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Introduction 1/2

» We consider the propagation of waves in a 2D thin periodic quantum
waveguide I1¢.

» Start with some domain © C R? which coincides with the strip
R x (—1/2;1/2) outside of a bounded region (the resonator).
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» Shrink by a small factor € > 0 to create the unit cell
w®i={z=(2,y) € R?*|z/e € Qand |z| < 1/2}
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Introduction 1/2

» We consider the propagation of waves in a 2D thin periodic quantum
waveguide I1¢.

» Start with some domain © C R? which coincides with the strip
R x (—1/2;1/2) outside of a bounded region (the resonator).
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» Shrink © by a small factor € > 0 to create the unit cell
W= {z = (2,y) € R?|z/e € Qand |z| < 1/2}
>  Set Owq = {£1/2} x (—¢/2;¢/2) and define

II° := {z e R?| (z — m,y) € w® UOwS, m € Z}.
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Introduction 2/2

» In II* we consider the spectral problem for the Dirichlet Laplacian

—Au® = Xwuf inlIl°

(@E
() ut = 0 on OII®.

» Denote by A the unbounded operator of L2(II¥) such that
D(A%) := {v € Hy(II°) | Av € L*(TI°)} and A% = —Av.

» A° is positive and selfadjoint. Moreover, due to the periodicity of the
geometry, A has only continuous spectrum.
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Introduction 2/2

» In II* we consider the spectral problem for the Dirichlet Laplacian

—Au® = Xwuf inlIl°

(@E
() ut = 0 on OII®.

» Denote by A the unbounded operator of L2(II¥) such that
D(A%) := {v € Hy(II°) | Av € L*(TI°)} and A% = —Av.

» A° is positive and selfadjoint. Moreover, due to the periodicity of the
geometry, A has only continuous spectrum.

Goal of the talk

We wish to study the lower part of o(A¢), the spectrum of A%, as e — 0.
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Outline of the talk

@ Preparatory work

Q Asymptotic analysis

e Breathing of spectral bands
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e Preparatory work
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Reduction to a problem in the unit cell 1/2

» The Floquet Bloch transform
1 . _
u®(2) = US(z,m) = W%e Muf(z+j,y), neER,

converts (£2¢) into a spectral problem set in w® with quasi-periodicity
boundary conditions at w3

—AU%(z,m) = A(n)U(z,m) zews
P Us(z,m) = O z € Ow® N OII°
(o) e Cijaym = U2y g€ (—e/2e2)
0:U(=1/2,y,m) = €70, U(+1/2,y,m) y€ (—¢/2;¢/2).

6 /26



Reduction to a problem in the unit cell

» The Floquet Bloch transform
1 . ,
u®(2) = US(z,m) = W%e Muf(z+j,y), neER,

converts (£2¢) into a spectral problem set in w® with quasi-periodicity
boundary conditions at w3

—AU(z,m) = A (n)U(z,m) zEew
»° U(z,m) = 0 z € 0wt N OlI¢
O e Ty = @0 (+1/2,9m) g€ (—e/2ie/2)
0:U(=1/2,y,m) = €70, U(+1/2,y,m) y€ (—¢/2;¢/2).

1/2

6 /26



Reduction to a problem in the unit cell 1/2

» The Floquet Bloch transform
1 . _
u®(2) = US(z,m) = W%e Muf(z+j,y), neER,

converts (£2¢) into a spectral problem set in w® with quasi-periodicity
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Reduction to a problem in the unit cell 1/2
» The Floquet Bloch transform

1 . _
u(2) = U (z,m) = WZ eut(z +j,y), neR,
JEL

converts (£2¢) into a spectral problem set in w® with quasi-periodicity
boundary conditions at w3

—AU(z,m) = A (n)U(z,m) zEew
P Us(z,n) = O z € Jw® N OII°
T e ) = @07 (11/2.0m) e (-e/ze/2)
0.U(=1/2,y,m) = €M U (+1/2,4,m) vy € (—¢/2;¢/2).

» The map n — 1+ 27 leaves invariant the quasiperiodicity conditions.
— it suffices to study (£¢(n)) for n € [0;27) .

» For n € [0;27), the spectrum of (27¢(n)) is discrete, made of the
unbounded sequence of real eigenvalues

‘0<A§()<AE() <A5()_....‘
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Reduction to a problem in the unit cell 2/2

» The functions 1iaor
1160 P _.//"'\,._
13 - '-.._...‘
n— Ap(’r}) 1140 L ,._.*".'-\
1120 + ~-\"_“"%
are continuous so that the 1100

e
spectral bands 080 e
1060 /./“"'ﬂ

To= (A, mefo2m) | | T

are compact segments in [0; +00). b " : : y s 6

» Finally, we have | 0(A%) = U Te.
peN=:={1,2,...}
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Reduction to a problem in the unit cell 2/2

» The functions
n = AL (n)

are continuous so that the
spectral bands
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T = {A5(n), n € [0;2m)}
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are compact segments in [0; +00).

1000

980
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» Finally, we have | 0(A%) =

U

peN*:={1

2,0}

g To study the behaviour of o0(A®) as e — 0, we have to consider
the asymptotics of A7 (n) as e — 0.
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Asymptotic analysis - general picture

» To compute the asymptotics of the almost 1D problem (£2¢(n)), we use
techniques of matched asymptotic expansions (see Post 05, Griser 08).

» Roughly speaking, at the limit ¢ — 0, we obtain a 1D geometry with a
junction point at O

| o Te ) Q
! - ~1/2 il 1/2
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Asymptotic analysis - general picture

» To compute the asymptotics of the almost 1D problem (£2¢(n)), we use
techniques of matched asymptotic expansions (see Post 05, Griser 08).

» Roughly speaking, at the limit ¢ — 0, we obtain a 1D geometry with a
junction point at O
!
I W' Te ] — ; Q ,
1 e—0 71/2 1/2

» Classically, we consider different expansions far from O and in a
neighbourhood of O that we match in some intermediate regions.
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Near field problem

» In the process, the features of the Dirichlet Laplacian in €2, the near
field geometry obtained by zooming at O, play an important role.

I

» Denote by A the unbounded operator of L2(£2) such that

D(A®) :={v € HY(Q) | Av € L2(Q)} and A% = —Aw.
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Near field problem

» In the process, the features of the Dirichlet Laplacian in €2, the near
field geometry obtained by zooming at O, play an important role.

I

» Denote by A the unbounded operator of L2(£2) such that

D(A®) :={v € HY(Q) | Av € L2(Q)} and A% = —Aw.

Spectrum of A%:

} % * N
o 251 KN, A =7
- The continuous spectrum occupies the ray [7%; +00).

- Depending on €, A may have or not discrete spectrum. Assume that A%
has exactly N, € N eigenvalues 0 < py < pig < -+ < puy, < 7.
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Near field problem at the threshold

» In the sequel, the properties of the problem

AW+ m2W = 0 inQ

(Z1) W = 0 onof

play a key role.
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» In the sequel, the properties of the problem

AW+ m2W = 0 inQ

(Z1) W = 0 onof

play a key role.

> For (2;): waves wo(z) = p(y), w1(2) = |z|o(y) with ¢(y) = /2 cos(ry).

DEFINITION: Denote by X; the space of almost standing waves of (%),
i.e. the space of bounded solutions of (£?;) which do not decay at infinity.

ProOPOSITION: We have dim X; = dim(ker (S + Id)) where S € C?*? is
the so-called threshold scattering matrix.

— Only three possibilities: X3 = {0}, dimX; =1 or dimX;=2.

» S is a unitary matrix = its 2 eigenvalues lie on the unit circle. In
general they are different from —1.

Ig For most €, we have X; = {0}.
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e Asymptotic analysis
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First main results

For p € N* let T = [a5_; a5, |, with a_ < af,, be the spectral band as
p , P p—> dp+ P P+

introduced before. To simplify, assume absence of trapped modes for ().

THEOREM: There are constants c,— < cpy, C, > 0, §, > 0 such that as
€ — 0 we have

Forp=1,...,N,:
<€_2,up + 5_26_ \ 71'2_Mp/€Cp:|:) ‘ < Cp e_(1+617)\/ WQ_NP/E;

a;i—
For p= Ng +m, m € N*:

i) if X; = {0},

asy — (6’27r2 +m2r? + ecpiﬂ < Cpelton;

i7) if dim Xy =1,

iid) it dim X; = 2,

asy — (5_2772 + (m—1)%7% + Ecpi)‘ < Cpeltds,
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Comments

@ Due to the Dirichlet condition, all bands move to +oo as O(e72).
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@ Due to the Dirichlet condition, all bands move to +oo as O(e72).
9 The first N, spectral bands become extremely short, in O(e‘c/ ).

(3) Concerning the next ones, the behaviour depends on dim X;:

When dim X # 1, the T are of length O(g). Moreover, between T}, and
Y51, there is a gap whose length tends to (2m + 1)72.

Generically, the propagation of waves in II° is hampered and
IE occurs only for very narrow intervals of frequencies.

When dim X; = 1, the situation is very different because asymptotically
the 19, are of length ¢, — ¢,—, with in general ¢, > ¢p—.

For particular €2, waves can propagate in II¢ for much larger
E intervals of frequencies than above.
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Elements of proof — first N, spectral bands

For 1 <p < N,, let u*(-,n) be an eigenfunction associated with AZ(n).

» Ase — 0, consider the approximation
A =eup+..., u®(z,n) =v(z/e) + ...

where p,, € (0; 72), v is an eigenpair of the discrete spectrum of A%,
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Elements of proof — first N, spectral bands

For 1 <p < N,, let u*(-,n) be an eigenfunction associated with AZ(n).

» Ase — 0, consider the approximation
A =eup+..., u®(z,n) =v(z/e) + ...

where y, € (0;7?), v is an eigenpair of the discrete spectrum of A%

\\9’/ Inserting (e=2u,,v(+/€)) in (2¢(n)) only leaves a small discrepancy
& on the faces dws because v is exponentially decaying at infinity.

» This model is independent of . We can refine it by constructing
corrector terms.
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Elements of proof — higher spectral bands

For p > N, let u®(-,n) be an eigenfunction associated with A7 (7).

— To simplify, we remove the subscript ;, and the dependence on 7.

» As e — 0, consider the expansions

A =e2?n2fv4..., u®(z) = vE(2) (y/e) +... for £ > 0.
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A= fv4..., uf(z) = ¥ () p(y/e) +... for £ > 0.

Inserting it in (£2¢(n)), we obtain

Pyt 4yt = 0 in (0;1/2)
Gy~ +vym = 0 in(-1/20)

(Z1p) 7y (=1/2) = eMyt(+1/2)
2y (=1/2) = €Myt (+1/2).

6‘* We must complete this system with conditions at O.)

We find them by matching this far field expansion with some inner field
expansion of u®
u (z) =Wi(z/e)+....

We obtain that W must satisfy ().
15 / 26



Elements of proof — higher spectral bands

Case X; = {0}.
We take W = 0 and impose v*(0) = 0, i.e. Dirichlet conditions at O in
(P1p). Solving (Z1p), we get

A =272 + (mm)? + ...
uf(2) = £eT/ 2 sin(mnz) p(y/e) +... for £ > 0.
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Elements of proof — higher spectral bands

Case X; = {0}.
We take W = 0 and impose v*(0) = 0, i.e. Dirichlet conditions at O in
(Z1p). Solving (P1p), we get

A =272 + (mm)? + ...
uf(2) = £eT/ 2 sin(mnz) p(y/e) +... for £ > 0.

Case dim X = 1.

We take W € X, and impose

cos 09,7 (0) = sinf9,y (0)
sinfy*(0) = cosf~y(0),

i.e. generalized Kirchoff transmission conditions at O. Here (cosf,sin )"
is an eigenvector of S for the eig. —1. Solving (£?1p), we get

A= 4 v(n)+...

where v(n) satisfies sin(26) cosn = cos v/v(7)
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Elements of proof — higher spectral bands

Case dim X = 2.

We impose 9,7%(0) = 0, i.e. Neumann conditions at O in (£;p). Solving
(P1p), we get

A =272 + (mm)? + ...
uf(2) = £eT/2 cos(mnx) p(y/e) + ... for £z > 0.
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Additional comments

» Can we find examples of Q such that dim X; = 1?7 Yes!

— The reference strip R x (—1/2;1/2). Indeed in this case v(z,y) = cos(ry)
belongs to X;. We directly compute o(A%) = [7?/2; +00).
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» Can we find examples of Q such that dim X; = 1?7 Yes!

— The reference strip R x (—1/2;1/2). Indeed in this case v(z,y) = cos(ry)
belongs to X;. We directly compute o(A%) = [7?/2; +00).

— In geometries as below which are symmetric wrt the vertical axis, we can
show that as H — +00, one eigenvalue of S passes through —1 .

Q I

» Can we find © such that dim X; = 27 Open question!

» For the Neumann Laplacian , the analysis is very similar. The near field
problem at the threshold simply writes
AW = 0 inQ for all @, dimX; =1 with 6 =7/4
=
W = 0 ondf2 — Kirchoff trans. condi. at O for the 1D model
17 / 26



e Breathing of spectral bands
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Setting

» We wish to describe the change of 0(A®) when perturbing the inner field
geometry around a particular 2 = Q, where dim X; = 1.

14 eph(z) _

Locally 9Q27¢ coincides with the graph of  — 1 + eph(z),
where h € 65°(R) is a given profile function and p a given parameter.
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Setting

» We wish to describe the change of o(A®) when perturbing the inner field
geometry around a particular 2 = Q, where dim X; = 1.

14 eph(z) _

Locally 9Q27¢ coincides with the graph of  — 1 + eph(z),
where h € 65°(R) is a given profile function and p a given parameter.

> We denote T} := {A)“(n), n € [0;27)} the spectral bands of the
Dirichlet Laplacian in I17, the periodic domain constructed from Q7.

We emphasize that we make a periodic perturbation of II¢.
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Second main results

Fix p € R. For m € N* and p = N, +m, let Y6 = [a}" ;a]" ], with

apy® < al?, be the spectral band as defined above.

THEOREM: There are some constants ¢, < ¢, Cpy > 0, 6, > 0 such
that as ¢ = 0 we have

abs — (6_271‘2 + cfni>‘ < Cp elom,

Moreover, we have

T2
lim ¢”, =m?x? cf R, 2 lim ¢? =m2r?
p—>—00 mE ’ 1+ p—r4o00 4 P p—+oo (m+1)+
with
P P _ P P _ —ép
cl . —c = 0O(1 i, —c = Ofe .
m—+ m— P—Aeeg ( /p)7 1+ 1— p—t00 ( )

Here 7' > 0 is a constant which depends on the profile function h.
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Spectral bands of the model

» Spectral bands of the model with respect to p (after a shift by —m2/s2).
50 -
a0
30+

20

-20
30k

40 b

-5

0

-100
=P
=0
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Spectral bands of the model

» Spectral bands of the model with respect to p (after a shift by —m2/s2).

50 -

40

30

20

-20

30k

40 b

-5

0 L L L .
-100 -50 0 50 100 150 200

=0

- For p running from —oco to 400, i.e. when inflating the near field geom. around

Q., the spectral bands expand and shrink = breathing phenomenon of (A®).

- In the process, a band dives below 7r2/527 stops breathing and becomes ex-

tremely short as p

— +00.
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New 1D model with p dependence

» We obtain the expansions
A =e2?m fv4..., ut(z) = yE(z) p(y/e) +... for £ > 0.

where 7+ satisfy

P2yt +vyt = 0 in(0;1/2)

2y~ +vy™ = 0 in(-1/2;0)
e e R e

8y~ (=1/2) = €Myt (+1/2).

together with the new transmission conditions

sin 67 (0) — cos @y~ (0) 0

T
cos 0 9,7 (0) — sin 9,y (0) —7p (cos~T(0) +sinf~y(0)).
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New 1D model with p dependence
» We obtain the expansions
A =e2?m fv4..., ut(z) = yE(z) p(y/e) +... for £ > 0.

where 7+ satisfy

P2yt +vyt = 0 in(0;1/2)

2y~ +vy™ = 0 in(-1/2;0)
e e R e

8y~ (=1/2) = €Myt (+1/2).

together with the new transmission conditions

sin 67 (0) — cos @y~ (0) 0

T
cos 0 9,7 (0) — sin 9,y (0) —7p (cos~T(0) +sinf~y(0)).

» In particular when p — 400, as expected we get 4= (0) = 0 (Dirichlet).
22 /26



Numerics on the exact problem

» We start from the inner field geometry

1.6

» We use Freefem++ to compute the spectrum of (£¢(n)) in the
corresponding unit cell.
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Numerics on the exact problem

H=28

4500

4400 -

4300 [

4200

==$‘

4100

4000 g

3900 -

3800 -

3700 1 1 1 1 1 1
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o Preparatory work

9 Asymptotic analysis

e Breathing of spectral bands
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Conclusion

What we did

& We studied the asymptotics of the spectrum of the Dirichlet
Laplacian in thin periodic waveguides.
- All bands go to +o0o as O(e?);
- The first bands are extremely short;
- The length of the next bands depends on the features of the inner
field geometry, in particular of dim Xj.

& We showed a breathing phenomenon of the spectrum when inflating
the inner field geometry around a situation where dim X; = 1.
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Conclusion

What we did

& We studied the asymptotics of the spectrum of the Dirichlet
Laplacian in thin periodic waveguides.
- All bands go to +o0o as O(e?);
- The first bands are extremely short;
- The length of the next bands depends on the features of the inner
field geometry, in particular of dim Xj.

& We showed a breathing phenomenon of the spectrum when inflating
the inner field geometry around a situation where dim X; = 1.

Possible extensions and open questions

e
o
1) We could work similarly in other periodic waveguides. 15212272227
2) Can one find examples of Q2 such that dim X; = 27 S

3) Can one work with other models, i.e. AAu — k*u = 0+Dirichlet BC?
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Thank you!

@ P. Cacciapuoti, P. Exner, Nontrivial edge coupling from a Dirichlet network
squeezing: the case of a bent waveguide, J. Phys. A, Math. Theor., vol. 40,
26:511-523, 2007.

L. Chesnel, S.A. Nazarov, On the breathing of spectral bands in periodic
quantum waveguides with inflating resonators, JMPA, to appear, 2022.

D. Grieser, Spectra of graph neighborhoods and scattering, Proc. Lond. Math.
Soc., vol. 97, 3:718-752, 2008.

@ S.A. Nazarov, Transmission conditions in one-dimensional model of a
rectangular lattice of thin quantum waveguides, J. Math. Sci., vol. 219,
6:994-1015, 2016.
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