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A 1D toy problem

» Fano resonance phenomenon appears in many fields in physics. First, we
illustrate it for a simple 1D problem.
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A 1D toy problem

Q=0 UNUQ3

o Q1 O 9 1

» Consider the scattering problem

p1 =2 =3 at O

©"+k*p =01in Q,
Qpé =0 on 9N radiation condition
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» Consider the scattering problem
p1 =12 =3 at O
Ok o =0inQ, | @) =¢h+¢sat O with p; =e* + Re ™ ReC.

— A =
=¥3= 0 on 99 radiation condition

» Well-posedness <« invertibility of a 3 x 3 system M® = F'.
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A 1D toy problem

Q=0 UNUQ3

(951 Oﬂgl

» Consider the scattering problem
p1 =12 =3 at O
Ok o =0inQ, | @) =¢h+¢sat O with p; =e* + Re ™ ReC.
©h = @5 =0 on 0N

radiation condition

» Well-posedness <« invertibility of a 3 x 3 system M® = F'.

» Uniqueness < k¢ (2N+ 1)7/2. Existence for all k € R (F € ker Mt)

_ cos(k) + 2isin(k)
~ cos(k) — 2isin(k)’
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A 1D toy problem

» We perturb the geometry: Q° = Q; U Qs U Q5 with QF = (0;1 +¢).
Well-posedness in ¢ < invertibility of a 3 x 3 system Mfdc = F.

cos(k) cos(k(1+¢)) +isin(k(2+¢))
cos(k) cos(k(1+¢)) —isin(k(2+¢))

R =
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A 1D toy problem

>

We perturb the geometry: 2 = Qy UQy U Q5 with Qf = (0;1 + ¢).

Well-posedness in ¢ < invertibility of a 3 x 3 system Mfdc = F.

cos(k) cos(k(1+¢)) +isin(k(2+¢))

B = cos(k) cos(k(1+¢)) —isin(k(2+¢))

Since |R?| = 1 (conservation of energy), 30° € [0;2n[ s.t. R® = e*.
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A 1D toy problem

» We perturb the geometry: QF = O U Qs U Q5 with QF = (0;1 +¢).
Well-posedness in ¢ < invertibility of a 3 x 3 system Mfdc = F.

cos(k) cos(k(1+¢)) +isin(k(2+¢))

B = cos(k) cos(k(1+¢)) —isin(k(2+¢))

» Since |R°| = 1 (conservation of energy), 30° € [0; 2] s.t. R® = €.
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A 1D toy problem

» We perturb the geometry: Q° = Q; Uy U5 with Qf
Well-posedness in ¢ < invertibility of a 3 x 3 system Mfdc = F.

RE

cos(k) cos(k(1+¢)) +isin(k(2+¢))

cos(k)cos(k(1+¢)) —isin(k(2+¢))

(0;1+¢).

» Since |R°| = 1 (conservation of energy), 30° € [0; 2] s.t. R® = €.
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» We perturb the geometry: Q° = Q; Uy U5 with Qf
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A 1D toy problem

» We perturb the geometry: Q° = Q; U Qs U Q5 with QF = (0;1 +¢).
Well-posedness in ¢ < invertibility of a 3 x 3 system Mfdc = F.

cos(k) cos(k(1+¢)) +isin(k(2+¢))
cos(k) cos(k(1+¢)) —isin(k(2+¢))

R =

» Since |R°| = 1 (conservation of energy), 30° € [0; 2] s.t. R® = €.
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A 1D toy problem

> Set R(e, k) = €=*) (functions of two variables).

(e, k) — 0(e, k)
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A 1D toy problem

> Set R(e, k) = €=*) (functions of two variables).

(e, k) = 0(e, k)
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A 1D toy problem

> Set R(e, k) = €=*) (functions of two variables).

(e, k) — 0(e, k)

-06 -04 -02 0 02 04 086

Goals of the talk

1) Prove a similar Fano resonance phenomenon for a 2D waveguide.
2) Use it to provide examples of non reflection and complete reflection.

— Similar results in Shipman et Tu, SIAM Appl. Math, 2012. We use a different

approach and consider a perturbation of the geometry. 4/ 24



Outline of the talk

@ The Fano resonance in the 2D waveguide

Q Non reflection and complete reflection

@ Numerical experiments
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@ The Fano resonance in the 2D waveguide
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Setting

» Scattering in time-harmonic regime in a symmetric (to simplify) acoustic
waveguide  coinciding with {(z,y) € R x (0;1)} outside a compact region.

(+) Av+Xv = 0 inQ,
Opv 0 on 0f.
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Op,v = 0 on 0.

» We assume that trapped modes exist for A = \° € (0; 72):
uye € HY(Q) \ {0} satisfies () for A = A\° (non uniqueness).
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Setting

» Scattering in time-harmonic regime in a symmetric (to simplify) acoustic
waveguide 2 coinciding with {(z,y) € R x (0;1)} outside a compact region.

(+) Av+Xv = 0 inQ,
Opv 0 on 0f.

» We assume that trapped modes exist for A = \° € (0; 72):
uye € HY(Q) \ {0} satisfies () for A = A\° (non uniqueness).

» Due to symmetry, u, is also a trapped mode for the half waveguide pb.

Av + v 0 inw,
Opv 0 on dwNof,
ABC(v) =v/0pv = 0 on dw) 9.

- (depends on the sym.)
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Scattering problem in the half waveguide

Find v s.t. v — v; is outgoing and
Av+lw = 0 inw
e@ )
() Opv = 0 on dwnof,
ABC(v) = 0 ondw)ofN.
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Scattering problem in the half waveguide

Find v s.t. v — v; is outgoing and
Av+Xv = 0 inw
e@ )
() Opv = 0 on dwnof,
ABC(v) = 0 ondw)ofN.

» For this problem with k := /A € (0;7), the modes are
Propagating ng (x,y) = e /\/2k,
Evanescent | wk(z,y) = e cos(nmy)/v/Bn, Bn = Vn2r2 — X\, n > 1.
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Scattering problem in the half waveguide

Find v s.t. v — v; is outgoing and

Av+Xlv = 0 inw,
(U_L (#) Owv = 0 on dwn o,
w ABC(v) = 0 ondw)ofN.

» For this problem with k := /A € (0;7), the modes are
Propagating | w (z,y) = e /\/2k,
Evanescent | wk(z,y) = e cos(nmy)/v/Bn, Bn = Vn2r2 — X\, n > 1.

» For v; = w, , for all VA € (0;7), (&) admits a solution
v=w, +Rwg +7,

where R € C and 9 is expo. decaying (uniqueness < abs. of trapped modes).
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Scattering problem in the half waveguide

Find v s.t. v — v; is outgoing and

Av+Xlv = 0 inw,
(U_L (#) Owv = 0 on dwn o,
W ABC(v) = 0 ondw)ofN.

» For this problem with k := /A € (0;7), the modes are
Propagating | w (z,y) = e /\/2k,
Evanescent | wk(z,y) = e cos(nmy)/v/Bn, Bn = Vn2r2 — X\, n > 1.

» For v; = w, , for all VA € (0;7), (&) admits a solution
v=w, +Rwg +7,

where R € C and 9 is expo. decaying (uniqueness < abs. of trapped modes).

» R is uniquely defined (even for A = A\°) and |R| = 1 (cons. of energy).
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Small perturbation of the geometry

» We perturb slightly (¢ > 0 is small) the geometry

()

-

Locally dw*® coincides with the graph of z — 1+ ¢H (z),
where H € 65°(R) is a given profile function.
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Small perturbation of the geometry

» We perturb slightly (¢ > 0 is small) the geometry

()

-

Locally dw*® coincides with the graph of z — 1+ ¢H (z),
where H € 65°(R) is a given profile function.

» For a given H, the scattering/reflection coefficient R is a function of €, .

GOAL neighbourhood of (0, \°) where trapped modes exist.

We wish to study the behaviour of (¢,A\) — R(e,\) in a
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Small perturbation of the geometry

» We perturb slightly (¢ > 0 is small) the geometry

L+ cH(x)

-

w we

Locally dw*® coincides with the graph of x — 1+ cH (),
where H € €§°(R) is a given profile function.

» For a given H, the scattering/reflection coefficient R is a function of €, .

We wish to study the behaviour of (¢,A) — R(e,\) in a
GOAL

neighbourhood of (0, \°) where trapped modes exist.

— We will prove that R is not continuous at (0, \°) working with the

augmented scattering matriz which is continuous at (0, \°).
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The augmented scattering matrix

» We assume that A\° is a simple eigenvalue for () and that
uy = Ke e cos(my) + Gy,

where K # 0, i, has fast decay.

COMMENTS:

- If K =0, adapt the definition of the augmented scattering matrix.

- This object has been introduced in Nazarov, Plamenevsky, 1994.
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The augmented scattering matrix
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The augmented scattering matrix

eFike w Fiwd P Fie iz
> Set wi = and Wit = L— cos(my) .
’ V2k ' V2 V20 (my)
Av+Adv = 0 inw®
» The problem Opv = 0 ondw*noQ® admits the solutions
ABC(v) = 0 on dw®\ 00°
Ug = Wy + 500 wa' + s01 W1+ + g, with g fastly expo. decaying
up = Wi + 510 wa' + s11 W1+ + 1, with @ fastly expo. decaying.

10 / 24



The augmented scattering matrix

eFikz w Fiwd P Fie iz
> Set wi = and  WE=- L cos(my) .
0 V2k ! V2 V2061 )
Av+Xlv = 0 inw®
» The problem Opv = 0 ondw*noQ® admits the solutions
ABC(v) = 0 on 0w®\ 9Q°
Ug = Wy + 500 wa' + s01 W1+ + g, with g fastly expo. decaying
up = Wi + 510 wa' + s11 W1+ + 1, with @ fastly expo. decaying.

A With such radiation conditions, uniqueness holds for A = A°.
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The augmented scattering matrix

eFike w Fiwd P Fie iz
> Set wi = and Wi =L LR cos(my) .
0 V2k ! V2 V2061
Av+Xlv = 0 inw®
» The problem Opv = 0 ondw*noQ® admits the solutions
ABC(v) = 0 on dw®\ 00°
Ug = Wy + 500 wa' + s01 W1+ + g, with g fastly expo. decaying
up = Wi + 510 wa' + s11 W1+ + 1, with @ fastly expo. decaying.

500 So01

» The augmented scattering matrix S =
510 511

) is unitary.
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The augmented scattering matrix

eFikz w Fiwd P Fie iz
> Set wi = and  WF = L cos(my) .
0 V2k ! V2 V2061 )
Av+Xv = 0 inw®
» The problem Opv = 0 ondw*noQ® admits the solutions
ABC(v) = 0 on dw®\ 00°
Ug = Wy + 500 wa' + s01 W1+ + g, with g fastly expo. decaying
up = Wi + 510 wa' + 511 W1+ + 11, with @ fastly expo. decaying.

500 So01

» The augmented scattering matrix S =
510 811

) is unitary.

LEMMA: If s;;7 = —1, the above problem admits trapped modes.

Proof: 511 = —1 = 519 = 0 (S is unitary) and v, € H'(w) is a trapped mode.
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The augmented scattering matrix

eFikz w Fiwd P Fie iz
> Set wi = and Wi =1 LR cos(my) .
0 V2k ! V2 V2061
Av+Xlv = 0 inw®
» The problem Opv = 0 ondw*noQ® admits the solutions
ABC(v) = 0 on 0w®\ 9Q°
Ug = Wy + 500 wa' + s01 W1+ + g, with g fastly expo. decaying
up = Wi + 510 wa' + s11 W1+ + 1, with @ fastly expo. decaying.

500 So01

» The augmented scattering matrix S =
510 811

) is unitary.

LEMMA: If s;;7 = —1, the above problem admits trapped modes.

Proof: 511 = —1 = 519 = 0 (S is unitary) and v, € H'(w) is a trapped mode.

» R and S are related by the formula (valid also when s1; = —1 by cont.):

‘R = 500 — S01(1 +511)_1510-‘
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Asymptotic analysis for S°

» For M € R, set (both the geometry and the frequency are changing )

RE=R(,\+¢\) and S =( %00 %01
510 511

) =S(g, \’ +¢e)).

PROPOSITION: There is ey > 0 such that for all € € (0; gg],
2 2 3
lso — BRI < Ce, |sig—esyol < Ce”, |55 — (=1 +es); +e7571)| < Ce’,

where s, 571, 57¢ € C depending on H, \" are explicit.
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Asymptotic analysis for S°
» For M € R, set (both the geometry and the frequency are changing )

RE=R(e, X +e\) and S =( 00 %01 ) _ g\ +e)).
510 511

PROPOSITION: There is ey > 0 such that for all € € (0; gg],
2 2 3
lso — BRI < Ce, |sig—esyol < Ce”, |55 — (=1 +es); +e7571)| < Ce’,

where s, 571, 57¢ € C depending on H, \" are explicit.

INGREDIENTS OF THE PROOF:

- Weighted Sobolev spaces with detached asymptotics.
- Uniqueness for the problem with non standard radiation conditions.
- Rectification of the boundary with “almost identical diffeomorphisms”.

- Theory of perturbations for linear operators (see Kato’s book).
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The Fano resonance

» We insert the expansions

560 =R + 0(6)7

in the key formula

55 = €5 + O(e%),

R =

€
00

= e

_ S01%10
—.
1+5s9;

5§, = —1+es),

2.1
+e%57;

+0(?)
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The Fano resonance

» We insert the expansions
560 = R+ O(e),

55 = €5 + O(e%),

in the key formula | R® = s§,

£ £
501510

1455,

& Case 57; #0 < X # A, . We obtain

5015
RE=R-e21%. 0(e?)
S5

11

and so

£
511

—1+es,

2.1
+ %87,

+0(?)

lim R(g, \° +e)\) = R.
e—0
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The Fano resonance

» We insert the expansions

s50 = R+ 0(e), 55 = €5 + O(e%), s5, = —14es), +e%), +0(?)

= e

_ S01%10
—
1+5s9;

in the key formula | R® = s§,

& Case 57; #0 < X # A, . We obtain

5015
RE=R-e2210(* andso  limR(e, )\ +eX)=R.
511 e—0

& Case 57; = 0 and Re s, # 0. More generally, take X' = A}, +¢ep . Then

50151
R =R+ 211 0(), with a € R.
iap — sty
501510
We deduce lim R(e, \° + ex, + Ep)=R+ —"—.
e—0 iop — Y
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Comments

lim R(g,\° +e)X) = R, for X # X,
e—
PROPOSITION: sh,50,
lim R(e, \° + e, + epy=R+ ——r w € R.
e—0 1oL — 574
50151
— When p € R, the quantity R + % runs on the whole unit circle.
iap — sy
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Comments

lim R(e,\° +e)\) = R, for X' # X,
e—0
PROPOSITION: 50,500
R+ =

— € R.
o — 81 :

lim R(e, X’ + &), +%p) =

50154
— When p € R, the quantity R + % runs on the whole unit circle.

Lap — 51y
— We find back the 1D picture R(-,+) is not continuous at (0, A°) .

Phase of R(-,

22 6
. s A
18 n
“s \ 20
:
. | | .

06 04 02 0 02 04 08
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Comments

a 0 AN / /
i%R(E,A +e)X) =R, for A" # X

PROPOSITION: Gl ol
01710
"

lim R(e, \° + e). +&2u) = R+ —210
lim (e, A" +eX, +¢e7) +zau—511

weR.

50157
— When z € R, the quantity R + —2—2_

Lap — 51y
— We find back the 1D picture, R(-,+) is not continuous at (0, A°) .

Phase of R(-,

5
. . A
. .
- 20
>
. | | .

06 04 02 0 02 04 08

— For a small given €0, the map A — R(gg, A) exhibits a quick change at
A0+ 0N

— runs on the whole unit circle.
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50157
— When z € R, the quantity R + —2—2_

Lap — 51y
— We find back the 1D picture, R(-,+) is not continuous at (0, A°) .
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— For a small given €0, the map A — R(gg, A) exhibits a quick change at
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Comments

a 0 AN / /
;%R(a,)\ +e)X) =R, for X' # X,

PROPOSITION: Gl ol
01710
"

lim R(e,\° + X +&2u) =R+ —2 19
lim (e, A" +eX, +¢e7) +zau—sn

weR.

5015
— When z € R, the quantity R + —2—2_

Lap — 51y
— We find back the 1D picture, R(-,+) is not continuous at (0, A°) .

Phase of R(-,

22 4
2 5
: 4
16
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14
2
12
1
| 9
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»

— For a small given €0, the map A — R(gg, A) exhibits a quick change at
A0+ EOA;. If s/, = 0 and s7] # 0, the change is even quicker...

-~ runs on the whole unit circle.
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© Non reflection and complete reflection
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Relations for the scattering coefficients

» We come back to the problem in the total waveguide 2

Av+Xv = 0 inQ,

(+) Opv = 0 on 0f.
» (%) admits the solution
e”he L Rethr 4 5 2>0 (reflection)
v Te 45, <0 (transmission)

with R, 7 € C and @ € H'(Q). We have |R|*> + |T|?> = 1.
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Relations for the scattering coefficients

» We come back to the problem in the total waveguide 2

(%) Av+Xv = 0 inQ,
Opv = 0 on 0f.
» (%) admits the solution
e”he L Rethr 4 5 2>0 (reflection)
v Te 45, <0 (transmission)

with R, 7 € C and @ € H'(Q). We have |R|*> + |T|?> = 1.

» Introduce the two half-waveguide problems

AU+ AU =0 inw
0,U =0 on dw\ 90N
U=0 ondwnon.

Au+Adu=0 inw
Opu=0 on Jdw
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Relations for the scattering coefficients

» Half-waveguide problems admit the solutions

u = e kT L Ry et 4 q, with @ € HY(w)
= e T L Ry ethr 4 U, with U € H(w).
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» Due to conservation of energy, one has

|Rn|=|Rp| =1.
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Relations for the scattering coefficients

» Half-waveguide problems admit the solutions

u = e kT 4 Ry etk 4 g, with @ € H!(w) (;
= e L Ryttt 4 T, with U € HY(w). .
Ry Rp
» Due to conservation of energy, one has N
|[Rn| = |Rp| =1.

. +U u(—x,y) — U(—=z, B

» Using that v = “ inw, v(r,y)= (=z) 3 (cz) in Q\ @,
Ry + R Ry — R

we deduce that R = % and T = %
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» Due to conservation of energy, one has N
|[Rn| = |Rp| =1.

. +U u(—x,y) — U(—=z, B

» Using that v = “ inw, v(r,y)= (=z) 3 (cz) in Q\ @,
Ry + R Ry — R

we deduce that R = % and T = ¥‘

Non reflection R =0
< Ry =—Rp
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Relations for the scattering coefficients

» Half-waveguide problems admit the solutions

= e % 4 Ry e + 4, with @ € H(w) Vi
— e thx + Rp eikm—FUy with U € Hl(w)' = T

» Due to conservation of energy, one has N

Rn| =|Rp|=1.
|Rn|=|Rp| R
. +U u(—x,y) — U(—=z, B
» Using that v = “ inw, v(r,y)= (=z) 3 (cz) in Q\ @,
Rv+R Ry —R
we deduce that |R = —— 2 3 | and = oy 5 D

Non reflection R =0
< Ry =—Rp

16 / 24



Relations for the scattering coefficients

» Half-waveguide problems admit the solutions

— e~k 4 Ry ethe 4 @, with @ € H' (w) Vi
— e thx + Rp eikm—FUy with U € Hl(w)' = T

» Due to conservation of energy, one has N

|Rn|=|Rp|=1. R
» Using that v = ut?t inw, v(r,y)= u=zy) ; U(zy) in Q\ @,
we deduce that R = RN—;RD and T = RN2;RD‘
[Non reflection R = 0] [Perfect reflection 7 = 0]
< Ry =-Rp < Ry =Rp
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Non reflection and perfect reflection

_ RBn+Rp T_RN_RD
N 2 N 2

» To set ideas, we assume that wuy, is symmetric w.r.t. (Oy).
= uy, is a trapped mode for the pb with Neumann B.Cs.

i) No trapped modes for the Dirichlet pb at A = A°. This implies

|Rp(e,A° + X, + &%) — Rp(0,X%)] < Ce, Ve € (0;e0), p € [—ce™ 5 ce].

1

i) p = Ry (e, A° + eX, + e2p) rushes on the unit circle for p € [—ce™!; ce].
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Non reflection and perfect reflection

_ RBn+Rp T_RN_RD
N 2 B 2

» To set ideas, we assume that wuy, is symmetric w.r.t. (Oy).
= uy, is a trapped mode for the pb with Neumann B.Cs.

i) No trapped modes for the Dirichlet pb at A = A°. This implies

|Rp(e,A° + X, + &%) — Rp(0,X%)] < Ce, Ve € (0;e0), p € [—ce™ 5 ce].

1

i) p = Ry (e, A° + eX, + e2p) rushes on the unit circle for p € [—ce™!; ce].

PROPOSITION:
I\, with A. — A% = O(¢), s.t. for € small, R(e, \.)

e, with A, — X0 = O(e), s.t. for & small, T (g, \.)

= 0 (non reflection ).
= 0 (perfect reflection ).
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e Numerical experiments
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The Fano resonance

» Numerics using FE methods (Freefem++) with DtN maps or PMLs.

» Left: domain w®. Right: wu, (trapped mode) for e = 0.

. _ »

1
1054+ ¢ Z0.50
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The Fano resonance

» Numerics using FE methods (Freefem++) with DtN maps or PMLs.

» Left: domain w®. Right: wu, (trapped mode) for e = 0.

1 0.00
1054+ ¢ Z0.50

- -1

» Since |R*| = 1 (conservation of energy), 30° €] — ;7] s.t. R® = e'’.

3f

O
ot

cooo

SEURCEGY

0 D:S i 115 é 2.‘5 3 - 25 2.‘6 217 2‘.8 219
Figure: k> 0°(k) for several € (non uniqueness for e =0, k = 2.7403). 19/ 24



Non reflection/perfect reflection

» Scattering coefficients for k € (2.5;3.1).

0.5

-0.51

No shift (e = 0)

-051

Small shift (¢ > 0)

0.5

-1 -0.5

k— R(0,k)

0

0.5

k— T(0,k)

1

1 . . . .
1 -0.5 0 0.5 1

ki R(0.05,k) kv T(0.05,k)
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Non reflection/perfect reflection

» Example of setting where R(g,A) =0 (non reflection).

U.45

‘ Z0.2
Rev @—— 0.0
-0.2

-0.45

k.
SOl e o= |§

-0.7

» Example of setting where 7 (g,A°) =0 (perfect reflection).

U.b

EO.S

v
-0.3

-0.6
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Frequency behaviour

No shift (e = 0) | Small shift (¢ > 0)

> Lk Rev(k)

BT IJEEIN 'fTI2EEn

» Complex spectrum computed with PMLs (we zoom at the real axis).

e Trapped mode e Complex resonance
4 1 4 4
0 X 0 X
\. \.
- ..’-. * o -1 ..... ° . ]
®e , . . °
2 ®e %, 2 ®e %,
o, o, Ceo, °
3 Ce, % -3 °, ®e g
L] ° . ... L] ° . ...
4 'y Iy 4 'y ry
0 1 2 3 4 5 6 0 1 2 3 4 5 6
el % : | el % : |
001 f ¢ ¢ -0.01 S b .
0.02 . -0.02 .
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@ The Fano resonance in the 2D waveguide

© Non reflection and complete reflection

@ Numerical experiments

22 / 24



Conclusion

What we did

& We proved the Fano resonance phenomenon in a 2D waveguide.
If trapped modes exist for (e, \) = (0,\°), then for e > 0 small,
A+ R(e, \) has a quick variation at \°. Symmetry is not needed.

& We use it to show examples of non reflection and perfect reflection.
Symmetry is essential.

& The technique works with other B.C. (Dirichlet, ...), other kinds of
perturbation (penetrable obstacles, ...), in any dim..
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Conclusion

What we did

& We proved the Fano resonance phenomenon in a 2D waveguide.
If trapped modes exist for (e, \) = (0,\°), then for e > 0 small,
A+ R(e, \) has a quick variation at \°. Symmetry is not needed.

& We use it to show examples of non reflection and perfect reflection.
Symmetry is essential.

& The technique works with other B.C. (Dirichlet, ...), other kinds of
perturbation (penetrable obstacles, ...), in any dim..

1) Without symmetry, how to show that T still passes through zero?

2) Is there non reflection/perfect reflection for & > 7 (monomode
regime was essential in the mechanism)?

3) What happens if A° is not a simple eigenvalue?
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Thank you for your attention!
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