HIGH ORDER WEAK APPROXIMATION OF STOCHASTIC DIFFERENTIAL
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ABSTRACT. We present a method for approximating solutions of Stochastic Differential Equations
(SDEs) with arbitrary rates. This approximation is derived for bounded and measurable test functions.
Specifically, we demonstrate that, leveraging the standard weak approximation properties of numerical
schemes for smooth test functions—such as first-order weak convergence for the Euler scheme—we
can achieve convergence for simply bounded and measurable test functions at any desired rate by
constructing a tailored approximation for the semigroup of the SDE. This is achieved by evaluating the
scheme (e.g., Euler) on a random time grid. To establish convergence, we exploit the regularization
properties of the scheme, which hold under a weak uniform Hoérmander condition.
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1. INTRODUCTION

In this article, our focus lies on the weak approximation for bounded measurable test functions of a R%-
valued (d € N*) random variable X7, T > 0 where (X;);>0 is a solution to the inhomogeneous Stochastic
Differential Equation (SDE)

(1.1) X, = X0+/V0 Xs,sds+Z/V L s) AW t>0, X, €RY,

where (W})i>0,i € {1,...,N}) are N € N* independent R-valued standard Brownian motions and
V; € C°(R%GRY), j € {0,...,d}. When for every j € {1,...,d}, V; does not depend on the time, i.e. its
second variable, the SDE is termed homogeneous.

More precisely, for any chosen v > 0, T > 0 and sufficiently large n € N*| we demonstrate that for an

approximation functional operator QO’ = which will be made explicit later, there exists C' > 0 such that
for every measurable and bounded function f,

(12) sup [E[f(X1)|Xo = ] — QU3 F@)] < || e
zeR4 n

where || f||oc = Sup,ega |f(x)]. We recall that for 1 and po two probability measures on R?, the
total variation distance between pq and po is given by

1
drv(p,p2) = sup  |ui(A) — pa(A)| = sup i‘ﬂl(f) — p2(f)|
AEB(RY) FEMRER), || flloo <1
1
= sup Slua(f) = p2(f)]

rec (RAR)| fll <1 2
where py (f fRd y) 1 (dy) and similarly for ps (f ) The last equality above is a direct consequence
of the Lusin’s Theorem. In our case, given x € R?, QO 7’3 (z,dy) is not necessarily a probability measure
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Ay T
(it is finite with Qg’q’i (z,R?) = 1 but not necessarily positive). Nevertheless, we will refer to 1) by

Ay T
abuse of language, as, for every z, the total variation convergence of Qg:% (z,dy) towards Pr(z,dy) that
is the probability measure of X starting from x at time 0.

The algorithm utilized to construct QO’ = is adapted from the one that was presented in [3] and is based

on a combination of discrete time approximations X;Ih of which are built upon random time grids
Iy, h € {1,...,r}, r € N*. More specifically, given h, we consider a sequence of independent random

variables U Jh € RV, j € N*, and we assume that U”? i, are centered with covariance one. We construct

the R%valued process (X;");cns in the followmg way:

II II 1T IT 11 ) 5 )
(1.3) X, _w(XH’;,tjh,(tjjl t; My Ul it —t™), ten’, X§=x{eR?
J+1

for I, = {t;, j € N} with
P e C®(REx Ry x RN x[0,1];RY) and V(z,t) € R? x 7% 4(x,t,0,0) = x.

Considering for instance the Euler scheme of ([1.1)), we have
N

b, t,2,y) =z + Volz, )y + Y Vilw, 1)z
i=1
Moreover, II; is independent from ((U. h)jeN*)he{l ,,,,, 3. The time tjnjl - tnh between two successive

discrete time values is chosen randomly in {ZL,l € N}. It is shown in [3] that we can use the following

ey
representation: For every x € RY,

(1.4) QV’ Ff@) = eaBlf(X7")| Xo™" = a]

where the value of ¢, € R and the law of II;, are given explicitly. This writting allows to compute

AT
ng’i (z) by a Monte Carlo approach sampling M € N* independent realizations of XTI}", he{l,...,r}
In addition to the this representation (1.4, the authors of [3] proved that (1.2) hold but with ||f|eo
replaced by ||f|lco,x the supremum norm of f but also of its derivatives up to order K € N*, j.e.

: C
(1.5) sup |E[f(X7)|Xo = z] — Q” (@) < [ flloo k-
z€ER4 n
Ay T
Furthermore, the computational complexity for computing QSQ’I using M Monte Carlo samples is

of order Crong = M x n x r x C(v) where C(v) depends on v. Notice that a standard approach on

deterministic time grid of size % is Cget = M x n and then Cyet = O (Crang) underscoring the great
n—oo

numerical interest of this random grid approach as v can be arbitrarily high.

The main interest of this method arise for big v. Actually, for small v, (L.5)) is usually obtained by a
Lindeberg type approach relying on a smooth short time approximation of the form

(1.6) E[f(Xeys) — (@ (x,t,VU,6))| Xy = 2| < C|[f |0,

where a > 0 is referred in this paper as the weak smooth order of the scheme . If a > v, one can
simply chose QSZ% = QO%,T where for every measurable f and every z € R%, Qif(x) = E[f(Xt%)|X§ =
x], s,t € T = {kZ k € N} is the semigroup arising from the Markov process X7 defined on the

r
homogeneous deterministic time grid with time step % (we use X % as short notation for X™" defined

as in (1.3) with II;, = 7+ ). In the case of the Euler scheme we have o = 1 (see [I8]), but various higher
weak smooth order methods exists (see e.g. [1T], [13], [2],[15]). However the value of « remains limited
or requires high computational complexity to be increased.

The algorithm in [3] exploits on random time intervals and combine schemes on random time grids
to build Q”’% depending on « and v and ensuring that holds. The combination of approximation
method to enhance convergence rates also appears in a large scope of method for the computation
of E[f(Xr)|Xo = z]. The Multi-Level Monte Carlo (see [9] and [7]), which extends the statistical
Romberg [10], exploits combination of scheme on different and specific time step to achieve high order
approximation. In a similar way, the Richardson Romberg build high order approximation by taking
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advantage of development of the weak error (see e.g. [I4]). Actually, Multi Level Monte Carlo and
Richardson Romberg methods can be combine for even greater efficiency as demonstrated in [II].For
more details about the methods related to those approaches, we refer to the non-exhaustive list of works
121, 6], [8], [, [19].

Therefore, the aim of this article is to show that the result from [3] (see (1.5)) is true with K = 0. When
dealing with total variation distance for schemes on deterministic homogeneous time grids, some results
already exists. Essentially, those results prove the convergence in total variation with rate n%, considering
that is satisfied. In comparison to the case K € N* the proof of the total variation convergence
requires regularization properties on the semigroups arising from X or X 0 , which are themselves obtained
using ellitpic or Hérmander type assumptions. For instance, [5] addresses the scenario where v is the
Euler scheme of an homogeneous SDE satisfying weak uniform Hérmander property. They also propose
an expansion of the error for bounded and measurable test functions which enable to use some Richardson
Romberg methods. Regarding generic schemes (which encompass the Euler scheme but also many more
buildings) of inhomogeneous SDE which are simply specified by a transition function - such as X 03 -
some results were also already established. In [4], the uniform elliptic case is studied, while in [16],
the weak local Hormander case is addressed. In this case, an additional hypothesis with form is
needed to reach order « for the total variation convergence. It is worth noticing that it is shown in
[16] that, even without assuming , the convergence in total variation error of such generic schemes
to X7 happens with at least order ?, for any € > 0, under the same assumptions that guarantee
n

regularization properties.

However, the total variation order of convergence cannot go further standard weak smooth order a of
the scheme given by . As an illustration, the Euler scheme cannot converge faster that 711 for the
total variation distance and the only way to improve the convergence remains to increase the value of n.
In this article we show how, without increasing n, the method outlined in [3] can be applied to improve
the total variation order of convergence to order n% for any v even when considering only scheme of weak
smooth order & when oo < v (e.g. @ = 1 for the Euler scheme).

In this paper,we do not discuss the representation formula (1.4]). We refer to an alternative equivalent
representation, which only involves the discrete time semigroups

5 5 5 z
Qiif(x) =E[f( Xy )[Xg" =], Vsitem,
T
where X 7 is a short notation for X7 o (w% = {k%, k € N}). The aformentionned representation
formula is given in (2.5). First, we show that (1.2) can be obtained using an abstract Lindeberg
T

inspired decomposition and assuming regularization properties on Qi (see Theorem ! and Theorem
. Then, we propose sufficient assumption on the function 1 and ((U]h)jEN*)he{l,...,r} such that the

T
required regularization properties of Q;”t hold under a weak uniform type Hérmander assumption. Those
properties were demonstrated in [16] and are restated in our context in Proposition

The article is organized as follows. Section 2 presents the abstract Lindeberg framework to derive (3.1))
T

from regularization properties on Qg The main results of this section are gathered in Theorem [2.1|and
Theorem [2.2] In Section 3, we state our main result of the article concerning total variation convergence
under suitable hypothesis on 1) and ((U]h)jeN*)he{l,...,r} which is given in Theorem

2. THE DISTANCE BETWEEN SEMIGROUPS

Throughout this paper the following notations will prevail. We fix T > 0 and n € N*. For [ € N we
will denote ¢!, = T'/n! and for § > 0 we consider the time grid 7° := {ké, k € N}, with the convention
7TO = R+.

2.1. Framework.
Notations. For d € N*| denote by

o My(R?), the set of measurable and bounded functions from R¢ to R.
e C1(R?%), g € NU {400}, the set of functions from R? to R which admit derivatives up to order ¢
and such that all those derivatives are continuous.
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e C/(RY), g € NU{+o00}, the set of functions from R? to R which admit derivatives up to order ¢
and such that all those derivatives are bounded.
o C{(R%), g € NU {+co}, the set of functions from R? to R which admit derivatives up to order g
and such that all those derivatives are bounded in L; (Rd).
e CI(R%), g € NU{+o0}, the set of functions from R? to R defined on compact support and which
admit derivatives up to order gq.
For a multi-index v = (v',--- ,7%) € N? we denote |y| = v* + ... + 4% and if f € CM(R?), we define

OYf = (@) ... (0a)" f = 00 ... 00 f ().

Framework. The approach we propose consists in building an approximation for a family of semigroups
(Pt(fs)t,SETr‘s;tés)5>o where we suppose that this family is independent to the time-grid 7% in the following
sense
For every 6,6 > 0,t,s € m® N 7%, we have Pgt = Ps‘it =: Py ;.

The crucial property satisfiedby P is called the semigroup property and write : For every s < u < ¢,
P, Py = Ps;. At this point, we have in mind that P may be the semigroup of an inhomogeneous
Markov process (X¢):>o solution to , such that for every measurable function f : R? — R and
every x € R%, Py, f(z) = E[f(X¢)|Xs = z]. Now, given a value for § we intrduce an approximation
process (X?°), s for (Xt)1>0 which is supposed to statfisfy the Markov property. In particular, denoting
Q% = E[f(X?)|X? = a], we have Q3 ,Q% , = Q2 for every s < u < t. Notice that Q° may be used
directly to approximate P but we are going a step further. Actually, the approximation we consider for
P will be a concatenation of some @Q° but involving different possible values of § € {4%,1 € N*}.

2.2. Approximation results.

2.2.1. Arbitrary order weak approximation. We introduce the following assumptions In a first step, we
suppose that the semigroup we study is such that for every r € N, if f € CJ(R?) then Ps,f € Cy(R?)
and

(2.1) sup || P, f

t=2s2

lroo <CIIf

r,00"

The approximation of P we consider in this paper is built from a family of discrete semigroups @ :=

! ot ot ,
(Qé”)leN = ((Qs?t)s,teﬂsln;sgt)leN such that for every f € Cj(R?) then Qg% f € Cj (R?) and

1 st
(2'2) Vs, t € 7T6"73 <, ||er%f||7’00 < C”er,oo'

and which satisfy the short-time estimate, for every r,6 € N, « > 0, and f € Cf +T(]Rd)
l 5t a+1
(2.3) Eo(la, 8, P.Q)  Vten, ||Pyst f— Qs s floor < Cllflooser (6)7 -

. . st . . Av, 8L
Using the family <(Q3:%)s,tew551;s<t)leN’ for every (I,v) € N2, we are going to build (Q;H%)teﬂ% as an
approximation of (Ptvt+'5%)ten5% which, under the hypothesis 1D and 1) satisfies, for every r € N|
and f € cfMY T (RY)
147

nV

l AV,&L
(24) En(l7 v, R, P7 Q) vt € 7T6"a ||Pt,t+5£7/f - Qt7t+5£Lf||oo,r < CHf||oo,n(l,V)+r
with

)

1) = { (o). " (o + 1,500}
and
mbv) = {<1+a>l+aw
G ) =+ i—(1+a)(+1)i=1)], Yiell,....m{v)—1}

and p(l,v) > 0 is a positive constant depending on [, v and a.

A 0
In particular Qggg is an approximation of Pr with accuracy 1/n”. The approach we use was first

introduced in [3]. Among other, it was shown in this paper that, combined with a random grid approach,
the accuracy 1/n” can be reached with complexity - in terms of the number of simulations of random
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variables with law given by a semigroup Q‘s; for some [ € N - of order n. We do not discuss the simulation

0
of QO 5 in this paper and we invite the reader to refer to [3] for more details.

1 A L, . .
For every t € m°», we define Q%% in the following recursive way

m(l,v)—1
,\61+1
(2.5) Qt oL, _Qt t+51 + § : t 4400 i
with
Bae Y TIa e (@ g, ) e
4ok, i J tj_1,t;—85 tj—oLttt; tj—ohttt; tit46L "
t=to<ti<..<t;<tolexin !
st

Notice that the recursion ends when m (I,v) =1 and in this case Qt ot = @yl - When m (I,v) >

1, the recursion still ends for every (I,v) € N? and Q" is well-defined. This is a direct consequence

t t+6
of Lemme 3.8 in [3]. We also invite the reader to refer to this article for the proof of En(l, v, k, P,Q) for
0 A

every (I,v) € N2, In particular, Q0’68 = Qg:éT” is well defined, satisfies F(0,v, k, P,Q) and may be built
from the family ((Qt )tE”%)le{l,...,l(u,a)} with I(v,a) = [v/«a]

2.2.2. Arbitrary order total variation converge. Our purpose is to obtain a similar estimation as E(O7 v, K, P,Q)

AV 0 . . . . .
for ||Prf — Qo’g;” flloo but which remains valid for simply bounded and measurable test functions f. In

other words we want to show that E(O,V,O,P,Q) holds. We will obtain such results using a dual
approach. In particular, for a functional operator (), we denote by @Q* its dual operator for the scalar
product in L*(R%) (i.e. <ngf>L2(]Rd) = <97Q*f>L2(Rd))' Our approach requires to introduce some
additional assumptions concerning our discrete semigroups. A first step is to consider a dual version of

(2.1) and (2.2). We assume that for every f € Cf(R?), then P}, f € C](R?) and
(2.6) sup [|P7 fllr1 <

t>52>20

L
and for the family of semigroups Q = ((Qg"t) . ) , Q »" f € C(RY) and
") s temdnis<t lEN

n,’

(2.7) Vs, t € 7T6£1,8 < t,

< Ol fllra-

Moreover, we assume that the following dual estimate of the error in short time holds: for every
reN, and f el (RY)

* L m a+1
(28) En(lv Ol,ﬂ, P7 Q) vt € 776”1 || t,t+0L f Qt 461, f”?" 1= OHf”ﬁ"r?"J (6iz) .

At this point, we notice that using the same approach as in [3], we can derive from (2.6 . ) and (2.8 .,
that for every (I,v) € N*, and f € C*(b¥)+7(R?)

N . . VoL 1 4+ TPv)
(29) En(l,l/,H,P,Q) vt € ’/Tén, H t,t48L f - Qt t+5l f”T 1x C”.f”f@(l v)+r, 177;7.

where p(l,v) > 0 is a positive constant depending on [, v and «.

Now, we introduce some regularization properties that will be necessary to obtain total variation convergence.
In concrete applications, the property is not necessarily satisfied by the discrete semigroup Q° but by a
family of functional operators close enough in total variation distance. We call this family, a modification

of Q% and it is not necessarily a semigroup. Hence, this hypothesis is expressed not only for discrete
semigroups but for discrete family of functional operators.

Let ¢ € N and n > 0 be fixed. For § > 0, let ( ° t) be a family of functional operators. We

consider the following regularization property :

s,teEmd t>s’
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For every r € N and every multi-index v with |y| 4+ 7 < ¢, and f € Cj* (Rd) then

(2.10) Rq,n(Qé) Vs,t € 775’75 > 8, HQ(ss,tangT,oo < [ flloo-

(t— 8)”
In our approach we will not necessarily use directly (2.10) but an estimate it implies on the adjoint
semigroup. Actually, remembering that || f[[1 < supgea, |ig)j..=1(9; ), We notice that R, ,(Q°) implies
that for every r € N and every multi-index v with |y| + 7 < ¢ and f € C>°(R?) N L'(R%)

(2.11) Viennt>s, | £

< C
(t—s)"
Using those hypothesis, we can derive the following total variation convergence towards the semigroup

P with rate 1/n" with v choosen arbitrarily in N.

Theorem 2.1. We recall that T > 0 and n € N*. Let v > 0 and n > 0 and let us define q, =
maXiE{l,..qm(Oﬂ/)}(imax(ﬁv’{’(1’%(’/70)))'

Assume that , , @ and (2.7) hold and that the short time estimates E, (I, o, 8, P,Q) (see
2.3)). and E,(l,o, 8, P, Q)" (see ) hold for every I € {1,...,l(v,a)}. Moreover, assume that
qum(Q‘si) and Rq, ,(P) (see hold. Then, for every f € Mb(Rd),

C(1+1TP)
T()r -

with T'(v) = inf {t € mon,t > T%%} and p which depends on v and a.

Au,ég
I1Prf = Qur flloo < ||f\|oo

Proof. We proceed by recurrence. Notice that, using the Lindeberg decomposition, En(l S+ D) (a+1)—
1,5, P,Q) (see (2.4)) and E(I,(I +1)(a +1) — 1,5, P,Q)* (see (2.9)) hold. for any I € N. Now, let us
assume that £, (1,v+1,k, P,Q) and E(1,v+1, k, P,Q)* hold. In order to prove this result, we introduce

l
a reprensentation for the semigroup (F;):>¢ which relies on the family of semigroup <(Qf”) . ) .
tem™ J1eN

. 1
In particular we have, for every t € mn,
m(l,v)—1
(Lv)— 5“
Pt,t+6l Qt oL + § : tt+5l i tt+6’ ;m(l,v)
with
i
5ln+1 5il+1 5ln+1 55{%—1
Tivsti = Z HQtj,l,traLrl (Ptréi#‘, t Q —ottt ) tist+6L°
t=to<...<t;<t+8L endn - \IT1
and
6l+1 il 6l+1 5l+1
n — . n
Rt1t+5£wm* Z H by 1t —OLt (Ptj—éi“,tj Qtj_(;gL+17tJ) Py, ivor -
t=t0<... <t <t+6}, ertntt \I=1
It follows that
m(0,v)—1 3y
5
I’ ’VL p— n n
PTf QO - E : IOTZ 0,T,i +RO¢T,m(O,V)
with
51 a1 o
IO,T/i - IO,T,i = E , HQtJ 1,t;—6L (PtJ Qt'—Jl ) Qti,T
O=to<...<t; <Tex%n \J=1
ai( o
- E : l_IQt7 1,t;—81 (Ptj—%,t; Qt —81.¢ +Q 761 _' Ptj—%v ) Qti,T

0=to<...<t; <Ten’n \J=!
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More particularly, we can write

2t i
51 a5l st Al st
Iyt — Lo = — E : E : H Qi N s o | Qilr
h=1

0=to<...<t; <Tenn j=1
1
Wlth’ for every .7 € {17 ce 7i}a Af]nih(l;}wt] € {Ptj—zS}L, Qt —81t; aQqI,O(gI;) 6 - Ptj_é}l,tj } MOI‘GOVGI’,
1 1
we notice that the case AJ’_”’;hl =P _s14 — 5’7’_ ., forevery j € {1,...,¢} is excluded. Using this
t;j—0L,t; 37 Onoty ti—0L,t;
decomposition, it is is sufficient to prove that
51 st C1+1") Y
H Qt] 1t =81 =61 ¢ Quirf| < Tinf”m/ -,
" (v)7
o0
and, for the remainder,
m(l,v) st C(]. + TV)
H QtJ 1,t5 751 (Pt 7577,7t7 thlf(g,,ll,t]‘) Pt?n(l,u)va g T( ) Hf”oo/ V+’L
oo
A5l 1
We focus on the study of Zm(o v)—1 (Z)SWT i Ig,"T,r The study of RgTT,m(O,V) is similar so we leave it

out. First we notice that, using the convention t;1 = T+ dy,, for j; = argsup,c ;113 {t; =05 —tj-1},

n—m(0,v)

we have t]z — 6; — tj,i_l 2 T(l/) = inf {t S 776711,t 2 TW

Let f € C°(R?. Using succesively E,(1,a, 3, P,Q) (see ) or EA’n(l,qi(u7 0), x, P,Q) (see ( )
with , it follows that

noh i
HQt7 1,t;—6L At 51t Qi rf

o0
i i
— A n’ 6i1. A 71’ 6711 A 77.’ 6'}1.
- H Qtj 1,t5 —51 tj —51 ; Qt],;—lvtji —5 tj —5 t H Qtj_l,tj—él tj —61 j Qti,Tf
j=7i+1 oo
i
5 AR 5 54 5, L4 TP
Qtjifl,tji—(s t] —(5 H Qtjfl,tj—é',ll tj-é}l,tj Qti,Tf Zh 1 h(])
s 1
i (i=1) max(B,(1,4i (1,0))) 00

. . o AOnLh i (0 e AOLR
with ¢! (j) = ¢:(0,v) if A s, ij(_élf ¢, Pry—s1.e; and ¢ (j h(j) = a+1if A = Psi,

1
QSTL s1 ¢, and p(v, ) is a constant depending on v and « (and which may change value in the following
J nv]

lines or according to i). Notice that it is not possible to have ¢/(j) = a + 1 for every j € {1,...,i} and
that there exists j; € {1,...,i}, such that

Zqz _.]qu 0 V) (i_ji)(a+1) v+,

Now, for € > 0, we consider ¢.(z) = e~ 9¢(c1z) with ¢ € C°(R?), ¢ > 0. and for a fixed 7o € R,
we define ¢, 5, () = ¢<(x — x0). Moreover, denote

61
b ’IL’ n
L= Atnfél H QtJ 1,t5 761At —61,t; Qt,-,,T

Jj=ji+1

Since we have ([2.1)) and (|2 Qt 51 I; f belongs to Cg°(RY). Using succesively E,, (1, o, 8, P,Q)*
(see ( . ) or E( ,ql(z/ 0), s, P, Q) (See ) with (2.7, it follows that for a multi-index v € N, zy € RY,
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‘87Qt7 1, t‘—51 ($0)| - hm |<F*62,5m1 tj _516 ¢£ woaf>|
1 4+ TP(Q)

Jlfl
n )

<Coup Q)7 0702,

e>0

1/ lloo

(i—gi+1) max(B,r(1,9:(¥,0))),1

Our concern is the case |’y| (ji — 1) max (S, (1, q;(v,0))). Using Ry, ,(Q %) (see (2.10)) and more
particularly the implication (2 on Q5 * it follows that,

i 51 st 1+ Tp(u «
QA Qi Csup @ o ST
1;[1 tj_1,t; 51 t; 51 t“Tf N ( ) ||¢E 0||1 Hf” nszI q;L(j)
and since Ej LaM(G) = v+iand ||¢ez l1 = ||¢]l1 < C, the proof is completed as long as f € C.(R?).
The extension to f € My(R?) is guaranteed by the Lusin’s theorem.
(]

We are now interested by giving a variant of Theorem in which the regularization hypothesis is not
required for P or @ but for some modifications of those semigroups.

Proposition 2.1. We recall that T > 0 and n € N*. Let v > 0 and n > 0 and let us define
Qv = MaX;c (1, m(0,)} (1 max(B, (1, ¢i(v,0))).

We assume that (l) and (-) and (2.0 (-/ hold and that the short time estimates E, (I, a, 3, P, Q)
(see (2-3)), and E,(l, a ﬁ,P Q)* (see E ) hold for every 1 € {1,...,1(v,a)}. Also assume that there

exists a modification Q " (respectively P) of Q% (resp. P) which satzsfy Ry, 2(Q ) (resp. Ry, »(P))
(see and such that for every f € My(R?),

1+17

u+m0u

1
(212) Vsierrs<t. QS ~ Quidlloe +I1Purf — Porlloe <

where p depends on v and o Then, for every f € ./\/lb( 4,

AV, 60 (1 + TP )
[Prf—Qur flloe < ”fHOOW

with T'(v) = inf {t emdnt > T#%} and p which depends on v and «.

[fllocC(t = 5)7".

— st
Remark 2.1. Notice that P and Q" are not supposed to satisfy the semigroup property.

Proof. The proof follows the same line as the one of the previous Theorem Consequently, we only
focus on the specificity of this proof, avoiding arguments which are similar to the previous proof. In
particular we study, for every i € {1,...,m(0,v)},

51
Q7 s H A Qi Tl
Ji—1
o o 5,

<HQt T H At 751 S Qt]‘_l,tjfélA  —dL tthh—hth—(S H At *51 ity Qt]‘—lﬁjfﬁ,f‘lw

Jj=Jji+1 Jj=1
i Jizl
5717, A n7 6711 A 717 n A
+ HQth H t;—61 t-Qtj,l,trél t5,—0L t5, Qt”,ht -6 ch-l,t - H t 761 t QtJ 1t 76}Lf||0<>'

Jj=ji+1
The first term is studied similarly as in Theorem [2.I] We use the same notations as introduced in

this proof. For the second term we use (2.12]) together with successive application of (2.2)) and it follows
that

, C(1+ TPy 1 C(1+1TP) 1
”QtnT HAt'L(sl t Qt] 1t =81 flloo < T(0)7 Hf”oonl,ﬂ- + ()7 ||f||oom
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Notice that the study of the remainder Ro Tom(0.w) which appears in the proof of Proposition is
similar. Rearranging the terms completes the proof (I

At this point, we establish a total variation convergence result which does not require that the regularization
property hold for P but only on the collection of semigroups (Q‘S) s>0- More specifically, we consider
the following hypothesis : Recall that g, = max;c(1,.. m(0,0)} (1 max(8, (1, ¢;(v,0))) with the definition
of m, k and ¢; given in [2.4] and that I(v,a) = [v/a]. Let us consider the hypothesis:

Rnwn(Q)

For every k € N*,
Ruwn(@)4. ([2:2) and (2.7) hold with I replaced by k.

_ sk
R, ., n(Q).ii. There exists a modlﬁcatlon Q of Q% which satisfies qwn(Q(s”) (see ) and
such that: Vs,t € 7 k,s <t,

sk Ao I
(2.13) 1Qsf = Qulyfllee < C(t— ) UW?;,V)'

Theorem 2.2. We recall that T >0 andn € N*. Let v >0 andn >0
Assume that and (.) hold. Assume that Ry, ,,(Q) hold and that for every k € N*, the short

time estimates E (k,a, B, P,Q) (see (2.3)), and E,(k,c, 3, P,Q)* (see (2.8)) hold. Then, for every
f € My(R?),

C(1+417)
Ty -

with T'(v) = inf {t emdnt> T#(S)’i)l)} and p which depends on v and a.

’\u,ég
(2-14) HPTf - QO,T f”oo =X ”fHoo

Remark 2.2. The inequality is essentially a consequence of Theorem . However, we may not
use directly this result, because we do not assume that the semigroup P has the regularization property
Ry, »(P) (see (m)) This is a result of main interest since we have to check the regularization properties
for the approzimations Q° only. Notice that the method we use does not allow to prove the same result
when assuming regularization hypothesis on P instead of Q. The reason is that our proof consist in
considering P as the limit of Q% as & tends to 0. It is not possible to act similarly in the other way as
P does not depend on such a §.

k

Proof of Theorem[2.3 We fix n € N* and we study the sequence of discrete semigroups ((Qi”t) . ) )
7/ s,temon;s<t keEN*

Step 1. We show that for every bounded and measurable test function f, (QSZT f)k N is Cauchy in
; N+
(My(R?),||.]l) and that, for & > I(v, ),

CT&+1
T(v)"

where p(v, «) is a constant depending on v and « (and which may change from line to line in the
following calculus).

(2.15) | Prs - @3] < £l

For k' > k € N*, following the Lindeberg decomposition yields

n ’
6k

§k/ 5k
3 Q(m—l)ti}l,mé}L_Q(m—l)é}”m&,{ QmS}WTf

ok’ ok
Qo'rf — Quirf

‘ o0

‘oo m=1

Now notice that for g € Cﬂ ( )

& 8 oy
HQ(m—l)(S}l,mé}lg B Q(m—l)&}l,mé}lgH < Hp(ml)é}l,mci}bg o Q(m—l)é}“mé}lgH

o0

+ Hp(m—1)61 mstg — Q (m—1)81 ,ms} QH
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6§ a+1
—1)61,msLg — Q(m,l)gi,mgigHoo <C ”9”0075 ,Z;oHrl

with, as a consequence of E, (1, «, 3, P, Q) (see (2 )
ifk=1,andif k > 1

| Pon—1)5 sy S~ Q51

mnFt

5k
S Z HQ(m 1)61 ,(u—1)8k (P(ufl)é,’i,uﬁli - Q(Z—l)éﬁ,ué’“) Puéii,méigHOO
u=14nk-1(m—1)
Ta+1
< Cllglloe,s 7 past

where we have used E, (k,a, 8, P, Q) (see ) Consequently

52/ 62 Ta—i—l
HQ(m1)5;,m5}L9 - Q(m1)5;,m5;9H < Cllglle, s ka1
In the same way we deduce from E,(k,a, 8, P,Q)* (see (2 ) that
Ta+1

HQ(m 1)6L mélg Q(m 1)6L mélgH <C ||g||17,8 nka—i—l

k/
Combining those estimates with R, n(Q5 )and Ry, . n(Q5 ) together with (2.13)), the same approach
as in the proof of Proposition [2.1] n yields, for every f € My(R?),

C(1+ Tr(k, a))
T(v)n

k k
The sequence (Qg"Tf)k . is thus Cauchy in (My(R?), ||.|le) and then limg_,q Qg"Tf exists and
: N :

(2.16) HQéz’%f Qg 1o

’ = nkoc

k
belongs to M;(R?%). Moreover, remember that as soon as f € C® (Rd), ) holds and then Qg?T f
converges to Prf as k tends to infinity so that it is also the case when f is simply bounded and
measurable. Taking k£ > Z in (2.16) and letting &’ tends to infinity, if follows that (2.15] holds.

Step 2. We now show that for every k > l(v/a) = [v/a] and every f € My,

C(1 4 TP¥)
T(v)"

Let k > I(v, ). We remark that if we replace P by Q‘Sﬁ the short time estimates E, (I, a, f3, Q‘Sﬁ, Q)
(see ), and E,(l, a, 3, QBZ,Q)* (see 1) still hold for every I € {1,...,l(v,a)}.

sk
Moreover, from |R, ,.,(Q).ii., for every k € N* the property wan(Q&") (see |2 holds for a

sk
modification Qé” of Q‘Sﬁ which satisfies |D Therefore, all the assumption of Proposition are
fulfilled when we replace P by Q‘S:, so that holds.

Step 3. We combine (2.15) and (2.17) and (2.14) follows.

5k Av,8°
(2.17) 1Qurf — Qo' flloe < Hmmy-

3. TOTAL VARIATION CONVERGENCE FOR A CLASS OF SEMIGROUPS

3.1. A Class of Markov Semigroups.

In this section we investigate the regularization properties of Q‘;i and Q‘S:ﬁ(u‘a) which are crucial to
derive total variation convergence results through Theorem In particular we propose an application
where Q‘Svlm and Q’Sln(u’a) are the discrete semigroups of discrete Markov processes defined through an
abstract random recurrence. Regularization properties are then obtained for some modifications of those
semigroups under Hérmander assumptions. More particularly, we will obtain regularization property for
modifications of the family of discrete semigroups (Q?)s~o. Our approach is similar to the one developped
in [16] where regularization properties were established for such semigroups in a slightly more general
setting. We introudce the result from this paper we need and adapt to our current framework.
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Definition of the semigroups. We work on a probability space (Q, F,P). For § € (0,1] and N € N*,
we consider a sequence of independent random variables Zf e RN, t € 7%*, and we assume that Zf , are
centered with E[Z)Z07] = 1;; for every i,j € N := {1,..., N} and every t € 7%*. We construct the
R9-valued Markov process (X?),c.s in the following way:

(3.1) XPis = (X],t, 27 Z}y5,0), tem®, X§=x{eR?
where
Y e C®(RYx Ry x RY x [0,1;R?) and V(x,t) € R? x %, 4)(x,,0,0) = z.

Let us now define the discrete time semigroup associated to (X?);crs. For every measurable function
f from R? to R, and every = € R?,

Vster s <t QL) = [ F)Qwdy) = EF(XDIXI = al.

We will obtain regularization properties for modifications of this discrete semigroup. Our approach relies
on some hypothesis on ¥ and Z° we now present.

Hypothesis on . Boundaries and Hormander property.
We first consider a boundary assumption concerning the derivatives of ¢: For r € N*,

Aj(r). There exists D, > 1,p, € N such that for every (z,t,z,y) € R? x Ry x RN x [0,1],

7" =17
(3.2) S Y O ) bt ) < D1+ 5 ),
[Y# 417 1=0 [y*|+]vv =1
Without loss of generality, we assume that the sequences (D,.),en+ and (p,)ren+ are non decreasing.
We denote A{(+o00) when AJ(r) is satisfied for every r € N*.
The second hypothesis we need on % is uniform weak Hormander property on some vector fields we now
introduce. We denote the Lie bracket of two C' vector fields in R4, [,] : (C*(RY,R9))? — CO(R4,RY),
fi, fa = [f1, fo] == Vafofi = Vafifo.
We denote Vo = 9,4(.,.,0,0), Vo := Vo — 2 N 824(,.,0,0), Vi = 8.:¢(.,.,0,0), i € N, V =
Vo — %Zil V. V;V;. For a multi-index « € {0, ... ,N}““H and V : R? x Ry — R%, we define also V%
using the recurrence relation V(@0 = [V, Viel] 4 g,vlel + 1 SN Vi, Vi, VIel]] and VIl = [y, viel)
if j € {1,..., N} with the convention V1% = V. We are now in a position to introduce our Hérmander
hypothesis on ¢: For L € N, the order of our Hérmander condition, let us define for every (z,t) € R¢xR,,

(3.3) Vi(z,t):=1A  inf Z Z AIER)

beR? |blea=1 el i
uau<L
We introduce:
AS°(L). Our uniform weak Hérmander property of order L,

3.4 X = inf f t) > 0.
(3.4) Vi tlerﬂlh rléleVL(x ) >

. When L = 0 this hypothesis is also called uniform ellipticity.
Remark 3.1. The reason we refer to the denomination Hérmander resides in the fact ezactly

corresponds to the commonly known uniform weak Hérmander property the solution to the SDE ,
written in Stratonovich form as

(3.5) X, = X0+/V0 5,8 ds+2/ s)odWi, t>0,X,eR?

where (W})i0,i € {1,...,N}) are N independent R-valued standard Browmian motions and
odW? stands for the Stratonovich integral w.r.t. (W{)i>o. When L = 0, is also called uniform
elliptic property We points out that is equivalent to assume that R? is spanned by {V[a] (z,t),i €
{1,...,N},a €{0,..., N}l |jaf < L} for every (x,t) € Rd x Ry. In addition, the total variation type

result we are going to establzsh consists in showing that QO’ "f converges to Prf(x) :=E[f(X:)| Xy = ]
for any bounded and measurable test function f.
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Hypothesis on Z°. Lebesgue lower bounded distributions. A first assumption concerns the
finiteness of the moment of Z%: For p > 0,

AS(p).
(3.6) M,(Z2°) =1V tsu? E[|Z? Bv] < oo
emo*

We denote Aj(+00) the assumption such that A3(p) is satisfied for every p > 0.

A second assumption is made on the distribution of Z°. We suppose that the distribution of Z° is
Lebesgue lower bounded:

Aj. There exists z, = (24 t)ieqo~ taking its values in RY and e,, 7. > 0 such that for every Borel set
A C RY and every t € 7%,
(3.7) LY (ei,m)  P(Z) € A) > e Ao, (AN By, (244))

where A7 1, is the Lebesgue measure on RN,
We introduce a final structural assumption specifying that the time step d needs to be small enough.
For ¢ € (0,1], when (3.2) holds, we define
104
51 min(1,
ma|210(1 + T3)|

(3.8) m(6) :=6"14 %) and

1 1 1,1 1
n2(0) ::min(5_§771(5)_3,§|(5§8®3‘ PaFl ).

with @3, p3 given in (3.2]). We introduce the following assumption:
Ajs. Assume that (3.2) and AS°(L) (see (3.4)) hold and that § € (0, 1] is small enough so that

212 TVm.,
771(5) >max(1, d2 72( L mL(L-H) )7d13La
d=> 40(L+1)N— =
28 1+T —143 B
2170 + 21L>0|m*%|_d1# 0.
10N~ =2

and 72(0) > 1 where those quantities are defined in (3.8).

3.2. An alternative regularization property. For T € 7%, § > 0, and G a d-dimensional Gaussian
random variable with mean 0 and covariance identity and independent from (Z9),c s, we define

QU@ = | Fw)Q (e, dy) = E[f(X} +5°G)|X2 = a].

The following result is a a direct application of Theorem 2.1 in [16]

Proposition 3.1. Let L € N and let f € C°(R%R).
Then we have the following properties:
A. Let g €N, let v,¢ € N? such that |y + [¢| < q. Assume that AS(max(q+3,2L +5)) (see ),
AX(L) (see ), Aj(+00) (see ), A§ (see ) and|As.| hold. Then, for every x € R?,
Cexp(C(t—s))
3.9 a5Q% oy < flloo ———=,
wheren = 0 depends ond, L,q and 0 and c,C > 0 depend on d, N, L, 4,0 nax(q+3,2L+5)> Pmax(q+3,2L+5)> iv %, 0

and on the moment of Z° and which may tend to infinity if one of those quantities tends to
infinity.

B. Assume that hypothesis from are satisfied with AS(max(q+3,2L+5)) replaced by A§(2L+5).
Then, for every x € RY,

Cexp(C(t —s))

QY f(x) — Q¥ F ()] <O\ flloo v

| T ( ) T ( )| || || |<t—S)VL |»,7

where n > 0 depends on d,L and 8 and C' > 0 depend on d,N, L,q, ®ar,+5, Por+5, m%u %,9

and on the moment of Z° and which may tend to infinity if one of those quantities tends to
mfinity.
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3.3. Total variation convergence result. Using the family of approximation schemes (X°%)s~g, for
PN 0

every v € N*, we consider Qg:éT" defined as in lb and Prf(z) := E[f(Xr)|Xo = z] where X is the

solution to (3.5). Now we are able to prove our main result.

Theorem 3.1. Let T'> 0, n € N*, v > 0 and q, = maX;e(1, .. .m(0,»)} (i max(B3, £(1, ¢;(v,0))).

We assume that AS(+00) (see ), AP(L) (see ), Aj(+00) (see ), A (see ) and
hold with & replaced by 5.. Moreover, we assume that for every k € N, k > n, and hold with
n replaced by k and that the short time estimates Ex(l, o, 8, P, Q) (see ), and Ex(l,c, B8, P,Q)* (see
@) hold for every l € {1,...,l(v,a)} if k =n and for I =1l(v,a) if k > n. If n is large enough, then
for every f € My(R9),

Cexp(CT)

Av,80 i

where T'(v) = inf {t € 7T6711,t > T%%} and 1,C > 0 do not depend on n or f.

Proof. We have proved in Proposition that Q%? verifies the regularization property. We chose 6 >
v+ m(0,v) and the proof of (3.10) is then an immediate consequence of Theorem O

Example 3.1. Let us consider X = (X', X?), the solution of the 2-dimensional system of R valued
SDE, starting at point o = (z},23) € R? and given by

dX} =b(X} t)dt + o(X},t)dW,

dX? =X}dt

where (Wi)i>o is a one dimensional standard Brownian motion, b and o continuous and bounded

and their derivatives of any order are also continuous and bounded. In the setting from , we
have Vo : (z,t) — (b(zh,t),2%) and Vi : (x,t) = (o(2%,t),0). In this exzample uniform ellipticity
holds for X' as long as inf ;1 )erxr, o(z,t)? # 0. However ellipticity does not hold for X since

dim(span((c,0)))(x,t) <1 < 2 for any (z,t) € R?2 x Ry. Nevertheless, let us compute the Lie brackets.
In particular

Vo, Vil & (2, 1) = (Opo(zt, t)b(xt 1) — Opnb(at, t)o (2, t), —o(zh, 1)),
and, for o(z',t) # 0, span((0,0), (0z10b— Dy bo + o, —0)(z,t) = R? so that local weak Hormander
condition holds. Now, let us consider the Fuler scheme of X, given by (Xg’l,Xg’Q) =29 and fort € 7%,
XPL =X A b(X) 06 + o (X)L OVEZY
X)5 =X77+ X,

where Zf € R, t € #%*, are centered with variance one and Lebesque lower bounded distribution and
moment of order three equal to zero. With notations introduced in , for o(zt,t) #0,

V1 (x, t)

1
_ . 2 1 2
=1A bERd{‘ILled:1<V1(x,t),b>Rd +{Vo — 5 Vo ViV, Vil(z,t) + 0 Vi(z,t),b)ja

1
=1A beRdiﬁ)ﬁ d71<(g’ 0),b)as + ((9p10b — Dpabo + 5028§10 + 040, —0),b)a(xt, )
5| Dlpd =

> 0.
For a fized time step § > 0, we introduce
Vs, t e m°, s < t, (;tf(ac) = E[f(Xf)\X;S:x].
A 0
Now, given T > 0, n € N*, v > 0, we build Qggl” using and for n large enough, for every
f € My(R?), we have

Cexp(CT)

Av,8° 1
— _ "n <7 _—
[ELf(X7)[Xo = 2] = Qoz*| <1l £l (VT ()]

where C' and n do not depend on n or f.
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