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A 1D toy problem
I Fano resonance phenomenon appears in many fields in physics. First, we
illustrate it for a simple 1D problem.
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Ω2

Ω3O 1

1
Ω = Ω1 ∪ Ω2 ∪ Ω3

I Consider the scattering problem

ϕ′′+k2ϕ = 0 in Ω,
ϕ1 = ϕ2 = ϕ3 at O
ϕ′1 = ϕ′2 + ϕ′3 at O
ϕ′2 = ϕ′3 = 0 on ∂Ω

with ϕ1 = eikx +Re−ikx︸ ︷︷ ︸
radiation condition

, R ∈ C.

I Well-posedness ⇔ invertibility of a 3× 3 system MΦ = F .

I Uniqueness ⇔ k 6∈ (2N + 1)π/2. Existence for all k ∈ R (F ∈ kerM⊥)

R =
cos(k) + 2i sin(k)
cos(k)− 2i sin(k) .
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A 1D toy problem
I We perturb the geometry: Ωε = Ω1 ∪ Ω2 ∪ Ωε3 with Ωε3 = (0; 1 + ε).

Well-posedness in Ωε ⇔ invertibility of a 3× 3 system MεΦε = F .

Rε =
cos(k) cos(k(1 + ε)) + i sin(k(2 + ε))
cos(k) cos(k(1 + ε))− i sin(k(2 + ε)).

I Since |Rε| = 1 (conservation of energy), ∃θε ∈ [0; 2π[ s.t. Rε = eiθ
ε.
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Figure: k 7→ θε(k) for several ε (non uniqueness for ε = 0, k = π/2).
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A 1D toy problem
I Set R(ε, k) = eiθ(ε,k) (functions of two variables).

(ε, k) 7→ θ(ε, k)

ε

k

π/2

ε0

θ(·, ·) and R(·, ·) are not continuous at (0, π/2))!

Goals of the talk

1) Prove a similar Fano resonance phenomenon for a 2D waveguide.
2) Use it to provide examples of non reflection and complete reflection.

→ Similar results in Shipman et Tu, SIAM Appl. Math, 2012. We use a different
approach and consider a perturbation of the geometry.
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Outline of the talk

1 The Fano resonance in the 2D waveguide

2 Non reflection and complete reflection

3 Numerical experiments
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Setting
I Scattering in time-harmonic regime in a symmetric (to simplify) acoustic
waveguide Ω coinciding with {(x, y) ∈ R× (0; 1)} outside a compact region.

Ω

(∗) ∆v + λv = 0 in Ω,
∂nv = 0 on ∂Ω.

I We assume that trapped modes exist for λ = λ0 ∈ (0;π2):
utr ∈ H1(Ω) \ {0} satisfies (∗) for λ = λ0 (non uniqueness).

I Due to symmetry, utr is also a trapped mode for the half waveguide pb.

ω

∆v + λv = 0 in ω,
∂nv = 0 on ∂ω ∩ ∂Ω,

ABC(v) = v/∂nv = 0 on ∂ω \ ∂Ω.
(depends on the sym.)
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Scattering problem in the half waveguide

ω

vi

(P)

Find v s.t. v − vi is outgoing and
∆v + λv = 0 in ω,

∂nv = 0 on ∂ω ∩ ∂Ω,
ABC(v) = 0 on ∂ω \ ∂Ω.

I For this problem with k :=
√
λ ∈ (0;π), the modes are

Propagating
Evanescent

w±0 (x, y) = e±ikx/
√

2k,
w±n (x, y) = e∓βnx cos(nπy)/

√
βn, βn =

√
n2π2 − λ, n ≥ 1.

I For vi = w−
0 , for all

√
λ ∈ (0;π), (P) admits a solution

v = w−0 +Rw+
0 + ṽ,

where R ∈ C and ṽ is expo. decaying (uniqueness ⇔ abs. of trapped modes).

I R is uniquely defined (even for λ = λ0) and |R| = 1 (cons. of energy).
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Small perturbation of the geometry
I We perturb slightly (ε ≥ 0 is small) the geometry

ω ωε

1 + εH(x)

Locally ∂ωε coincides with the graph of x 7→ 1 + εH(x),
where H ∈ C∞0 (R) is a given profile function.

I For a given H, the scattering/reflection coefficient R is a function of ε, λ.

GOAL
We wish to study the behaviour of (ε, λ) 7→ R(ε, λ) in a
neighbourhood of (0, λ0) where trapped modes exist.

→ We will prove that R is not continuous at (0, λ0) working with the
augmented scattering matrix which is continuous at (0, λ0).
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The augmented scattering matrix

I We assume that λ0 is a simple eigenvalue for (∗) and that
utr = Ke−β1x cos(πy) + ũtr,

where K 6= 0, ũtr has fast decay.

Comments:

- If K = 0, adapt the definition of the augmented scattering matrix.
- This object has been introduced in Nazarov, Plamenevsky, 1994.

I Set w±0 =
e∓ikx
√

2k
and W±1 =

w−1 ∓ iw
+
1√

2
=
eβ1x ∓ ie−β1x

√
2β1

cos(πy) .

I The problem
∆v + λv = 0 in ωε

∂nv = 0 on ∂ωε ∩ ∂Ωε
ABC(v) = 0 on ∂ωε \ ∂Ωε

admits the solutions

u0 = w−0 + s00 w
+
0 + s01 W

+
1 + ũ0, with ũ0 fastly expo. decaying

u1 = W−1 + s10 w
+
0 + s11 W

+
1 + ũ1, with ũ1 fastly expo. decaying.

With such radiation conditions, uniqueness holds for λ = λ0.

I The augmented scattering matrix S =
(

s00 s01
s10 s11

)
is unitary.

Lemma: If s11 = −1 , the above problem admits trapped modes.
Proof: s11 = −1⇒ s10 = 0 (S is unitary) and u1 ∈ H1(ω) is a trapped mode.

I R and S are related by the formula (valid also when s11 = −1 by cont.):

R = s00 − s01(1 + s11)−1s10.

10 / 24
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The augmented scattering matrix

I Set w±0 =
e∓ikx
√

2k
and W±1 =

w−1 ∓ iw
+
1√

2
=
eβ1x ∓ ie−β1x

√
2β1

cos(πy) .

I The problem
∆v + λv = 0 in ωε

∂nv = 0 on ∂ωε ∩ ∂Ωε
ABC(v) = 0 on ∂ωε \ ∂Ωε

admits the solutions

u0 = w−0 + s00 w
+
0 + s01 W

+
1 + ũ0, with ũ0 fastly expo. decaying

u1 = W−1 + s10 w
+
0 + s11 W

+
1 + ũ1, with ũ1 fastly expo. decaying.

With such radiation conditions, uniqueness holds for λ = λ0.

I The augmented scattering matrix S =
(

s00 s01
s10 s11

)
is unitary.

Lemma: If s11 = −1 , the above problem admits trapped modes.
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Asymptotic analysis for Sε

I For λ′ ∈ R, set ( both the geometry and the frequency are changing )

Rε = R(ε, λ0 + ελ′) and Sε =
(

sε00 sε01
sε10 sε11

)
= S(ε, λ0 + ελ′).

Proposition: There is ε0 > 0 such that for all ε ∈ (0; ε0],

|sε00 −R| ≤ C ε, |sε10 − εs′10| ≤ C ε2, |sε11 − (−1 + εs′11 + ε2s′′11)| ≤ C ε3,

where s′11, s′′11, s′10 ∈ C depending on H, λ′ are explicit.

Ingredients of the proof:

- Weighted Sobolev spaces with detached asymptotics.
- Uniqueness for the problem with non standard radiation conditions.
- Rectification of the boundary with “almost identical diffeomorphisms”.
- Theory of perturbations for linear operators (see Kato’s book).
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The Fano resonance
I We insert the expansions
sε00 = R+O(ε), sε10 = εs′10 +O(ε2), sε11 = −1 + εs′11 + ε2s′′11 +O(ε3)

in the key formula Rε = sε00 −
sε01s

ε
10

1 + sε11
.

♣ Case s′11 6= 0⇔ λ′ 6= λ′p . We obtain

Rε = R− ε
s′01s

′
10

s′11
+O(ε2) and so lim

ε→0
R(ε, λ0 + ελ′) = R.

♣ Case s′11 = 0 and <e s′′11 6= 0. More generally, take λ′ = λ′p + εµ . Then

Rε = R+
s′01s

′
10

iαµ− s′′11
+O(ε), with α ∈ R.

We deduce lim
ε→0

R(ε, λ0 + ελ′p + ε2µ) = R+
s′01s

′
10

iαµ− s′′11
.
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Comments

Proposition:
lim
ε→0

R(ε, λ0 + ελ′) = R, for λ′ 6= λ′p

lim
ε→0

R(ε, λ0 + ελ′p + ε2µ) = R+
s′01s

′
10

iαµ− s′′11
, µ ∈ R.

→ When µ ∈ R, the quantity R+
s′01s

′
10

iαµ− s′′11
runs on the whole unit circle.

→ We find back the 1D picture, R(·, ·) is not continuous at (0, λ0) .
Phase of R(·, ·)

ε

λ

λ0

ε0

→ For a small given ε0, the map λ 7→ R(ε0, λ) exhibits a quick change at
λ0 + ε0λ′p. If s′′11 = 0 and s′′′11 6= 0, the change is even quicker...
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1 The Fano resonance in the 2D waveguide

2 Non reflection and complete reflection

3 Numerical experiments
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Relations for the scattering coefficients
I We come back to the problem in the total waveguide Ω

Ω
vi

(∗) ∆v + λv = 0 in Ω,
∂nv = 0 on ∂Ω.

I (∗) admits the solution

v =
e−ikx +R e+ikx + ṽ, x > 0 (reflection)

T e−ikx + ṽ, x < 0 (transmission)

with R, T ∈ C and ṽ ∈ H1(Ω). We have |R|2 + |T |2 = 1.

I Introduce the two half-waveguide problems

ω

∆u+ λu = 0 in ω
∂nu = 0 on ∂ω

∆U + λU = 0 in ω
∂nU = 0 on ∂ω \ ∂Ω
U = 0 on ∂ω ∩ ∂Ω.
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Relations for the scattering coefficients
I Half-waveguide problems admit the solutions

u = e−ikx +RN e
ikx + ũ, with ũ ∈ H1(ω)

U = e−ikx +RD e
ikx + Ũ , with Ũ ∈ H1(ω).

I Due to conservation of energy, one has
|RN | = |RD| = 1.

ω
vi

RDRN
RD

RN

I Using that v =
u + U

2 in ω, v(x, y) =
u(−x, y)− U(−x, y)

2 in Ω \ ω,

we deduce that R =
RN + RD

2 and T =
RN −RD

2 .

Non reflection R = 0
⇔ RN = −RD

Perfect reflection T = 0
⇔ RN = RD
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I Due to conservation of energy, one has
|RN | = |RD| = 1.

ω
vi

RDRN

RD

RN

I Using that v =
u + U

2 in ω, v(x, y) =
u(−x, y)− U(−x, y)

2 in Ω \ ω,

we deduce that R =
RN + RD

2 and T =
RN −RD

2 .

Non reflection R = 0
⇔ RN = −RD

Perfect reflection T = 0
⇔ RN = RD

16 / 24



Non reflection and perfect reflection

R =
RN +RD

2 T =
RN −RD

2

I To set ideas, we assume that utr is symmetric w.r.t. (Oy).
⇒ utr is a trapped mode for the pb with Neumann B.Cs.

i) No trapped modes for the Dirichlet pb at λ = λ0. This implies

|RD(ε, λ0 + ελ′p + ε2µ)−RD(0, λ0)| ≤ C ε, ∀ε ∈ (0; ε0], µ ∈ [−cε−1; cε].

ii) µ 7→ RN (ε, λ0 + ελ′p + ε2µ) rushes on the unit circle for µ ∈ [−cε−1; cε].

Proposition:
∃λε, with λε − λ0 = O(ε), s.t. for ε small, R(ε, λε) = 0 ( non reflection ).

∃λ̃ε, with λ̃ε − λ0 = O(ε), s.t. for ε small, T (ε, λ̃ε) = 0 ( perfect reflection ).
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1 The Fano resonance in the 2D waveguide

2 Non reflection and complete reflection

3 Numerical experiments
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The Fano resonance
I Numerics using FE methods (Freefem++) with DtN maps or PMLs.

I Left: domain ωε. Right: utr (trapped mode) for ε = 0.

0.5 + ε

1

I Since |Rε| = 1 (conservation of energy), ∃θε ∈]− π;π] s.t. Rε = eiθ
ε.

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

 

 

ε = 0.2
ε = 0.1
ε = 0.05
ε = 0

2.5 2.6 2.7 2.8 2.9 3 3.1
−3

−2

−1

0

1

2

3

 

 

ε = 0.2
ε = 0.1
ε = 0.05
ε = 0

Figure: k 7→ θε(k) for several ε (non uniqueness for ε = 0, k = 2.7403).

19 / 24



The Fano resonance
I Numerics using FE methods (Freefem++) with DtN maps or PMLs.

I Left: domain ωε. Right: utr (trapped mode) for ε = 0.

0.5 + ε

1

I Since |Rε| = 1 (conservation of energy), ∃θε ∈]− π;π] s.t. Rε = eiθ
ε.

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

 

 

ε = 0.2
ε = 0.1
ε = 0.05
ε = 0

2.5 2.6 2.7 2.8 2.9 3 3.1
−3

−2

−1

0

1

2

3

 

 

ε = 0.2
ε = 0.1
ε = 0.05
ε = 0

Figure: k 7→ θε(k) for several ε (non uniqueness for ε = 0, k = 2.7403).
19 / 24



Non reflection/perfect reflection

I Scattering coefficients for k ∈ (2.5; 3.1).

No shift (ε = 0) Small shift (ε > 0)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

k 7→ R(0, k) k 7→ T (0, k) k 7→ R(0.05, k) k 7→ T (0.05, k)
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Non reflection/perfect reflection

I Example of setting where R(ε, λε) = 0 (non reflection).

<e v

<e (v − vi)

I Example of setting where T (ε, λε) = 0 (perfect reflection).

<e v
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Frequency behaviour

No shift (ε = 0) | Small shift (ε > 0)

I k 7→ <e v(k)

I Complex spectrum computed with PMLs (we zoom at the real axis).
• Trapped mode • Complex resonance
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Conclusion

What we did

♠ We proved the Fano resonance phenomenon in a 2D waveguide.
If trapped modes exist for (ε, λ) = (0, λ0), then for ε > 0 small,
λ 7→ R(ε, λ) has a quick variation at λ0. Symmetry is not needed.

♠ We use it to show examples of non reflection and perfect reflection.
Symmetry is essential.

♠ The technique works with other B.C. (Dirichlet, ...), other kinds of
perturbation (penetrable obstacles, ...), in any dim..

Future work

1) Without symmetry, how to show that T still passes through zero?

2) Is there non reflection/perfect reflection for k > π (monomode
regime was essential in the mechanism)?

3) What happens if λ0 is not a simple eigenvalue?
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Thank you for your attention!
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