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Abstract

In this paper, we study the discretization of the ergodic Functional Central Limit Theorem (CLT)
established by Bhattacharya (see [2]) which states the following: Given a stationary and ergodic Markov
process (X¢):>0 with unique invariant measure v and infinitesimal generator A, then, for every smooth
enough function f, (n!/21 fom Af(Xs)ds)i>o converges in distribution towards the distribution of the
process (v/—2(f, Af),Wi)i>o with (W;)i>0 a Wiener process. In particular, we consider the marginal
distribution at fixed ¢ = 1, and we show that when fon Af(X,)ds is replaced by a well chosen discretization
of the time integral with order ¢ (e.g. Riemann discretization in the case ¢ = 1), then the CLT still holds
but with rate n?/(2¢+1) instead of n'/2. Moreover, our results remain valid when (X;);>o is replaced by
a g-weak order approximation (not necessarily stationary). This paper presents both the discretization
method of order ¢ for the time integral and the g-order ergodic CLT we derive from them. We finally
propose applications concerning the first order CLT for the approximation of Markov Brownian diffusion
stationary regimes with Euler scheme (where we recover existing results from the literature) and the
second order CLT for the approximation of Brownian diffusion stationary regimes using Talay’s scheme
[29] of weak order two.
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1 Introduction

In this paper, we design a recursive algorithm which aims to approximate the invariant distribution
(denoted v) of a Feller process (X;);>0. Moreover, we establish rates of convergence for our approximation.
In particular, we prove a discretized version of the Functional Central Limit Theorem (CLT) presented
in [2] and which states the following;:

Let (X¢)i>0 be a progressively measurable Markov stationary ergodic process with initial and invariant
distribution v and infinitesimal generator A with domain D(A) (see Section 2.1.2 for definition). Then,

for every f € D(A), (n'/22 fom Af(Xs)ds)i>o converges in distribution, as n tends to infinity, towards
the distribution of (\/—=2(f, Af),W4)i>0 with (W;)¢>0 a Wiener process.

In this work, we are interested in proving a version of this result when considering the marginal
asymptotic distribution of n!/21 fom Af(X,)ds for fixed t > 0. The main difference of our approach
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compared to [2], is that we consider discrete time approximations of the time integral fot "Af (Xs)ds and
make possible to replace (X;)¢>0 by a weak order approximation (in a sense made precise in Section 3)
with arbitrary initial condition. We then establish a CLT (see Theorem 3.2) for our approximation of
the time integral. However, the rate of convergence is altered by the discretization. In particular, if we
use a g-weak order approximation for (X;);>0, ¢ € N*, we propose an adapted discretization of the time
integral such that the CLT is satisfied with order n'/? replaced by n#/(2a+1)

In order to build our approximation of v, we consider random weighted empirical measures built
using a recursive algorithm introduced in [22] and inspired by [13]. Let us be more specific about the
motivation of this algorithm.

Invariant distributions are crucial in the study of the long term behavior of stochastic differential
systems (see [12] and [7] for an overview of the subject) and their computation has already been widely
explored in the literature. In [28], explicit exact expressions of the invariant density distribution for some
solutions of Stochastic Differential Equations are given.

However, in many cases, there is no explicit formula for v and other approaches must be developed.
A first method consists in studying the convergence towards v of the semigroup (P;)i>o (i.e. E[f(Xy]) of
the Markov process (X;);>o as t tends to infinity. This is done e.g. in [9] for the total variation topology.
As soon as Xp can be simulated, for T large enough, we can design a Monte Carlo method to estimate
Pr. Remark that, in addition to the convergence error of Pr Tjoo v, it gives rise to a second term in

the error analysis due to the Monte Carlo error for the computation of Pr.

Unfortunately, most of the time, (X;)¢>0 cannot be simulated at a reasonable cost. A solution is then
to replace (X;)i>0 by a simulable approximation (Y;n)neN, built with transition functions (Q, )nen-
(given a step sequence (Yn)nen, Lo = 0 and 'y, = 1 + ... + 7,). We usually refer to (len)neN as a
numerical scheme of (X;);>0. It is then possible to build approximations of v using Monte Carlo methods
resulting from the weak approximation properties satisfied by (Y;n)neN. For instance, when ~,, = 71,
neN*, Te{l,,necN}if Y}l weakly converges to Pr as 71 tends to zero, we can approximate v(f)
using the Monte Carlo approximation of E[f(X ;' ))] taking v, small enough and T large enough (at least
for continuous and bounded f).

The Monte Carlo methods mentioned above do not fully benefit from the ergodic feature of (X;)¢>0. In
fact, as investigated in [29] for strongly Brownian diffusions, the ergodic (or positive recurrence) property
of (Xi)i>0 is also satisfied by its approximation (Y;;)%N at least for small enough 7,. In particular,
(Y;i)neN has an invariant distribution v (supposed to be unique for simplicity) and the sequence of
empirical measures

1 n
vii(de) = 5=y mbgp (dr),  Tu=nm (1)
" k=1 B

(which can be seen as a discrete version of the time integral T, ! fOF"’ dx.ds studied in [2] with X replaced
by Y%) almost surely weakly converges to v7'. In other words, for every continuous and bounded
function f, v (f) almost surely converges to v (f). This last result makes possible to compute by
simulation, arbitrarily accurate approximations of »7*(f) using only one simulated path of (Y;;)neN.
It is an ergodic - or Langevin - simulation of ¥ (f). At this point, it remains to establish at least that
v (f) converges to v(f) when 71 converges to zero and, if possible, at which rate. In [29] this rate was
shown to depend closely on the weak order of the numerical scheme. Notice that the rate of convergence
of (¥)*)nen~ to Y7 is not established in [29].

To take a step further, the intuition of our algorithm is to build a version (1) such that we avoid the
asymptotic analysis between v and v. Concerning Monte Carlo approaches for Brownian diffusions, it
is proved in [1], that the discrete time weak approximation Markov process (7; )nen, With step sequence
¥ = (Yn)nen vanishing to 0, weakly converges towards v. It is then possible to approximate v(f) using
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the Monte Carlo approximation of E[f (Y;n)] for n large enough.

In [13], the ideas from [29] and [1] are combined to design a Langevin Euler Monte Carlo recursive
algorithm with decreasing step which a.s. weakly converges to an invariant distribution. This paper
treats the case where (Y;n)neN is an (inhomogeneous) Euler scheme with decreasing step associated
to a strongly mean reverting Brownian diffusion process taking values in R%. The sequence (v)),en- is
defined as the weighted empirical measures of the path of (Y;")neN (which is the procedure that is used
in every work we mention from now on and which is also the one we use in this paper). In particular,
the a.s. weak convergence of

1 n n
valde) = 5 Y o wlxr (dx),  Tn=) w, (2)
" g=1 b k=1

towards the (non-empty) set V of the invariant distributions of the underlying Brownian diffusion is
established. Notice also that, this approach does not require that the invariant measure v is unique by
contrast with the results obtained in [29] and [1] or in [6] where the authors study of the total variation
convergence for the Euler scheme with decreasing step of the over-damped Langevin diffusion. Moreover,
when the invariant measure v is unique, it is proved in [13] that nll)rfoo v)f =vf as. for a class of test

functions f that is not simply restricted to continuous and bounded functions but for a larger class,
made of continuous functions with polynomial growth. More specifically, it is shown that, given p > 0,
lim v)f = vf a.s. for every function f satisfying |f(z)| < C(1 + |z|P) for every x € RY. This last

n—-+00
result implies the a.s. convergence for the p-Wasserstein distance (this is a consequence of Theorem 6.9
in [30]).

In the spirit of [2], a CLT is also established in [13] for the empirical measures (2) of the Euler scheme
with rate n'/3. More specificaly, it is shown that, for a well chosen step sequence (Yn)nen+, when n
tends to infinity, n'/31)(Af) converges in distribution towards the centered Gaussian distribution with
variance —2(f, Af),. This whole study is made in a strongly mean reverting setting, and the extension
to the weakly mean reverting setting has been realized first in [25].

Concerning the study of the almost sure convergence, the results established in [13] gave rise to
many generalizations and extensions. In [14], the initial result is extended to the case of Euler scheme
of Brownian diffusions with weakly mean reverting properties. Thereafter, in [15], the class of test
functions for which we have nEIfoo v)f =vf a.s. (when the invariant distribution is unique) is extended

to include functions with exponential growth. Finally, in [26], the results concerning the polynomial
case are shown to hold for the computation of invariant measures for weakly mean reverting Levy driven
diffusion processes. For a more complete overview of the studies concerning (2) for the Euler scheme,
the reader can also refer to [19], [16], [25], [23], [24] or [18§].

Those results are extended in [22] and generalized to the abstract case where both the Markov
transition sequence (Q,, )nen+ (and then (X}n)neN) and the Feller process (X;);>0 are not specified
explicitly. In [22], abstract properties are developed to prove a.s. weak convergence of (2) in this abstract
framework. In particular, it suggests various applications beyond the Euler scheme of Levy processes.
See for instance [21]. An interest of such an abstract framework is that it can be applied to schemes
with higher g-weak order than the Euler scheme (which has weak order of convergence ¢ = 1). In this

paper, we aim to show that this procedure may improve the rate of convergence in the CLT from n'/3
to na/(at1),

In particular, we extend the abstract framework introduced in [22] to prove the CLT in the weakly mean
reverting setting. We establish an abstract ergodic g-order CLT (see Theorem 3.2) which enables to
obtain a discretized version of [2] and recover results from [13], [15], [25] or [18] which are all restricted
to the case ¢ = 1. The proof of Theorem 3.2 relies both on the fact that we deal with a ¢-weak order
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stochastic approximation (an)neN for (X;)i>0 and that we consider a generalization of (2), defined by

1 n n
vi(de) = 7= > maadyy  (do),  Ha=) me 3)
=1 B k=1

with (7g,n)nen+ a well-chosen weight sequence given in (35). Notice that the weights for ¢ = 1,2 or 3
appears as extension of the standards Riemann, Trapezoidal or Simpson’s homogeneous approximations
of integrals. Up to our knowledge, no second or higher order CLT had been derived in any situation so
far in the literature. However, acceleration techniques inherited from multilevel Monte Carlo (see [10]
for seminal paper) and inspired from Richardson-Romberg extrapolation already exist. For instance, we
can refer to [17] or [20] which allows to reach similar rates as with our approach that is nt/2F+1)  for
the Richardson-Romberg method of order R > 2.

The paper is organized in the following way. Section 2 presents the results from [22] to obtain a.s.
weak convergence of (3) in an abstract setting. The extension of this abstract framework to be adapted
to derive g-order ergodic CLT is developed in Section 3 where our main abstract result is established
(see Theorem 3.2). Almost sure weak convergence and first order CLT for the Euler scheme are given
as example at the end of Section 3. Then, in Section 4, we apply Theorem 3.2 to the second weak order
scheme of Talay for Brownian diffusion processes introduced in [29]. In particular, in Theorem 4.1, we
establish the a.s. weak convergence of the empirical measures. We also establish a first order CLT for
())nen-- In this case, the convergence has the same rate as for the Euler (i.e. n'/3) scheme. Finally,
we establish the second order CLT for (1/12),en- with rate n?/>. This last result can not be obtained for
the Euler scheme as it is simply a first weak order scheme.

2 Convergence to invariant distributions - A general approach

In this section, we present the abstract framework from [22] to show the convergence of weighted empirical

measures defined in a similar way as in (3) and built from an approximation (len)neN of a Feller process

(X1)1>0 (which are not specified explicitly). Given that the step sequence (Vi )nen- j)_ 0, it a.s.
n—-+0oo

weakly converges to the set V, of the invariant distributions of (X;);>¢. This framework is based on as
weak as possible mean reverting assumptions on the pseudo-generator of (Y;n)neN on the one hand and
appropriate rate conditions on the step sequence (7, )nen+ on the other hand.

2.1 Presentation of the abstract framework

2.1.1 Notations

Let (E,|.|) be a locally compact separable metric space, letC(E) the set of continuous functions on E
and Co(FE) the set of continuous functions that vanish at infinity. We equip this space with the sup norm
|| flloe = supgep |f(z)] so that (Co(E),|.||oc) is a Banach space. We will denote B(E) the o-algebra of
Borel subsets of E and P(FE) the family of Borel probability measures on E. We will denote by Kg the
set of compact subsets of E.

Finally, for every Borel function f : E — R, and every I, € RU {—o00,+00}, zlggo f(x) =l if and

only if for every e > 0, there exists a compact K. C Kg such that sup,cg. |f() — | < € if lc € R,

infyexe f(z) > 1/€if loo = +00, and sup f(r) < —1/eif o = —o0 with K¢ = E'\ K.
reK¢

2.1.2 Construction of the random measures

Let (€2, G,P) be a probability space. We consider a Feller process (X;):>o (see [8] for details) on (2, G, P)
taking values in a locally compact and separable metric space E. We denote by (P;)i>o the Feller
semigroup (see [27]) of this process. We recall that (P;):>o is a family of linear operators from Co(E)
to itself such that Pof = f, Pirsf = P.Psf, t,s > 0 (semigroup property) and }1_1(}(1) |1Pif — flloo =0
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(Feller property). Using this semigroup, we can introduce the infinitesimal generator of (X;);>0 as a
linear operator A defined on a subspace D(A) of Co(E), satisfying: For every f € D(A),

Af:limy

t—0

exists for the ||.||cc-norm. The operator A : D(A) — Co(E) is thus well defined and D(A) is called the
domain of A. As a consequence of the Echeverria Weiss theorem (see e.g. [7], Theorem 9.17), the set of
invariant distributions for (X;);>¢ can be characterized in the following way:

V={vePE)Vt>0,Pv=v}={veP(E)VSfeDA),v(Af) =0}

The starting point of our reasoning is thus to consider an approximation of A. First, we introduce the
family of transition kernels (Q,),>0 from Cy(E) to itself. Now, let us define the family of linear operators

A= (27)7>0 from Co(FE) into itself, as follows

Qf—f

vaCO(E)7 7>Oa A’z[’yf: ~

The family Ais usually called the pseudo-generator of the transition kernels (Q, )0 and is an approximation
of A as v tends to zero. From a practical viewpoint, the main interest of our approach is that it
is reasonable to assume that there exists 7 > 0 such that for every z € E and every v € [0,7],
Q. (z,dy) is simulable at a reasonable computational cost. The family (Q- )0 is used to build (Xr, )nen
(this notation replaces (an)neN from now for clarity in the writing) as the non-homogeneous Markov

n
approximation of the Feller process (X;)¢>o. It is defined on the time grid {T', = > &, n € N} with
k=1

the time-step sequence v := (Y5, )nen+ satisfying

VYneN, 0<v,<7:=supyp <400, lim ~,=0 and lim I, = 4o0.
nEN* n—-+oo n—-+o0o

Notice that we will sometimes use the notation y_,, for m € N. In this case we will always use the
convention y_,, = 0. The transition probability distributions of (Xr, )nen are given by Q. (z,dy),n €
N x e FE, te.:

]P)(ylﬂnJrl S dy|yFn) =Q (an,dy), n € N.

 ~Yn+1

We can canonically extend (X, ),en into a cadlag process by setting X (¢, w) = an(t) (w) with n(t) =
inf{n € N,T,,41 > t}. Then (Xr,)nen is a simulable (as soon as X is) non-homogeneous Markov chain
with transitions

Vm < n, ?mern ((t, dy) = Q’ym+1 0---0 Q’yn (lL’, dy)7
and law

L(Xr,

Xo=1)=Pr,(z,dy) =Q,,0---0Q, (x,dy).

We use (X, )nen to design a Langevin Monte Carlo algorithm. Notice that this approach is generic
since the approximation transition kernels (Q,),>0 are not explicitly specified and then, it can be used in
many different configurations including among others, weak numerical schemes or exact simulation i.e.
(X1, )nen = (X7, )nen. This is of main interest in this paper as we show later that using high weak order
schemes of (X;):>o leads to higher rates of convergence in the CLT satisfied by the weighted empirical
measures. Notice that weighted empirical measures are built in a quite more general way than in (2)
as we consider some general weights which are not necessarily equal to the time steps. We define this
weight sequence. Let 7 := (9, )nen+ be such that

n—-+o0o

VneN*, n,>0, lim H, = +oo, with  H, :=H,, = an. (4)
k=1
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Now we present our algorithm introduced in [22] and adapted from the one introduced in [13] designed
with a Euler scheme with decreasing step (X, )nen of a Brownian diffusion process (X;);>o. For x € E,
let 6, denote the Dirac mass at point x. For every n € N*, we define the random weighted empirical
random measures as follows

1 n
valde) = > Mo, (dx). (5)
" g=1

This section of the paper is dedicated to present how to prove that a.s. every weak limiting distribution

of (1])nen- belongs to V. In particular when the invariant measure of (X;);>¢ is unique, i.e. V = {v},

then P — a.s. 11111 vl f = vf, for a generic class of continuous test functions f. The approach consists
n—-+0oo

in two steps. First, we establish a tightness property to obtain existence of at least one weak limiting
distribution for (v!),en+. Then, in a second step, we identify everyone of these limiting distributions
with an invariant distributions of the Feller process (X;)¢>o-

2.1.3 Assumptions on the random measures

In this part, we present the necessary assumptions on the pseudo-generator A= (Zv)’y>0 in order to
prove the convergence of the empirical measures (V]),en+.

Mean reverting recursive control

In this framework, we introduce a well suited assumption, referred to as the mean reverting recursive
control of the pseudo-generator A. This assumption leads to a tightness property on (v),en+ from which
follows the existence (in weak sense) of a limiting distribution for (),en+. A supplementary interest of
this approach is that it is designed to obtain the a.s. convergence of (v]1(f))nen+ for a generic class of
continuous test functions f which is larger then Cp(E). To do so, we introduce a Lyapunov function V'
related to (Xr, )nen. Assume that V' a Borel function such that

Ly = V:E = [vs,+00),v. >0 and lim V(z) = +o0. (6)

Tr—r00

We now relate V to (X1, )nen introducing its mean reversion Lyapunov property. Let 1, ¢ : [v., 00) —

(0, 400) some Borel functions such that ﬁﬂ/} oV exists for every v € (0,7]. Let « > 0 and 8 € R. We
assume

RCQ,V(¢7¢7Q76) =
(i) FngeN*Vn>=ng,zeE, A, hoV(z)< w‘o/\(/z()a;) (B—apoV(x)).
(i) liminf6(y) > 5/ "

RCo,v (¢, ¢,,B) is called the weakly mean reverting recursive control assumption of the pseudo
generator for Lyapunov function V.

Lyapunov functions are usually used to show the existence and sometimes the uniqueness (see e.g.
[4] or [3]) of the invariant measure of Feller processes. In particular, when p = 1, the condition
RCq,v (14, 14, o, B)(i) appears as the discrete version of AV < — aV, which is used in that interest for
instance in [12], [7], [1] or [19].

The condition RCq v (V?, 14,0, 6)(i), p > 1, is studied in the seminal paper [13] (and then in
[14] with ¢(y) = y*,a € (0,1],y € [vs,00)) concerning the Wasserstein convergence of the weighted
empirical measures of the Euler scheme with decreasing step of a Brownian diffusion. When ¢ =
14, the Euler scheme is also studied for Markov switching Brownian diffusions in [18]. Notice also
that RCq v (14, ¢, o, B)(i) with ¢ concave appears in [5] to prove sub-geometrical ergodicity of Markov
chains. In [15], a similar hypothesis to RCq v (l4, ¢, @, 8)(i) (with ¢ not necessarily concave and ;l,yn
replaced by A), is also used to study the Wasserstein but also exponential convergence of the weighted
empirical measures (5) for the Euler scheme of a Brownian diffusion. Finally in [26] similar properties
as RCo v (VP, Ve o, B)(3), a € (0,1], p > 0, are developed in the study of the Euler scheme for Levy
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processes.

On the one hand, the function ¢ controls the mean reverting property. In particular, we call strongly
mean reverting property when ¢ = I; and weakly mean reverting property when hm o(y)/y = 0, for

instance ¢(y) = y*, a € (0,1) for every y € [v,,00). On the other hand, the functlon 1/1 is closely related
to the identification of the set of test functions f for which we have EIE vI(f) = v(f) a.s., when v is

the unique invariant distribution of the underlying Feller process.

To this end, for s > 1, which is related to step weight assumption, we introduce the sets of test
functions for which we will show the a.s. convergence of the weighted empirical measures (5):
Cp,., . (B) ={f €C(B).|f(@)| = o (Vysal@)}, ®)
poV(x)poV(x)'/s
V(z) '

Notice that our approach benefits from providing generic results because we consider general Feller
processes and approximations but also because the functions ¢ and v are not specified explicitly.

with Vi E =Ry, zm Vg o(z) =

Infinitesimal generator approximation
This section presents the assumption that enables to characterize the limiting distributions of the a.s.
tight sequence (V]!(dz,w))nen~. We aim to estimate the distance between V and v]! (see (5)) for n large

enough. We thus introduce an hypothesis concerning the distance between (A, )0, the pseudo-generator
of (Q,)y>0, and A, the infinitesimal generator of (P;);>o. We assume that there exists D(A)y C D(A)
with D(A)o dense in Cy(FE) such that:

E(AADA)) = Vye(0.7VfeD(A)VreE,
Ay f(a) = Af ()] < Ag(@,7), (9)
where A : E x R, — R, can be represented in the following way: Let (Q,G, ]f”) be a probability space.

Let g : E— RY, ¢ € N, be alocally bounded Borel measurable function and let Ap: (ExRyxQ,BE)®

B(R,)®G) — R% be a measurable function such that sup;eqr o E[sup,cp SUP, ¢ (0,7] Agi(z,y,@)] <
400 and that we have the representation

Vo € E,V"}/ S (Oaﬁ]a Af($77) = <g($)7I~E[Af($77’®)]>R‘1

Moreover, we assume that for every i € {1,...,q}, sup,en- ¥J1(gi,w) < 00, P(dw) — a.s., and that ]\fﬂ-
satisfies one of the following two properties:
There exists a measurable function v : (©2,G) — ((0,7], B((0,7])) such that:

() VK €Kp, limsup Agi(x,y,@) =0,

I) P(d®) —a-s (i) lim  sup A Z(CL‘ v, @) =0, (10)
I
0 ye(0,7(@)]
or
I1) P(do) — a.s lim sup A ;(z,7,%)gi(x) = 0. (11)

70 2ecE

Remark 2.1. Let (F, F,)\) be a measurable space. Using the exact same approach, the results we obtain
hold when we replace the probability space (Q, g, ]f") by the product measurable space (Q xF,GQF,P® A)
in the representation of Ay and in (10) and (11) but we restrict to that case for sake of clarity in the
writing. This observation can be useful when we study jump process where A can stand for the jump
intensity.

This representation assumption benefits from the fact that the transition functions (Q(z,dy))~e05),
x € E, can be represented using distributions of random variables which are involved in the computation
of (X, )nen+. In particular, this approach is well adapted to stochastic approximations associated to a
time grid such as numerical schemes for stochastic differential equations with a Brownian part or/and a
jump part.
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Growth control and Step Weight assumptions

We conclude with hypotheses concerning the control of the martingale increments of functions of
the approximation (Xr, )nen+. Let p € [1,2] and let ez : Ry — Ry an increasing function. For
Fc{f,f:(E,B(E) — (R,B(R))} and g : E — R a Borel function, we assume that, for every n € N,

GCq(F,g,p,ex) = P—as. VfEeF,
Bl f(Xr,1) = Qi f (X, )1 X1, ] < Crez(1na1)9(Xr,), (12)
with C¢ > 0 a finite constant which may depend on f.
Remark 2.2. The reader may notice that GCq(F, g, p, €7) holds as soon as (12) is satisfied with Q,, ., f(X1,),

n € N*, replaced by af]-'ff IiO'(YFk, k < n)- progressively measurable process (X,)nen+ since we have
Qi f(X1,) =E[f(Xr,,,)| X, ] and E[| f (X1, ,,) =y, f(X1,)IP | XD, ] < 2°E[[f (X1, ) —Xa]?[ XD, ]

for every X, € L2(FX).

We will combine this first assumption with the following step weight related ones:

oo
SWiaalgiper) =  P-as. ;1 i *e2(1m)9(Xr,) < +o0, (13)
and
SWizyn(F) = P—as. VfeF,
7; (77n+1/’)’n];i+177n/%)+ \f(yrn) < 400, (14)
with the convention 79/79 = 1. Notice that this last assumption holds as soon as the sequence

(Mn/n)nen+ is non-increasing.

We end this section presenting the main results concerning the almost sure convergence of empirical
measures which are used in this article. Those results were established in [22] in an abstract framework
that we will extend to establish CLT.

2.1.4 Almost sure tightness

From the recursive control assumption, Theorem 2.1 establishes the a.s. tightness of the sequence
(¥ nen+ and also provides a uniform control of (¢]1),en+ on a generic class of test functions.

Theorem 2.1. Let s > 1, p € [1,2], vs > 0, and let us consider the Borel functions V : E — [v.,0),
g:E =Ry, ¢: [v,,00) = Ry and ez : Ry — Ry an increasing function. We have the following
properties:

A. Assume that E.y (¢ o V)¢ exists for every n € N*, and that GCqo((v o V)%, g, p,ez) (see (12)),

n

SWr (g, pyex) (see (18)) and SWrz ., (v o V)I/*) (see (14) hold. Then

I —  ~ —
P-a.s. sup —— anAw (o V)Y*(Xp,_,) < 400, (15)
neN* Hn b1

B. Let o« > 0 and f € R. Let ¢ : [vs,00) — R be a continuous function such that Cy :=
SUPye(v, ,00) P(Y)/y < 00. Assume that (15) holds and

1. RCQ,V(waaaaﬁ) (866 (7)) holds.

ii. Ly (see (6)) holds and lim Sl _ +00.
y—+oo y

Then,

P-a.s.  sup v1(Vy.4.s) < 4o00. (16)
neN*

with Vi 4« defined in (8). Therefore, the sequence (v!)nen- is P — a.s. tight.



2.2 About Growth control and Step Weight assumptions

2.1.5 Identification of the limit

In Theorem 2.1, the tightness - and then existence of a weak limiting distribution - of (v),en+ is
established. From Theorem 2.2, it follows that every limiting point of this sequence is an invariant
distribution of the Feller process with infinitesimal generator A.

Theorem 2.2. Let p € [1,2]. We have the following properties:

A. Let D(A)y C D(A), with D(A)o dense in Co(E). We assume that zzlv%f exists for every f € D(A)o
and every n € N*. Also assume that there exists g : E — Ry a Borel function and ez : R, — Ry
an increasing function such that GCo(D(A)o, g, p,€ez) (see (12)) and SWx (g, p,€1) (see (13))
hold and that

1l
Jlm I kE_l k41 /Y1 = M/ k| = 0. (17)
Then
R G
P-a.s. Vf € D(A)o, ngl}rloo H, kgl kA, f(Xr, ) =0. (18)

B. We assume that (18) and E(A, A, D(A)q) (see (9)) hold. Then
P-a.s. Vf € D(A)y, HEIEOO vl(Af) =0.

It follows that, P — a.s., every weak limiting distribution v of the sequence (V)!)nen+ belongs to V,
the set of the invariant distributions of (X;)¢>0. Finally, if the hypotheses from Theorem 2.1 point
B. hold and (X;)i>0 has a unique invariant distribution, i.e. V = {v}, then

P-a.s. VfeCy (E), lim v!(f)=v(f), (19)

Vi,g,s n——+o0
with Cy, | (E) defined in (8).

In the particular case where the function ¢ is polynomial and V is quadratic, notice that (19) implies
the a.s. convergence of the empirical measures for the p-Wasserstein distances for some p > 0.

2.2 About Growth control and Step Weight assumptions

The following Lemma presents a Lj-finiteness property that we can obtain under recursive control
hypotheses and strongly mean reverting assumptions (¢ = I;). This result is thus useful to prove
SWrz (9, psez) (see (13)) or SWzz 4 (F) (see (14)) for well chosen F' and g in this specific situation.

Lemma 2.1. Letv, >0,V : E — [v,,00), ¥ : [vx,00) = Ry, such that /Nl,ynq/)oV exists for everyn € N*.
Let a >0 and 8 € R. We assume that RCq,v (¥, La, o, B) (see (7)) holds and that E[oV (X, )] < 400
for every ng € N*. Then

supE[y o V(X1,)] < +o0 (20)
neN
p
In particular, let p € [1,2] and ez : Ry — Ry, an increasing function. It follows that if >~ , Hziyn ex(Yn) <
+00, then SWz (1 o V. p,ez) holds and if >0 (""L“M”Ijl_""/%)* < +o0, then SWiz 4 n(tp o V) is

n+1

satisfied.

Now, we provide a general way to obtain SWr (g, p, ) and SWrz 4 ,(F) for some specific g and
F as soon as a recursive control with weakly mean reversion assumption holds.

Lemma 2.2. Let v, > 0, V : E = [vs,00), ¥, ¢ : [vx,00) = Ry, such that Z%LQ/) oV exists for every
n € N*. Let « > 0 and 8 € R. We also introduce the non-increasing sequence (6p,)nen+ such that
> ns10nn < +oo. We assume that RCq v (¢, ¢, B) (see (7)) holds and that E[y o V(Xr,,)] < +o0
for every ng € N*. Then

> 0w E[Vy 51 (Xr, )] < 400

n=1
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with Viy 41 defined in (8). In particular, let p € [1,2] and ez : Ry — Ry, an increasing function. If we
also assume

_ T \p . . .
SW = ( 1 ) 18 mon-increasing and
7. (P; €1) T ez(n) ( Hn%) e 9

i (Hzr;n)pq(%) < o0, (21)

n=

then we have SWz..,(Vyp.o1, p,€z) (see (18)). Finally,if

M+l 7]7")

n

+
SWizyg = (%;7}[7”)”61\]* 18 non-increasing and
n
- / /n)
Z 77n+1 ’YnJrl Mn/Yn )+ < +OO, (22)

then we have SWrz n(Vy.s1) (see (14)).

3 Rate of convergence - A general approach

In this section, we extend the abstract framework from Section 2 to be adapted to establish an ergodic
CLT for the empirical measures (5) with the highest possible order. The approach we propose is twofold.
First we give appropriate weak error type estimations and on second we give suitable step weight
assumptions to control the martingale part of increments of functions of the approximation (X, ),en--
Notice that, together with the choice of weights (7, )n,en+, the weak error type estimations are the crucial
tool to obtain high order of convergence in the CLT satisfied by the weighted empirical measures (5).

3.1 Assumption on the random measures

Weak approximation assumption N

In this section, our purpose is to propose a new version of £(A, A, D(A)y) (see (9) in Section 2) which
is adapted to obtain the CLT with order ¢ € N* i.e. Theorem 3.2.
We begin by giving an intuition of this new version of (9). In order to obtain the CLT, even in the case
q = 1, we need a sharper estimate of the error gv — A than the one provided by (9). In particular, we
need to identify the dominating term of gﬂ, — A when + is close to 0 and impose a similar assumption as
(9) but with ﬁw replaced by le — A and A replaced by the dominating term of gv — A. This approach
is well adapted when ¢ = 1 and for higher values of ¢, the intuition is similar but assumptions are made
on the dominating term of ,ZW —Dimi T 1Al

We now describe rigorously the framework and the hypotheses we need to impose on the dominating
term of A, — A or its higher order counterpart.
This new version of (9) is expected to act on a more restricted set of test functions so we introduce
Fc{f,f:(EBE))— (RBR))} to replace D(A)o.
Moreover, in order to describe the behavior of the dominating term of A >, I AZ let us introduce
M, a linear operator acting on F', and let us introduce 7j, : Ry x {0, . (q 24} — R+ (with notation
by =bVO0for beR).
Notice that the CLT we obtain in Theorem 3.2 is restricted to test function Af with f € F. Moreover,
the rate of the CLT we obtain is monitored by 7, while the asymptotic mean is built with 9t,.

We are now in a position to introduce the new version of (9). We assume that the weight sequence
(Mg,n)nens = (Ng(yn,n mod (q —1)))nen~ (with convention n mod 0 = 0) is decreasing, satisfies (4), is

such that P — a.s., lim,, 0 v’ (M, f) = v(IM, f) for every f € F and
Ey(F, A, A, My, 7y) = VfeFVreENye(0,7],Vee{0,...,(¢—2)4}, (23)
Rof(@,7,€) = ilg(v, €)My f ()| < 7l (7, €)M s (2, 7),

10



3.1 Assumption on the random measures 11

where R, f is defined in the following way.

We fix the weights of the order one and two discretization, ¢! = 1, ¢ = (%, %) When g > 2, we
consider €(q) € N, C(q) > ¢ with €(1) =1 and A = (A\},..., A\¢@=2) ¢ RC(@-2 x RC(D)=3 » xR and
for p € N*, 2 < p < ¢, the quantity (9P(\) = (¢IP(N), ..., PP (V) € RE@=Cla—p+D+1 We assume that

p—1
¢?1(\) satisfies

C(q)—3 €(q)— Z}(:(ql) 2—1 )\h l . I
Cg,q ) = u 4 = 7 1 u+z(
(A) = <e(q)-1 Z 2 T (-1)

for u € {0,...,q— 1}. Then, we define
A= (AeRCD2x xR, Vp=3,...,q,3CTP"L(\) € RP™L, MIPCTP=L(\) = N9P(CTP(N))}
where

NP . RE(D—-Cla—p+D)+1 _, RC(a)

1
¢ (p— 1)!18<€(q)—1 + Cglp(e(quﬂ)fzpfl()‘)]le(q)—G(q—p+1)+1>e—(@(q—p+1)—2)+21

— PN Lec(e(@-e(g—p+D)+DAE@)-1)

and M9 e RE(@*xCla—p+1) ig defined by MY = - ﬁ“llj_ue{o,“_ﬁ(q_pﬁ)_l}. We then choose

arbitrarily C(q) > ¢q and A € A7 as soon as it is not empty. Notice that for ¢ < 3, it is sufficient to take
C(q) = g and X = 0. The weights for the ¢ order discretization are then given by
€(g)—C(g—1)

A =ljce—2t D, CPVMj=eg-1)-2);+us1 — Limu), (24)
u=0

for every j € {0,...,C(¢q) — 1}. Moreover, for every z,y € E, v > 0, e € {0, (C(q) — 2)+}, we let

le(:c,fy,e) ::le(xa’y) = _ﬁlf(xa7)7 and for qe N*7

Clg)—2-e Clg)—2-e
qu(x,fy,e) = (1 - Z /\le)qu(m57> - Z )‘éRqulf(wv'Y)
=1 =1
C(g)—2C(q)—2—k ~C(q)—2— k)\ -1 I_i_1
_ Luh=l Tk l i—e+k—1 -t q+i R, AT 1 B .
];) 1221 (q+l 12 (ek)n+1 1 f(m?7> 0<e—k<l—1

q—2 eA(C(g)-C(1))
St Y A T RAT (e — )

u=(e—(C(1)—2)4)+

C(q)—C(q—1) .
- Z 45’2(>\)Rq_1Af($, Y€ — u)]lugeg(q—3)++u'
u=0
where, for every m € {1, ..., ¢}, the measurable functions

Rmf ExRy — R
(,7) = YA f(z) - Zz 13T Azf( )s
are supposed to be well defined for every f € F.

In addition, we also assume that Ay, : £ x Ry — Ry can be represented in the following way: Let
(©2,G,P) be a probability space. Let g : E — Rﬂr, l € N*, be a locally bounded Borel measurable function
and let Ay, : (E x Ry x Q,B(E) @ B(Ry) ® G) — RY be a measurable function such that

sup fE[sup sup /~\f7q7i(x,7,cb)}<+oo (25)
ie{l,..,l} =xEE~ye(07]



3.1 Assumption on the random measures

and that the following representation assumption holds
Vo € E,Vy € (037]7 Af7q(x77) = <g(x)7E[]\f7q($v'77(:})]>Rl-

Moreover, we assume that for every i € {1,...,1}, sup, cy- ng (9i,w) < 400, P — a.s., and that Af’q’i

satisfies one of the two following properties.

There exists a measurable function v : (©2,G) — ((0,7], B((0,7])) such that:

(i) VK €eKg, lim sup Af,qﬁi(x,'y,dj) =0,
7=0zek

I) P(dw) —a.s (i) lim  sup Agg(z,7,0) =0, (26) or
|21=20 v (0,7(w)]
II) P(do) — a.s lim sup A ¢, (,7,0)gi(x) = 0. (27)
1204cE

Remark 3.1. Let (F, F,)\) be a measurable space. Using the exact same approach, the results we obtain
hold when we replace the probability space (2, G, I@’) by the product measurable space (U x F,G® F, P® A)
in the representation of Ay, and in (26) and (27). It is a similar observation as in the study of the
convergence as pointed out in Remark 2.1.

Growth assumption

In this section we introduce a new version of GCq (see (12)) adapted to prove CLT of order ¢ € N*,
In particular, this new version is crucial to identify the asymptotic variance in the CLT we obtain in
Theorem 3.2.

We denote by Px , the set of FX .= o(Xr,,k < n)- progressively measurable processes (X )nen-

with X,,;1 € L*(FX) and E[X,;1|X1,] = 0 for every n € N. Let p € [1,2] and let ex,ege : Ry — Ry
be two increasing functions such that the weight sequence (€x n)nen+ = (€x(Vn))nen+ satisfies (4). Let
Fc{f,f:(E,B(E) - (R,B(R))} and g : F — R, be a Borel measurable function. Finally, we
introduce a linear operator U defined on F' that is the main ingredient to compute the asymptotic
variance in Theorem 3.2. In particular, we identify the asymptotic variance in the CLT as the a.s. limit
of weighted (with weights (ex »)nen-) empirical measures (5) applied to functions taking form U f, f € F.

We are now in a position to introduce the new version of (12). We assume that A™ f is well defined
for every m € {0,...,q — 1} and every f € F and that

(]Cqu(F,g,p, ex,EQC,QT) = P—a.s. VfeF, H:Xf S 'Py’Q

_ Pl
EHqu(XFnaXFn+17'7n+1an mod (¢ —1)) — :X:f,nJrl‘ ‘Xrn] < Crege(ns1)9(Xr,,)- (28)
with, for every x,y € E, v > 0, e € {0,(C(q) — 2)+},

Bif(z,y,7.€) = Bif(z,y,7) = 2 f(z) — f(y), and for ¢ € N",
qu(xay7’77€) = Blf(mayvy)

C(q)—2C(q)—2—k C(q)—2—k 5\h -1 ) l—i—1 . )
- X ENCES D (e < e~k )VZ;FLBPWU‘(% Y> M oge-ksi-i}
k=0 =1 =0
q—2 en(C(g)—€e(1)) .
=YY T ) BAT (e — )
=1 u=(e—(C(q)—-2)+)+
C(g)—C(q—1) A
-7 Z 4372()‘)Bq—114f($, Y,v, € — U)ﬂugeg(q—3)++u;
u=0

and E[|Xs 41 X1,] = ex(va11)Df(Xr,) with for every f € F, lim,en- v5* (U f,w) = v(Tf), P —
a.s., and



3.2 Convergence rate results

n—1

~ P
ZEﬂxf,kﬂ|2ﬂ\vak+1|>\/m@|er] =0. (29)

€T k=0

VE >0, lim

n—oo
Remark 3.2. The reader may notice that GCq 4(F, q, p, €x, €gc, V) holds as soon as (12) is satisfied with
Q, . A" f(Xr,), n € N*, m € N* replaced by a F;X := o(Xr,,k < n)- progressively measurable process

(Xm.n)nen=, since p € [1,2] and we have Q. A" f(Xr,) =E[A™f(Xr,,,)|Xr,] and E[X;,,41|X1,] =
0.

Yn+1 n+1 )

In the following, we will combine this assumption with

oo

€ n) o~
Waco(pcx.ce) = Poas Y CIGEL) < 4oo (30
€x,n

n=1
Notice that, as a consequence of Lemma 2.2, if we suppose that RCq v (¢, ¢, a, 8) (see (7)) holds,
that E[¢) o V(Xr, )] < +oo for every ng € N* and that

— €egc(7n)
HPL,

ege(n)
’Yanpg{,zn

SWge,~(p,€x,€ge) = ( )nEN* is non increasing and < 400,  (31)

n=1

holds, then we have 8Wgc77(‘7¢7¢,1, p,€x,€ge) (see (30)) with ‘N/¢7¢71 defined in (8).

3.2 Convergence rate results
We begin with some preliminary results.

Lemma 3.1. (Kronecker). Let (an)nen and (by)nen- be two sequences of real numbers. If (by)nen-

is mon-decreasing, strictly positive, with lirf b, = +00 and > a,/b, converges in R, then
n——+0oo 77/21

.1
nkng;“k—o-

Theorem 3.1. (Chow (see [11], Theorem 2.17)). Let (M,)nen+ be a real valued martingale with respect
to some filtration F = (F,)nen. Then

lim M, =M, €R a.s. on the event

n—-+oo

U {3 ElM, — M1 ] < o).

rel0,1] n=1
Now, we give a general CLT result from [11] (Corollary 3.1) which applies to martingale arrays.

Proposition 3.1. Let (Mk,n)ke{l,..,n},neN be a R-valued martingale array and define f,i\?n = U(Mi,n,i €

{0,...,k}). We assume that (My,)nen satisfies the Lindeberg condition.:

n—1

) . _ 7P
Ve >0, nh_)ngo Z]EHMkJrl,n - Mk,n|2]l|]\~4k+1yn_]\~4km\>@‘]:I£:\,/[n] =0 (32)
k=0
and that
n—1 R B ~ P
nlggo Z El|Myt1,n — Myl Fim] = ¢
k=0

with CIQ\Z an almost sure finite random variable. Then

13



3.2

Convergence rate results

sm ML tew o2
Jim My, = N (),
where N( ]251) is a random variable with Laplace transform E[exp(v}\N/(Cf\Z)] = ]E[exp(v2ﬁjz\~4/2))} for every
velR.

3.2.1 The g-order ergodic CLT

When we consider the g-order weak approximation (Xr,)nen of a Feller process (X;)i>o, it can be
possible to obtain convergence of some weighted empirical measures. Moreover, the rate of convergence
can be improved as ¢ grows. A crucial point to obtain a faster rate is to consider a specific weight
sequence when we build the weighted empirical measures (5). We begin by a alternative result which is
crucial for the choice of the weights and for the proof of the g-order CLT established in Theorem 3.2.

Proposition 3.2. Let ¢ € N* such that A? is not empty and n, € N such that v, 114c = Yn,+1 for
e€{0,...,(C(q) —2)4}. Considering (cl)ceqo,...,c(q)—1} defined in (24), then, for every f € D(A),

e(g)-1 B € @-2+ -
g1 Y AAfXr, )= Y. fXr.,..) - X, (33)
e=0 e=0

+ BQf(yan+577Frnq+e+1 » Yng+1, 6)
+ qu(yrnq«#e ) rynq"rl? e)'

with By f defined in (28) and Ry f defined in (23), as soon as those quantities are well defined.

Proof. We prove the result by recurrence on gq. The case ¢ = 1 follows directly from the definitions of
B f and R, f remembering that ¢} = 1. Assume that ¢ > 2.

Step 1. Since vy, +14e = Yn +1 for e € {0,...,C(q) — 2}, then for every [ € N* with [ < C(q) —1—e, we
have,

l
_ e —
Ty 1 AT f(Xr, L) = Z(*l)l ’ (j) AT f( X, ers)
=0
—11—1—1 o l—i_1 ‘ o o
Yy <—1>l-w-1( ' )W;QHBIAQ+Zf<xFWW,xrnqw%qm

1-11—i—1 .
g (t—i=1Y s
I (—1)—ii—1 ( . >7nq+1R1Aq+ f(XanJreH’%qH)'

14



3.2 Convergence rate results 15

In particular, for €(q) > g and A = (A},..., \®@=2) ¢ A9 c RC(@-2 x RC(D)—3 x| xR

C(q)—2 C(g)—2g-1 A +1
Tn 7
E f(Xan+c+1) - f(XFn +(’) + Blf(XFn +c+17Xan+m'7nq+1 § § q A Xan+e)

i=

C(q)—2 C(g)—2—e Z
l e N
Z ’anJFl | XF"q+" Z fYZj+1 h + l) Aq+lf(XFn,q+e)
C(q)—2—e _ o C(q)—2— ~ o
+(1- Z ARG (X, ior gt + D )\leRq+lf(X1“nq+ea%q+1)
=1 =1
C(q)— @(Q) 2—eyp !
L D R e —
Z 'Yn g+l | nq+e Z q +l Z(—l) J <j> ’qu+1Aqf(Xan+e+j)
7=0
C(q)—2—e C(q) 2— 6)\h -1 1—3 o l—i—1 o
SRt ) ”1( ) A e
=1 q =0 j=0 J
C(g)—2—e C(q)—2— ey 1—11—i—1 I—i_1
1 i—j— — 11— i i~ .
+ Z h( l_|_l ,ygljJrl Z l ! 1( - >/VZ+ BlAq+ f(Xan+e+j+1vXan+E+jv'7nq+1)
=1 q i=0 j5=0 J
C(gq)—2—e ~ o
+ (1 - Z )‘é)qu(Xan+ea’ynq+1 Z )\l +lf XF7Lq+ea'an+1)

=1

Step 2. Let us prove that for p € {2,...,q}

C(g)— iq+1Al C(g)—2—e S(:ql)*Qfe)\g l " I . " Y
Z Z Kot X HEE S ([t (e, )
€(q)—C(g—p+1) C(g—p+1)—1
:’qu-s-l Z Cg’p(A)( Z cg*pHApf(anquHu)) + Dy.q-p; (34)
u=0 e=0

with for b € {0,...,q — 2},

e)-e) COR B B
q b _Z’an+1 Z Cg,q—l-i-l()\) Z BlAq_lf(Xan+E+uvXan+e+u+17’an+17e)

u=0 e=0
em)—e() (em-2)+

nq-‘rl Z Cuq l+1 ) Z RlAqilf(Yan+e+ua'an+176)'

e=0

Notice that ¢} = 1, and since

1 C(q)—3C(q)—2— zz —2— z)\h l
, _ 4 h l l—u+i ,
a1(A) = q!1u<e(q)—1 + ; Z G+ 1) ~(=1) <u B z) Locu—i<t
and Dy o = 0, then (34) is true for p = ¢. Assume that (34) is true for some p € {3,...,¢}, and let
us show that it still holds with p replaced by p — 1. We first apply (34) and then (33) with f replaced
by AP~1f and q replaced by (¢ — p + 1) which yields
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C(g)—2¢-1 ~i +1 1 o
; 7Lq+e) + a’YZq+1Aqf(Xan+e)
e=0 i=p ’
ZG(Q) 2—e )\h . l .
Z ) Z(_l)l J ] VZQ+1Aqf(Xan+e+j)
=0
C(g)—C(g—p+1) (C(q—p+1)—2)+
1 _ - _ -
:7£q+1 Z CZJ)()‘) Z (Ap 1f(Xan+e+u+1) — AP 1f(Xan+e+u))
u=0 e=0
€(g)—C(g—p+1) (€(g—p+1)—2)4 o o
+ ’Y'qu'i‘l Z C’gm(A) Z Bq_P‘f‘lAp_lf(XanJreJru ’ Xan+e+u+1 ) ’an-‘rla 6)
u=0 e=0
C(g)—C(g—p+1) (€(g—p+1)—2)+ o
+ ran-i-l Z 43713(/\) Z Rq—p+1Ap_1f(Xan+e+u77nq+17 6) + Dq,q—P

u=0 e=0

C(g)—C(g—p+1) (Clg—p+1))+

—1 _ - _ -
:’Yfiq-t,-l Z Cﬁ’p(/\) Z (Ap 1f(Xan+e+u+1) — AP 1f(Xan+e+u)) + Dq,q—p+1-
u=0 e=0
Moreover, observe that, with notation from (23) and using that Cg’&)_l(}\) =0,

C(g)—C(g—p+1) (€(g—p+1)—2)+ o o C(g)—2 o
Z C’g)p(A) Z (Apilf(Xan‘Fﬁ-Fu-f-l) - Apilf(Xan‘Fe‘*'“')) + Z (p - 1)|Ap71f(Xan+€)
u=0 e=0 e=0 ’

(C(g)—C(g—p+1))A(C(q)-2) (€(g—p+1)—2)+ o o
= > PN Y (AR ) — AT (X )
u=0 e=0
q 1 o
Z 1) lAp_lf(Xan+e)
Z | Tece(q)-1+ sz(e(q—p+1)—2)+—1()‘)]1(6( )—€(g—p+1)+1)A(C(q)—1)Ze—(C(g—p+1)—2)+>1
=0
= P (M ec(e(q)-e(g—p+1)+1D)A(C(0) - 1>)Ap*1f(anq+e)
C(g)—1 o
= Y NTPCIPN)AT (X, L),
e=0
and
C(g)—C(q—p+2) C(q—p+2)—1 o
ooty Y, et ar (X, L)
u=0 e=0
C(g)—1 [€(q)—C(q—p+2) o
= > S T N e _yeqo,.. e q-pr2)-1y | APTHF(X,, L)
e=0 u=0

-1

C(q)
Z (MP(aP— 1 ))eAp_lf(Yan+e)-
e=0

Using that M%P¢2P~1()\) =

N%P((%P(\)) and gathering all the terms together completes the proof
of Step 2.

16



3.2 Convergence rate results 17

Step 3. We are now in a position to complete the proof. We apply (33) with f replaced by Af and ¢
replaced by ¢ — 1, and for u € {0, 1}, we obtain,

€(g—1)-1 (Clg—D)—-2)+
1 - - -
TYng+1 Z C(JI' A2f(Xan+u+j) = Z Af(Xan+u+j+1) - Af(Xan+u+j)
Jj=0 Jj=0

+ Bq71Af(yan+u+j ) anq+u+]’+1 ’ 7nq+17j)
+ RQ71Af(yan+u+j bl 'anJrl b j)'

Combining this expansion with the decomposition established in Step 1 and the result from Step 2
for p = 2 yields

ew-2 e(a)-e(g-1) €a--2)y B
Tng+1 Z Af(Xan+e) + Tng+1 Z Cg’z()‘> Z Af(XF7Lq+j+’u.+1) - Af(Xan+j+u)
e=0 u=0 7=0

= Z f(yrnq+e+l) - f(yr7lq+e) + Blf(yan+e’YFn,q+e+17’an+1)

C(q)—2—e C(q)—2— €N I—11—i—1 l—i—1
1 i -t i i ~
-y B A s e (T B (e K
=1 (g+1) 0 j=0 J
= i=0 j=
(Cla=D)-2)+ Cl9)=C(a—1) B B
—Ymgt1 D D P NBeaAf(Xry v XDy sasssns Vg 41,9
=0 u=0
C(q)—2—e (‘f(q) 2— 5/\h -1 1—1 o l—i—1 o
N Z = Z l 7Ijl( ; )7’?74:;1 RlAq+ f(Xan+c+j7,ynq+1)
=1 =0 j= 0 J
C(q)—2—e C(g)—2—e

-(1= Z ARG (X1, 0rVngt1) — Z NRgstf(Xr,, o Yng+1)
=1

(G(q—l)—2)+ C(a)—C(g—1)

— Tng+1 Z Z CZ’Q()\)Rq—lAf(Yanﬂ,ﬂ7’an+17j)~

j=0 u=0
- D

q,9—2-

To complete the proof, it simply boils down to apply the definition of ( 1) jeq0,....q—1} (see (24)), By f
(see (28)) and Ry f (see (23)).
O

We are now in a position to state the g-order ergodic CLT. Before that, we introduce the step size
and the weight sequences. In particular, we assume that

VneNee{0,...,(€(q) —2)4},
Y(C(g)~1)n+1te =V(C(g)~1)n+1s (35)
e -Dn+1+e =Com (€% -n+1 + Le=0Ci_1V(e@-1)(n-1)+1) »
with C, , € R* and the convention y_; = 0 for [ € N*.

Theorem 3.2. Let ¢ € N* such that A? is not empty, let F C {f,f : (E,B(F)) —» (R,B(R)),Af €
C(E)}, g : E — Ry a Borel function, ex,ege : Ry — Ry be two increasing functions, let 7, :
Ry x{0,...,(¢ — 2)+} — R4 and let M, and UV be two linear operators defined on F. Finally let
Yn and n,, n €N, be the time step and the weight sequences satisfying (35).

Assume that Sq(F,fl, A, My, 1) (see (23)), GCq.o(F, g, p,ex, ege, V) (see (12) and (32)) and SWgc (g, p, €x, €gc)
(see (30)) hold.



3.2 Convergence rate results

Then, for every f € F, we have the following properties:
A. Iflimg, oo \/Heyx n/Hij,n = 400, then

lim

V(A N (O.(D))).
n—o0o C’y n
B. Iflim, e \/Hey n/Hj,n =1 € R, then

nlgr;ocwm H(AF) " N (0, £),v(B).

C. Iflim, oo \/Hey n/Hj,m =0, then

lim o yn(Af) 2 uem,f)

n—=oo O, anq,n

Moreover, when 0 = 0 this convergence is almost sure.

Remark 3.3. Notice that if we take v, = 1/n* (for n =n,(q— 1) withn, € N), £ € (0,1/(g+ 1)) and
denote

\/g; =T, if limyoo vTo/Hiyn
Vn € N*, Cyn = \/11;1# = Fn lf 1lmn~>oo V Pn/Hﬁq,n =
Hy Zf hmn%oo \/m/Hﬁq,n =

the rate of convergence of (vn® (Af))nen- in the q-order ergodic CLT, then we have
o CnlaOA/2-¢/2)

n——+0oo

el
Q

,n

The highest rate of convergence is thus achieved for £ = 1/(2q+1) and is given by vy, ~ Cne/(at1)
n——+0oo

Proof. We assume ¢ > 2. The case ¢ = 1 is similar but simpler so we leave it out.

Step 1. Let n € N. We begin by noticing that the following decomposition holds

Vn(Af anAf XFk 1)

Ng,n Clg)—1

M ZW(«; it D cAf(Rr i)

n e=0

n

1 _
+ E Z leAf(Xkal)
k=(q—1)(Ng,n+1)+1
CynV(g-1)

q
_ Nq,n+ICQ71 —
- H, AFXT (v nin)

with the notation Ny, = |[(n —1)/(C(¢) —1)| — 1. Since Af i is bounded function, the second and
third terms of the r.h.s. of the above equation multiplied by G \/H or Hy both converge to
o/ Hexon

’Y nHﬁqm
zero when n tends to infinity. We study the first term of the r.h.s. of the above equation. By Proposition
3.2 (with ny = (¢ — 1)k),

18



3.2 Convergence rate results

ew-1 e@-2)s B
Y(g—1)k+1 Z chf(XF(q—l)k+e) = Z f(XF(q—l)k+e+1) - f(XF(q—l)k+e)
e=0 e=0

+ B‘If(yrm—l)wre7yr(q—1>k+e+1’V(qfl)kﬂ’ €)
+ qu(XF(q,l)kJre 3 ’y(q—l)k—i-lv 6).

Step 2. In this part, we prove that

1 Ngn (e(q)_2)+

~ ~ law
nlggo \/TJL kzo ; BQf(XF(qq)kJre?XF(471)k+e+17’7(q—1)k+17 e) = N(O, V(mf))

From Proposition 3.1, since (29) holds and limpen= X (B f,w) = v(Vf), P — a.s., we have

lm ——— fok "9 N0, ()
n—00 ,/ exn 1

Notice that when U = 0 the [.h.s. of the above equation is P — a.s. equal to zero for every f € F.
Now, to obtain the convergence in law, we are going to show that P — a.s, for every f € F,

Ng,n (€(q)—2)+
"ll*r"r'loo Heyxm Z ;) qu(XF(Q*l)kﬂ?Xl“(q—l)k+e+17’Y(qfl)kJrl7 €) - xf:(qfl)kJrlJre =0.

This last result is a consequence of Kronecker’s Lemma as soon as we prove the a.s. convergence of
the martingale (M, )nen- defined by My := 0 and

Ngn (C 2)
M, = i( (% "B f(XF(q 1)k+e’XF(q Dktet1 Vg—1)k+15€ €) — xf,(q—l)k+1+e

Hex,(q—l)k'+e

From the Chow’s theorem (see Theorem 3.1), this a.s. convergence is a direct consequence of the a.s.
finiteness of the series

n
> E[|My — My X, ],
k=1
which follows from GCq (F, g, p, €x, €gc, V) (see (12)) together with SWgc (g, p, ex, €ge) (see (30)).

Step 3. To complete the proof, let us show that

Qn(e(Q) 2)+
P—as. VfeF nl;n;o - Z Z R er(q Dkte Y(g=1)k+15€ e) = v(M,f).

He »
a’ = e=0

As a direct consequence of &,(F, A, A,M,,7,) (see (23)), since P— a.s., lim,, vy (Mg f) =v(M,f)
for every f € F, we only have to prove that

P—as. VfeF

Ng,n (C(q)—2)+ o
Z Z Rqf( XF(q Dkter T(g=1k+15 € e) — ﬁqa(q_l)k+1+emqf(XF(q—1)k+e) =0.

6w”ko e=0

1

which holds as soon as

P—a.ss. VfeF lim

n— oo

n
N gk A g (X)) =0, (36)
Ma:™ k=1

19



3.2 Convergence rate results

We recall that we have the following decomposition

VfeEFNVxeEVye [057]’ Af,q(x”Y) = <g(x)’E[Af7q(ma7)]>Rl

with g : (E,B(E)) — R, | € N*, a locally bounded Borel measurable function and Ay, : (E x Ry x
Q,B(E)®B(R4)®G) — R ameasurable function such that SUD;e (1, 1} .2€ Bye(0,7] E[Afq.i(z,7)] < +oo0.
Since for every i € {1,...,l}, sup, ey vn'(gisw) < +00, P(dw) — a.s., (36) follows from the following

result:
Let (T,)nen € E®N. Assume that sup;cqy gy SUD,ene 7o— Zk 179.69:(T,_,) < +oo, then, for
every f € F,
n
n—soo H. k f,q k— 17'719) 0.
In order to obtain this result, we are going to show that, for every f € F', every i € {1,...,{}, and every

(En)neN € E®N7 then

n
Z N kN f,q,i(Tk—1, 7k, ©) i (T—1) = 0,
fla:m =

P(do) —a.s.  lim

n—oo

and the result will follow from the Dominated Convergence theorem since for every n € N*,

Ak A .0t (Tre1, Vi, w) 9i (Tr—1)

N =1

Z Mgk 9i(Th—1) < +00.
k=1

< sup sup Af,2,i($7'77 ) sup
T€EE v€(0,7] neN* an,

with E[sup,¢p SUP.ye(0,7] Ay q.i(2,7,@)] < +oo and sup,,cy- ﬁzzzl Ng.kGi(Tk—1) < +oo. We fix

feF,ie{l,...,N} and (Tn)nen € E®N and we assume that &,(A, A,9,,7,) I) (see (26)) holds for

Afgir If 1nstead E,(A, A, 9m,) II) (see (27)) is satisfied, the proof is similar but simpler so we leave it
to the reader.

Let n(w) := inf{n € N*,sup;-, 7 < 7(@)}. By assumption EJF A A M, 7,) 1) (ii)(see (27)),
P(d@) — a.s, for every R > 0, there exists Kr(©) € Kg such that

sup sup  Aggqi(z,y,0) < 1/R.
TEKE (D) “/G(O,l(&))]

Moreover,

sup
n>n(@) an,

Z kN2, (Tre1, Ve, @ 0)9(Tr—1)L ks, (@) (Th—1)
k=n(®)

< sup sup Af’qﬁi(x,’y, ) sup
€K (0) v€(0,7(@)] neN* an,

Z Mgk Gi(Th—1)

We let R tends to infinity and since sup,cn. 77— 2opeq Mg,k 9i(Th—1) < +00, the Lh.s. of the above
g m

Hy

equation converges P(dw) — a.s. to 0. Finally, since n(®) is P(d@) — a.s. finite, we also have

n(@)—1
P(d®) —a.s. YR>0, lim — D gk i (@eo1, 7 @)9(Te-1) L kg, @) (Fr-1) = 0.

N —q

20



3.3 Example - The Euler scheme

Moreover, from &,(F, A,A,mq,ﬁq) I) (i)(see (26)), we derive that, Iﬁ’(d&}) — a.s., for every R > 0,

lim Aqu’i(fn,lﬁn, 0) 1k, @) (Z,_,) =0, Then, since g; is a locally bounded function, as an immediate

consequence of the Cesaro’s lemma, we obtain

P(d®) VR>0, lim

n— oo

> gk p i @i, Vi, @) i (Te-1) D (@) (Thm1) = 0
g™ =1

Applying the same approach for every i € {1,...,q}, the Dominated Convergence Theorem yields:

n—oo H~ ZAf,Q(fk—h’Yk) - O

Ma™ =1

1
Y(Tn)nen € E®NVf € F, lim

Finally, since for every ¢ € {1,...,1}, sup,,ey- vl (gi,w) < 400, P—a.s., then (36) follows. We gather
all the terms together and the proof is completed.
O

3.3 Example - The Euler scheme

Using this abstract approach, we recover the results obtained in [13] or [25] concerning the study of
the Euler scheme of a d-dimensional Brownian diffusion under weakly mean reverting properties. We
consider a N-dimensional Brownian motion (W;);>o. We are interested in the strong solution - assumed
to exist and to be unique - of the d-dimensional stochastic equation

X, = x—i—/t b(Xs)ds+/ta(Xs)dW5 (37)
0 0

where b: R? — R4, o : RY — RN Let V : R — [1,+00), the Lyapunov function of this system such
that Ly (see (6)) holds with £ = R¢, and

VVP<CvV,  ||D?V]s < +oc.

Moreover, we assume that for every = € R, |b(x)|? + Tr[oo” (z)] < V4(z) for some a € (0,1]. Finally,
for p > 1, we introduce the following L,-mean reverting property of V,

Ja > 0,8 € RVzr € R,

(VV(x),b(x)) + %||Apl\oo2(2p_3)*Tr[00T($)] <B—aVi(z)

with for every x € R%, A\, (z) = sup{\p1(x),...,\pa(z),0}, with A, ;(x) the i-th eigenvalue of the
matrix D2V (z) 4+ 2(p — 1)VV (2)®?/V (z). We now introduce the Euler scheme of (X;);>0. Let p € [1,2]
and ez(y) = v*/? and assume that (17), SWr., ,(p,ez) (see (21)) and SWrz ., (see (22)) hold. Let
(Un)n be a sequence of RY-valued centered independent and identically distributed random variables
with covariance identity and bounded moments of order 2p. We define the Euler scheme with decreasing
step (Vn)nen+, (X1, )nen of (Xt)i>o0 (37) on the time grid {T',, = >_7_, vk, n € N} by

vneN,  Xr,, =Xr, + m1b(Xr,) + V10Xt ) Unt1, Xo =1

We consider (v/1(dx,w))nen+ defined as in (5) with (X1, ),en defined above. Now, we specify the
measurable functions ¢, ¢ : [1,+00) — [1,400) as ¥,(y) = y* and ¢(y) = y®. Moreover, let s > 1
such that app/s < p+a—1,p/s+a—1>0and Tr[oo’] < CVP/ste=1 Then, it follows from Theorem
2.2 that there exists an invariant distribution v for (X;);>9. Moreover, (V]!(dz,w))nen+ a.s. weakly
converges towards V), the set of invariant distributions of (X;)¢>o and when it is unique i.e. V = {v}, we
have

P—a.s. lim v(f) =v(f),

n—-+oo
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3.3 Example - The Euler scheme

for every v — a.s. continuous function f € Cy, M(]Rd) defined in (8). Taking V : x — 1+ |2|?, we

obtain the a.s. convergence for the 2p/s 4+ 2a — 2-Wasserstein distance. In addition to that P —a.s. weak
converge result we can also establish a first order CLT. Let p; € [1,2], let C,,, > 0 and let us define
M,n = Cyn¥n, n € N* and

Fi={f €C'R,R), VI €{2,...,4}, D'f € Co(R%R)},

and the linear operator M defined on C*(R%; R) such that for every f € C*(R%;R),

My f (@) = — 5 (D ():b(w) ) — B[ (D°F(): (0(@)0)*2 @ (@) + 1 (D*F(@): (o)) |

Let 71 (v) = v%. Assume that (4), (17), SWz ~.,(p, ez) (see (21)) and SWzz ., (see (22)) hold with n
replaced by 7; and by v. Now, we introduce necessary assumptions concerning the random variables
that are used to build this scheme. Let ¢ € N*, p > 0. Now let (U, ),en- be a sequence of RY-valued
independent and identically distributed random variables such that

My (U) = Vn e N*Vge{l,...,q}, E[(U,)®] =E[N(0,I)®], (38)
and
M,(U) SSRI?* E[|U,|*"] < +oo. (39)

We assume that the sequence (U, )nen+ satisfies My 3(U) (see (38))) and M3(U) (see (39)) and that
SWagc ~(p1,7,7) (see (31)) holds.

Also assume that g,,; < CVP/*+e~1 with g, 1 = Trloo?]*+|b[?, that Tr[oo”] = 0/4|— 0o (VP/5T271) and
that v is unique. Finally assume that for every f € Fy, [o"Df|* € Cy,  (RY) and M f € Cp - (RY).

Then, for every f € Fi,

i. If llmn*}oo vV Fn/Hﬁl,n = +o0,

lim \/ﬁygl (Af) faw N(O,V(|UTDJC‘2))-

b
i, If limy, o0 T/ Hyy o = 1 € RE,

Tim /T (Af) " N (@ f), v(|o” D).
iii. If lim,, o0 VT, /Hiy . = 0,

lim 2 (Af) B (o, f).

n— oo ﬁ17n

This result was initially obtained in [13] but under strongly mean reverting assumption i.e. a = 1.
The extension of this result to the weak mean reverting setting was developed in [25]. Notice that, for
f € Fy the Ito’s Lemma yields,

E[f(X,)2] =E[f(X0)?] + / Ef(XJ)Af(X.) + o7 DfP(X.)ds.

In particular, choosing Xy ~ v, we obtain v(|c” Df|?)) = —2v(fAf) and the asymptotic variance of our
first order CLT is the same as in the continuous case [2].

Remark 3.4. Notice that if we take v, = 1/n¢, ¢ € (0,1/2) and n = v, the mentioned step weight
assumptions are satisfied (take p € (1/(1 —¢€),2] and p1 € (2/(1 +£),2]). Then, if we define by
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APPLICATION - THE TALAY SECOND WEAK ORDER SCHEME 23

\/ﬁ Zf hmn—)oo m/Hﬁlan = +OO’
Vn € N*, T, = \/ﬁ if  limg, o0 m/Hﬁlan =1,
H{;Iln,n Zf hmn—>oo Vv Fn/Hﬁhn = 07

the rate of convergence of (V' (Af))nen+, we have

Cnér1/2-€/2)

T ~
" n——+0o

The highest rate of convergence is thus achieved for £ = 1/3 and is given by v, M Cnl/3.
n—-+0o0

4 Application - The Talay second weak order scheme

Notations.

In the sequel we will use the following notations. First, for o € (0,1] and f an a-Holder function we
denote []a = sup, 4, 1/ (y) — F(@)|/Iy — o]
Now, let d € N. For any R%*?-valued symmetric matrix S, we define As := sup{\s1,...,\s.4,0}, with
As,i the i-th eigenvalue of S.

Presentation of the main result.

In this section we study the second order convergence of the weighted empirical measures of a scheme
designed in [29] and adapted to the case of decreasing time steps. We consider a N-dimensional Brownian
motion (W;);>0. We are interested in the solution - assumed to exist and to be unique - of the d-
dimensional stochastic equation

t t
Xt:x—i—/ b(Xs)ds+/ o(X,)dW,,
0 0

where b : R — R? and o : R? — R4*N | are locally bounded functions. The infinitesimal generator of
this process is given by

d

Af@) =), V@) + 5 3 (00T 2)

4,J=1

07 ()

8@8:@ .

and its domain D(A) contains D(A)y = C%(R?). Notice that D(A), is dense in Co(E). Now, we
present the Talay’s scheme, introduced in [29], of (X;);>0 adapted to the case of decreasing time steps.

Moreover, let (£, )nen+ be a sequence of RV >V _valued independent and identically distributed random
variables such that for every n € N*, k,, is made of N x N independent components and for every
(i,5) € {1,...,N}? P(si) = —1/2) = P(s%/ = 1/2) = 1/2. At this point we define the sequence
(Wp)nen- of RN *N_yalued random variables such that for every n € N*,

. 1 . . | s
Vi,j € {1,...,N}, W;vZ=§(|U:L|2—1) and W:ZJ=§U;LU,{—H;WVJ for i # j.

For every n € N, the Talay’s scheme with decreasing step is defined by
_ = _ — - = T
Xt =X1, + V310 (X, )Unit + i1 (bXr,) + (Do(Xr, );o(Xr, )Wi) )
i 1,
+ 8 (K, )t + 75415 46(X ),
with, for every i € {1,...,N}, and j € {1,...,d}, ;,; = (6;); where
5’2‘ : Rd — Rd

d d 2
o 3 (3nb@)oni(e) + Dori(e)b@) + & 3 (00T () 25 (),

=1 j=1
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with, for every i € {1,..., N}, 05 : R* = R%, 2 — 03(z) = (01,i(2), ..., 04,:(2)).
We will also denote AX,,;1 = Xr,,, — Xr, and
—1 — N — . —9 —
AX =1 30X ) Unsr =703 0i(Xr Ui, AX Gy = n1b(Xr,), (40)
i=1
AX, = (Do(Xr,);io(Xr, )W) =1 D Y 0n0i(Xr, o (Xr, Wiy,
ij=11=1

N
—4 " — Y — i
AX, = 756X, Uni =70 6:(Xr, UL,
=1

s 1
AX, 1= '7721-1-1 iAb(XFn)
and Y;Hl = Xr, + 23:1 AY; +1- Now, we assume the existence of a Lyapunov function V : R% —
[4,00), Vs > 0, satisfying Ly (see (6)) and which is essentially quadratic:

IVV2 < CvV, sup |D?*V (z)| < 400 (41)
zER?

It remains to introudce the mean-reverting property of V. We define
Vo € Rd, Ay () 1= )‘D2V(z)+2VV(z)®2w"oV(I)w’oV(a:)*1' (42)

When ¥(y) = ¥, (y) = yP, we will also use the notation A, instead of A\y;. Now, let ¢ : [v,, +00) — Ry,
and assume that for every = € R¢,

B(p) = |b(x)]* + Tr[aaT(x)] + |Do(x)]? Tr[UUT(a:)] + |6 (x)|? + |Ab(x)|* < Cpo V(). (43)

We are now able to introduce the L, mean-reverting property of V. Let p > 0. Let § € R, a > 0.
We assume that liminf ¢(y) > §/a and
Yy—00

Ry(a,B,0,V) = Ve eRY,  (VV(x),b(z)) + %Xp(m) <B—apoV(x), (44)
with
Il Troo™ (2)] if p<1
)= {H)\p”oo?(ng)*Tr[aoT(x)} if p>1. (45)

Finally we consider the linear operator 9, defined on C*(R%;R) such that for every f € C*(R%;R),

M () =~ 5 (DF(@); Ab(z) (46)
—B[5(D21(@)50(2)7 + 20(2) @ (Do ()i o (@)W7) + (Do (@) o () WT)72)
+ 3 (1) (0 @)0) @ (o) + (Do@) o)) + (o)) & (3(2)0)
+ (D) (o))

We also consider the linear operator 9z defined on CO(R?; R) such that for every f € C5(R%R),
Mof =Moo f — %9)?1Af with
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£ (a) = ~ B[ (D2 @); 5 (6@)0)*) + b(a) @ Ab(w))
+ %(D?’f(x); %(Do(x); a(x)WT)®3 1 b(2)®? @ (Do (x); o (z)WT) +

+(0(2)U) @ (b(z) + (Do(x); o (x)W)) @ (6(2)U) +

+

DN =

(0(2)0)** ® (6(x)U))

W =

+

1
T

1 (D F@); (@)U
(DS f(@): (o()U)*9) |.

~—

1@ (b(x) + (Da(z); o (x)WVT)))
1

t el

25

(47)

(o(z)U)®% @ Ab(x)

N

b(x)®3)

(D*f(@); %(U(HC)U)®2 ® (b(x)®* + 2b(2) @ (Do (x); o(x)WT) + (Do (2); o (x)WV1)*?)

We are now in a position to provide our main result concerning convergence of weighted empirical
measures of the Talay’s scheme. This first part of this result concerns the P — a.s. weak convergence

while the second part establishes first and second order CLT.

Theorem 4.1. Let p > 0,a € (0,1], s > 1,p € [1,2] and, ¥,(y) = yP, é(y) = y*

a>0and g €R.

and ez(y) = y*/%. Let

A. Assume that the sequence (Uy,)nen~ satisfies M o(U) (see (88)) and Map)y(2pp/s)v2(U) (see (39)).

Also assume that (41), %8(6) (see (43)), Ro(cr, 5.6, V) (sce (14)), Ly (see (6), SWr o n(p.ez) (sce
(21)), SWzz ., (VP/?) (see (14)) and (17) also hold and that app/s < p+a — 1.

Then, if p/s+a—1>0, (V1) pen~ is P — a.s. tight and

P-a.s. sup v(VP/*t91) < 400, (48)
neN*

Moreover, assume also that b, o, |DU\Tr[UaT]1/2, o and Ab have sublinear growth and that
go < CVP/sta=1 with g, = Tr[oo”] + |Do| Tr[ooT|V/? + Tr[66T)Y/2. Then, every weak limiting
distribution v of (V])nen+ is an invariant distribution of (X;);>0 and when v is unique, we have
- _ d ; n _
P-a.s. Vfe Cpr,(»,s(R )s nlgr—loo v (f) =v(f), (49)
with pr@& (R?) defined in (8). Notice that when p/s < pV1+a—1, the assumption SWrz - ,(VP/?)
(see (14)) can be replaced by SWzz ., (see (22)).

B. Let q € {1a2}7 IEt ﬁq S [1,2}, let ny’n > 0 (l’n,d let us deﬁne 77]_,,” = ,Y’n’yn’ 772,n+1 = C’y,n('}’n +
Ynt1)/2, n € N* (with v =0) and

E,={f e CCltDRER), VI € {1,...,2(q+ 1)}, D'f € Co(RER), Af € Fy if q=2}.

Finally let ij,(y) = v

Assume that the sequence (Uy)nen- satisfies Mpr2q+1(U) (see (38)) and My1(U) (see (39)) and
that SWgc ~(pq,7,7v) (see (31)) holds.

Also assume that g, , < CVP/5T0=1 with g, , = TrlooT]2@+D) 4 |p|7+! 4| Do |7+ TrjooT](aTD)/2 4
Tr[667) + |Abl9, that Tr[ooT] = 0|I|H+OO(V”/5+“_1), that v is unique and that (4) and the
hypotheses from point A. hold with n replaced by 7, and by ~. Finally assume that for every
feF, |cTDf? e C‘;w (RY) and M, f € Cy, (RY),

Vpib,s

pid.s

Then, for every f € F,, we have



4.1

Recursive control

i Iflimy, o0 T/ Hy, . = +00, ,
Tim /T (Af) "2 N(0,v(l0" D).
g, If limy, o0 VT /Hy, o = | € R,
nl;rrgo mugq (Af) faw N(lAflV(imqf)a v(lo" Df[?)).
dii. 1f lim,, o0 /T /Hy, » = 0,

lim vl (Af) = v(IM, f)

n—o00 15
Tg,m

Remark 4.1. Notice that if we take y,, = 1/n, € € (0,1/(g+1)), the mentioned step weight assumptions
of Theorem 4.1 point B. are satisfied (take p € (1/(1—¢),2] and py € (2/(1+&),2]). Then, if we define
by

VT if limyseo VIa/Hjyn = +00,
Vn (S N*, tq7n = \/ﬁ Zf hmnﬁoo \/ﬁ/Hﬁmn = l’
A if limgeo VI /H,n =0,

the rate of convergence of (vn*(Af))nen-, we have

tom | OnlaOn1/2-¢/2)

The highest rate of convergence is thus achieved for £ = 1/(2¢+1) and is given by vy, W Cne/(a+1)
In particular in the first order case (¢ = 1) we have vy o Cn'/3 which is, as expected, the same
rate as for the Euler scheme (see Remark 3.4). However, for the second order case (q = 2) we obtain

a faster rate of convergence since ta ~ Cn2/5. This rate can be achieved because (XT, )nen is a
n—-+0o0o

second weak order scheme but also because the step sequence (12 )nen+ is well chosen.

The next part of this Section is dedicated to the proof of Theorem 4.1.

4.1 Recursive control
Proposition 4.1. Let v, > 0, and let ¢ : [v.,00) — Ry be a continuous function such that Cy =
SUPyelo, 00) P(Y)/y < +o0. Now let p >0 and define 1,(y) = y?. Let « >0 and 3 € R.

Assume that (Up)nen+ is a sequence of independent random variables such that U satisfies My 2(U)
(see (38)) and Mapyy2(U) (see (39)).
Also assume that (41), B(¢) (see (43)), Rpla, 5,0, V) (see (44)), are satisfied.

Then, for every a € (0,«), there exists ng € N*, such that

Ypo V()
Vix)

Then RCq.,v (¥, ¢, p&, pB) (see (7)) holds for every & € (0, ) such that liglJirnf o(y) > B/a. Moreover,
Yy )
when ¢ = Id we have

Vn = ng, Ve € R4 A, 4,0 V() < p(B — apoV(x)). (50)

supE[V?(Xr,)] < +oo. (51)
neN

Proof. We distinguish the cases p > 1 and p € (0, 1).

26



4.1 Recursive control

Case p > 1. First, we focus on the case p > 1. From the Taylor’s formula and the definition of
Ay, = Ap (see (42)), we have

YpoV(Xr,,,) =tpoV(Xr,)+ (Xr,,, — Xr,, VV(X1, )¢, o V(XT,)
+ %(DQV(TnH)% o V(Thni1) + VV(TnH)@Q%I o V(Thi1); (YFTLH - an)m)
<poV(Xr,) + (Xr,,, = Xr,, VV(Xr,))y, 0 V(Xr, )
oA (L) o V(L) X, — X, 1 (52)
with Y,41 € (X1,, X1,,,). First, from (41), we have sup,cga Ap(z) < +00.

Since U and W are made of centered random variables, we deduce from My 2(U) (see (38)) and
M4 (U) (see (39)) that

E[Xr, ., — Xr,

_ _ 1 _
Xr,] = m+1b(X1,) + 714 §Ab(XFn)

B[[Xr, ., ~ X, PXr,] < 91 Trloo” (Xr,)] + 5240 (Trloo™ (X, )] + (X, )2

n+1

+|Do(Xr, ) Trloo™ (Xr, )] + 6(2)* + | Ab(a)|?),
with C a positive constant. Assume first that p = 1. Using B(¢) (see (43)), for every & € (0, ),
there exists ng(&) such that for every n > ng(a&),
g A, )+ 5 I a3 C (Trloo™ (K, )] + (R, ) (5)
+|Do(Xr, ) Trloo™ (Xr,)] + 6(2)* + |Ab(x)|2) < Yns1(a—a@)¢o V(Xr,).
From assumption R,(a, 5,¢,V) (see (44) and (45)), we conclude that
Ay 1o V(z) < B —agoV(x)

Assume now that p > 1.Since |VV| < Cy'V (see (41)), then +/V is Lipschitz. Now, we use the following
inequality: Let [ € N*. We have

l l
Va>0,Yu; e R i=1,...,1, | ] <O g
i=1 i=1

VP (Tp) <(VV(Xr,) + VVEXr,,, — Xr, )77

2@+ (VP (X)) + VYV X

2p—2)

- Xr,

n+1

To study the ‘remainder’ of (52), we multiply the above inequality by |an+1 — Xr, |2, First, we study
the second term which appears in the r.h.s. and using B(¢) (see (43)), for every p > 1,

X1, — X1, 7P < Cyh 60 V(X )P(1+ [Upsa [*).

n41

Let & € (0, ). Then, we deduce from Mo, (U) (see (39)) that there exists ng(&) € N such that for
any n = no(&), we have

a—a&

E[[Xr,,, — Xr,[*|Xr,] < Ynp160 V(Xr,)?

" " llo/ Tallss HIAplloo 2P VY]
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4.2 Infinitesimal approximation

To treat the other term of the ‘remainder’ of (52) we proceed as in (53) with |A1|le replaced by
X |0022P73[V/ V]2 a replace by & and & € (0,&). We gather all the terms together and using (45),
for every n = ng(&) V no(&), we obtain

E[V?(Xr,.,) = VP(Xr,)IXr,] <9m1pV? " (X1, ) (8 — ag o V(Xr,))
+ V" (X)) (60 V(Xr, ) (@ - )
V(X)) OYI(YFH)”)
16/ 1all%
<Y1 VP (Xr, ) (Bp — apg o V(XT,)).

+ («

which is exactly the recursive control for p > 1.

Case p € (0,1). Now, let p € (0,1) so that  — P is concave. it follows that

VP(Xr,,,) - VP(Xr,) <pV" (X1, (V(Xr,,,) - V(XT,))

n+1

We have just proved that we have the recursive control RCq v (¢, ¢, «, 5) holds for ¢ = I (with «
replaced by & > 0), and since V takes positive values, we obtain

E[V*(Xr,,,) - V?(Xr,)Xr,] <pV? ' (X1,)E[V(Xr,.,,) - V(X1,)|XT,]

Y1 VP (X1, ) (pB — pad o V(XT,)),

71.+1)

which completes the proof of (50). The proof of (51) is an immediate application of Lemma 2.1 as soon
as we notice that the increments of the Talay’s scheme have finite polynomial moments which implies
(20).

O

4.2 Infinitesimal approximation

Proposition 4.2. Assume that b, o, |Do| Tr[ooT]|Y/?, & and Ab have sublinear growth. We have the
following properties:

A. Assume that the sequence (Uy)nen- satisfies My 2(U) (see (38)) and that sup,cy- v(Tr[oo”]) <
+00, sup,,en- V1(|Do| Tr[ooT]Y/?) < 400 and sup,,cy- v2(Tr[667]1/2) < +o0.

Then, E(A, A, D(A)o) (see (9)) is satisfied.

B. Let I, = {f € C*(R%:R),Vq € {1,...,4},Df € Co(R%:R)}, let My defined in (46) and let
() =~%

Assume that the sequence (U, )nen- satisfies Mars(U) (see (38)) and Ma(U) (see (39)) and that
SUp,en+ V1 (g1) < +oo, with g1 : RT — R such that for every v € RY, gi(z) = TrooT (z)]* +
|b(x)|? + |Do(z)|? Tr[oo (z)] + Tr[667T (x)] + |Ab(z)|. Finally assume that P — a.s., for every
f e R, lim, oo v (M f) = v(O f).

Then & (Fy, A, A,y i) (see (23)) is satisfied.
C. Let Fy = {f € CS(R%;R),Vq € {2,...,6},DIf € Co(R%R), Af € Fi}, let My defined in (47) and

let 72(7y) = 7.

Assume that the sequence (Uy)nen- satisfies Mars(U) (see (38)) and Ms(U) (see (39)) and that
Sup,ens V12 (g2) < +oo with go : RY — R such that for every x € RY, go(z) = TrjooT (2)]® +
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4.2 Infinitesimal approximation

|b(z)]? + |Da(x)\3:I‘r[66T(x)}3/2 + Tr[667T (z)] + |Ab()|?. Finally assume that P — a.s., for every
[ € Fy, limy, o 1 (m2f) = V(m2f)
Then Ey(Fy, A, A, My, 7y (see (23)) is satisfied.

Proof. The proof of point A. is very similar to the proof of point B. and point C. but simpler and thus
left to the reader. The proof of point B. and point C. is a direct consequence of the following Lemma.

Lemma 4.1. Assume that b, o, |Do| Tr[oaT]'/?, & and Ab have sublinear growth. We have the following
properties:

A. Assume that the sequence (U, )nen- satisfies My 3(U) (see (88)) and Mo(U) (see (89)).

Then, for every f € C*(R%R) such that DIf € Co(R%;R) for g € {1,...,4}, then

E[f(Xt,.,) — f(Xr,)IXT,] = mn Af(Xr, )+ D0 f(Xr,)
<2 A1 (X, Vo),
with, given | € N* and a probability space (Q,QN,I@),
Ve e RL Yy € (0,7],  Apa(z,7) = (g1(2), E[As1 (2,7, @)t

with 1~\f$1 satisfying (25) and (26), 9, defined in (46) and g, : RY — R!, such that for every
v € RY, |g1(2)| < 1+ Tr[oo™ (2)]? + |b(2)[? + | Do (@) Tr[oo™ (2)] + Trloo" ()] + |Ab(x)].

B. Assume that the sequence (Uy)nen~ satisfies Mars5(U) (see (38)) and M3s(U) (see (39)).

Then, for every f € C6(R%R) such that Df € Co(R%;R) for q € {2,...,6}, then

E[f(Xr,..) — f(Xr,)[Xr,] = Y1 Af(Xr,) — %ﬁf(yrn)JrﬁH?ﬁzf(an)
<mr1Br2(Xr,, Y1),
with, given | € N* and a probability space (Q,é,[@),
Ve €RLYY € (0,9),  Agal(ey) = (92(2), E[A s (2, 7, &),

with Ao satisfying (25) and (26) and My defined in (47) and go : R — RY, such that for every
z € R, |g2(2)] < 1+ Tr[oo” ()] + |b(2)[* + |Do(2)* Trloo™ (2)]*/2 + Tr[g6 ™" (2)] + |Ab(z) .
Notice that to obtain Proposition 4.2 point B., we use Lemma 4.1 point A. and to obtain Proposition

4.2 point C., we combine Lemma 4.1 point A. (with f replaced by Af) and Lemma 4.1 point B.

Proof of Lemma 4.1. We simply prove point point B.. The proof of point point A. is similar but simpler.
The first step consists in writing the following decomposition

4 . .
FXron) = fXr) = S F(X0) = FXE
=0

. . 0 ~ . c .
with notations (40) and X = Xp,. At this point it remains to study each term of the sum of the r.h.s.
of the above equation. For j = 1, we use Taylor expansion at order 6 and it follows that

6 2 (pifxn ) X e
LX), ] - £, < 3 et ) o Joet) )R )

=1
+m1Ap21 (X1, Ynt1)

il
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with Ay (2,7) = 92.1(2)E[As 21 (z, 2,7)] where Afo1(z,7) = Rioi(z, 2,7, U,0) with U ~ Py, © ~
Upo,1) under P, go1(z) = Tr[oo” (x)]* and

Ria1 REXRy xRN x[0,1] — Ry
(xaq/auve) = Rf7271($,’)/,u,0),

with

6
~ u
R (7,0 = L5 (1 = 01D° (o + 0o (au) — D1 ).
We are going to prove that A, ; satisfies (26). We fix u € RN and 6 € [0, 1]. Now, since the function
o has sublinear growth, there exists Cy, > 0 such that |o(z)| < Cy(1 + |2|) for every 2 € R%. Therefore,
since f has compact support, there exists y(u,f) > 0 and R > 0 such that

sup  sup 7~€f$271(x777u,9):0.
|z]>Ry<y(u,0)

It follows that (26) (i) holds. Moreover since DSf is bounded, and M3z(U) (see (39)) holds, A also
satisfies (25).

The rest of the proof is completely similar and involves heavy calculus so we just give the sketch to
follow for j = 2 and invite the reader to follow the same line for j € {3,4,5}. For j = 2, we use Taylor
expansion at order 3 and it follows that

(D (X, ); (0(Xr,))®) X, ]
7!

Bl (X2, )[Kr,] - f(Xh,) <3 2ot
=1

3
o VT +
+ Tﬂ (D?f(X1,):b(X1,)®%) + 75 1 Ap22(X1,  Yns)

with Afoa(z,7) = 92.2(2)E[Af22(x, 2,7)] where Ajoo(z,v) = Ryioa(x,2,7,U,0) with U ~ Py,
O ~ Up,1) under P, g 5(x) = |b(x)|* and

Rpon RIXRy xRV x[0,1] — Ry
(2,7 u,0) = Rpaalz,y,u,b),

with
Ry oo, y,u,0) = %(1 _ 02D f(x + Fo(x)u + 0vb(x)) — DA ().

Following the same approach as for the case j = 1 we can show that Ay o satisfies (26) and (25).
To complete the study for j = 1, we replace Dif(Y;n, i € {1,2} by an upper bound of their Taylor

expansion at order 2(3 —4) and at point Y{;l = Xr,, that is

ED'f(X+,)[Xr,] - D' f(Xr,)| <2(32i) (D (R, )il (K, V1) ™) Xr.)

£ 7!
i=1

+ ’Yi;ilADif,Zl (Xr,,Ynt1)

with ADif,2,2 (.’t, 7) - TI‘[O’O;T (x)]siiE[ADif,ZQ (fﬂ, 2, 7)] where ]\Dif,2,2 (.T, 7) = 7~?“D17f,2,2(x7 275 Ua 6) with
U ~ Py, © ~Uj,1) under P, and

Rpijas REXRE xRV x[0,1] — Ry
(xa Y, U, e) = RDif,Z,Q(xa Y, U, 6)7



4.3 Growth control

with
|u|2(37i)

m(l —0)°"H| D f(z + 0 /Fo (x)u) — D3 f(2)].

7~2Dif,2,2(x773ua0) =

Following the same approach as for the case j = 1 we can show that Ap: if9.0 satisfies (26) and (25).
We do not detail the rest of the proof which is similar but simply describe the approach we use. For

Jj ={3,4,5} we apply the same method as for j = 2: We first use the Taylor expansion at point XF
such that the remainder has the form 7 ;Af > ;. Then we develop each term of this expansion at point

YEQ at a well chosen order such that the global remainder is still of the form 72+1Af,£j (Mg, is
obviously changed). We iterate the method until we use the Taylor expansion at point X . Then,
the final remainder Ay, has the expected form and the term which appears in the expansion can be

— 2 —
identified with v,11 Af(Xr,) + 52 A% f(Xr,) + 'yn+19ﬁ2f(Xp ). To complete the proof we notice that
for every f € CO(R?) and every j € {1,...,5}, Rfa,; = R_ja. O

O

4.3 Growth control

Lemma 4.2. Let p > 0,a € (0,1], s > 1, p € [1,2] and, ¥(y) = y* and ¢(y) = y*. We suppose that the
sequence (Uy, )nen+ satisfies Moy (app/s)(U) (see (39)). Then, for every n € N and every f € D(A)o,

B[l f(Xr, )= f(Xr, +¥n1b(Xr,) + VZHlAb(an))I” [ Xr,] (54)

<Cppl Teloo™ (Xr, )P + Cpr | Dol Teloo™ 72 + Cyypf Telo™ (X, )P/,

with D(A)g = C5 (RY). In other words, we have GCq(D(A)o, 9o, p, €1) (see (12)) with g, = Tr[ooT]?/? +
|Do|? Tr[oo™]P/? + Tr[667 (X1,)]P/? and ez(y) = v*/? for every v € R,

Moreover, if (41) and B(¢) (see (43)) hold and

SWpoi(p, a, s, p) app/s <p+a-—1. (55)
Then, for every n € N, we have
B[V (Xr,..) = VP (X, )I[Xr,] < OV (Xr,). (56)
In other words, we have GCo(VP/*, VP+a=l p er) (see (12)) with and ez(v) = v*/? for every v € R..

Proof. We begin by noticing that

_ _ _ 1 _
IXr, ., —(Xr, + Y 1b(X1,) + 7244 gAb(XFn)N
<Ol Teloo (Xr, )2 |Upsr | + Cnsa | Do| Te[oa T 12 Wy | + 4270 Tela T (Xr, )] 2| U .

Let f € D(A). Then f is Lipschitz and the previous inequality gives (54). Using Remark 2.2, we
obtain GCq(D(A)o, Yo, p, €1)-

We focus now on the proof of (56). We first notice that B(¢) (see (43)) implies that for any n € N,

|YF — an| < O'yifl ¢o V(yFn)(l + |Un+1| + [Whial])

n+1
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4.3 Growth control 32

Case 2p < s. We notice that V?/* is a-Holder for any o € [2p/s, 1] (see Lemma 3. in [26]) and then
VP/s is 2p/s-Holder. We deduce that

E(V?/*(Xr,,,)-V?*(Xr,) [ Xr,] < CVP°l5, A0A Ve (Xr,).

In order to obtain (56), it remains to use app/s < a+p— 1.

Case 2p > s. Using the following inequality
Yu,v € Ry,Va > 1, lu® — v <a2* (W Hu — ] + Ju — v]%),

with a = 2p/s, and since V'V is Lipschitz, we have

(VP8 (Xr, ) — VP/5(Xr,)| <2%/*p/s(VP/*"V*(Xp, )WV (Xr,,,) — VV(XT,)
+ |\/V(YF7L+1) - \/V(yrn) 2p/s)
<2/ p/s(VV VP V2(Xp )X, — X1, |
+ WV X, — X1, 2/%).

In order to obtain (56), it remains to use the assumptions B(¢) (see (43)) and then app/s < p+a — 1.
O

Lemma 4.3. Let p € [1,2] and, ¥(y) = y? and ¢(y) = y*. We suppose that the sequence (Up,)nen+
satisfies M,(U) (see (39)). Then, for every n € N, we have: for every f € F = {f € C}(R4;R),DIf €
Cb(Rd;R)qu € {172}}

Ellf(Xr,..)=f(Xr,) = Vinr1(Df(X1,); 0 (X1, )Uns1) °[ X1, ] (57)
<Cpypya Tefoo™ (Xr,)) + Cpvi 1 [0(Xa)| + Cafa | Do (X, )| Tr[oo™ (X, )]/
+ O Mo (X, )72 4 Oyl | Ab(Xr, )7
In particular for q € {1,2}, assume that P — a.s., lim, oo V) (|cT Df|?) = v(leT Df|?) for every f € F
satisfying Af € Co(R%R) when q = 2 and that Tr[o0”] = 044 0o (W) with sup,en- v (W) < +00.

Then GCq 4(F, g, p, ex, ege, V) (see (28)) is satisfied with g = Tr[oo]? + |b|P + |Do|? Tr[oo™]P/? +
Tr[66T)P/2 + |AblP, ex(y) = v and ege(y) = ~° for every v € Ry and BVf = |oTDf|? for every
f € CL(R%R).

Proof. The first step consists in writing

f(Xr,..)— f(Xr,) =f(Xr, + VInr10(Xr, )Uns1) — f(X1,) (58)
+ f(yfvwrl) - f(yrn + V ’YnJrlO-(YF”)UnJrl)'

We study the first term of the r.h.s. of the above equation. Using Taylor expansion at order two and
the fact that Df € Cy(R?) yields

|f(YFn + \% ’Yn+10'(YFn)Un+1) - f(yfn) -V "Yn+1(Df(YFn); O—(YFH)UTL+1)‘
1 _
< 5HD2f||oo\\/7n+1U(Xrn)Un+1|2-
Now we study the second term of the r.h.s. of (58). From Taylor expansion at order one
F(Xre) — F X, + A0 (X)) SUDf el (5Fr,) + (Do (K, ); (K, )WL)

+ A6 (X ) Untr + 721 AD(Xr,)|.

Gathering both terms of (58), raising to the power p and taking conditional expectancy thus yields (57).
To obtain GCq 4(F, g, p, €x, €gc, V) (see (28)), we observe that Af is bounded when ¢ = 2 and it remains
to show that (29) holds with Xy, = \/Vn+1(Df(Xr,); 0(Xr,)Uns1), n € N. This is already done in the
seminal paper [13] (see Proposition 2.) and we invite the reader to refer to this result. O



4.4  Proof of Theorem 4.1

4.4 Proof of Theorem 4.1

Proof of Theorem 4.1 point A.
This result follows from Theorem 2.1 and Theorem 2.2. The proof consists in showing that the
assumptions from those theorems are satisfied.

Step 1. Mean reverting recursive control First, we show that RCq v (¢, ¢, pa,ps) and
RCq.v (11, ¢, &, B) (see (7)) is satisfied for every & € (0, @).

Since (41), B(¢) (see (43)) and Ry(a, 5,¢,V) (see (44)) hold, it follows from Proposition 4.1 that
RCq,v(¥p, ¢, p&,pB) (see (7)) is satistied for every & € (0, a) since liminf,_, . ¢(y) > /& Moreover
let us notice that for every p < 1 then R,(«,3,¢,V) (see (44)) is similar to Ri(a, 5,¢, V) and then
RCq.v (11, ¢, &, B) (see (7)) is satisfied for every & € (0, a)

Step 2. Step weight assumption Now, we show that SWz , ,(VPVITe™L p er) (see (13)) and
SWrT ., (VPVITeT1) (see (14)) hold.

First we noticel that from Stepl. the assumption RCq v (¢¥pv1, ¢, (pV1)&, (pV1)5) (see (7)) is satisfied
for every & € (0, ). Then, using SWz ., (p, €z) (see (21)) with Lemma 2.2 gives SWx - ,(VPVITa=1 p e7)
(see (13)). Similarly, SWrz ., (VPVITe~1) (see (14) follows from SWzz ., (see (22)) and Lemma 2.2.

Step 3. Growth control assumption Now, we prove GCq(F,VPVITa=l p er) (see (12)) for
F =D(A) and F = {VP/5} .

This is a consequence of Lemma 4.2. We recall that p € [1,2]. Consequently M,y (2p,/s)(U) (see (39))
holds. Now, we notice that from B(¢) (see (43)), we have Tr[oo”]?/? + | Do | Tr[oaT|P/? + Tr[567]P/% <
CVre/2 with ap/2 < p+a — 1 since SW,01(p, a, s, p) (see (55)) holds. Then Lemma 4.2 implies that for
F =D(A) and F = {VP/3}, then GCq(F,VPVI+a=1 p e7) (see (12)) holds

Step 4. Conclusion

i. The first part of Theorem 4.1 (see (48)) is a consequence of Theorem 2.1. Let us observe that
assumptions from Theorem 2.1 indeed hold.

On the one hand, we observe that from Step 2. and Step 3. the assumptions GCq (V?/*, VPVI+a=1 5 ¢ 1)

(see (12)), SWr ., (VPVITe=1 p e7) (see (13)) and SWzz ., (VPVIT271) (see (14)) hold which are
the hypotheses from Theorem 2.1 point A. with g = VPVite—1,

On the other hand, form Step 1. the assumptionRCq v (¢, ¢, p&, pB) (see (7)) is satisfied for every
& € (0, ). Moreover, since Ly (see (6)) holds and that p/s+a —1 > 0, then the hypotheses from
Theorem 2.1 point B. are satisfied.

We thus conclude from Theorem 2.1 that (]!),en+ is P — a.s. tight and (48) holds which concludes
the proof of the first part of Theorem 4.1 point A..

ii. Let us now prove the second part of Theorem 4.1 (see (49)) which is a consequence of Theorem 2.2.
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On the one hand, we observe that from Step 2. and Step 3. the assumptions GCq(D(A)o, VPVITa=1 p e7)

(see (12)) and SWx 4, (VPVITe=L p er) (see (13)) hold which are the hypotheses from Theorem
2.2 point A. with g = VPVita=l,

On the other hand, since b, o, |Do| Tl"[O'O'T]l/2, & and Ab have sublinear growth and that g, <
cvr/ste=l with g, = Trloo”] + |Do| Tr[ooT]Y/2 + Tr[667]1/2, so that P-a.s. sup, ey ¥1(go) <
~+00, it follows from Proposition 4.2 that 5(%1 A,D(A)) (see (9)) is satisfied. Then, the hypotheses
from Theorem 2.2 point B. hold and (49) follows from (19).
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Proof of Theorem 4.1 point B.
First we notice that using Theorem 4.1 point A., then for every f € F,, |cTDf|?> € C;

Vip.o.s
Myfecy, | (R%) and

s

(RY),

P—a.s. le vI(|leTDf1?) = v(leT Df|?) and le via(OM, f) = v(M, f).
Now, we notice that using Proposition 4.2, point B. and point C., gives &,(F,, A, A, M, 7,) (see (23)).

Moreover, Lemma 4.3 gives GCq 4(Fy, g, p; €x, €gc, V) (see (28)) with g = Tr[oo” P +|b|P+| Do | Tr[oo™ P/ 4
Tr[66T]P/24| Ab|?, ex(v) = v and ege () = 4* for every v € R, every p € [1,2], and with Uf = |cT D f|?.
Since B(¢) (see (43)) holds, then g < CV*%/2 and it follows that GCq ,(Fy, VPVIHe~1 5, ex, ege, V) (see
(28)) is satisfied.

Observing that SWgc .~ (fq,7,7) (see (31)) holds, the proof of Theorem 4.1 point B. is thus a direct
consequence of Theorem 3.2 taking ¢ =1 and ¢ = 2.
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