

v () well-posed in the Fredholm sense
iff ko ¢ I = [—0;—1/0), £ = (2m — ) /.
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» We have the following properties (see Costabel and Stephan 85,
Dauge and Texier 97, Bonnet-Ben Dhia et al. 99,10,12,13):

’ Smooth interface X ‘ ’Interface ¥ with a corner ‘

o1 >0

v (&) well-posed in the Fredholm
sense iff ko = 02/01 # —1.

v () well-posed in the Fredholm sense
iff ko ¢ I = [—0;—1/0), £ = (2m — ) /.

@ Well-posedness depends on the smoothness of ¥ and on o.
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The problematic of the rounded corner

Find u € H}(Q) such that:

(Z) —div(eVu) =f in Q.

» When the interface has a corner, (&) is well-posed in
the Fredholm sense iff x, ¢ I, (the critical interval).
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The problematic of the rounded corner

Find u € H}(Q) such that:

(Z) —div(eVu) =f in Q.

» When the interface has a corner, (£) is well-posed in
the Fredholm sense iff x, ¢ I. (the critical interval).

» When the interface is smooth, () is well-posed in the
Fredholm sense iff x, # —1.

What happens for a slightly rounded corner when
ke € I\ {—1}7

» We need to precise the properties of (£?) when
the interface has a corner in the case r, € I.\{—1}.

12 / 21



Properties of the limit problem inside the
critical interval

Find u € H}(2) such that:

(&) —div(eVu) =f in Q.

» To simplify the presentation, we work on a particular configuration.
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Analogy with a waveguide problem

e Bounded sector €2

O (r,0)

e Equation:
—div(cVu) =f
—_————
—r=2(0(10,;)2+8900g)u
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Analogy with a waveguide problem

1

We compute the singularities s(r,0) = r*¢() and we observe two cases:

» Outside the critical interval

A P
Ko = —1/41 : 1
A2 Ml A A2
. -0 - -G NSRS r
2 -1 1 2 0
1 -1 1
not H H —1
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Analogy with a waveguide problem

1

We compute the singularities s(r,6) = r*p(f) and we observe two cases

» Outside the critical interval A\
N = !
Ko = —1/4 14 1
R VI P VR
203 1@ |G RNS o > r
S| ’ 1 2 0
1 -1 1
not H H —1

Inside the critical interval

ho==1/2 4
~X2 A,
Y TN FRR o oo * >
-2 _1—A1 . 1 2
+-1
not H! § H!
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Analogy with a waveguide problem
We compute the singularities s(r,6) = r*p(f) and we observe two cases

» Outside the critical interval

N T rh
Ko = —1/4 14 1
)\) /\I )\1 )\2
. -0 - -G NSRS r
2 -1 | 12 0
1 T-1 1
not H ; H -1
» Inside the critical interval
ho==1/2 4
~ A L
PR TR o oo ° >
-2 -1 1 1 2
il P
1 T-1 1
not H ; H

How to deal with the propagative singularities inside the critical interval?
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e Bounded sector 2 E o Half-strip B

(2,0) =(—1nr,0)

—"

(r,0) = (Ie_z,e)

e Singularities in the sector
s(r,0) = r(0)
:><(cos blnr + isin bln r)p(6)

e Modes in the strip
m(z,0) = e p(0)
:><(cos bz — isin bz)p(0)

I
I
I
I
1
1
I
I
I
I
I
I
I
I
I
1
1
I
1S

(ReX =a, SmA=0b)
s€ HY(Q) ReA> 0 m is evanescent
s¢ HY(Q) ReX=0 m is propagative
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Analogy with a waveguide problem

e Bounded sector €2

/4 (Z, 6) ==
&f
0 (rn0) (r,0) = (Ie
e Equation:
—div(cVu) =f
—_————

—r=2(0(10,;)2+8900g)u
e Singularities in the sector
s(r,0) = r(0)
:><(cos blnr + isin bln r)p(6)

(ReX =a, S
s€ HY(Q) Re N
s¢ HY(Q) Re

» This encourages us to use modal decomposition in the half-strip.

o Half-strip B

nr,0)

e

_270)

0=m/4

o Equation:
—div(cVu) =e 27 f
—_———

—(002+05009)u

e Modes in the strip
m(z,0) = e"*¢(0)
% (cos bz — isin bz)p(0)

A=1)
0 m is evanescent
=0 m is propagative
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Modal analysis in the waveguide

ke = —1/4 .

A =)\
L] 1o

-2 -1

A

+@ ]

» Outside the critical interval . All the

modes are exponentially growing or decaying.

— We look for an exponentially decaying

solution.
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1+ » Outside the critical interval . All the
S VR PR ¥ Ao modes are exponentially growing or decaying.
* I-e + e | [
2 -1 2 — We look for an exponentially decaying
= solution.
» Inside the critical interval . There are
e =—1/2 * exactly two propagative modes.
1 -
o)\
— X : Ay
o | + | .
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Modal analysis in the waveguide

Rg = _1/4 4 . o .
1+ » Outside the critical interval . All the
S VR PR ¥ Ao modes are exponentially growing or decaying.
o R ) .
2 -1 2 — We look for an exponentially decaying
-1 solution.
» Inside the critical interval . There are
e =—1/2 * exactly two propagative modes.
1 -
) o\ \ — The decomposition on the outgoing modes
PO ; & leads to look for a solution of the form
-2 -1 2
—A1e u= €101 M ? + Ug.
——— ~—

propagative part

[non H! framework]

evanescent part

15 / 21



How to approximate the solution?

» We use a PML (Perfectly Matched Layer) to bound the domain B
+ finite elements in the truncated strip (k, = —0.999 € (—1; -1/3)).

IS.SU79 I9.8079
10 10
0 0
-10 -10
=20 -20
-25.1087
|

-25.1087
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How to approximate the solution?

» We use a PML (Perfectly Matched Layer) to bound the domain B
+ finite elements in the truncated strip (k, = —0.999 € (—1; -1/3)).

Is.aws
10
0
-10
-20
-25.1087
1

PML

Without the PML, the solution in the truncated strip of length
A L does not converge when L — oo. This is what we observed in
our numerical experiment for the rounded corner.

16 / 21



© Asymptotic analysis
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Asymptotic analysis

(7°)

Find u® € H}() s.t.:
—div(e®Vu?) = f in Q.

(2

)

Find u € H}(Q) s.t.:
—div(cVu) = f in Q.

» The behaviour of (u%)s depends on the properties of the limit problem.
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Asymptotic analysis

Q3 0,

Find v’ € H}(Q) s.t.:
—div(c’Vul) = f in Q.

Find u € H(Q) s.t.:

(#°) —div(eVu) = f in .

()

» The behaviour of (u%)s depends on the properties of the limit problem.

If (22) well-posed (in H3(9)), then w9 is uniquely defined for ¢ small enough
and (u%)s converges to u (as for positive materials).

If the limit problem is well-posed only in the exotic framework, then (£2°)
critically depends on the value of the rounding parameter 4.
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Asymptotic analysis

IDEA OF THE APPROACH:

@ We prove an a priori estimate for u’ for all § in some set . which
excludes a discrete set accumulating in zero (# hard part of the proof,
S.A. Nazarov’s technique).

X X ba$ Dal X X X Iné

T— In. ={Ind, 6 € .}
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(The sequence (u%)s does not converge, even for the L2—norm!J
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© Properties of the limit problem

© Asymptotic analysis
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Conclusion

?

Let us remind the initial question:

What is the behaviour of (u°)s when § tends to zero?




Conclusion

Let us remind the initial question:

? ’What is the behaviour of (u®)s; when § tends to zero? ’

>< ‘ This depends on the features of the limit problem. ‘

ko = —1.0001 ¢ I, Ko = —0.9999 € I.

< ‘When ko € I, (u®)s does not converge, even for the L2-norm!

In this case, it is impossible to simulate the fields since it is impossible
to measure exactly 6. = What happens physically?

20
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Thank you for your attention!!!
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Naive approximation

» Let us try a usual Finite Element Method (P1 Lagrange Finite
Element). We solve the problem

Find u € Vy, s.t.:
/ oVuy -V, = / fon, YveVy,
Q Q

where V}, approximates Hj(2) as b — 0 (h is the mesh size).
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Naive approximation

» Let us try a usual Finite Element Method (P1 Lagrange Finit ;
Element). We solve the problem o

» We display u, as h — 0.

Contrast k, = —0.999 € (—1;—1/3).
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Naive approximation

» Outside the critical interval, the sequence (uy) converges.

Contrast kK, = —1.001 ¢ (—1;—1/3).

23 / 21



FilmHICwmv.wmv
Media File (video/x-ms-wmv)


FilmHICMaillage.avi
Media File (video/avi)


	Numerical experiments
	Properties of the limit problem
	Asymptotic analysis

