WAVES 2017

Invisibility and complete reflectivity in waveguides with finite length branches

Lucas Chesnel¹

Coll. with S.A. Nazarov² and V. Pagneux³.

¹Defi team, CMAP, École Polytechnique, France
 ²FMM, St. Petersburg State University, Russia
 ³LAUM, Université du Maine, France

Íngin -

MINNEAPOLIS, 15/05/2017

Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.

 $\left| \begin{array}{l} {\rm Find} \; v = v_{\rm i} + v_{\rm s} \; {\rm s.} \; {\rm t.} \\ -\Delta v \; = \; k^2 v \quad {\rm in} \; \Omega, \\ \partial_n v \; = \; 0 \qquad {\rm on} \; \partial \Omega, \\ v_{\rm s} \; {\rm is \; outgoing.} \end{array} \right.$

Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.

 $\left| \begin{array}{l} {\rm Find} \; v = v_{\rm i} + v_{\rm s} \; {\rm s.} \; {\rm t.} \\ -\Delta v \; = \; k^2 v \quad {\rm in} \; \Omega, \\ \partial_n v \; = \; 0 \qquad {\rm on} \; \partial \Omega, \\ v_{\rm s} \; {\rm is \; outgoing.} \end{array} \right.$

For $k \in (0; \pi)$, only 2 propagative modes $w^{\pm} = e^{\pm ikx} / \sqrt{2k}$.

Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.

 $\left| \begin{array}{l} {\rm Find} \; v = v_{\rm i} + v_{\rm s} \; {\rm s. \ t.} \\ -\Delta v \; = \; k^2 v \quad {\rm in} \; \Omega, \\ \partial_n v \; = \; 0 \qquad {\rm on} \; \partial \Omega, \\ v_{\rm s} \; {\rm is \ outgoing.} \end{array} \right.$

For $k \in (0; \pi)$, only 2 propagative modes $w^{\pm} = e^{\pm ikx} / \sqrt{2k}$. Set $v_i = w^+$.

Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.

with $s^{\pm} \in \mathbb{C}$, \tilde{v}_{s} exponentially decaying at $\pm \infty$.

Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.

•
$$v_{\rm s}$$
 is outgoing \Leftrightarrow $v_{\rm s} = s^{\pm}w^{\pm} + \tilde{v}_{\rm s}$ for $\pm x \ge H$,

with $s^{\pm} \in \mathbb{C}$, \tilde{v}_{s} exponentially decaying at $\pm \infty$.

DEFINITION:	$v_{\rm i} = {\rm incident field}$
	v = total field
	$v_{\rm s} = $ scattered field.

- ▶ At infinity, one measures the reflection coefficient $R = s^-$ and/or the transmission coefficient $T = 1 + s^+$ (other terms are too small).
- From conservation of energy, one has

 $|R|^2 + |T|^2 = 1.$

At infinity, one measures the reflection coefficient $R = s^-$ and/or the transmission coefficient $T = 1 + s^+$ (other terms are too small).

From conservation of energy, one has

 $|R|^2 + |T|^2 = 1.$

DEFINITION: Defect is said $\begin{vmatrix} \text{non reflective if } R = 0 \ (T = 1) \\ \text{perfectly invisible if } T = 1 \ (R = 0). \end{vmatrix}$	
---	--

• For T = 1, defect cannot be detected from far field measurements.

At infinity, one measures the reflection coefficient $R = s^-$ and/or the transmission coefficient $T = 1 + s^+$ (other terms are too small).

From conservation of energy, one has

$$|R|^2 + |T|^2 = 1.$$

DEFINITION: Defect is said	non reflective if $R = 0$ $(T = 1)$ perfectly invisible if $T = 1$ $(R = 0)$. completely reflective if $T = 0$ $(R = 1)$.
----------------------------	---

- For T = 1, defect cannot be detected from far field measurements.
- For T = 0, defect is like a mirror.

At infinity, one measures the reflection coefficient $R = s^-$ and/or the transmission coefficient $T = 1 + s^+$ (other terms are too small).

From conservation of energy, one has

$$|R|^2 + |T|^2 = 1.$$

DEFINITION: Defect is said	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$
----------------------------	---

- For T = 1, defect cannot be detected from far field measurements.
- For T = 0, defect is like a mirror.

We explain how to construct waveguides such that

$$R = 0$$
 ($|T| = 1$), $T = 1$ ($R = 0$) or $T = 0$ ($|R| = 1$).

At infinity, one measures the reflection coefficient $R = s^-$ and/or the transmission coefficient $T = 1 + s^+$ (other terms are too small).

From conservation of energy, one has

$$|R|^2 + |T|^2 = 1.$$

DEFINITION: Defect is said	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$
----------------------------	---

- For T = 1, defect cannot be detected from far field measurements.
- For T = 0, defect is like a mirror.

GOAL

We explain how to construct waveguides such that

 $R = 0 \ (|T| = 1), \ T = 1 \ (R = 0) \ \text{or} \ T = 0 \ (|R| = 1).$

• We shall assume that the wavenumber k is given.

Existing methods

 \Rightarrow We obtain small defects such that R = 0 (harder to get T = 1). Biblio.: Bonnet-Nazarov 13, Bonnet et al. 16.

Fano resonance: if for a setting trapped modes exist, then perturbing slightly the geometry and k, we can get R = 0 or T = 0.

 \Rightarrow Requires to start from a trapped mode. Biblio.: Shipman-Tu 12, Hein et al. 12.

Existing methods

TALK

 \Rightarrow We obtain small defects such that R = 0 (harder to get T = 1). Biblio.: Bonnet-Nazarov 13, Bonnet et al. 16.

Fano resonance: if for a setting trapped modes exist, then perturbing slightly the geometry and k, we can get R = 0 or T = 0.

 \Rightarrow Requires to start from a trapped mode. Biblio.: Shipman-Tu 12, Hein et al. 12.

We propose another mechanism to get **large defects** s. t. R = 0 (|T| = 1), T = 1 (R = 0) or T = 0 (|R| = 1).

Geometrical setting

• We work in waveguides which are symmetric with respect to (Oy) and which contain a branch of finite height.

Geometrical setting

• We work in waveguides which are symmetric with respect to (Oy) and which contain a branch of finite height.

Geometrical setting

• We work in waveguides which are symmetric with respect to (Oy) and which contain a branch of finite height.

 \rightarrow We will study the behaviour of the coefficients $R, T \in \mathbb{C}$ as $L \rightarrow +\infty$.

2 Numerical results

- 2 Numerical results
- **3** Variants and extensions

• Consider a waveguide which is symmetric with respect (Oy) and which contains a branch of finite height.

• Consider a waveguide which is symmetric with respect (Oy) and which contains a branch of finite height.

$$\begin{array}{rcl} -\Delta v &=& k^2 v & \mbox{in } \Omega_L \\ \partial_n v &=& 0 & \mbox{on } \partial \Omega_L \end{array}$$

• Consider a waveguide which is symmetric with respect (Oy) and which contains a branch of finite height.

• Consider a waveguide which is symmetric with respect (Oy) and which contains a branch of finite height.

► Introduce the two half-waveguide problems

• Consider a waveguide which is symmetric with respect (Oy) and which contains a branch of finite height.

► Introduce the two half-waveguide problems

▶ Half-waveguide problems admit the solutions

 $u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{L})$ $U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{L}).$

▶ Half-waveguide problems admit the solutions

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{L})$$
$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{L}).$$

• Due to conservation of energy, one has

$$|\mathbf{R}^N| = |\mathbf{R}^D| = 1.$$

▶ Half-waveguide problems admit the solutions

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{L})$$
$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{L}).$$

• Due to conservation of energy, one has $|\mathbb{R}^{N}| = |\mathbb{R}^{D}| = 1.$

▶ Half-waveguide problems admit the solutions

Due to conservation of energy, one has

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{L})$$
$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{L}).$$

 $|\mathbf{R}^{N}| = |\mathbf{R}^{D}| = 1.$

• Using that
$$v = \frac{u+U}{2}$$
 in ω_L , $v(x,y) = \frac{u(-x,y) - U(-x,y)}{2}$ in $\Omega_L \setminus \overline{\omega_L}$,
we deduce that $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N - R^D}{2}$.

▶ Half-waveguide problems admit the solutions

Due to conservation of energy, one has

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{L})$$
$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{L}).$$

 $|\mathbf{R}^{N}| = |\mathbf{R}^{D}| = 1.$

► Using that
$$v = \frac{u+U}{2}$$
 in ω_L , $v(x,y) = \frac{u(-x,y) - U(-x,y)}{2}$ in $\Omega_L \setminus \overline{\omega_L}$,
we deduce that $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N - R^D}{2}$. Non reflectivity
 $\Leftrightarrow R^N = -R^D$

▶ Half-waveguide problems admit the solutions

Due to conservation of energy, one has

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{L})$$
$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{L}).$$

 $|\mathbf{R}^{N}| = |\mathbf{R}^{D}| = 1.$

• Using that
$$v = \frac{u+U}{2}$$
 in ω_L , $v(x,y) = \frac{u(-x,y) - U(-x,y)}{2}$ in $\Omega_L \setminus \overline{\omega_L}$,
we deduce that $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N - R^D}{2}$. Non reflectivity
 $\Leftrightarrow R^N = -R^D$

▶ Half-waveguide problems admit the solutions

Due to conservation of energy, one has

$$u = w^{+} + \mathbb{R}^{N} w^{-} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^{1}(\omega_{L})$$
$$U = w^{+} + \mathbb{R}^{D} w^{-} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^{1}(\omega_{L}).$$

 $|\mathbf{R}^{N}| = |\mathbf{R}^{D}| = 1.$

 R^{D} , R^{D} , R

• Using that
$$v = \frac{u+U}{2}$$
 in ω_L , $v(x,y) = \frac{u(-x,y) - U(-x,y)}{2}$ in $\Omega_L \setminus \overline{\omega_L}$,
we deduce that $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N - R^D}{2}$. Non reflectivity
 $\Leftrightarrow R^N = -R^D$

 \rightarrow Now, we study the behaviour of $\mathbb{R}^N = \mathbb{R}^N(L)$, $\mathbb{R}^D = \mathbb{R}^D(L)$ as $L \rightarrow +\infty$.

Depend on the nb. of propagative modes in the vertical branch of ω_{∞} $(\mathscr{P}^{N}) \begin{vmatrix} -\Delta \varphi &= k^{2} \varphi & \text{in } \omega_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \end{vmatrix}$ $(\mathscr{P}^{D}) \begin{vmatrix} -\Delta \varphi &= k^{2} \varphi & \text{in } \omega_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \setminus \Sigma_{\infty} \\ \varphi &= 0 & \text{on } \Sigma_{\infty}. \end{vmatrix}$ Analysis for \mathbb{R}^{D}

• For $\ell \in (0; \pi/k)$, no prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^D) .

Depend on the nb. of propagative modes in the vertical branch of ω_{∞} $(\mathscr{P}^{N}) \begin{vmatrix} -\Delta \varphi &= k^{2} \varphi & \text{in } \omega_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \end{vmatrix}$ $(\mathscr{P}^{D}) \begin{vmatrix} -\Delta \varphi &= k^{2} \varphi & \text{in } \omega_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \setminus \Sigma_{\infty} \\ \varphi &= 0 & \text{on } \Sigma_{\infty}. \end{cases}$

- For $\ell \in (0; \pi/k)$, no prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^D) .
- (\mathcal{P}^D) admits the solution

 $U_{\infty} = w_1^- + R_{\infty}^D w_1^+ + \tilde{U}_{\infty}, \qquad \text{with } \tilde{U}_{\infty} \in \mathrm{H}^1(\omega_{\infty}), \ |R_{\infty}^D| = 1.$

Depend on the nb. of propagative modes in the vertical branch of ω_{∞} $(\mathscr{P}^{N}) \begin{vmatrix} -\Delta\varphi &= k^{2}\varphi & \text{in } \omega_{\infty} \\ \partial_{n}\varphi &= 0 & \text{on } \partial\omega_{\infty} \end{vmatrix}$ $(\mathscr{P}^{D}) \begin{vmatrix} -\Delta\varphi &= k^{2}\varphi & \text{in } \omega_{\infty} \\ \partial_{n}\varphi &= 0 & \text{on } \partial\omega_{\infty} \\ \partial_{n}\varphi &= 0 & \text{on } \partial\omega_{\infty} \setminus \Sigma_{\infty} \\ \varphi &= 0 & \text{on } \Sigma_{\infty}. \end{cases}$

- For $\ell \in (0; \pi/k)$, no prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^D) .
- (\mathcal{P}^D) admits the solution

 $U_{\infty} = w_1^- + R_{\infty}^D w_1^+ + \tilde{U}_{\infty}, \qquad \text{with } \tilde{U}_{\infty} \in \mathrm{H}^1(\omega_{\infty}), \ |R_{\infty}^D| = 1.$

 $(w_1^{\pm} = \chi_l w^{\mp} \text{ where } \chi_l \text{ is a cut-off function s.t. } \chi_l = 1 \text{ for } x \leq -2\ell, \ \chi_l = 0 \text{ for } x \geq -\ell)$

Depend on the nb. of propagative modes in the vertical branch of ω_{∞} $(\mathscr{P}^{N}) \begin{vmatrix} -\Delta \varphi &= k^{2} \varphi & \text{in } \omega_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \end{vmatrix}$ $(\mathscr{P}^{D}) \begin{vmatrix} -\Delta \varphi &= k^{2} \varphi & \text{in } \omega_{\infty} \\ \partial_{n} \varphi &= 0 & \text{on } \partial \omega_{\infty} \setminus \Sigma_{\infty} \\ \varphi &= 0 & \text{on } \Sigma_{\infty}. \end{cases}$

- For $\ell \in (0; \pi/k)$, no prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^D) .
- (\mathcal{P}^D) admits the solution

 $U_{\infty} = w_1^- + R_{\infty}^D w_1^+ + \tilde{U}_{\infty}, \qquad \text{with } \tilde{U}_{\infty} \in \mathrm{H}^1(\omega_{\infty}), \ |R_{\infty}^D| = 1.$

Depend on the nb. of propagative modes in the vertical branch of ω_{∞} $\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$

- For $\ell \in (0; \pi/k)$, no prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^D) .
- $\bullet \; (\mathscr{P}^D)$ admits the solution

$$U_{\infty} = w_1^- + R_{\infty}^D w_1^+ + \tilde{U}_{\infty}, \qquad \text{with } \tilde{U}_{\infty} \in \mathrm{H}^1(\omega_{\infty}), \ |R_{\infty}^D| = 1$$

• As $L \to +\infty$, we have $U = U_{\infty} + \ldots$ which implies $|R^D - R^D_{\infty}| \le C e^{-\beta L}$.
Asymptotics of R^N , R^D

Depend on the nb. of propagative modes in the vertical branch of ω_{∞} $(\mathscr{P}^{N}) \begin{vmatrix} -\Delta\varphi &= k^{2}\varphi & \text{in } \omega_{\infty} \\ \partial_{n}\varphi &= 0 & \text{on } \partial\omega_{\infty} \end{vmatrix}$ $(\mathscr{P}^{D}) \begin{vmatrix} -\Delta\varphi &= k^{2}\varphi & \text{in } \omega_{\infty} \\ \partial_{n}\varphi &= 0 & \text{on } \partial\omega_{\infty} \\ \partial_{n}\varphi &= 0 & \text{on } \partial\omega_{\infty} \setminus \Sigma_{\infty} \\ \varphi &= 0 & \text{on } \Sigma_{\infty}. \end{cases}$ Analysis for R^{D}

For $\ell \in (0; \pi/k)$, $L \mapsto R^D(L)$ tends to a constant on $\mathscr{C} := \{z \in \mathbb{C}, |z| = 1\}$.

• For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

• For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

 $(\chi_t \text{ is a cut-off function such that } \chi_t = 1 \text{ for } y \ge 2, \ \chi_t = 0 \text{ for } y \le 1)$

• For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

• For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

• (\mathscr{P}^N) admits the solutions

$$\begin{aligned} u_{\infty}^{1} &= w_{1}^{-} + s_{11} w_{1}^{+} + s_{12} w_{2}^{+} + \tilde{u}_{\infty}^{1}, & \text{with } \tilde{u}_{\infty}^{1} \in \mathrm{H}^{1}(\omega_{\infty}) \\ u_{\infty}^{2} &= w_{2}^{-} + s_{21} w_{1}^{+} + s_{22} w_{2}^{+} + \tilde{u}_{\infty}^{2}, & \text{with } \tilde{u}_{\infty}^{2} \in \mathrm{H}^{1}(\omega_{\infty}). \end{aligned}$$

The scattering matrix

$$\left(\begin{array}{cc}s_{11}&s_{12}\\s_{21}&s_{22}\end{array}\right) \text{ is unitary.}$$

• For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

 $\bullet \ (\mathcal{P}^N)$ admits the solutions

$$\begin{aligned} u_{\infty}^{1} &= w_{1}^{-} + s_{11} \, w_{1}^{+} + s_{12} \, w_{2}^{+} + \tilde{u}_{\infty}^{1}, & \text{with } \tilde{u}_{\infty}^{1} \in \mathrm{H}^{1}(\omega_{\infty}) \\ u_{\infty}^{2} &= w_{2}^{-} + s_{21} \, w_{1}^{+} + s_{22} \, w_{2}^{+} + \tilde{u}_{\infty}^{2}, & \text{with } \tilde{u}_{\infty}^{2} \in \mathrm{H}^{1}(\omega_{\infty}). \end{aligned}$$

• If $s_{12} \neq 0$, we make the ansatz $u = u_{\infty}^1 + a(L) u_{\infty}^2 + \dots$

• For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

 $\bullet \ (\mathcal{P}^N)$ admits the solutions

$$\begin{split} u_{\infty}^{1} &= w_{1}^{-} + s_{11} \, w_{1}^{+} + s_{12} \, w_{2}^{+} + \tilde{u}_{\infty}^{1}, \qquad \text{with } \tilde{u}_{\infty}^{1} \in \mathrm{H}^{1}(\omega_{\infty}) \\ u_{\infty}^{2} &= w_{2}^{-} + s_{21} \, w_{1}^{+} + s_{22} \, w_{2}^{+} + \tilde{u}_{\infty}^{2}, \qquad \text{with } \tilde{u}_{\infty}^{2} \in \mathrm{H}^{1}(\omega_{\infty}). \end{split}$$

• If $s_{12} \neq 0$, we make the ansatz $u = u_{\infty}^{1} + a(L) u_{\infty}^{2} + \dots$ On Γ_{L} $0 = \partial_{n} u = C \left(s_{12} e^{ikL} + a(L) \left(-e^{-ikL} + s_{22} e^{ikL} \right) \right) + \dots$

• For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

 $\bullet \ (\mathcal{P}^N)$ admits the solutions

$$\begin{split} u_{\infty}^{1} &= w_{1}^{-} + s_{11} \, w_{1}^{+} + s_{12} \, w_{2}^{+} + \tilde{u}_{\infty}^{1}, \qquad \text{with } \tilde{u}_{\infty}^{1} \in \mathrm{H}^{1}(\omega_{\infty}) \\ u_{\infty}^{2} &= w_{2}^{-} + s_{21} \, w_{1}^{+} + s_{22} \, w_{2}^{+} + \tilde{u}_{\infty}^{2}, \qquad \text{with } \tilde{u}_{\infty}^{2} \in \mathrm{H}^{1}(\omega_{\infty}). \end{split}$$

• If $s_{12} \neq 0$, we make the ansatz $u = u_{\infty}^1 + a(L) u_{\infty}^2 + \dots$ On Γ_L $0 = \partial_n u = C \left(s_{12} e^{ikL} + a(L) \left(-e^{-ikL} + s_{22} e^{ikL} \right) \right) + \dots$

• For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

 $\bullet \ (\mathcal{P}^N)$ admits the solutions

$$\begin{split} u_{\infty}^{1} &= w_{1}^{-} + s_{11} \, w_{1}^{+} + s_{12} \, w_{2}^{+} + \tilde{u}_{\infty}^{1}, \qquad \text{with } \tilde{u}_{\infty}^{1} \in \mathrm{H}^{1}(\omega_{\infty}) \\ u_{\infty}^{2} &= w_{2}^{-} + s_{21} \, w_{1}^{+} + s_{22} \, w_{2}^{+} + \tilde{u}_{\infty}^{2}, \qquad \text{with } \tilde{u}_{\infty}^{2} \in \mathrm{H}^{1}(\omega_{\infty}). \end{split}$$

• If $s_{12} \neq 0$, we make the ansatz $u = u_{\infty}^1 + a(L) u_{\infty}^2 + \dots$ On Γ_L $0 = \partial_n u = C \left(s_{12} e^{ikL} + a(L) \left(-e^{-ikL} + s_{22} e^{ikL} \right) \right) + \dots$

• This gives a(L) and implies, as $L \to +\infty$,

$$|R^N - R^N_{\text{asy}}(L)| \le C \, e^{-\beta L} \quad \text{with} \quad R^N_{\text{asy}}(L) = s_{11} + \frac{s_{12} \, s_{21}}{e^{-2ikL} - s_{22}}.$$

• For $\ell \in (0; 2\pi/k)$, 2 prop. modes in the vertical branch of ω_{∞} for (\mathscr{P}^N)

$$w_2^{\pm} = \chi_t \, e^{\pm iky} / \sqrt{k\ell}$$

 $\bullet \ (\mathcal{P}^N)$ admits the solutions

$$\begin{split} u_{\infty}^{1} &= w_{1}^{-} + s_{11} \, w_{1}^{+} + s_{12} \, w_{2}^{+} + \tilde{u}_{\infty}^{1}, \qquad \text{with } \tilde{u}_{\infty}^{1} \in \mathrm{H}^{1}(\omega_{\infty}) \\ u_{\infty}^{2} &= w_{2}^{-} + s_{21} \, w_{1}^{+} + s_{22} \, w_{2}^{+} + \tilde{u}_{\infty}^{2}, \qquad \text{with } \tilde{u}_{\infty}^{2} \in \mathrm{H}^{1}(\omega_{\infty}). \end{split}$$

• If $s_{12} \neq 0$, we make the ansatz $u = u_{\infty}^1 + a(L) u_{\infty}^2 + \dots$ On Γ_L $0 = \partial_n u = C \left(s_{12} e^{ikL} + a(L) \left(-e^{-ikL} + s_{22} e^{ikL} \right) \right) + \dots$

• This gives a(L) and implies, as $L \to +\infty$,

$$|R^N - R^N_{asy}(L)| \le C e^{-\beta L}$$
 with $R^N_{asy}(L) = s_{11} + \frac{s_{12} s_{21}}{e^{-2ikL} - s_{22}}.$

• Unitarity of
$$\begin{pmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{pmatrix} \Rightarrow L \mapsto R^N_{asy}(L)$$
 runs periodically on \mathscr{C} .

Asymptotic of R^N , R^D

For $\ell \in (0; 2\pi/k)$, $L \mapsto R^N(L)$ runs continuously and almost period. on \mathscr{C} .

Conclusions for $\ell \in (0; \pi/k), s_{12} \neq 0$

• Reminder:
$$R = \frac{R^N + R^D}{2}$$
 and $T = \frac{R^N - R^D}{2}$.

PROPOSITION: Asymptotically as $L \to +\infty$, R (resp. T) runs on the circle of radius 1/2 centered at $R^D_{\infty}/2$ (resp. $-R^D_{\infty}/2$).

Conclusions for $\ell \in (0; \pi/k), s_{12} \neq 0$

Reminder: $R = \frac{R^N}{R}$

$$\frac{T+R^D}{2}$$
 and $T=$

$$T = \frac{R^N - R^D}{2} \,.$$

PROPOSITION: Asymptotically as $L \to +\infty$, R (resp. T) runs on the circle of radius 1/2 centered at $R_{\infty}^D/2$ (resp. $-R_{\infty}^D/2$).

PROPOSITION: There is an unbounded sequence (L_n) such that for $L = L_n$, $\mathbb{R}^N = -\mathbb{R}^D$ and so $\mathbb{R} = 0$ (non reflectivity).

Conclusions for $\ell \in (0; \pi/k), s_{12} \neq 0$

Reminder: $R = \frac{R^N}{R}$

$$\frac{T+R^D}{2}$$
 and $T=$

$$T = \frac{R^N - R^D}{2} \,.$$

PROPOSITION: Asymptotically as $L \to +\infty$, R (resp. T) runs on the circle of radius 1/2 centered at $R^D_{\infty}/2$ (resp. $-R^D_{\infty}/2$).

PROPOSITION: There is an unbounded sequence (L_n) such that for $L = L_n$, $\mathbb{R}^N = -\mathbb{R}^D$ and so $\mathbb{R} = 0$ (non reflectivity).

PROPOSITION: There is an unbounded sequence (\mathcal{L}_n) such that for $L = \mathcal{L}_n$, $\mathbb{R}^N = \mathbb{R}^D$ and so T = 0 (complete reflectivity).

► Sequences (L_n) and (\mathcal{L}_n) are almost periodic. As $n \to +\infty$, we have $L_{n+1} - L_n = \pi/k + \dots$ and $\mathcal{L}_{n+1} - \mathcal{L}_n = \pi/k + \dots$

3 Variants and extensions

Setting

• We compute numerically the scattering coefficients R, T for $L \in (2; 10)$ in the geometry Ω_L

• We use a P2 finite element method with Dirichlet-to-Neumann maps.

• We set $k = 0.8\pi$ and $\ell = 1 \in (0; \pi/k)$.

▶ Reflection coefficient R and transmission coefficient T for $L \in (2; 10)$. Due to conservation of energy, R and T are inside the unit disk of \mathbb{C} .

• Curve $L \mapsto -\ln |R|$. Peaks correspond to non reflectivity.

• Curve $L \mapsto -\ln |T|$. Peaks correspond to complete reflectivity.

Non reflectivity

Total field v for L such that $\mathbf{R} = 0$.

Scattered field $v_{\rm s}$.

Non reflectivity

Scattered field $v_{\rm s}$.

Non reflectivity

• Total field v for L such that R = 0.

Scattered field $v_{\rm s}$.

Complete reflectivity

• Total field v for L such that T = 0.

Complete reflectivity

• Total field v for L such that T = 0.

Complete reflectivity

• Total field v for L such that T = 0.

Other non reflective geometry

▶ Scattered field $v_{\rm s}$

• We still have $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N - R^D}{2}$. and analysis for $L \mapsto R^N$ has been done previously.

Now 2 prop. modes exist in the vertical branch of ω_{∞} for (\mathscr{P}^D) .

• We still have $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N - R^D}{2}$. and analysis for $L \mapsto R^N$ has been done previously.

- Now 2 prop. modes exist in the vertical branch of ω_{∞} for (\mathscr{P}^D) .
 - As before, we can show, with $\alpha = \sqrt{k^2 (\pi/\ell)^2}$,

$$|R^D - R^D_{asy}(L)| \le C e^{-\beta L}$$
 with $R^D_{asy}(L) = S_{11} + \frac{S_{12} S_{21}}{e^{-2i\alpha L} - S_{22}}.$

• We still have $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N - R^D}{2}$. and analysis for $L \mapsto R^N$ has been done previously.

- Now 2 prop. modes exist in the vertical branch of ω_{∞} for (\mathscr{P}^D) .
- As before, we can show, with $\alpha = \sqrt{k^2 (\pi/\ell)^2}$,

$$|R^D - R^D_{asy}(L)| \le C e^{-\beta L}$$
 with $R^D_{asy}(L) = S_{11} + \frac{S_{12} S_{21}}{e^{-2i\alpha L} - S_{22}}.$

 $L \mapsto R^N_{asy}(L)$ and $L \mapsto R^D_{asy}(L)$ run period. on \mathscr{C} with different periods.

• We still have $R = \frac{R^N + R^D}{2}$ and $T = \frac{R^N - R^D}{2}$. and analysis for $L \mapsto R^N$ has been done previously.

- Now 2 prop. modes exist in the vertical branch of ω_{∞} for (\mathscr{P}^D) .
- As before, we can show, with $\alpha = \sqrt{k^2 (\pi/\ell)^2}$,

$$|R^D - R^D_{asy}(L)| \le C e^{-\beta L}$$
 with $R^D_{asy}(L) = S_{11} + \frac{S_{12} S_{21}}{e^{-2i\alpha L} - S_{22}}.$

 $L \mapsto R^N_{asy}(L)$ and $L \mapsto R^D_{asy}(L)$ run period. on \mathscr{C} with different periods.

 \star The curves $L\mapsto R(L),\,T(L)$ still pass through zero an infinite nb. of times.

* Behaviours of $L \mapsto R(L), T(L)$ can be much more complex than before...

$$k = m \alpha, \quad m = 2$$
 $(\alpha = \sqrt{k^2 - (\pi/\ell)^2}).$

$$k = m \alpha, \quad m = 3$$
 $(\alpha = \sqrt{k^2 - (\pi/\ell)^2}).$

$$k = m \alpha, \quad m = 4$$
 $(\alpha = \sqrt{k^2 - (\pi/\ell)^2}).$

$$k = m \alpha, \quad m = 5$$
 $(\alpha = \sqrt{k^2 - (\pi/\ell)^2}).$

Asympt. curves of $L \mapsto R(L)$, T(L) for $L \in (0; 100)$ and $\ell = 1.7$ $(k/\alpha \notin \mathbb{Q})$.

Numerical results for $\ell \in (\pi/k; 2\pi/k)$

► Non reflective geometry $(t \mapsto \Re e(v(x, y)e^{-i\omega t})).$

• Completely reflective geometry $(t \mapsto \Re e(v(x, y)e^{-i\omega t})).$

• We did $\ell \in (0; \pi/k), \ \ell \in (\pi/k; 2\pi/k)$. Now set $\ell = 2\pi/k$ in the geometry

• We did $\ell \in (0; \pi/k), \ \ell \in (\pi/k; 2\pi/k)$. Now set $\ell = 2\pi/k$ in the geometry

• We did $\ell \in (0; \pi/k), \ \ell \in (\pi/k; 2\pi/k)$. Now set $\ell = 2\pi/k$ in the geometry

 $\star \, u = w^+ + w^- = C \, \cos(kx)$ solves the Neum. pb. in ω_L

• We did $\ell \in (0; \pi/k), \ \ell \in (\pi/k; 2\pi/k)$. Now set $\ell = 2\pi/k$ in the geometry

 $\star u = w^+ + w^- = C \cos(kx)$ solves the Neum. pb. in $\omega_L \Rightarrow \mathbb{R}^N = 1, \forall L > 1$.

• We did $\ell \in (0; \pi/k), \ \ell \in (\pi/k; 2\pi/k)$. Now set $\ell = 2\pi/k$ in the geometry

 $\star u = w^+ + w^- = C \cos(kx)$ solves the Neum. pb. in $\omega_L \Rightarrow \mathbb{R}^N = 1, \forall L > 1.$ $\star L \mapsto \mathbb{R}^D(L)$ still runs on the unit circle and goes through −1.

• We did $\ell \in (0; \pi/k), \ \ell \in (\pi/k; 2\pi/k)$. Now set $\ell = 2\pi/k$ in the geometry

 $\star u = w^+ + w^- = C \cos(kx)$ solves the Neum. pb. in $\omega_L \Rightarrow \mathbb{R}^N = 1, \forall L > 1.$ $\star L \mapsto \mathbb{R}^D(L)$ still runs on the unit circle and goes through −1.

The special case $\ell = 2\pi/k$ - perfect invisibility

• Works also in the geometry below (L is the height of the central branch).

• Perfectly invisible defect $(t \mapsto \Re e(v(x, y)e^{-i\omega t}))$.

• Reference waveguide
$$(t \mapsto \Re e(v(x, y)e^{-i\omega t})).$$

• Set
$$\gamma = \sqrt{\pi^2 - k^2}$$
, $w_1^{\pm} = \frac{e^{\pm ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \pm ie^{\gamma x}}{\sqrt{2\gamma}}\cos(\pi y)$.

▶ The Neumann problem in ω_L admits the solutions

$$\begin{aligned} u_1 &= w_1^- + \mathfrak{s}_{11} \, w_1^+ + \mathfrak{s}_{12} \, w_2^+ + \tilde{u}_1, & \text{with } \tilde{u}_1 \text{ fastly expo. decaying} \\ u_2 &= w_2^- + \mathfrak{s}_{21} \, w_1^+ + \, \mathfrak{s}_{22} \, w_2^+ + \tilde{u}_2, & \text{with } \tilde{u}_2 \text{ fastly expo. decaying}. \end{aligned}$$

• Set
$$\gamma = \sqrt{\pi^2 - k^2}$$
, $w_1^{\pm} = \frac{e^{\pm ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \pm ie^{\gamma x}}{\sqrt{2\gamma}}\cos(\pi y)$.

• The Neumann problem in ω_L admits the solutions

 $\begin{aligned} u_1 &= w_1^- + \mathfrak{s}_{11} \, w_1^+ + \mathfrak{s}_{12} \, w_2^+ + \tilde{u}_1, & \text{with } \tilde{u}_1 \text{ fastly expo. decaying} \\ u_2 &= w_2^- + \mathfrak{s}_{21} \, w_1^+ + \, \mathfrak{s}_{22} \, w_2^+ + \tilde{u}_2, & \text{with } \tilde{u}_2 \text{ fastly expo. decaying.} \end{aligned}$

• The augmented scattering matrix
$$\mathbb{S} = \begin{pmatrix} \mathfrak{s}_{11} & \mathfrak{s}_{12} \\ \mathfrak{s}_{21} & \mathfrak{s}_{22} \end{pmatrix}$$
 is unitary.

• Set
$$\gamma = \sqrt{\pi^2 - k^2}$$
, $w_1^{\pm} = \frac{e^{\pm ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \pm ie^{\gamma x}}{\sqrt{2\gamma}} \cos(\pi y)$.

• The Neumann problem in ω_L admits the solutions

 $u_{1} = w_{1}^{-} + \mathfrak{s}_{11} w_{1}^{+} + \mathfrak{s}_{12} w_{2}^{+} + \tilde{u}_{1}, \qquad \text{with } \tilde{u}_{1} \text{ fastly expo. decaying} \\ u_{2} = w_{2}^{-} + \mathfrak{s}_{21} w_{1}^{+} + \mathfrak{s}_{22} w_{2}^{+} + \tilde{u}_{2}, \qquad \text{with } \tilde{u}_{2} \text{ fastly expo. decaying.}$

• The augmented scattering matrix
$$\mathbb{S} = \begin{pmatrix} \mathfrak{s}_{11} & \mathfrak{s}_{12} \\ \mathfrak{s}_{21} & \mathfrak{s}_{22} \end{pmatrix}$$
 is unitary.

LEMMA: If $\mathfrak{s}_{22} = -1$, the Neumann problems in ω_L admits trapped modes. *Proof:* $\mathfrak{s}_{22} = -1 \Rightarrow \mathfrak{s}_{21} = 0$ (S is unitary) and $u_2 \in \mathrm{H}^1(\omega_L)$ is a trapped mode.

• Set
$$\gamma = \sqrt{\pi^2 - k^2}$$
, $w_1^{\pm} = \frac{e^{\pm ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \pm ie^{\gamma x}}{\sqrt{2\gamma}}\cos(\pi y)$.

• The Neumann problem in ω_L admits the solutions

 $\begin{aligned} u_1 &= w_1^- + \mathfrak{s}_{11} \, w_1^+ + \mathfrak{s}_{12} \, w_2^+ + \tilde{u}_1, & \text{with } \tilde{u}_1 \text{ fastly expo. decaying} \\ u_2 &= w_2^- + \mathfrak{s}_{21} \, w_1^+ + \mathfrak{s}_{22} \, w_2^+ + \tilde{u}_2, & \text{with } \tilde{u}_2 \text{ fastly expo. decaying.} \end{aligned}$

• The augmented scattering matrix
$$\mathbb{S} = \begin{pmatrix} \mathfrak{s}_{11} & \mathfrak{s}_{12} \\ \mathfrak{s}_{21} & \mathfrak{s}_{22} \end{pmatrix}$$
 is unitary.

LEMMA: If $\mathfrak{s}_{22} = -1$, the Neumann problems in ω_L admits trapped modes. *Proof:* $\mathfrak{s}_{22} = -1 \Rightarrow \mathfrak{s}_{21} = 0$ (S is unitary) and $u_2 \in \mathrm{H}^1(\omega_L)$ is a trapped mode.

 $\star u = w_1^- + w_1^+$ solves the Neum. pb. in ω_L as in the previous slide

• Set
$$\gamma = \sqrt{\pi^2 - k^2}$$
, $w_1^{\pm} = \frac{e^{\pm ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \pm ie^{\gamma x}}{\sqrt{2\gamma}}\cos(\pi y)$.

• The Neumann problem in ω_L admits the solutions

 $\begin{aligned} u_1 &= w_1^- + \mathfrak{s}_{11} \, w_1^+ + \mathfrak{s}_{12} \, w_2^+ + \tilde{u}_1, & \text{with } \tilde{u}_1 \text{ fastly expo. decaying} \\ u_2 &= w_2^- + \mathfrak{s}_{21} \, w_1^+ + \mathfrak{s}_{22} \, w_2^+ + \tilde{u}_2, & \text{with } \tilde{u}_2 \text{ fastly expo. decaying.} \end{aligned}$

• The augmented scattering matrix
$$\mathbb{S} = \begin{pmatrix} \mathfrak{s}_{11} & \mathfrak{s}_{12} \\ \mathfrak{s}_{21} & \mathfrak{s}_{22} \end{pmatrix}$$
 is unitary.

LEMMA: If $\mathfrak{s}_{22} = -1$, the Neumann problems in ω_L admits trapped modes. *Proof:* $\mathfrak{s}_{22} = -1 \Rightarrow \mathfrak{s}_{21} = 0$ (S is unitary) and $u_2 \in \mathrm{H}^1(\omega_L)$ is a trapped mode.

 $\begin{array}{l} \star \; u = w_1^- + w_1^+ \; \text{solves the Neum. pb. in } \omega_L \; \text{as in the previous slide} \\ \\ \Rightarrow \; \mathfrak{s}_{11} = 1 \qquad \Rightarrow \; |\mathfrak{s}_{22}| = 1, \qquad \forall L > 1. \end{array}$

• Set
$$\gamma = \sqrt{\pi^2 - k^2}$$
, $w_1^{\pm} = \frac{e^{\pm ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \pm ie^{\gamma x}}{\sqrt{2\gamma}} \cos(\pi y)$.

• The Neumann problem in ω_L admits the solutions

 $\begin{aligned} & u_1 = w_1^- + \mathfrak{s}_{11} \, w_1^+ + \mathfrak{s}_{12} \, w_2^+ + \tilde{u}_1, & \text{with } \tilde{u}_1 \text{ fastly expo. decaying} \\ & u_2 = w_2^- + \mathfrak{s}_{21} \, w_1^+ + \mathfrak{s}_{22} \, w_2^+ + \tilde{u}_2, & \text{with } \tilde{u}_2 \text{ fastly expo. decaying.} \end{aligned}$

• The augmented scattering matrix
$$\mathbb{S} = \begin{pmatrix} \mathfrak{s}_{11} & \mathfrak{s}_{12} \\ \mathfrak{s}_{21} & \mathfrak{s}_{22} \end{pmatrix}$$
 is unitary.

LEMMA: If $\mathfrak{s}_{22} = -1$, the Neumann problems in ω_L admits trapped modes. *Proof:* $\mathfrak{s}_{22} = -1 \Rightarrow \mathfrak{s}_{21} = 0$ (S is unitary) and $u_2 \in \mathrm{H}^1(\omega_L)$ is a trapped mode.

$$\star u = w_1^- + w_1^+$$
solves the Neum. pb. in $ω_L$ as in the previous slide

$$\Rightarrow \mathfrak{s}_{11} = 1 \qquad \Rightarrow |\mathfrak{s}_{22}| = 1, \qquad \forall L > 1.$$

$$\star$$
As previously, $L \mapsto \mathfrak{s}_{22}(L)$ runs on the unit circle and goes through −1.

• Set
$$\gamma = \sqrt{\pi^2 - k^2}$$
, $w_1^{\pm} = \frac{e^{\pm ikx}}{\sqrt{2k}}$ and $w_2^{\pm} = \frac{e^{-\gamma x} \pm ie^{\gamma x}}{\sqrt{2\gamma}} \cos(\pi y)$.

• The Neumann problem in ω_L admits the solutions

 $\begin{aligned} u_1 &= w_1^- + \mathfrak{s}_{11} \, w_1^+ + \mathfrak{s}_{12} \, w_2^+ + \tilde{u}_1, & \text{with } \tilde{u}_1 \text{ fastly expo. decaying} \\ u_2 &= w_2^- + \mathfrak{s}_{21} \, w_1^+ + \mathfrak{s}_{22} \, w_2^+ + \tilde{u}_2, & \text{with } \tilde{u}_2 \text{ fastly expo. decaying.} \end{aligned}$

• The augmented scattering matrix
$$\mathbb{S} = \begin{pmatrix} \mathfrak{s}_{11} & \mathfrak{s}_{12} \\ \mathfrak{s}_{21} & \mathfrak{s}_{22} \end{pmatrix}$$
 is unitary.

LEMMA: If $\mathfrak{s}_{22} = -1$, the Neumann problems in ω_L admits trapped modes. *Proof:* $\mathfrak{s}_{22} = -1 \Rightarrow \mathfrak{s}_{21} = 0$ (S is unitary) and $u_2 \in \mathrm{H}^1(\omega_L)$ is a trapped mode.

$$\star u = w_1^- + w_1^+ \text{ solves the Neum. pb. in } \omega_L \text{ as in the previous slide} \Rightarrow \mathfrak{s}_{11} = 1 \qquad \Rightarrow |\mathfrak{s}_{22}| = 1, \qquad \forall L > 1.$$

* As previously, $L \mapsto \mathfrak{s}_{22}(L)$ runs on the unit circle and goes through -1.

There is a sequence (L_n) such that trapped modes exist in ω_L .

26 / 29

Symmetry argument w.r.t. $(Oy) \Rightarrow$ existence of trapped modes in Ω_L . It works also in the geometry below (*L* is the height of the central branch).

There is a sequence (L_n) such that trapped modes exist in

1 Main analysis

- 2 Numerical results
- **3** Variants and extensions

What we did

We explained how to construct waveguides such that R = 0, T = 0(the method works also for the Dirichlet problem) or T = 1.

• We showed how to construct waveguides supporting trapped modes.

Future work

- 1) When the symmetry is broken, we can still do things...
- 2) Can we work at higher frequencies (several propagative modes)?
- 3) Can we deal with multi-channel waveguides?
- 4) For a given perturbation, can we study the frequencies such that invisibility holds? \Rightarrow See A.-S. Bonnet-Ben Dhia's talk on Wed..

Thank you for your attention!!!