Conference on Mathematics of Wave Phenomena

Non reflection and perfect reflection via Fano resonance in waveguides

Lucas Chesnel¹

Coll. with S. A. $Nazarov^2$.

¹Defi team, CMAP, École Polytechnique, France ²FMM, St. Petersburg State University, Russia

Ínnía -

KARLSRUHE, 25/07/2018

► Fano resonance phenomenon appears in many fields in physics. First, we illustrate it for a simple 1D problem.

• Consider the scattering problem

$$\varphi'' + k^2 \varphi = 0 \text{ in } \Omega, \qquad \begin{cases} \varphi_1 = \varphi_2 = \varphi_3 \text{ at } O \\ \varphi'_1 = \varphi'_2 + \varphi'_3 \text{ at } O \\ \varphi'_2 = \varphi'_3 = 0 \text{ on } \partial \Omega \end{cases} \quad \text{with } \underbrace{\varphi_1 = e^{ikx} + R e^{-ikx}}_{\text{radiation condition}}, R \in \mathbb{C}.$$

• Consider the scattering problem

$$\varphi'' + k^2 \varphi = 0 \text{ in } \Omega, \qquad \begin{vmatrix} \varphi_1 = \varphi_2 = \varphi_3 \text{ at } O \\ \varphi_1' = \varphi_2' + \varphi_3' \text{ at } O \\ \varphi_2' = \varphi_3' = 0 \text{ on } \partial \Omega \end{vmatrix} \text{ with } \underbrace{\varphi_1 = e^{ikx} + R e^{-ikx}}_{\text{radiation condition}}, R \in \mathbb{C}.$$

► Well-posedness \Leftrightarrow invertibility of a 3 × 3 system $\mathbb{M}\Phi = F$.

• Consider the scattering problem

$$\varphi'' + k^2 \varphi = 0 \text{ in } \Omega, \qquad \begin{vmatrix} \varphi_1 = \varphi_2 = \varphi_3 \text{ at } O \\ \varphi_1' = \varphi_2' + \varphi_3' \text{ at } O \\ \varphi_2' = \varphi_3' = 0 \text{ on } \partial \Omega \end{vmatrix} \text{ with } \underbrace{\varphi_1 = e^{ikx} + R e^{-ikx}}_{\text{radiation condition}}, R \in \mathbb{C}.$$

• Well-posedness \Leftrightarrow invertibility of a 3×3 system $\mathbb{M}\Phi = F$.

► Uniqueness \Leftrightarrow $k \notin (2\mathbb{N}+1)\pi/2$. Existence for all $k \in \mathbb{R}$ $(F \in \ker \mathbb{M}^{\perp})$ $R = \frac{\cos(k) + 2i\sin(k)}{\cos(k) - 2i\sin(k)}.$

► We perturb the geometry: $\Omega^{\varepsilon} = \Omega_1 \cup \Omega_2 \cup \Omega_3^{\varepsilon}$ with $\Omega_3^{\varepsilon} = (0; 1 + \varepsilon)$. Well-posedness in $\Omega^{\varepsilon} \Leftrightarrow$ invertibility of a 3 × 3 system $\mathbb{M}^{\varepsilon} \Phi^{\varepsilon} = F$.

$$R^{\varepsilon} = \frac{\cos(k)\cos(k(1+\varepsilon)) + i\sin(k(2+\varepsilon))}{\cos(k)\cos(k(1+\varepsilon)) - i\sin(k(2+\varepsilon))}.$$

• We perturb the geometry: $\Omega^{\varepsilon} = \Omega_1 \cup \Omega_2 \cup \Omega_3^{\varepsilon}$ with $\Omega_3^{\varepsilon} = (0; 1 + \varepsilon)$. Well-posedness in $\Omega^{\varepsilon} \Leftrightarrow$ invertibility of a 3 × 3 system $\mathbb{M}^{\varepsilon} \Phi^{\varepsilon} = F$.

$$R^{\varepsilon} = \frac{\cos(k)\cos(k(1+\varepsilon)) + i\sin(k(2+\varepsilon))}{\cos(k)\cos(k(1+\varepsilon)) - i\sin(k(2+\varepsilon))}.$$

• Since $|R^{\varepsilon}| = 1$ (conservation of energy), $\exists \theta^{\varepsilon} \in [0; 2\pi[\text{ s.t. } R^{\varepsilon} = e^{i\theta^{\varepsilon}}]$.

• We perturb the geometry: $\Omega^{\varepsilon} = \Omega_1 \cup \Omega_2 \cup \Omega_3^{\varepsilon}$ with $\Omega_3^{\varepsilon} = (0; 1 + \varepsilon)$. Well-posedness in $\Omega^{\varepsilon} \Leftrightarrow$ invertibility of a 3×3 system $\mathbb{M}^{\varepsilon} \Phi^{\varepsilon} = F$.

$$R^{\varepsilon} = \frac{\cos(k)\cos(k(1+\varepsilon)) + i\sin(k(2+\varepsilon))}{\cos(k)\cos(k(1+\varepsilon)) - i\sin(k(2+\varepsilon))}.$$

Since $|R^{\varepsilon}| = 1$ (conservation of energy), $\exists \theta^{\varepsilon} \in [0; 2\pi[$ s.t. $R^{\varepsilon} = e^{i\theta^{\varepsilon}}$.

• We perturb the geometry: $\Omega^{\varepsilon} = \Omega_1 \cup \Omega_2 \cup \Omega_3^{\varepsilon}$ with $\Omega_3^{\varepsilon} = (0; 1 + \varepsilon)$. Well-posedness in $\Omega^{\varepsilon} \Leftrightarrow$ invertibility of a 3×3 system $\mathbb{M}^{\varepsilon} \Phi^{\varepsilon} = F$.

$$R^{\varepsilon} = \frac{\cos(k)\cos(k(1+\varepsilon)) + i\sin(k(2+\varepsilon))}{\cos(k)\cos(k(1+\varepsilon)) - i\sin(k(2+\varepsilon))}.$$

• Since $|R^{\varepsilon}| = 1$ (conservation of energy), $\exists \theta^{\varepsilon} \in [0; 2\pi[$ s.t. $R^{\varepsilon} = e^{i\theta^{\varepsilon}}$.

• We perturb the geometry: $\Omega^{\varepsilon} = \Omega_1 \cup \Omega_2 \cup \Omega_3^{\varepsilon}$ with $\Omega_3^{\varepsilon} = (0; 1 + \varepsilon)$. Well-posedness in $\Omega^{\varepsilon} \Leftrightarrow$ invertibility of a 3×3 system $\mathbb{M}^{\varepsilon} \Phi^{\varepsilon} = F$.

$$R^{\varepsilon} = \frac{\cos(k)\cos(k(1+\varepsilon)) + i\sin(k(2+\varepsilon))}{\cos(k)\cos(k(1+\varepsilon)) - i\sin(k(2+\varepsilon))}.$$

Since $|R^{\varepsilon}| = 1$ (conservation of energy), $\exists \theta^{\varepsilon} \in [0; 2\pi[$ s.t. $R^{\varepsilon} = e^{i\theta^{\varepsilon}}$.

• We perturb the geometry: $\Omega^{\varepsilon} = \Omega_1 \cup \Omega_2 \cup \Omega_3^{\varepsilon}$ with $\Omega_3^{\varepsilon} = (0; 1 + \varepsilon)$. Well-posedness in $\Omega^{\varepsilon} \Leftrightarrow$ invertibility of a 3×3 system $\mathbb{M}^{\varepsilon} \Phi^{\varepsilon} = F$.

$$R^{\varepsilon} = \frac{\cos(k)\cos(k(1+\varepsilon)) + i\sin(k(2+\varepsilon))}{\cos(k)\cos(k(1+\varepsilon)) - i\sin(k(2+\varepsilon))}.$$

• Since $|R^{\varepsilon}| = 1$ (conservation of energy), $\exists \theta^{\varepsilon} \in [0; 2\pi[$ s.t. $R^{\varepsilon} = e^{i\theta^{\varepsilon}}$.

• We perturb the geometry: $\Omega^{\varepsilon} = \Omega_1 \cup \Omega_2 \cup \Omega_3^{\varepsilon}$ with $\Omega_3^{\varepsilon} = (0; 1 + \varepsilon)$. Well-posedness in $\Omega^{\varepsilon} \Leftrightarrow$ invertibility of a 3×3 system $\mathbb{M}^{\varepsilon} \Phi^{\varepsilon} = F$.

$$R^{\varepsilon} = \frac{\cos(k)\cos(k(1+\varepsilon)) + i\sin(k(2+\varepsilon))}{\cos(k)\cos(k(1+\varepsilon)) - i\sin(k(2+\varepsilon))}.$$

• Since $|R^{\varepsilon}| = 1$ (conservation of energy), $\exists \theta^{\varepsilon} \in [0; 2\pi[$ s.t. $R^{\varepsilon} = e^{i\theta^{\varepsilon}}$.

• Set $R(\varepsilon, k) = e^{i\theta(\varepsilon, k)}$ (functions of two variables).

• Set $R(\varepsilon, k) = e^{i\theta(\varepsilon, k)}$ (functions of two variables).

• Set $R(\varepsilon, k) = e^{i\theta(\varepsilon, k)}$ (functions of two variables).

Goals of the talk

- 1) Prove a similar Fano resonance phenomenon for a 2D waveguide.
- 2) Use it to provide examples of non reflection and complete reflection.
- → Similar results in Shipman et Tu, SIAM Appl. Math, 2012. We use a different approach and consider a perturbation of the geometry.

1 The Fano resonance in the 2D waveguide

2 Non reflection and complete reflection

Setting

Scattering in time-harmonic regime in a symmetric (to simplify) acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.

(*)
$$\begin{vmatrix} \Delta v + \lambda v &= 0 & \text{in } \Omega, \\ \partial_n v &= 0 & \text{on } \partial\Omega. \end{vmatrix}$$

Setting

Scattering in time-harmonic regime in a symmetric (to simplify) acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.

• We assume that trapped modes exist for $\lambda = \lambda^0 \in (0; \pi^2)$: $u_{tr} \in H^1(\Omega) \setminus \{0\}$ satisfies (*) for $\lambda = \lambda^0$ (non uniqueness).

Setting

Scattering in time-harmonic regime in a symmetric (to simplify) acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.

• We assume that trapped modes exist for $\lambda = \lambda^0 \in (0; \pi^2)$: $u_{\text{tr}} \in \mathrm{H}^1(\Omega) \setminus \{0\}$ satisfies (*) for $\lambda = \lambda^0$ (non uniqueness).

Due to symmetry, $u_{\rm tr}$ is also a trapped mode for the half waveguide pb.

$$\begin{array}{rcl} \Delta v + \lambda v &=& 0 & \text{ in } \omega, \\ \partial_n v &=& 0 & \text{ on } \partial \omega \cap \partial \Omega, \\ \text{ABC}(v) = v/\partial_n v &=& 0 & \text{ on } \partial \omega \setminus \partial \Omega. \\ \text{(depends on the sym.)} \end{array}$$

$$(\mathscr{P}) \begin{vmatrix} \text{Find } v \text{ s.t. } v - v_i \text{ is outgoing and} \\ \Delta v + \lambda v &= 0 \quad \text{in } \omega, \\ \partial_n v &= 0 \quad \text{on } \partial \omega \cap \partial \Omega, \\ \text{ABC}(v) &= 0 \quad \text{on } \partial \omega \setminus \partial \Omega. \end{vmatrix}$$

► For this problem with $k := \sqrt{\lambda} \in (0; \pi)$, the modes are Propagating $\begin{vmatrix} w_0^{\pm}(x, y) = e^{\pm ikx}/\sqrt{2k}, \\ \text{Evanescent} \end{vmatrix} \begin{vmatrix} w_0^{\pm}(x, y) = e^{\mp \beta_n x} \cos(n\pi y)/\sqrt{\beta_n}, \ \beta_n = \sqrt{n^2 \pi^2 - \lambda}, \ n \ge 1. \end{vmatrix}$

► For this problem with $k := \sqrt{\lambda} \in (0; \pi)$, the modes are Propagating $\begin{vmatrix} w_0^{\pm}(x, y) = e^{\pm ikx}/\sqrt{2k}, \\ \text{Evanescent} \end{vmatrix} \begin{vmatrix} w_0^{\pm}(x, y) = e^{\mp \beta_n x} \cos(n\pi y)/\sqrt{\beta_n}, \ \beta_n = \sqrt{n^2 \pi^2 - \lambda}, \ n \ge 1. \end{vmatrix}$

For
$$v_i = w_0^-$$
, for all $\sqrt{\lambda} \in (0; \pi)$, (\mathscr{P}) admits a solution
 $v = w_0^- + R w_0^+ + \tilde{v}$,

where $R \in \mathbb{C}$ and \tilde{v} is expo. decaying (uniqueness \Leftrightarrow abs. of trapped modes).

► For this problem with $k := \sqrt{\lambda} \in (0; \pi)$, the modes are Propagating $\begin{vmatrix} w_0^{\pm}(x, y) = e^{\pm ikx}/\sqrt{2k}, \\ \text{Evanescent} \end{vmatrix} \begin{vmatrix} w_0^{\pm}(x, y) = e^{\mp \beta_n x} \cos(n\pi y)/\sqrt{\beta_n}, \ \beta_n = \sqrt{n^2 \pi^2 - \lambda}, \ n \ge 1. \end{vmatrix}$

For
$$v_i = w_0^-$$
, for all $\sqrt{\lambda} \in (0; \pi)$, (\mathscr{P}) admits a solution
 $v = w_0^- + R w_0^+ + \tilde{v}$,

where $R \in \mathbb{C}$ and \tilde{v} is expo. decaying (uniqueness \Leftrightarrow abs. of trapped modes).

• R is uniquely defined (even for $\lambda = \lambda^0$) and |R| = 1 (cons. of energy).

Small perturbation of the geometry

• We perturb slightly ($\varepsilon \ge 0$ is small) the geometry

Locally $\partial \omega^{\varepsilon}$ coincides with the graph of $x \mapsto 1 + \varepsilon H(x)$, where $H \in \mathscr{C}_0^{\infty}(\mathbb{R})$ is a given profile function.

Small perturbation of the geometry

• We perturb slightly ($\varepsilon \ge 0$ is small) the geometry

Locally $\partial \omega^{\varepsilon}$ coincides with the graph of $x \mapsto 1 + \varepsilon H(x)$, where $H \in \mathscr{C}_0^{\infty}(\mathbb{R})$ is a given profile function.

For a given H, the scattering/reflection coefficient R is a function of ε , λ .

GOAL

We wish to study the behaviour of $(\varepsilon, \lambda) \mapsto R(\varepsilon, \lambda)$ in a neighbourhood of $(0, \lambda^0)$ where trapped modes exist.

Small perturbation of the geometry

• We perturb slightly ($\varepsilon \ge 0$ is small) the geometry

Locally $\partial \omega^{\varepsilon}$ coincides with the graph of $x \mapsto 1 + \varepsilon H(x)$, where $H \in \mathscr{C}_0^{\infty}(\mathbb{R})$ is a given profile function.

For a given H, the scattering/reflection coefficient R is a function of ε , λ .

GOAL

We wish to study the behaviour of $(\varepsilon, \lambda) \mapsto R(\varepsilon, \lambda)$ in a neighbourhood of $(0, \lambda^0)$ where trapped modes exist.

 \rightarrow We will prove that R is **not continuous** at $(0, \lambda^0)$ working with the augmented scattering matrix which is **continuous** at $(0, \lambda^0)$.

• We assume that λ^0 is a simple eigenvalue for (*) and that

$$u_{\rm tr} = K e^{-\beta_1 x} \cos(\pi y) + \tilde{u}_{\rm tr},$$

where $K \neq 0$, \tilde{u}_{tr} has fast decay.

Comments:

- If K = 0, adapt the definition of the augmented scattering matrix.
- This object has been introduced in Nazarov, Plamenevsky, 1994.

• Set $w_0^{\pm} = \frac{e^{\mp ikx}}{\sqrt{2k}}$ and $W_1^{\pm} = \frac{w_1^- \mp iw_1^+}{\sqrt{2}} = \frac{e^{\beta_1 x} \mp ie^{-\beta_1 x}}{\sqrt{2\beta_1}} \cos(\pi y)$. • The problem $\begin{vmatrix} \Delta v + \lambda v &= 0 & \text{in } \omega^{\varepsilon} \\ \partial_n v &= 0 & \text{on } \partial \omega^{\varepsilon} \cap \partial \Omega^{\varepsilon} \\ ABC(v) &= 0 & \text{on } \partial \omega^{\varepsilon} \setminus \partial \Omega^{\varepsilon} \end{vmatrix}$ admits the solutions

 $u_0 = w_0^- + \mathfrak{s}_{00} w_0^+ + \mathfrak{s}_{01} W_1^+ + \tilde{u}_0, \qquad \text{with } \tilde{u}_0 \text{ fastly expo. decaying}$ $u_1 = W_1^- + \mathfrak{s}_{10} w_0^+ + \mathfrak{s}_{11} W_1^+ + \tilde{u}_1, \qquad \text{with } \tilde{u}_1 \text{ fastly expo. decaying}.$

Set $w_0^{\pm} = \frac{e^{\mp ikx}}{\sqrt{2k}}$ and $W_1^{\pm} = \frac{w_1^- \mp iw_1^+}{\sqrt{2}} = \frac{e^{\beta_1 x} \mp ie^{-\beta_1 x}}{\sqrt{2\beta_1}} \cos(\pi y)$.
The problem $\begin{vmatrix} \Delta v + \lambda v &= 0 & \text{in } \omega^{\varepsilon} \\ \partial_n v &= 0 & \text{on } \partial \omega^{\varepsilon} \cap \partial \Omega^{\varepsilon} \\ ABC(v) &= 0 & \text{on } \partial \omega^{\varepsilon} \setminus \partial \Omega^{\varepsilon} \end{vmatrix}$ admits the solutions $u_0 = w_0^- + \mathfrak{s}_{00} w_0^+ + \mathfrak{s}_{01} W_1^+ + \tilde{u}_0$, with \tilde{u}_0 fastly expo. decaying $u_1 = W_1^- + \mathfrak{s}_{10} w_0^+ + \mathfrak{s}_{11} W_1^+ + \tilde{u}_1$, with \tilde{u}_1 fastly expo. decaying.

With such radiation conditions, uniqueness holds for $\lambda = \lambda^0$.

• Set $w_0^{\pm} = \frac{e^{\mp ikx}}{\sqrt{2k}}$ and $W_1^{\pm} = \frac{w_1^- \mp iw_1^+}{\sqrt{2}} = \frac{e^{\beta_1 x} \mp ie^{-\beta_1 x}}{\sqrt{2\beta_1}} \cos(\pi y)$. • The problem $\begin{vmatrix} \Delta v + \lambda v &= 0 & \text{in } \omega^{\varepsilon} \\ \partial_n v &= 0 & \text{on } \partial \omega^{\varepsilon} \cap \partial \Omega^{\varepsilon} \\ ABC(v) &= 0 & \text{on } \partial \omega^{\varepsilon} \setminus \partial \Omega^{\varepsilon} \end{vmatrix}$ admits the solutions

 $u_0 = w_0^- + \mathfrak{s}_{00} w_0^+ + \mathfrak{s}_{01} W_1^+ + \tilde{u}_0, \qquad \text{with } \tilde{u}_0 \text{ fastly expo. decaying}$ $u_1 = W_1^- + \mathfrak{s}_{10} w_0^+ + \mathfrak{s}_{11} W_1^+ + \tilde{u}_1, \qquad \text{with } \tilde{u}_1 \text{ fastly expo. decaying}.$

Set w₀[±] = e^{∓ikx}/√2k and W₁[±] = w₁⁻ ∓iw₁⁺/√2 = e^{β₁x} ∓ie^{-β₁x}/√2β₁ cos(πy).
The problem ^{Δv + λv = 0 in ω^ε}/<sub>∂nv = 0 on ∂ω^ε ∩ ∂Ω^ε</sup>/_{ABC(v) = 0 on ∂ω^ε ∧ ∂Ω^ε} admits the solutions ABC(v) = 0 on ∂ω^ε ∧ ∂Ω^ε
u₀ = w₀⁻ + s₀₀ w₀⁺ + s₀₁ W₁⁺ + ũ₀, with ũ₀ fastly expo. decaying u₁ = W₁⁻ + s₁₀ w₀⁺ + s₁₁ W₁⁺ + ũ₁, with ũ₁ fastly expo. decaying.
The augmented scattering matrix S = (s₀₀ s₀₁/s₁₀) is unitary.
</sub>

• Set $w_0^{\pm} = \frac{e^{\pm ikx}}{\sqrt{2k}}$ and $W_1^{\pm} = \frac{w_1^- \mp iw_1^+}{\sqrt{2}} = \frac{e^{\beta_1 x} \mp ie^{-\beta_1 x}}{\sqrt{2\beta_1}} \cos(\pi y)$. • The problem $\begin{vmatrix} \Delta v + \lambda v &= 0 & \text{in } \omega^{\varepsilon} \\ \partial_n v &= 0 & \text{on } \partial \omega^{\varepsilon} \cap \partial \Omega^{\varepsilon} \\ ABC(v) &= 0 & \text{on } \partial \omega^{\varepsilon} \setminus \partial \Omega^{\varepsilon} \end{vmatrix}$ admits the solutions $u_0 = w_0^- + \mathfrak{s}_{00} w_0^+ + \mathfrak{s}_{01} W_1^+ + \tilde{u}_0,$ with \tilde{u}_0 fastly expo. decaying $u_1 = W_1^- + \mathfrak{s}_{10} w_0^+ + \mathfrak{s}_{11} W_1^+ + \tilde{u}_1$, with \tilde{u}_1 fastly expo. decaying. The augmented scattering matrix $\mathbb{S} = \begin{pmatrix} \mathfrak{s}_{00} & \mathfrak{s}_{01} \\ \mathfrak{s}_{10} & \mathfrak{s}_{11} \end{pmatrix}$ is unitary.

LEMMA: If $\mathfrak{s}_{11} = -1$, the above problem admits trapped modes.

Proof: $\mathfrak{s}_{11} = -1 \Rightarrow \mathfrak{s}_{10} = 0$ (S is unitary) and $u_1 \in H^1(\omega)$ is a trapped mode.

Set
$$w_0^{\pm} = \frac{e^{\mp ikx}}{\sqrt{2k}}$$
 and $W_1^{\pm} = \frac{w_1^{-} \mp iw_1^{+}}{\sqrt{2}} = \frac{e^{\beta_1 x} \mp ie^{-\beta_1 x}}{\sqrt{2\beta_1}} \cos(\pi y)$.
The problem $\begin{vmatrix} \Delta v + \lambda v &= 0 & \text{in } \omega^{\varepsilon} \\ \partial_n v &= 0 & \text{on } \partial \omega^{\varepsilon} \cap \partial \Omega^{\varepsilon} \\ ABC(v) &= 0 & \text{on } \partial \omega^{\varepsilon} \setminus \partial \Omega^{\varepsilon} \end{vmatrix}$ admits the solutions $u_0 = w_0^{-} + \mathfrak{s}_{00} w_0^{+} + \mathfrak{s}_{01} W_1^{+} + \tilde{u}_0$, with \tilde{u}_0 fastly expo. decaying $u_1 = W_1^{-} + \mathfrak{s}_{10} w_0^{+} + \mathfrak{s}_{11} W_1^{+} + \tilde{u}_1$, with \tilde{u}_1 fastly expo. decaying.
The augmented scattering matrix $\mathbb{S} = \begin{pmatrix} \mathfrak{s}_{00} & \mathfrak{s}_{01} \\ \mathfrak{s}_{10} & \mathfrak{s}_{11} \end{pmatrix}$ is unitary.

LEMMA: If $\mathfrak{s}_{11} = -1$, the above problem admits trapped modes.

Proof: $\mathfrak{s}_{11} = -1 \Rightarrow \mathfrak{s}_{10} = 0$ (S is unitary) and $u_1 \in H^1(\omega)$ is a trapped mode.

• R and S are related by the formula (valid also when $\mathfrak{s}_{11} = -1$ by cont.):

$$R = \mathfrak{s}_{00} - \mathfrak{s}_{01}(1 + \mathfrak{s}_{11})^{-1}\mathfrak{s}_{10}.$$

Asymptotic analysis for \mathbb{S}^{ε}

For $\lambda' \in \mathbb{R}$, set (both the geometry and the frequency are changing)

$$R^{\varepsilon} = R(\varepsilon, \lambda^0 + \varepsilon \lambda') \qquad \text{and} \qquad \mathbb{S}^{\varepsilon} = \left(\begin{array}{cc} \mathfrak{s}^{\varepsilon}_{00} & \mathfrak{s}^{\varepsilon}_{01} \\ \mathfrak{s}^{\varepsilon}_{10} & \mathfrak{s}^{\varepsilon}_{11} \end{array}\right) = \mathbb{S}(\varepsilon, \lambda^0 + \varepsilon \lambda').$$

PROPOSITION: There is $\varepsilon_0 > 0$ such that for all $\varepsilon \in (0; \varepsilon_0]$,

$$|\mathfrak{s}_{00}^{\varepsilon}-R|\leq C\,\varepsilon,\quad |\mathfrak{s}_{10}^{\varepsilon}-\varepsilon\mathfrak{s}_{10}'|\leq C\,\varepsilon^2,\quad |\mathfrak{s}_{11}^{\varepsilon}-(-1+\varepsilon\mathfrak{s}_{11}'+\varepsilon^2\mathfrak{s}_{11}'')|\leq C\,\varepsilon^3,$$

where $\mathfrak{s}'_{11}, \mathfrak{s}''_{11}, \mathfrak{s}'_{10} \in \mathbb{C}$ depending on H, λ' are explicit.

Asymptotic analysis for \mathbb{S}^{ε}

For $\lambda' \in \mathbb{R}$, set (both the geometry and the frequency are changing)

$$R^{\varepsilon} = R(\varepsilon, \lambda^0 + \varepsilon \boldsymbol{\lambda'}) \qquad \text{and} \qquad \mathbb{S}^{\varepsilon} = \left(\begin{array}{cc} \mathfrak{s}^{\varepsilon}_{00} & \mathfrak{s}^{\varepsilon}_{01} \\ \mathfrak{s}^{\varepsilon}_{10} & \mathfrak{s}^{\varepsilon}_{11} \end{array}\right) = \mathbb{S}(\varepsilon, \lambda^0 + \varepsilon \boldsymbol{\lambda'}).$$

PROPOSITION: There is $\varepsilon_0 > 0$ such that for all $\varepsilon \in (0; \varepsilon_0]$,

$$|\mathfrak{s}_{00}^{\varepsilon}-R|\leq C\,\varepsilon,\quad |\mathfrak{s}_{10}^{\varepsilon}-\varepsilon\mathfrak{s}_{10}'|\leq C\,\varepsilon^2,\quad |\mathfrak{s}_{11}^{\varepsilon}-(-1+\varepsilon\mathfrak{s}_{11}'+\varepsilon^2\mathfrak{s}_{11}'')|\leq C\,\varepsilon^3,$$

where $\mathfrak{s}'_{11}, \mathfrak{s}''_{11}, \mathfrak{s}'_{10} \in \mathbb{C}$ depending on H, λ' are explicit.

INGREDIENTS OF THE PROOF:

- Weighted Sobolev spaces with detached asymptotics.
- Uniqueness for the problem with non standard radiation conditions.
- Rectification of the boundary with "almost identical diffeomorphisms".
- Theory of perturbations for linear operators (see Kato's book).

▶ We insert the expansions

$$\begin{split} \mathfrak{s}_{00}^{\varepsilon} &= R + O(\varepsilon), \qquad \mathfrak{s}_{10}^{\varepsilon} = \varepsilon \mathfrak{s}_{10}' + O(\varepsilon^2), \qquad \mathfrak{s}_{11}^{\varepsilon} = -1 + \varepsilon \mathfrak{s}_{11}' + \varepsilon^2 \mathfrak{s}_{11}'' + O(\varepsilon^3) \\ \text{in the key formula} \boxed{R^{\varepsilon} = \mathfrak{s}_{00}^{\varepsilon} - \frac{\mathfrak{s}_{01}^{\varepsilon} \mathfrak{s}_{10}^{\varepsilon}}{1 + \mathfrak{s}_{11}^{\varepsilon}}. \end{split}$$

▶ We insert the expansions

$$\begin{split} \mathfrak{s}_{00}^{\varepsilon} &= R + O(\varepsilon), \qquad \mathfrak{s}_{10}^{\varepsilon} = \varepsilon \mathfrak{s}_{10}' + O(\varepsilon^2), \qquad \mathfrak{s}_{11}^{\varepsilon} = -1 + \varepsilon \mathfrak{s}_{11}' + \varepsilon^2 \mathfrak{s}_{11}'' + O(\varepsilon^3) \\ \text{in the key formula} \boxed{R^{\varepsilon} = \mathfrak{s}_{00}^{\varepsilon} - \frac{\mathfrak{s}_{01}^{\varepsilon} \mathfrak{s}_{10}^{\varepsilon}}{1 + \mathfrak{s}_{11}^{\varepsilon}}. \end{split}$$

$$\begin{array}{l} \clubsuit \ \mathrm{Case} \ \mathfrak{s}_{11}' \neq 0 \Leftrightarrow \frac{\lambda' \neq \lambda_p'}{\varepsilon}. \ \mathrm{We \ obtain} \\ \\ R^{\varepsilon} = R - \varepsilon \frac{\mathfrak{s}_{01}' \mathfrak{s}_{10}'}{\mathfrak{s}_{11}'} + O(\varepsilon^2) \qquad \mathrm{and \ so} \qquad \lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda') = R. \end{array}$$

• We insert the expansions

$$\begin{split} \mathfrak{s}_{00}^{\varepsilon} &= R + O(\varepsilon), \qquad \mathfrak{s}_{10}^{\varepsilon} = \varepsilon \mathfrak{s}_{10}' + O(\varepsilon^2), \qquad \mathfrak{s}_{11}^{\varepsilon} = -1 + \varepsilon \mathfrak{s}_{11}' + \varepsilon^2 \mathfrak{s}_{11}'' + O(\varepsilon^3) \\ \text{in the key formula} \boxed{R^{\varepsilon} = \mathfrak{s}_{00}^{\varepsilon} - \frac{\mathfrak{s}_{01}^{\varepsilon} \mathfrak{s}_{10}^{\varepsilon}}{1 + \mathfrak{s}_{11}^{\varepsilon}}. \end{split}$$

$$\begin{split} &\clubsuit \text{ Case } \mathfrak{s}_{11}' \neq 0 \Leftrightarrow \frac{\lambda' \neq \lambda_p'}{\mathfrak{s}_{10}'}. \text{ We obtain} \\ &R^{\varepsilon} = R - \varepsilon \frac{\mathfrak{s}_{01}' \mathfrak{s}_{10}'}{\mathfrak{s}_{11}'} + O(\varepsilon^2) \quad \text{ and so } \quad \lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda') = R. \end{split}$$

♣ Case $\mathfrak{s}'_{11} = 0$ and $\Re e \mathfrak{s}''_{11} \neq 0$. More generally, take $\lambda' = \lambda'_p + \varepsilon \mu$. Then

$$R^{\varepsilon} = R + \frac{\mathfrak{s}_{01}' \mathfrak{s}_{10}'}{i\alpha\mu - \mathfrak{s}_{11}''} + O(\varepsilon), \qquad \text{with } \alpha \in \mathbb{R}.$$

We deduce $\lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda'_p + \varepsilon^2 \mu) = R + \frac{\mathfrak{s}'_{01} \mathfrak{s}'_{10}}{i\alpha\mu - \mathfrak{s}''_{11}}.$

PROPOSITION:	$\lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda') = \mathbf{R},$	for $\lambda' \neq \lambda'_p$	
	$\lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda'_p + \varepsilon^2 \mu) = R$	$R + \frac{\mathfrak{s}_{01}'\mathfrak{s}_{10}'}{i\alpha\mu - \mathfrak{s}_{11}''},$	$\mu \in \mathbb{R}.$

 \rightarrow When $\mu \in \mathbb{R}$, the quantity $R + \frac{\mathfrak{s}'_{01}\mathfrak{s}'_{10}}{i\alpha\mu - \mathfrak{s}''_{11}}$ runs on the whole unit circle.

PROPOSITION:	$\lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda') = \mathbf{R}, \qquad \text{for } \lambda' \neq \lambda'_p$	
	$\lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda'_p + \varepsilon^2 \mu) = R + \frac{\mathfrak{s}_{01}' \mathfrak{s}_{10}'}{i \alpha \mu - \mathfrak{s}_{11}''},$	$\mu \in \mathbb{R}.$

 \rightarrow When $\mu \in \mathbb{R}$, the quantity $R + \frac{\mathfrak{s}_{01}'\mathfrak{s}_{10}'}{i\alpha\mu - \mathfrak{s}_{11}''}$ runs on the whole unit circle.

 \rightarrow We find back the 1D picture, $R(\cdot, \cdot)$ is not continuous at $(0, \lambda^0)$.

PROPOSITION:	$\lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda') = \mathbf{R}, \qquad \text{for } \lambda' \neq \lambda'_p$	
	$\lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda'_p + \varepsilon^2 \mu) = R + \frac{\mathfrak{s}_{01}' \mathfrak{s}_{10}'}{i \alpha \mu - \mathfrak{s}_{11}''},$	$\mu \in \mathbb{R}.$

 \rightarrow When $\mu \in \mathbb{R}$, the quantity $R + \frac{\mathfrak{s}_{01}'\mathfrak{s}_{10}'}{i\alpha\mu - \mathfrak{s}_{11}''}$ runs on the whole unit circle.

 \rightarrow We find back the 1D picture, $R(\cdot, \cdot)$ is not continuous at $(0, \lambda^0)$.

 \rightarrow For a small given ε_0 , the map $\lambda \mapsto R(\varepsilon_0, \lambda)$ exhibits a quick change at $\lambda^0 + \varepsilon^0 \lambda'_p$.

PROPOSITION:	$\lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda') = \mathbf{R}, \qquad \text{for } \lambda' \neq \lambda'_p$	
	$\lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda'_p + \varepsilon^2 \mu) = R + \frac{\mathfrak{s}_{01}' \mathfrak{s}_{10}'}{i \alpha \mu - \mathfrak{s}_{11}''},$	$\mu \in \mathbb{R}.$

 \rightarrow When $\mu \in \mathbb{R}$, the quantity $R + \frac{\mathfrak{s}_{01}'\mathfrak{s}_{10}'}{i\alpha\mu - \mathfrak{s}_{11}''}$ runs on the whole unit circle.

 \rightarrow We find back the 1D picture, $R(\cdot, \cdot)$ is not continuous at $(0, \lambda^0)$.

 \rightarrow For a small given ε_0 , the map $\lambda \mapsto R(\varepsilon_0, \lambda)$ exhibits a quick change at $\lambda^0 + \varepsilon^0 \lambda'_p$.

	$\lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda') = \mathbf{R}, \qquad \text{for } \lambda' \neq \lambda'_p$	
PROPOSITION:	$\lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda'_p + \varepsilon^2 \mu) = R + \frac{\mathfrak{s}'_{01} \mathfrak{s}'_{10}}{i \alpha \mu - \mathfrak{s}}$	$\mu \in \mathbb{R}.$

 \rightarrow When $\mu \in \mathbb{R}$, the quantity $R + \frac{\mathfrak{s}_{01}'\mathfrak{s}_{10}'}{i\alpha\mu - \mathfrak{s}_{11}''}$ runs on the whole unit circle.

 \rightarrow We find back the 1D picture, $\frac{R(\cdot, \cdot)}{R(\cdot, \cdot)}$ is not continuous at $(0, \lambda^0)$.

 \rightarrow For a small given ε_0 , the map $\lambda \mapsto R(\varepsilon_0, \lambda)$ exhibits a quick change at $\lambda^0 + \varepsilon^0 \lambda'_p$. If $\mathfrak{s}''_{11} = 0$ and $\mathfrak{s}'''_{11} \neq 0$, the change is even quicker...

2 Non reflection and complete reflection

• We come back to the problem in the total waveguide Ω

$$\begin{array}{c|cccc}
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

(*) admits the solution

$$v = \begin{vmatrix} e^{-ikx} + \mathcal{R} e^{+ikx} + \tilde{v}, & x > 0 & \text{(reflection)} \\ \mathcal{T} e^{-ikx} + \tilde{v}, & x < 0 & \text{(transmission)} \end{vmatrix}$$

with $\mathcal{R}, \mathcal{T} \in \mathbb{C}$ and $\tilde{v} \in \mathrm{H}^1(\Omega)$. We have $|\mathcal{R}|^2 + |\mathcal{T}|^2 = 1$.

• We come back to the problem in the total waveguide Ω

$$\begin{array}{c|cccc}
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

(*) admits the solution

ω

$$v = \begin{vmatrix} e^{-ikx} + \mathcal{R} e^{+ikx} + \tilde{v}, & x > 0 & \text{(reflection)} \\ \mathcal{T} e^{-ikx} + \tilde{v}, & x < 0 & \text{(transmission)} \end{vmatrix}$$

with $\mathcal{R}, \mathcal{T} \in \mathbb{C}$ and $\tilde{v} \in \mathrm{H}^1(\Omega)$. We have $|\mathcal{R}|^2 + |\mathcal{T}|^2 = 1$.

• Introduce the two half-waveguide problems

 $\begin{array}{lll} \Delta u + \lambda u = 0 & \mbox{in } \omega \\ \partial_n u = 0 & \mbox{on } \partial \omega \end{array}$

$$\begin{aligned} \Delta U + \lambda U &= 0 \quad \text{in } \omega \\ \partial_n U &= 0 \quad \text{on } \partial \omega \setminus \partial \Omega \\ U &= 0 \quad \text{on } \partial \omega \cap \partial \Omega. \end{aligned}$$

▶ Half-waveguide problems admit the solutions

$$u = e^{-ikx} + R_N e^{ikx} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^1(\omega)$$
$$U = e^{-ikx} + R_D e^{ikx} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^1(\omega).$$

▶ Half-waveguide problems admit the solutions

$$u = e^{-ikx} + R_N e^{ikx} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^1(\omega)$$
$$U = e^{-ikx} + R_D e^{ikx} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^1(\omega).$$

• Due to conservation of energy, one has

 $|\mathbf{R}_N| = |\mathbf{R}_D| = 1.$

▶ Half-waveguide problems admit the solutions

$$u = e^{-ikx} + R_N e^{ikx} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^1(\omega)$$
$$U = e^{-ikx} + R_D e^{ikx} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^1(\omega).$$

• Due to conservation of energy, one has

 $|\mathbf{R}_N| = |\mathbf{R}_D| = 1.$

▶ Half-waveguide problems admit the solutions

Due to conservation of energy, one has

$$\begin{aligned} u &= e^{-ikx} + R_N e^{ikx} + \tilde{u}, \qquad \text{with } \tilde{u} \in \mathrm{H}^1(\omega) \\ U &= e^{-ikx} + R_D e^{ikx} + \tilde{U}, \qquad \text{with } \tilde{U} \in \mathrm{H}^1(\omega). \end{aligned}$$

• Using that
$$v = \frac{u+U}{2}$$
 in ω , $v(x,y) = \frac{u(-x,y) - U(-x,y)}{2}$ in $\Omega \setminus \overline{\omega}$,
we deduce that $\mathcal{R} = \frac{R_N + R_D}{2}$ and $\mathcal{T} = \frac{R_N - R_D}{2}$.

 $|\mathbf{R}_{N}| = |\mathbf{R}_{D}| = 1.$

▶ Half-waveguide problems admit the solutions

Due to conservation of energy, one has

$$\begin{aligned} u &= e^{-ikx} + R_N e^{ikx} + \tilde{u}, \qquad \text{with } \tilde{u} \in \mathrm{H}^1(\omega) \\ U &= e^{-ikx} + R_D e^{ikx} + \tilde{U}, \qquad \text{with } \tilde{U} \in \mathrm{H}^1(\omega). \end{aligned}$$

• Using that
$$v = \frac{u+U}{2}$$
 in ω , $v(x,y) = \frac{u(-x,y) - U(-x,y)}{2}$ in $\Omega \setminus \overline{\omega}$,
we deduce that $\mathcal{R} = \frac{R_N + R_D}{2}$ and $\mathcal{T} = \frac{R_N - R_D}{2}$.

 $|R_N| = |R_D| = 1.$

Non reflection
$$\mathcal{R} = 0$$

 $\Leftrightarrow R_N = -R_D$

▶ Half-waveguide problems admit the solutions

Due to conservation of energy, one has

$$u = e^{-ikx} + R_N e^{ikx} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^1(\omega)$$
$$U = e^{-ikx} + R_D e^{ikx} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^1(\omega).$$

• Using that
$$v = \frac{u+U}{2}$$
 in ω , $v(x,y) = \frac{u(-x,y) - U(-x,y)}{2}$ in $\Omega \setminus \overline{\omega}$,
we deduce that $\mathcal{R} = \frac{R_N + R_D}{2}$ and $\mathcal{T} = \frac{R_N - R_D}{2}$.

 $|R_N| = |R_D| = 1.$

Non reflection $\mathcal{R} = 0$ $\Leftrightarrow R_N = -R_D$

▶ Half-waveguide problems admit the solutions

Due to conservation of energy, one has

$$u = e^{-ikx} + R_N e^{ikx} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^1(\omega)$$
$$U = e^{-ikx} + R_D e^{ikx} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^1(\omega).$$

► Using that
$$v = \frac{u+U}{2}$$
 in ω , $v(x,y) = \frac{u(-x,y) - U(-x,y)}{2}$ in $\Omega \setminus \overline{\omega}$,
we deduce that $\mathcal{R} = \frac{R_N + R_D}{2}$ and $\mathcal{T} = \frac{R_N - R_D}{2}$.
Non reflection $\mathcal{R} = 0$
 $\Leftrightarrow R_V = -R_D$

 $|R_N| = |R_D| = 1.$

Non reflection and perfect reflection

$$\mathcal{R} = rac{R_N + R_D}{2}$$
 $\mathcal{T} = rac{R_N - R_D}{2}$

• To set ideas, we assume that u_{tr} is symmetric w.r.t. (Oy). $\Rightarrow u_{tr}$ is a trapped mode for the pb with Neumann B.Cs.

i) No trapped modes for the Dirichlet pb at
$$\lambda = \lambda^0$$
. This implies
 $|R_D(\varepsilon, \lambda^0 + \varepsilon \lambda'_p + \varepsilon^2 \mu) - R_D(0, \lambda^0)| \le C \varepsilon, \quad \forall \varepsilon \in (0; \varepsilon_0], \ \mu \in [-c\varepsilon^{-1}; c\varepsilon].$

ii) $\mu \mapsto R_N(\varepsilon, \lambda^0 + \varepsilon \lambda'_p + \varepsilon^2 \mu)$ rushes on the unit circle for $\mu \in [-c\varepsilon^{-1}; c\varepsilon]$.

Non reflection and perfect reflection

$$\mathcal{R} = rac{R_N + R_D}{2}$$
 $\mathcal{T} = rac{R_N - R_D}{2}$

• To set ideas, we assume that u_{tr} is symmetric w.r.t. (Oy). $\Rightarrow u_{tr}$ is a trapped mode for the pb with Neumann B.Cs.

i) No trapped modes for the Dirichlet pb at $\lambda = \lambda^0$. This implies $|R_D(\varepsilon, \lambda^0 + \varepsilon \lambda'_p + \varepsilon^2 \mu) - R_D(0, \lambda^0)| \le C \varepsilon, \quad \forall \varepsilon \in (0; \varepsilon_0], \ \mu \in [-c\varepsilon^{-1}; c\varepsilon].$

ii) $\mu \mapsto R_N(\varepsilon, \lambda^0 + \varepsilon \lambda'_p + \varepsilon^2 \mu)$ rushes on the unit circle for $\mu \in [-c\varepsilon^{-1}; c\varepsilon]$.

PROPOSITION: $\begin{vmatrix} \exists \lambda_{\varepsilon}, \text{ with } \lambda_{\varepsilon} - \lambda^{0} = O(\varepsilon), \text{ s.t. for } \varepsilon \text{ small}, \mathcal{R}(\varepsilon, \lambda_{\varepsilon}) = 0 \text{ (non reflection)}. \\
\exists \tilde{\lambda}_{\varepsilon}, \text{ with } \tilde{\lambda}_{\varepsilon} - \lambda^{0} = O(\varepsilon), \text{ s.t. for } \varepsilon \text{ small}, \mathcal{T}(\varepsilon, \tilde{\lambda}_{\varepsilon}) = 0 \text{ (perfect reflection)}. \end{aligned}$

- ▶ Numerics using FE methods (Freefem++) with DtN maps or PMLs.
- Left: domain ω^{ε} . Right: $u_{\rm tr}$ (trapped mode) for $\varepsilon = 0$.

- Numerics using FE methods (Freefem++) with DtN maps or PMLs.
- Left: domain ω^{ε} . Right: $u_{\rm tr}$ (trapped mode) for $\varepsilon = 0$.

• Since $|R^{\varepsilon}| = 1$ (conservation of energy), $\exists \theta^{\varepsilon} \in] - \pi; \pi]$ s.t. $R^{\varepsilon} = e^{i\theta^{\varepsilon}}$.

Non reflection/perfect reflection

• Scattering coefficients for $k \in (2.5; 3.1)$.

Non reflection/perfect reflection

• Example of setting where $\mathcal{T}(\varepsilon, \lambda^{\varepsilon}) = 0$ (perfect reflection).

Frequency behaviour

No shift
$$(\varepsilon = 0)$$
 | Small shift $(\varepsilon > 0)$

 $\blacktriangleright \quad k \mapsto \Re e \, v(k)$

• Trapped mode

• Complex resonance

2 Non reflection and complete reflection

What we did

- We proved the Fano resonance phenomenon in a 2D waveguide. If trapped modes exist for $(\varepsilon, \lambda) = (0, \lambda^0)$, then for $\varepsilon > 0$ small,
 - $\lambda \mapsto R(\varepsilon, \lambda)$ has a quick variation at λ^0 . Symmetry is not needed.
- We use it to show examples of non reflection and perfect reflection.
 Symmetry is essential.
- The technique works with other B.C. (Dirichlet, ...), other kinds of perturbation (penetrable obstacles, ...), in any dim..

What we did

- We proved the Fano resonance phenomenon in a 2D waveguide.
 - If trapped modes exist for $(\varepsilon, \lambda) = (0, \lambda^0)$, then for $\varepsilon > 0$ small, $\lambda \mapsto R(\varepsilon, \lambda)$ has a quick variation at λ^0 . Symmetry is not needed.
- We use it to show examples of non reflection and perfect reflection.
 Symmetry is essential.
- ♠ The technique works with other B.C. (Dirichlet, ...), other kinds of perturbation (penetrable obstacles, ...), in any dim..

Future work

- 1) Without symmetry, how to show that \mathcal{T} still passes through zero?
- 2) Is there non reflection/perfect reflection for $k > \pi$ (monomode regime was essential in the mechanism)?
- 3) What happens if λ^0 is not a simple eigenvalue?

Thank you for your attention!