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Abstract. We present a method for approximating solutions of Stochastic Differential Equations
(SDEs) with arbitrary rates. This approximation is derived for bounded and measurable test functions.
Specifically, we demonstrate that, leveraging the standard weak approximation properties of numerical
schemes for smooth test functions—such as first-order weak convergence for the Euler scheme—we
can achieve convergence for simply bounded and measurable test functions at any desired rate by
constructing a tailored approximation for the semigroup of the SDE. This is achieved by evaluating the
scheme (e.g., Euler) on a random time grid. To establish convergence, we exploit the regularization
properties of the scheme, which hold under a weak uniform Hörmander condition.

Keywords : Monte Carlo methods, Numerical methods for SDE, Discrete time Markov processes,
Hörmander properties, Limit theorems for bounded measurable test functions.
AMS MSC 2020: 60J05, 65C05,65C20,35H10, 60F17.

Contents

1. Introduction 1
2. The distance between Semigroups 3
3. Total variation convergence for a class of semigroups 10
References 14

1. Introduction

In this article, our focus lies on the weak approximation for bounded measurable test functions of a Rd-
valued (d ∈ N∗) random variable XT , T ⩾ 0 where (Xt)t⩾0 is a solution to the inhomogeneous Stochastic
Differential Equation (SDE)

Xt = X0 +
∫ t

0
V0(Xs, s)ds+

N∑
i=1

∫ t

0
Vi(Xs, s)dW i

s , t ⩾ 0, X0 ∈ Rd,(1.1)

where ((W i
t )t⩾0, i ∈ {1, . . . , N}) are N ∈ N∗ independent R-valued standard Brownian motions and

Vj ∈ C∞
b (Rd;Rd), j ∈ {0, . . . , d}. When for every j ∈ {1, . . . , d}, Vj does not depend on the time, i.e. its

second variable, the SDE is termed homogeneous.

More precisely, for any chosen ν > 0, T > 0 and sufficiently large n ∈ N∗, we demonstrate that for an
approximation functional operator Q̂ν, T

n

0,T which will be made explicit later, there exists C > 0 such that
for every measurable and bounded function f ,

sup
x∈Rd

|E[f(XT )|X0 = x] − Q̂
ν, T

n

0,T f(x)| ⩽ C

nν
∥f∥∞,(1.2)

where ∥f∥∞ = supx∈Rd |f(x)|. We recall that for µ1 and µ2 two probability measures on Rd, the
total variation distance between µ1 and µ2 is given by

dT V (µ1, µ2) = sup
A∈B(Rd)

|µ1(A) − µ2(A)| = sup
f∈M(Rd;R),∥f∥∞⩽1

1
2 |µ1(f) − µ2(f)|

= sup
f∈C∞

c (Rd;R),∥f∥∞⩽1

1
2 |µ1(f) − µ2(f)|

where µ1(f) =
∫
Rd f(y)µ1(dy) and similarly for µ2(f). The last equality above is a direct consequence

of the Lusin’s Theorem. In our case, given x ∈ Rd, Q̂ν, T
n

0,T (x, dy) is not necessarily a probability measure
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(it is finite with Q̂
ν, T

n

0,T (x,Rd) = 1 but not necessarily positive). Nevertheless, we will refer to (1.2), by

abuse of language, as, for every x, the total variation convergence of Q̂ν, T
n

0,T (x, dy) towards PT (x,dy) that
is the probability measure of XT starting from x at time 0.

The algorithm utilized to construct Q̂ν, T
n

0,T is adapted from the one that was presented in [3] and is based
on a combination of discrete time approximations XΠh

T of (1.1) which are built upon random time grids
Πh, h ∈ {1, . . . , r}, r ∈ N∗. More specifically, given h, we consider a sequence of independent random
variables Uh

j ∈ RN , j ∈ N∗, and we assume that Uh
j , are centered with covariance one. We construct

the Rd-valued process (XΠh
t )t∈πδ in the following way:

XΠh

t
Πh
j+1

= ψ(XΠh

t
Πh
j

, tΠh
j , (tΠh

j+1 − tΠh
j ) 1

2Uh
j+1, t

Πh
j+1 − tΠh

j ), t ∈ πδ, Xδ
0 = xδ

0 ∈ Rd(1.3)

for Πh = {tΠh
j , j ∈ N} with

ψ ∈ C∞(Rd × R+ × RN × [0, 1];Rd) and ∀(x, t) ∈ Rd × πδ, ψ(x, t, 0, 0) = x.

Considering for instance the Euler scheme of (1.1), we have

ψ(x, t, z, y) = x+ V0(x, t)y +
N∑

i=1
Vi(x, t)z

Moreover, Πl is independent from ((Uh
j )j∈N∗)h∈{1,...,r}. The time tΠh

j+1 − tΠh
j between two successive

discrete time values is chosen randomly in { T
nl , l ∈ N}. It is shown in [3] that we can use the following

representation: For every x ∈ Rd,

Q̂
ν, T

n

0,T f(x) =
r∑

h=1
chE[f(XΠh

T )|XΠh
0 = x](1.4)

where the value of ch ∈ R and the law of Πh are given explicitly. This writting allows to compute
Q̂

ν, T
n

0,T f(x) by a Monte Carlo approach sampling M ∈ N∗ independent realizations of XΠh

T , h ∈ {1, . . . , r}.
In addition to the this representation (1.4), the authors of [3] proved that (1.2) hold but with ∥f∥∞
replaced by ∥f∥∞,K the supremum norm of f but also of its derivatives up to order K ∈ N∗, i.e.

sup
x∈Rd

|E[f(XT )|X0 = x] − Q̂
ν, T

n

0,T f(x)| ⩽ C

nν
∥f∥∞,K .(1.5)

Furthermore, the computational complexity for computing Q̂ν, T
n

0,T using M Monte Carlo samples is
of order Crand = M × n × r × C(ν) where C(ν) depends on ν. Notice that a standard approach on
deterministic time grid of size T

n is Cdet = M × n and then Cdet = O
n→∞

(Crand) underscoring the great
numerical interest of this random grid approach as ν can be arbitrarily high.

The main interest of this method arise for big ν. Actually, for small ν, (1.5) is usually obtained by a
Lindeberg type approach relying on a smooth short time approximation of the form

|E[f(Xt+δ) − f(ψ(x, t,
√
δU, δ))|Xt = x]| ⩽ C∥f∥∞,βδ

α+1(1.6)
where α > 0 is referred in this paper as the weak smooth order of the scheme ψ. If α ⩾ ν, one can

simply chose Q̂ν, T
n

0,T = Q
T
n

0,T where for every measurable f and every x ∈ Rd, Q
T
n
s,tf(x) = E[f(X

T
n

t )|X
T
n

s =
x], s, t ∈ π

T
n = {k T

n , k ∈ N} is the semigroup arising from the Markov process X T
n defined on the

homogeneous deterministic time grid with time step T
n (we use X T

n as short notation for Xπ
T
n defined

as in (1.3) with Πh = π
T
n ). In the case of the Euler scheme we have α = 1 (see [18]), but various higher

weak smooth order methods exists (see e.g. [17], [13], [2],[15]). However the value of α remains limited
or requires high computational complexity to be increased.

The algorithm in [3] exploits (1.6) on random time intervals and combine schemes on random time grids
to build Q̂ν, T

n depending on α and ν and ensuring that (1.5) holds. The combination of approximation
method to enhance convergence rates also appears in a large scope of method for the computation
of E[f(XT )|X0 = x]. The Multi-Level Monte Carlo (see [9] and [7]), which extends the statistical
Romberg [10], exploits combination of scheme on different and specific time step to achieve high order
approximation. In a similar way, the Richardson Romberg build high order approximation by taking
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advantage of development of the weak error (see e.g. [14]). Actually, Multi Level Monte Carlo and
Richardson Romberg methods can be combine for even greater efficiency as demonstrated in [11].For
more details about the methods related to those approaches, we refer to the non-exhaustive list of works
[12], [6], [8], [1], [19].

Therefore, the aim of this article is to show that the result from [3] (see (1.5)) is true with K = 0. When
dealing with total variation distance for schemes on deterministic homogeneous time grids, some results
already exists. Essentially, those results prove the convergence in total variation with rate 1

nα considering
that (1.6) is satisfied. In comparison to the case K ∈ N∗, the proof of the total variation convergence
requires regularization properties on the semigroups arising fromX orX T

n , which are themselves obtained
using ellitpic or Hörmander type assumptions. For instance, [5] addresses the scenario where ψ is the
Euler scheme of an homogeneous SDE satisfying weak uniform Hörmander property. They also propose
an expansion of the error for bounded and measurable test functions which enable to use some Richardson
Romberg methods. Regarding generic schemes (which encompass the Euler scheme but also many more
buildings) of inhomogeneous SDE which are simply specified by a transition function - such as X T

n -,
some results were also already established. In [4], the uniform elliptic case is studied, while in [16],
the weak local Hörmander case is addressed. In this case, an additional hypothesis with form (1.6) is
needed to reach order α for the total variation convergence. It is worth noticing that it is shown in
[16] that, even without assuming (1.6), the convergence in total variation error of such generic schemes
to XT happens with at least order 1

n
1
2 −ϵ

, for any ϵ > 0, under the same assumptions that guarantee
regularization properties.

However, the total variation order of convergence cannot go further standard weak smooth order α of
the scheme given by (1.6). As an illustration, the Euler scheme cannot converge faster that 1

n for the
total variation distance and the only way to improve the convergence remains to increase the value of n.
In this article we show how, without increasing n, the method outlined in [3] can be applied to improve
the total variation order of convergence to order 1

nν for any ν even when considering only scheme of weak
smooth order α when α < ν (e.g. α = 1 for the Euler scheme).

In this paper,we do not discuss the representation formula (1.4). We refer to an alternative equivalent
representation, which only involves the discrete time semigroups

Q
T

nl

s,tf(x) = E[f(X
T

nl

t )|X
T

nl
s = x], ∀s, t ∈ π

T

nl ,

where X
T

nl is a short notation for Xπ
T
nl

t (π
T

nl = {k T
nl , k ∈ N}). The aformentionned representation

formula is given in (2.5). First, we show that (1.2) can be obtained using an abstract Lindeberg
inspired decomposition and assuming regularization properties on Q

T

nl

s,t (see Theorem 2.1 and Theorem
2.2). Then, we propose sufficient assumption on the function ψ and ((Uh

j )j∈N∗)h∈{1,...,r} such that the

required regularization properties of Q
T

nl

s,t hold under a weak uniform type Hörmander assumption. Those
properties were demonstrated in [16] and are restated in our context in Proposition 3.1.

The article is organized as follows. Section 2 presents the abstract Lindeberg framework to derive (3.1)
from regularization properties on Q

T

nl

s,t . The main results of this section are gathered in Theorem 2.1 and
Theorem 2.2. In Section 3, we state our main result of the article concerning total variation convergence
under suitable hypothesis on ψ and ((Uh

j )j∈N∗)h∈{1,...,r} which is given in Theorem 3.1.

2. The distance between Semigroups

Throughout this paper the following notations will prevail. We fix T > 0 and n ∈ N∗. For l ∈ N we
will denote δl

n = T/nl and for δ > 0 we consider the time grid πδ := {kδ, k ∈ N}, with the convention
π0 = R+.

2.1. Framework.
Notations. For d ∈ N∗, denote by

• Mb(Rd), the set of measurable and bounded functions from Rd to R.
• Cq(Rd), q ∈ N ∪ {+∞}, the set of functions from Rd to R which admit derivatives up to order q

and such that all those derivatives are continuous.
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• Cq
b (Rd), q ∈ N ∪ {+∞}, the set of functions from Rd to R which admit derivatives up to order q

and such that all those derivatives are bounded.
• Cq

1(Rd), q ∈ N ∪ {+∞}, the set of functions from Rd to R which admit derivatives up to order q
and such that all those derivatives are bounded in L1

(
Rd

)
.

• Cq
c (Rd), q ∈ N∪ {+∞}, the set of functions from Rd to R defined on compact support and which

admit derivatives up to order q.
For a multi-index γ = (γ1, · · · , γd) ∈ Nd we denote |γ| = γ1 + ... + γd and if f ∈ C|γ|(Rd), we define
∂γ

xf = (∂1)γ1
. . . (∂d)γd

f = ∂γ1

x1 . . . ∂
γd

xd f(x).

Framework. The approach we propose consists in building an approximation for a family of semigroups(
P δ

t,s)t,s∈πδ;t⩽s

)
δ>0 where we suppose that this family is independent to the time-grid πδ in the following

sense
For every δ, δ > 0, t, s ∈ πδ ∩ πδ, we have P δ

s,t = P δ
s,t =: Ps,t.

The crucial property satisfiedby P is called the semigroup property and write : For every s ⩽ u ⩽ t,
Ps,uPu,t = Ps,t. At this point, we have in mind that P may be the semigroup of an inhomogeneous
Markov process (Xt)t⩾0 solution to (1.1), such that for every measurable function f : Rd → R and
every x ∈ Rd, Ps,tf(x) = E[f(Xt)|Xs = x]. Now, given a value for δ we intrduce an approximation
process (Xδ)t∈πδ for (Xt)t⩾0 which is supposed to statfisfy the Markov property. In particular, denoting
Qδ

s,t = E[f(Xδ
t )|Xδ

s = x], we have Qδ
s,uQ

δ
u,t = Qδ

s,t for every s ⩽ u ⩽ t. Notice that Qδ may be used
directly to approximate P but we are going a step further. Actually, the approximation we consider for
P will be a concatenation of some Qδ but involving different possible values of δ ∈ {δl

n, l ∈ N∗}.

2.2. Approximation results.

2.2.1. Arbitrary order weak approximation. We introduce the following assumptions In a first step, we
suppose that the semigroup we study is such that for every r ∈ N, if f ∈ Cr

b (Rd) then Ps,tf ∈ Cr
b (Rd)

and
sup

t⩾s⩾0
∥Ps,tf∥r,∞ ⩽ C∥f∥r,∞.(2.1)

The approximation of P we consider in this paper is built from a family of discrete semigroups Q :=(
Qδl

n

)
l∈N

=
(

(Qδl
n

s,t)s,t∈πδl
n ;s⩽t

)
l∈N

such that for every f ∈ Cr
b (Rd) then Q

δl
n

s,tf ∈ Cr
b (Rd) and

∀s, t ∈ πδl
n , s ⩽ t, ∥Qδl

n
s,tf∥r,∞ ⩽ C∥f∥r,∞.(2.2)

and which satisfy the short-time estimate, for every r, β ∈ N, α > 0, and f ∈ Cβ+r
b (Rd)

En(l, α, β, P,Q) ∀t ∈ πδl
n , ∥Pt,t+δl

n
f −Q

δl
n

t,t+δl
n
f∥∞,r ⩽ C∥f∥∞,β+r

(
δl

n

)α+1
.(2.3)

Using the family
(

(Qδl
n

s,t)s,t∈πδl
n ;s⩽t

)
l∈N

, for every (l, ν) ∈ N2, we are going to build (Q̂ν,δl
n

t,t+δl
n
)
t∈πδl

n
as an

approximation of (Pt,t+δl
n
)
t∈πδl

n
which, under the hypothesis (2.2) and (2.3), satisfies, for every r ∈ N,

and f ∈ Cκ(l,ν)+r
b (Rd)

Ên(l, ν, κ, P,Q) ∀t ∈ πδl
n , ∥Pt,t+δl

n
f − Q̂

ν,δl
n

t,t+δl
n
f∥∞,r ⩽ C∥f∥∞,κ(l,ν)+r

1 + T
ν+1
l+1

nν
,(2.4)

with

κ(l, ν) = max
{
βm(l, v),

m(l,v)−1
max
i=1

{iκ(l + 1, qi(l, v))}
}

and

m (l, ν) =
⌈

ν

(1 + α)l + α

⌉
qi (l, ν) =ν + ⌈i− (1 + α)(l + 1)(i− 1)⌉, ∀i ∈ {1, . . . ,m (l, ν) − 1}.

and p(l, ν) ⩾ 0 is a positive constant depending on l, ν and α.

In particular Q̂ν,δ0
n

0,δ0
n

is an approximation of PT with accuracy 1/nν . The approach we use was first
introduced in [3]. Among other, it was shown in this paper that, combined with a random grid approach,
the accuracy 1/nν can be reached with complexity - in terms of the number of simulations of random
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variables with law given by a semigroup Qδl
n for some l ∈ N - of order n. We do not discuss the simulation

of Q̂ν,δ0
n

0,δ0
n

in this paper and we invite the reader to refer to [3] for more details.
For every t ∈ πδl

n , we define Q̂ν,δl
n in the following recursive way

Q̂
ν,δl

n

t,t+δl
n

=Qδl+1
n

t,t+δl
n

+
m(l,ν)−1∑

i=1
Î

δl+1
n

t,t+δl
n,i
,(2.5)

with

Î
δl+1

n

t,t+δl
n,i

=
∑

t=t0<t1<...<ti⩽t+δl
n∈πδ

l+1
n

i∏
j=1

Q
δl+1

n

tj−1,tj−δl+1
n

((
Q̂

qi(l,ν),δl+1
n

tj−δl+1
n ,tj

−Q
δl+1

n

tj−δl+1
n ,tj

))
Q

δl+1
n

ti,t+δl
n
.

Notice that the recursion ends when m (l, ν) = 1 and in this case Q̂ν,δl
n

t,t+δl
n

= Q
δl+1

n

t,t+δl
n
. When m (l, ν) >

1, the recursion still ends for every (l, ν) ∈ N2 and Q̂
ν,δl

n

t,t+δl
n

is well-defined. This is a direct consequence
of Lemme 3.8 in [3]. We also invite the reader to refer to this article for the proof of Ên(l, ν, κ, P,Q) for
every (l, ν) ∈ N2. In particular, Q̂ν,δ0

n

0,δ0
n

= Q̂
ν,δ0

n

0,T is well defined, satisfies Ê(0, ν, κ, P,Q) and may be built

from the family
(

(Qδl
n

t )
t∈πδl

n

)
l∈{1,...,l(ν,α)}

with l(ν, α) = ⌈ν/α⌉

2.2.2. Arbitrary order total variation converge. Our purpose is to obtain a similar estimation as Ê(0, ν, κ, P,Q)
for ∥PT f − Q̂

ν,δ0
n

0,T f∥∞ but which remains valid for simply bounded and measurable test functions f . In
other words we want to show that Ê(0, ν, 0, P,Q) holds. We will obtain such results using a dual
approach. In particular, for a functional operator Q, we denote by Q∗ its dual operator for the scalar
product in L2(Rd) (i.e. ⟨Qg, f⟩L2(Rd) = ⟨g,Q∗f⟩L2(Rd)). Our approach requires to introduce some
additional assumptions concerning our discrete semigroups. A first step is to consider a dual version of
(2.1) and (2.2). We assume that for every f ∈ Cr

1(Rd), then P ∗
s,tf ∈ Cr

1(Rd) and

sup
t⩾s⩾0

∥P ∗
s,tf∥r,1 ⩽ C∥f∥r,1.(2.6)

and for the family of semigroups Q =
((

Q
δl

n
s,t

)
s,t∈πδl

n ;s⩽t

)
l∈N

, Qδl
n,∗

s,t f ∈ Cr
1(Rd) and

∀s, t ∈ πδl
n , s ⩽ t, ∥Qδl

n,∗
s,t f∥r,1 ⩽ C∥f∥r,1.(2.7)

Moreover, we assume that the following dual estimate of the error in short time holds: for every
r ∈ N, and f ∈ Cβ+r

1 (Rd)

En(l, α, β, P,Q)∗ ∀t ∈ πδl
n , ∥P ∗

t,t+δl
n
f −Q

δl
n,∗

t,t+δl
n
f∥r,1 ⩽ C∥f∥β+r,1

(
δl

n

)α+1
.(2.8)

At this point, we notice that using the same approach as in [3], we can derive from (2.6), (2.7) and (2.8),
that for every (l, ν) ∈ N∗, and f ∈ Cκ(l,ν)+r(Rd)

Ên(l, ν, κ, P,Q)∗ ∀t ∈ πδl
n , ∥P ∗

t,t+δl
n
f − Q̂

ν,δl
n,∗

t,t+δl
n
f∥r,1 ⩽ C∥f∥κ(l,ν)+r,1

1 + T p(l,ν)

nν
.(2.9)

where p(l, ν) ⩾ 0 is a positive constant depending on l, ν and α.

Now, we introduce some regularization properties that will be necessary to obtain total variation convergence.
In concrete applications, the property is not necessarily satisfied by the discrete semigroup Qδ but by a
family of functional operators close enough in total variation distance. We call this family, a modification
of Qδ and it is not necessarily a semigroup. Hence, this hypothesis is expressed not only for discrete
semigroups but for discrete family of functional operators.

Let q ∈ N and η ⩾ 0 be fixed. For δ > 0, let
(
Qδ

s,t

)
s,t∈πδ,t>s

, be a family of functional operators. We
consider the following regularization property :
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For every r ∈ N and every multi-index γ with |γ| + r ⩽ q, and f ∈ C∞
b (Rd), then

Rq,η(Qδ) ∀s, t ∈ πδ, t > s, ∥Qδ
s,t∂

γ
xf∥r,∞ ⩽

C

(t− s)η
∥f∥∞.(2.10)

In our approach we will not necessarily use directly (2.10) but an estimate it implies on the adjoint
semigroup. Actually, remembering that ∥f∥1 ⩽ supg∈Mb,∥g∥∞=1⟨g, f⟩, we notice that Rq,η(Qδ) implies
that for every r ∈ N and every multi-index γ with |γ| + r ⩽ q and f ∈ C∞(Rd) ∩ L1(Rd)

∀t ∈ πδl
n , t > s, ∥Qδ,∗

s,t∂
γ
xf∥r,1 ⩽

C

(t− s)η
∥f∥1.(2.11)

Using those hypothesis, we can derive the following total variation convergence towards the semigroup
P with rate 1/nν with ν choosen arbitrarily in N.

Theorem 2.1. We recall that T > 0 and n ∈ N∗. Let ν > 0 and η ⩾ 0 and let us define qν =
maxi∈{1,...,m(0,ν)}(imax(β, κ(1, qi(ν, 0))).

Assume that (2.1), (2.2), (2.6) and (2.7) hold and that the short time estimates En(l, α, β, P,Q) (see
(2.3)), and En(l, α, β, P,Q)∗ (see (2.8)) hold for every l ∈ {1, . . . , l(ν, α)}. Moreover, assume that
Rqν ,η(Qδ1

n) and Rqν ,η(P ) (see 2.10) hold. Then, for every f ∈ Mb(Rd),

∥PT f − Q̂
ν,δ0

n

0,T f∥∞ ⩽
1
nν

∥f∥∞
C(1 + T p)
T (ν)η

.

with T (ν) = inf
{
t ∈ πδ1

n , t ⩾ T n−m(0,v)
n(m(0,v)+1)

}
and p which depends on ν and α.

Proof. We proceed by recurrence. Notice that, using the Lindeberg decomposition, Ên(l, (l+ 1)(α+ 1) −
1, κ, P,Q) (see (2.4)) and Ê(l, (l + 1)(α + 1) − 1, κ, P,Q)∗ (see (2.9)) hold. for any l ∈ N. Now, let us
assume that Ên(1, ν+1, κ, P,Q) and Ê(1, ν+1, κ, P,Q)∗ hold. In order to prove this result, we introduce

a reprensentation for the semigroup (Pt)t⩾0 which relies on the family of semigroup
((

Q
δl

n
t

)
t∈πδl

n

)
l∈N

.

In particular we have, for every t ∈ πδl
n ,

Pt,t+δl
n

= Q
δl+1

n

t,t+δl
n

+
m(l,ν)−1∑

i=1
I

δl+1
n

t,t+δl
n,i

+R
δl+1

n

t,t+δl
n,m(l,ν)

with

I
δl+1

n

t,t+δl
n,i

=
∑

t=t0<...<ti⩽t+δl
n∈πδ

l+1
n

 i∏
j=1

Q
δl+1

n

tj−1,tj−δl+1
n

(
Ptj−δl+1

n ,tj
−Q

δl+1
n

tj−δl+1
n ,tj

)Q
δl+1

n

ti,t+δl
n
.

and

R
δl+1

n

t,t+δl
n,m

=
∑

t=t0<...<tm⩽t+δl
n∈πδ

l+1
n

 m∏
j=1

Q
δl+1

n

tj−1,tj−δl+1
n

(
Ptj−δl+1

n ,tj
−Q

δl+1
n

tj−δl+1
n ,tj

)Ptm,t+δl
n
.

It follows that

PT f − Q̂
ν,δ0

n

0,T =
m(0,ν)−1∑

i=1
I

δ1
n

0,T,i − Î
δ1

n

0,T,i +R
δ1

n

0,T,m(0,ν)

with

I
δ1

n

0,T,i − Î
δ1

n

0,T,i =
∑

0=t0<...<ti⩽T ∈πδ1
n

 i∏
j=1

Q
δ1

n

tj−1,tj−δ1
n

(
Ptj−δ1

n,tj
−Q

δ1
n

tj−δ1
n,tj

)Q
δ1

n

ti,T

−
∑

0=t0<...<ti⩽T ∈πδ1
n

 i∏
j=1

Q
δ1

n

tj−1,tj−δ1
n

(
Ptj−δ1

n,tj
−Q

δ1
n

tj−δ1
n,tj

+ Q̂
qi(0,ν),δ1

n

tj−δ1
n,tj

− Ptj−δ1
n,tj

)Q
δ1

n

ti,T
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More particularly, we can write

I
δ1

n

0,T,i − Î
δ1

n

0,T,i = −
∑

0=t0<...<ti⩽T ∈πδ1
n

2i∑
h=1

 i∏
j=1

Q
δ1

n

tj−1,tj−δ1
n
Λδ1

n,h
tj−δ1

n,tj

Q
δ1

n

ti,T

with, for every j ∈ {1, . . . , i}, Λδ1
n,h

tj−δ1
n,tj

∈
{
Ptj−δ1

n,tj
−Q

δ1
n

tj−δ1
n,tj

, Q̂
qi(0,ν),δ1

n

tj−δ1
n,tj

− Ptj−δ1
n,tj

}
. Moreover,

we notice that the case Λδ1
n,h

tj−δ1
n,tj

= Ptj−δ1
n,tj

−Q
δ1

n

tj−δ1
n,tj

for every j ∈ {1, . . . , i} is excluded. Using this
decomposition, it is is sufficient to prove that∥∥∥∥∥∥

 i∏
j=1

Q
δ1

n

tj−1,tj−δ1
n
Λδ1

n,h
tj−δ1

n,tj

Q
δ1

n

ti,T f

∥∥∥∥∥∥
∞

⩽
C(1 + T ν)
T (ν)η

∥f∥∞/n
ν+i,

and, for the remainder,∥∥∥∥∥∥
m(l,ν)∏

j=1
Q

δ1
n

tj−1,tj−δ1
n

(
Ptj−δ1

n,tj
−Q

δ1
n

tj−δ1
n,tj

)Ptm(l,ν),T f

∥∥∥∥∥∥
∞

⩽
C(1 + T ν)
T (ν)η

∥f∥∞/n
ν+i.

We focus on the study of
∑m(0,ν)−1

i=1 I
δ1

n

0,T,i − Î
δ1

n

0,T,i. The study of Rδ1
n

0,T,m(0,ν) is similar so we leave it
out. First we notice that, using the convention ti+1 = T + δ1

n, for ji = argsupj∈{1,...,i+1}{tj − δ1
n − tj−1},

we have tji
− δ1

n − tji−1 ⩾ T (ν) := inf
{
t ∈ πδ1

n , t ⩾ T n−m(0,v)
n(m(0,v)+1)

}
.

Let f ∈ C∞
c (Rd. Using succesively En(1, α, β, P,Q) (see (2.3)) or Ên(1, qi(ν, 0), κ, P,Q) (see (2.4))

with (2.2), it follows that

∥∥∥∥∥∥
 i∏

j=1
Q

δ1
n

tj−1,tj−δ1
n
Λδ1

n,h
tj−δ1

n,tj

Q
δ1

n

ti,T f

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
ji−1∏

j=1
Q

δ1
n

tj−1,tj−δ1
n
Λδ1

n,h
tj−δ1

n,tj

 (
Q

δ1
n

tji−1,tji
−δ1

n
Λδ1

n,h
tji

−δ1
n,tji

)  i∏
j=ji+1

Q
δ1

n

tj−1,tj−δ1
n
Λδ1

n,h
tj−δ1

n,tj

Q
δ1

n

ti,T f

∥∥∥∥∥∥
∞

⩽ C

∥∥∥∥∥∥
(
Q

δ1
n

tji−1,tji
−δ1

n
Λδ1

n,h
tji

−δ1
n,tji

)  i∏
j=ji+1

Q
δ1

n

tj−1,tj−δ1
n
Λδ1

n,h
tj−δ1

n,tj

Q
δ1

n

ti,T f

∥∥∥∥∥∥
(ji−1) max(β,κ(1,qi(ν,0))),∞

1 + T p(ν,α)

n

∑ji−1
j=1

qh
i

(j)
,

with qh
i (j) = qi(0, ν) if Λδ1

n,h
tj−δ1

n,tj
= Q̂

qi(0,ν),δ1
n

tj−δ1
n,tj

−Ptj−δ1
n,tj

and qh
i (j) = α+1 if Λδ1

n,h
tj−δ1

n,tj
= Ptj−δ1

n,tj
−

Q
δ1

n

tj−δ1
n,tj

and p(ν, α) is a constant depending on ν and α (and which may change value in the following
lines or according to i). Notice that it is not possible to have qh

i (j) = α+ 1 for every j ∈ {1, . . . , i} and
that there exists ĵi ∈ {1, . . . , i}, such that

i∑
j=1

qh
i (j) = ĵiqi(0, ν) + (i− ĵi)(α+ 1) ⩾ ν + i,

Now, for ε > 0, we consider ϕε(x) = ε−dϕ(ε−1x) with ϕ ∈ C∞
c (Rd), ϕ ⩾ 0. and for a fixed x0 ∈ Rd,

we define ϕε,x0(x) = ϕε(x− x0). Moreover, denote

Γi = Λδ1
n,h

tji
−δ1

n,tji

 i∏
j=ji+1

Q
δ1

n

tj−1,tj−δ1
n
Λδ1

n,h
tj−δ1

n,tj

Q
δ1

n

ti,T

Since we have (2.1) and (2.2), Qδ1
n

tj−1,tj−δ1
n
Γif belongs to C∞

b (Rd). Using succesively En(1, α, β, P,Q)∗

(see (2.8)) or Ê(1, qi(ν, 0), κ, P,Q)∗ (see (2.9)) with (2.7), it follows that for a multi-index γ ∈ Nd, x0 ∈ Rd,
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|∂γ
xQ

δ1
n

tj−1,tj−δ1
n
Γif(x0)| = lim

ε→0
|⟨Γ∗

iQ
δ1

n,∗
tj−1,tj−δ1

n
∂γ

xϕε,x0 , f⟩|

⩽C sup
ε>0

∥∥∥Qδ1
n,∗

tji−1,tji
−δ1

n
∂γ

xϕε,x0

∥∥∥
(i−ji+1) max(β,κ(1,qi(ν,0))),1

∥f∥∞
1 + T p(ν,α)

n
∑ji−1

i=1
qh

i
(j)

Our concern is the case |γ| ⩽ (ji − 1) max(β, κ(1, qi(ν, 0))). Using Rqν ,η(Qδ1
n) (see (2.10)) and more

particularly the implication (2.11) on Qδ1
n,∗, it follows that,∥∥∥∥∥∥

 i∏
j=1

Q
δ1

n

tj−1,tj−δ1
n
Λδ1

n,h
tj−δ1

n,tj

Q
δ1

n

ti,T f

∥∥∥∥∥∥
∞

⩽ C sup
ε>0

1
T (ν)η

∥ϕε,x0∥1 ∥f∥∞
1 + T p(ν,α)

n

∑i

j=1
qh

i
(j)

and since
∑i

j=1 q
h
i (j) ⩾ ν+i and ∥ϕε,x0∥1 = ∥ϕ∥1 ⩽ C, the proof is completed as long as f ∈ Cc(Rd).

The extension to f ∈ Mb(Rd) is guaranteed by the Lusin’s theorem.
□

We are now interested by giving a variant of Theorem in which the regularization hypothesis is not
required for P or Q but for some modifications of those semigroups.
Proposition 2.1. We recall that T > 0 and n ∈ N∗. Let ν > 0 and η ⩾ 0 and let us define
qν = maxi∈{1,...,m(0,ν)}(imax(β, κ(1, qi(ν, 0))).

We assume that (2.1) and (2.2) and (2.6), (2.7) hold and that the short time estimates En(l, α, β, P,Q)
(see (2.3)), and En(l, α, β, P,Q)∗ (see (2.8)) hold for every l ∈ {1, . . . , l(ν, α)}. Also, assume that there
exists a modification Q

δ1
n (respectively P ) of Qδ1

n (resp. P ) which satisfy Rqν ,η(Qδ1
n) (resp. Rqν ,η(P ))

(see 2.10) and such that for every f ∈ Mb(Rd),

∀s, t ∈ πδ1
n , s < t, ∥Qδ1

n
s,tf −Q

δ1
n

s,tf∥∞ + ∥Ps,tf − P s,tf∥∞ ⩽
1 + T p

nν+m(0,ν) ∥f∥∞C(t− s)−η.(2.12)

where p depends on ν and α Then, for every f ∈ Mb(Rd),

∥PT f − Q̂
ν,δ0

n

0,T f∥∞ ⩽
1
nν

∥f∥∞
C(1 + T p)
T (ν)η

.

with T (ν) = inf
{
t ∈ πδ1

n , t ⩾ T n−m(0,v)
n(m(0,v)+1)

}
and p which depends on ν and α.

Remark 2.1. Notice that P and Qδ1
n are not supposed to satisfy the semigroup property.

Proof. The proof follows the same line as the one of the previous Theorem 2.1. Consequently, we only
focus on the specificity of this proof, avoiding arguments which are similar to the previous proof. In
particular we study, for every i ∈ {1, . . . ,m(0, ν)},

∥Qδ1
n

ti,T

i∏
j=1

Λδ1
n,h

tj−δ1
n,tj

Q
δ1

n

tj−1,tj−δ1
n
f∥∞

⩽∥Qδ1
n

ti,T

i∏
j=ji+1

Λδ1
n,h

tj−δ1
n,tj

Q
δ1

n

tj−1,tj−δ1
n
Λδ1

n,h
tji

−δ1
n,tji

Q
δ1

n

tji−1,tji
−δ1

n

ji−1∏
j=1

Λδ1
n,h

tj−δ1
n,tj

Q
δ1

n

tj−1,tj−δ1
n
f∥∞

+ ∥Qδ1
n

ti,T

i∏
j=ji+1

Λδ1
n,h

tj−δ1
n,tj

Q
δ1

n

tj−1,tj−δ1
n
Λδ1

n,h
tji

−δ1
n,tji

(
Q

δ1
n

tji−1,tji
−δ1

n
−Q

δ1
n

tji−1,tji
−δ1

n

) ji−1∏
j=1

Λδ1
n,h

tj−δ1
n,tj

Q
δ1

n

tj−1,tj−δ1
n
f∥∞.

The first term is studied similarly as in Theorem 2.1 We use the same notations as introduced in
this proof. For the second term we use (2.12) together with successive application of (2.2) and it follows
that

∥Qδ1
n

ti,T

i∏
j=1

Λδ1
n,h

tj−δ1
n,tj

Q
δ1

n

tj−1,tj−δ1
n
f∥∞ ⩽

C(1 + T p(ν,α))
T (ν)η

∥f∥∞
1

nν+i
+ C(1 + T p)

T (ν)η
∥f∥∞

1
nν+m(0,ν)
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Notice that the study of the remainder Rδ1
n

0,T,m(0,ν) which appears in the proof of Proposition 2.1 is
similar. Rearranging the terms completes the proof. □

At this point, we establish a total variation convergence result which does not require that the regularization
property hold for P but only on the collection of semigroups

(
Qδ

)
δ>0. More specifically, we consider

the following hypothesis : Recall that qν = maxi∈{1,...,m(0,ν)}(imax(β, κ(1, qi(ν, 0))) with the definition
of m, κ and qi given in 2.4 and that l(ν, α) = ⌈ν/α⌉. Let us consider the hypothesis:

Rn,ν,η(Q)
≡

For every k ∈ N∗,
Rn,ν,η(Q).i. (2.2) and (2.7) hold with l replaced by k.
Rn,ν,η(Q).ii. There exists a modification Q

δk
n of Qδk

n which satisfies Rqν ,η(Qδk
n) (see (2.10)) and

such that: ∀s, t ∈ πδ1
k , s < t,

∥Qδk
n

s,tf −Q
δk

n

s,tf∥∞ ⩽ C(t− s)−η ∥f∥∞

nν+m(0,ν) .(2.13)

Theorem 2.2. We recall that T > 0 and n ∈ N∗. Let ν > 0 and η ⩾ 0.

Assume that (2.1) and (2.6) hold. Assume that Rn,ν,η(Q) hold and that for every k ∈ N∗, the short
time estimates En(k, α, β, P,Q) (see (2.3)), and En(k, α, β, P,Q)∗ (see (2.8)) hold. Then, for every
f ∈ Mb(Rd),

∥PT f − Q̂
ν,δ0

n

0,T f∥∞ ⩽
1
nν

∥f∥∞
C(1 + T p)
T (ν)η

.(2.14)

with T (ν) = inf
{
t ∈ πδ1

n , t ⩾ T n−m(0,v)
n(m(0,v)+1)

}
and p which depends on ν and α.

Remark 2.2. The inequality (2.14) is essentially a consequence of Theorem 2.1. However, we may not
use directly this result, because we do not assume that the semigroup P has the regularization property
Rqν ,η(P ) (see (2.10)) This is a result of main interest since we have to check the regularization properties
for the approximations Qδ only. Notice that the method we use does not allow to prove the same result
when assuming regularization hypothesis on P instead of Q. The reason is that our proof consist in
considering P as the limit of Qδ as δ tends to 0. It is not possible to act similarly in the other way as
P does not depend on such a δ.

Proof of Theorem 2.2. We fix n ∈ N∗ and we study the sequence of discrete semigroups
((

Q
δk

n
s,t

)
s,t∈πδk

n ;s⩽t

)
k∈N∗

.

Step 1. We show that for every bounded and measurable test function f ,
(
Q

δk
n

0,T f
)

k∈N∗
is Cauchy in

(Mb(Rd), ∥.∥∞) and that, for k ⩾ l(ν, α),∥∥∥PT f −Q
δk

n

0,T f
∥∥∥

∞
⩽
CTα+1

T (ν)η
∥f∥∞

1
nν
.(2.15)

where p(ν, α) is a constant depending on ν and α (and which may change from line to line in the
following calculus).

For k′ ⩾ k ∈ N∗, following the Lindeberg decomposition yields

∥∥∥∥Qδk′
n

0,T f −Q
δk

n

0,T f

∥∥∥∥
∞

⩽
n∑

m=1

∥∥∥∥Qδk
n

0,(m−1)δ1
n

(
Q

δk′
n

(m−1)δ1
n,mδ1

n
−Q

δk
n

(m−1)δ1
n,mδ1

n

)
Q

δk′
n

mδ1
n,T f

∥∥∥∥
∞
.

Now notice that for g ∈ Cβ
b

(
Rd

)
,∥∥∥∥Qδk′

n

(m−1)δ1
n,mδ1

n
g −Q

δk
n

(m−1)δ1
n,mδ1

n
g

∥∥∥∥
∞

⩽

∥∥∥∥P(m−1)δ1
n,mδ1

n
g −Q

δk′
n

(m−1)δ1
n,mδ1

n
g

∥∥∥∥
∞

+
∥∥∥P(m−1)δ1

n,mδ1
n
g −Q

δk
n

(m−1)δ1
n,mδ1

n
g
∥∥∥

∞
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with, as a consequence of En(1, α, β, P,Q) (see (2.3)),
∥∥∥P(m−1)δ1

n,mδ1
n
g −Q

δk
n

(m−1)δ1
n,mδ1

n
g
∥∥∥

∞
⩽ C ∥g∥∞,β

T α+1

nα+1

if k = 1, and if k > 1∥∥P(m−1)δ1
n,mδ1

n
f−Qδk

n

(m−1)δ1
n,mδ1

n
g
∥∥

∞

⩽
mnk−1∑

u=1+nk−1(m−1)

∥∥∥Qδk
n

(m−1)δ1
n,(u−1)δk

n

(
P(u−1)δk

n,uδk
n

−Q
δk

n

(u−1)δk
n,uδk

n

)
Puδk

n,mδ1
n
g
∥∥∥

∞

⩽ C ∥g∥∞,β

Tα+1

nkα+1

where we have used En(k, α, β, P,Q) (see (2.3)). Consequently∥∥∥∥Qδk′
n

(m−1)δ1
n,mδ1

n
g −Q

δk
n

(m−1)δ1
n,mδ1

n
g

∥∥∥∥
∞

⩽ C ∥g∥∞,β

Tα+1

nkα+1

In the same way we deduce from En(k, α, β, P,Q)∗ (see (2.8)) that

∥∥∥∥Qδk′
n ,∗

(m−1)δ1
n,mδ1

n
g −Q

δk
n,∗

(m−1)δ1
n,mδ1

n
g

∥∥∥∥
1
⩽ C ∥g∥1,β

Tα+1

nkα+1

Combining those estimates with Rqν ,η(Qδk
n) and Rqν ,η(Qδk′

n ) together with (2.13), the same approach
as in the proof of Proposition 2.1 yields, for every f ∈ Mb(Rd),

∥∥∥∥Qδk′
n

0,T f −Q
δk

n

0,T f

∥∥∥∥
∞

⩽
1
nkα

∥f∥∞
C(1 + T p(k,α))

T (ν)η
(2.16)

The sequence
(
Q

δk
n

0,T f
)

k∈N∗
is thus Cauchy in (Mb(Rd), ∥.∥∞) and then limk→∞ Q

δk
n

0,T f exists and

belongs to Mb(Rd). Moreover, remember that as soon as f ∈ C∞
c

(
Rd

)
, (2.4) holds and then Q

δk
n

0,T f
converges to PT f as k tends to infinity so that it is also the case when f is simply bounded and
measurable. Taking k ⩾ ν

α in (2.16) and letting k′ tends to infinity, if follows that (2.15) holds.

Step 2. We now show that for every k ⩾ l(ν/α) = ⌈ν/α⌉ and every f ∈ Mb,

∥Qδk
n

0,T f − Q̂
ν,δ0

n

0,T f∥∞ ⩽
C(1 + T p(ν,α))

T (ν)η
∥f∥∞

1
nν
.(2.17)

Let k ⩾ l(ν, α). We remark that if we replace P by Qδk
n , the short time estimates En(l, α, β,Qδk

n , Q)
(see (2.3)), and En(l, α, β,Qδk

n , Q)∗ (see (2.8)) still hold for every l ∈ {1, . . . , l(ν, α)}.

Moreover, from Rn,ν,η(Q).ii., for every k ∈ N∗, the property Rqν ,η(Qδk
n) (see 2.10) holds for a

modification Q
δk

n of Qδk
n which satisfies (2.13). Therefore, all the assumption of Proposition 2.1 are

fulfilled when we replace P by Qδk
n , so that 2.17 holds.

Step 3. We combine (2.15) and (2.17) and (2.14) follows.
□

3. Total variation convergence for a class of semigroups

3.1. A Class of Markov Semigroups.
In this section we investigate the regularization properties of Qδ1

n and Qδl(ν,α)
n which are crucial to

derive total variation convergence results through Theorem 2.2. In particular we propose an application
where Qδ1

n and Qδl(ν,α)
n are the discrete semigroups of discrete Markov processes defined through an

abstract random recurrence. Regularization properties are then obtained for some modifications of those
semigroups under Hörmander assumptions. More particularly, we will obtain regularization property for
modifications of the family of discrete semigroups (Qδ)δ>0. Our approach is similar to the one developped
in [16] where regularization properties were established for such semigroups in a slightly more general
setting. We introudce the result from this paper we need and adapt to our current framework.
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Definition of the semigroups. We work on a probability space (Ω,F ,P). For δ ∈ (0, 1] and N ∈ N∗,
we consider a sequence of independent random variables Zδ

t ∈ RN , t ∈ πδ,∗, and we assume that Zδ
t , are

centered with E[Zδ,i
t Zδ,j

t ] = 1i,j for every i, j ∈ N := {1, . . . , N} and every t ∈ πδ,∗. We construct the
Rd-valued Markov process (Xδ

t )t∈πδ in the following way:

Xδ
t+δ = ψ(Xδ

t , t, δ
1
2Zδ

t+δ, δ), t ∈ πδ, Xδ
0 = xδ

0 ∈ Rd(3.1)
where

ψ ∈ C∞(Rd × R+ × RN × [0, 1];Rd) and ∀(x, t) ∈ Rd × πδ, ψ(x, t, 0, 0) = x.

Let us now define the discrete time semigroup associated to (Xδ
t )t∈πδ . For every measurable function

f from Rd to R, and every x ∈ Rd,

∀s, t ∈ πδ, s ⩽ t, Qδ
s,tf(x) =

∫
Rd

f(y)Qδ
s,t(x, dy) := E[f(Xδ

t )|Xδ
s = x].

We will obtain regularization properties for modifications of this discrete semigroup. Our approach relies
on some hypothesis on ψ and Zδ we now present.

Hypothesis on ψ. Boundaries and Hörmander property.
We first consider a boundary assumption concerning the derivatives of ψ: For r ∈ N∗,
Aδ

1(r). There exists Dr ⩾ 1, pr ∈ N such that for every (x, t, z, y) ∈ Rd × R+ × RN × [0, 1],
r∑

|γx|+|γt|=0

r−|γx|−|γt|∑
|γz|+|γy|=1

|∂γx

x ∂γt

t ∂γz

z ∂γy

y ψ|Rd(x, t, z, y) ⩽ Dr(1 + δ− pr
2 |z|pr

RN ),(3.2)

Without loss of generality, we assume that the sequences (Dr)r∈N∗ and (pr)r∈N∗ are non decreasing.
We denote Aδ

1(+∞) when Aδ
1(r) is satisfied for every r ∈ N∗.

The second hypothesis we need on ψ is uniform weak Hörmander property on some vector fields we now
introduce. We denote the Lie bracket of two C1 vector fields in Rd, [, ] : (C1(Rd,Rd))2 → C0(Rd,Rd),
f1, f2 7→ [f1, f2] := ∇xf2f1 − ∇xf1f2.
We denote Ṽ0 = ∂yψ(., ., 0, 0), V0 := Ṽ0 − 1

2
∑N

i=1 ∂
2
ziψ(., ., 0, 0), Vi = ∂ziψ(., ., 0, 0), i ∈ N, V̄0 =

V0 − 1
2

∑N
i=1 ∇xViVi. For a multi-index α ∈ {0, . . . , N}∥α∥ and V : Rd × R+ → Rd, we define also V [α]

using the recurrence relation V [(α,0)] = [V̄0, V
[α]]+∂tV

[α] + 1
2

∑N
i=1[Vi, [Vi, V

[α]]] and V [(α,j)] := [Vj , V
[α]]

if j ∈ {1, . . . , N} with the convention V [∅] = V . We are now in a position to introduce our Hörmander
hypothesis on ψ: For L ∈ N, the order of our Hörmander condition, let us define for every (x, t) ∈ Rd×R+,

VL(x, t) := 1 ∧ inf
b∈Rd,|b|Rd =1

∑
α∈{0,...,N}∥α∥;

∥α∥⩽L

N∑
i=1

⟨V [α]
i (x, t),b⟩2

Rd .(3.3)

We introduce:
A∞

2 (L). Our uniform weak Hörmander property of order L,
V∞

L := inf
t∈R+

inf
x∈Rd

VL(x, t) > 0.(3.4)

. When L = 0 this hypothesis is also called uniform ellipticity.

Remark 3.1. The reason we refer to the denomination Hörmander resides in the fact (3.4) exactly
corresponds to the commonly known uniform weak Hörmander property the solution to the SDE (3.5),
written in Stratonovich form as

Xt = X0 +
∫ t

0
V̄0(Xs, s)ds+

N∑
i=1

∫ t

0
Vi(Xs, s) ◦ dW i

s , t ⩾ 0, X0 ∈ Rd(3.5)

where ((W i
t )t⩾0, i ∈ {1, . . . , N}) are N independent R-valued standard Brownian motions and

◦dW i
s stands for the Stratonovich integral w.r.t. (W i

t )t⩾0. When L = 0, 3.4) is also called uniform
elliptic property We points out that (3.4) is equivalent to assume that Rd is spanned by {V [α]

i (x, t), i ∈
{1, . . . , N}, α ∈ {0, . . . , N}∥α∥, ∥α∥ ⩽ L} for every (x, t) ∈ Rd ×R+. In addition, the total variation type
result we are going to establish consists in showing that Q̂ν,δ0

n

0,T f converges to PT f(x) := E[f(Xt)|X0 = x]
for any bounded and measurable test function f .
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Hypothesis on Zδ. Lebesgue lower bounded distributions. A first assumption concerns the
finiteness of the moment of Zδ: For p ⩾ 0,
Aδ

3(p).

Mp(Zδ) := 1 ∨ sup
t∈πδ,∗

E[|Zδ
t |pRN ] < ∞.(3.6)

.
We denote Aδ

3(+∞) the assumption such that Aδ
3(p) is satisfied for every p ⩾ 0.

A second assumption is made on the distribution of Zδ. We suppose that the distribution of Zδ is
Lebesgue lower bounded:

Aδ
4. There exists z∗ = (z∗,t)t∈πδ,∗ taking its values in RN and ε∗, r∗ > 0 such that for every Borel set
A ⊂ RN and every t ∈ πδ,∗,

Lδ
z∗

(ε∗, r∗) P(Zδ
t ∈ A) ⩾ ε∗λLeb(A ∩Br∗(z∗,t))(3.7)

where λLeb is the Lebesgue measure on RN .

We introduce a final structural assumption specifying that the time step δ needs to be small enough.
For δ ∈ (0, 1], when (3.2) holds, we define

η1(δ) :=δ−d 44
91 min(1, 10d

md
∗|210(1 + T 3)| d

2
) and(3.8)

η2(δ) := min(δ− 1
2 η1(δ)− 1

d ,
1
2 |δ 1

2 8D3|−
1

p3+1 ).

with D3, p3 given in (3.2). We introduce the following assumption:
A5. Assume that (3.2) and A∞

2 (L) (see (3.4)) hold and that δ ∈ (0, 1] is small enough so that

η1(δ) >max(1, 21− d
2

d− d
2
, 2( TV∞

L m∗

40(L+ 1)N
L(L+1)

2

)−d13L

,

21L=0 + 21L>0|m∗
|28(1 + T )|−143

10N
L(L−1)

2

|−d13L−1
).

and η2(δ) > 1 where those quantities are defined in (3.8).

3.2. An alternative regularization property. For T ∈ πδ, θ > 0, and G a d-dimensional Gaussian
random variable with mean 0 and covariance identity and independent from (Zδ

t )t∈πδ,∗ , we define

Qδ,θ
s,tf(x) =

∫
Rd

f(y)Qδ,θ
s,t (x, dy) := E[f(Xδ

t + δθG)|Xδ
s = x].

The following result is a a direct application of Theorem 2.1 in [16]

Proposition 3.1. Let L ∈ N and let f ∈ C∞
b (Rd;R).

Then we have the following properties:
A. Let q ∈ N, let γ, ζ ∈ Nd such that |γ| + |ζ| ⩽ q. Assume that Aδ

1(max(q+ 3, 2L+ 5)) (see (3.2)),
A∞

2 (L) (see (3.4)), Aδ
3(+∞) (see (3.6)), Aδ

4 (see (3.7)) and A5. hold. Then, for every x ∈ Rd,

|∂ζ
xQ

δ,θ
s,t∂

γ
xf(x)| ⩽∥f∥∞

C exp(C(t− s))
|(t− s)V∞

L |η
,(3.9)

where η ⩾ 0 depends on d, L, q and θ and c, C ⩾ 0 depend on d,N,L, q,Dmax(q+3,2L+5), pmax(q+3,2L+5),
1

m∗
, 1

r∗
, θ

and on the moment of Zδ and which may tend to infinity if one of those quantities tends to
infinity.

B. Assume that hypothesis from A. are satisfied with Aδ
1(max(q+3, 2L+5)) replaced by Aδ

1(2L+5).
Then, for every x ∈ Rd,

|Qδ
T f(x) −Qδ,θ

T f(x)| ⩽δθ∥f∥∞
C exp(C(t− s))

|(t− s)V∞
L |η

where η ⩾ 0 depends on d, L and θ and C ⩾ 0 depend on d,N,L, q, D2L+5, p2L+5, 1
m∗
, 1

r∗
, θ

and on the moment of Zδ and which may tend to infinity if one of those quantities tends to
infinity.
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3.3. Total variation convergence result. Using the family of approximation schemes (Xδ)δ>0, for
every ν ∈ N∗, we consider Q̂ν,δ0

n

0,T defined as in (2.5) and PT f(x) := E[f(XT )|X0 = x] where X is the
solution to (3.5). Now we are able to prove our main result.

Theorem 3.1. Let T > 0, n ∈ N∗, ν > 0 and qν = maxi∈{1,...,m(0,ν)}(imax(β, κ(1, qi(ν, 0))).

We assume that Aδ
1(+∞) (see (3.2)), A∞

2 (L) (see (3.4)), Aδ
3(+∞) (see (3.6)), Aδ

4 (see (3.7)) and A5.
hold with δ replaced by δ1

n. Moreover, we assume that for every k ∈ N, k ⩾ n, (2.2) and (2.7) hold with
n replaced by k and that the short time estimates Ek(l, α, β, P,Q) (see (2.3)), and Ek(l, α, β, P,Q)∗ (see
(2.8)) hold for every l ∈ {1, . . . , l(ν, α)} if k = n and for l = l(ν, α) if k > n. If n is large enough, then
for every f ∈ Mb(Rd),

∥PT f − Q̂
ν,δ0

n

0,T f∥∞ ⩽
1
nν

∥f∥∞
C exp(CT )
(V∞

L T (ν))η
.(3.10)

where T (ν) = inf
{
t ∈ πδ1

n , t ⩾ T n−m(0,v)
n(m(0,v)+1)

}
and η, C ⩾ 0 do not depend on n or f .

Proof. We have proved in Proposition 3.1 that Qδ,θ verifies the regularization property. We chose θ ⩾
ν +m(0, ν) and the proof of (3.10) is then an immediate consequence of Theorem 2.2. □

Example 3.1. Let us consider X = (X1, X2), the solution of the 2-dimensional system of R valued
SDE, starting at point x0 = (x1

0, x
2
0) ∈ R2 and given by

dX1
t =b(X1

t , t)dt+ σ(X1
t , t)dWt

dX2
t =X1

t dt

where (Wt)t⩾0 is a one dimensional standard Brownian motion, b and σ continuous and bounded
and their derivatives of any order are also continuous and bounded. In the setting from (1.1), we
have V0 : (x, t) 7→ (b(x1, t), x1) and V1 : (x, t) 7→ (σ(x1, t), 0). In this example uniform ellipticity
holds for X1 as long as inf(x1,t)∈R×R+ σ(x1, t)2 ̸= 0. However ellipticity does not hold for X since
dim(span((σ, 0)))(x, t) ⩽ 1 < 2 for any (x, t) ∈ R2 × R+. Nevertheless, let us compute the Lie brackets.
In particular

[V0, V1] : (x, t) 7→ (∂x1σ(x1, t)b(x1, t) − ∂x1b(x1, t)σ(x1, t),−σ(x1, t)),

and, for σ(x1, t) ̸= 0, span((σ, 0), (∂x1σb−∂x1bσ+∂tσ,−σ)(x, t) = R2 so that local weak Hörmander
condition holds. Now, let us consider the Euler scheme of X, given by (Xδ,1

0 , Xδ,2
0 ) = x0 and for t ∈ πδ,

Xδ,1
t+δ =Xδ,1

t + b(Xδ,1
t , t)δ + σ(X1

t , t)
√
δZδ

t+δ

Xδ,2
t+δ =Xδ,2

t +Xδ,1
t δ,

where Zδ
t ∈ R, t ∈ πδ,∗, are centered with variance one and Lebesgue lower bounded distribution and

moment of order three equal to zero. With notations introduced in (3.3), for σ(x1, t) ̸= 0,

V1(x, t)

= 1 ∧ inf
b∈Rd,|b|Rd =1

⟨V1(x, t),b⟩2
Rd + ⟨[V0 − 1

2∇xV1V1, V1](x, t) + ∂tV1(x, t),b⟩2
Rd

= 1 ∧ inf
b∈Rd,|b|Rd =1

⟨(σ, 0),b⟩2
Rd + ⟨(∂x1σb− ∂x1bσ + 1

2σ
2∂2

x1σ + ∂tσ,−σ),b⟩2
Rd(x1, t)

> 0.

For a fixed time step δ > 0, we introduce

∀s, t ∈ πδ, s ⩽ t, Qδ
s,tf(x) := E[f(Xδ

t )|Xδ
s = x].

Now, given T > 0, n ∈ N∗, ν > 0, we build Q̂
ν,δ0

n

0,T using (2.5) and for n large enough, for every
f ∈ Mb(Rd), we have

|E[f(XT )|X0 = x] − Q̂
ν,δ0

n

0,T | ⩽ 1
nν

∥f∥∞
C exp(CT )
|V∞

1 T (ν)|η .

where C and η do not depend on n or f .



14 C. Rey

References
[1] A. Al Gerbi, B. Jourdain, and E. Clément. Ninomiya–victoir scheme: Strong convergence, antithetic version and

application to multilevel estimators. Monte Carlo Methods and Applications, 22(3):197–228, 2016.
[2] A. Alfonsi. High order discretization schemes for the CIR process: application to affine term structure and Heston

models. Math. Comp., 79(269):209–237, 2010.
[3] A. Alfonsi and V. Bally. A generic construction for high order approximation schemes of semigroups using random

grids. Numerische Mathematik, 148:743 – 793, 2019.
[4] V. Bally and C. Rey. Approximation of Markov semigroup in total variation disctance. January 2015.
[5] V. Bally and D. Talay. The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the

distribution function. Probab. Theory Related Fields, 104(1):43–60, 1996.
[6] M. Ben Alaya and A. Kebaier. Central limit theorem for the multilevel Monte Carlo Euler method. The Annals of

Applied Probability, 25(1):211 – 234, 2015.
[7] M.B. Giles. Multilevel monte carlo path simulation. Oper. Res., 56:607–617, 2008.
[8] P.W. Glynn and C-H Rhee. Unbiased estimation with square root convergence for sde models. Operations Research,

63(5):1026–1043, 2015.
[9] S. Heinrich. Multilevel monte carlo methods. In Large-Scale Scientific Computing, pages 58–67, Berlin, Heidelberg,

2001. Springer Berlin Heidelberg.
[10] A. Kebaier. Statistical romberg extrapolation: A new variance reduction method and applications to option pricing.

The Annals of Applied Probability, 15(4):2681–2705, 2005.
[11] V. Lemaire and G. Pagès. Multilevel Richardson–Romberg extrapolation. Bernoulli, 23(4A):2643 – 2692, 2017.
[12] D. McLeish. A general method for debiasing a monte carlo estimator. Monte Carlo Methods and Applications,

17(4):301–315, 2011.
[13] S. Ninomiya and N. Victoir. Weak approximation of stochastic differential equations and application to derivative

pricing. Appl. Math. Finance, 15(1-2):107–121, 2008.
[14] G. Pagès. Multi-step richardson-romberg extrapolation: Remarks on variance control and complexity. Monte Carlo

Methods and Applications, 13(1):37–70, 2007.
[15] C. Rey. Convergence in total variation distance of a third order scheme for one-dimensional diffusion processes. Monte

Carlo Methods and Applications, 23(1):1–12, 2017.
[16] C. Rey. Hörmander properties of discrete time markov processes, 2024.
[17] D. Talay. Second-order discretization schemes of stochastic differential systems for the computation of the invariant

law. Stochastics and Stochastic Reports, 29(1):13–36, 1990.
[18] D. Talay and L. Tubaro. Expansion of the global error for numerical schemes solving stochastic differential equations.

Stochastic Anal. Appl., 8(4):483–509 (1991), 1990.
[19] M. Vihola. Unbiased estimators and multilevel monte carlo. Operations Research, 66(2):pp. 448–462, 2018.


	1. Introduction
	2. The distance between Semigroups
	3. Total variation convergence for a class of semigroups
	References

