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Abstract

In this paper, we study the discretization of the ergodic Functional Central Limit Theorem (CLT)
established by Bhattacharya (see [2]) which states the following: Given a stationary and ergodic Markov
process (Xt)t⩾0 with unique invariant measure ν and in�nitesimal generator A, then, for every smooth

enough function f , (n1/2 1
n

∫ nt
0
Af(Xs)ds)t⩾0 converges in distribution towards the distribution of the

process (
√

−2⟨f,Af⟩νWt)t⩾0 with (Wt)t⩾0 a Wiener process. In particular, we consider the marginal
distribution at �xed t = 1, and we show that when

∫ n
0
Af(Xs)ds is replaced by a well chosen discretization

of the time integral with order q (e.g. Riemann discretization in the case q = 1), then the CLT still holds
but with rate nq/(2q+1) instead of n1/2. Moreover, our results remain valid when (Xt)t⩾0 is replaced by
a q-weak order approximation (not necessarily stationary). This paper presents both the discretization
method of order q for the time integral and the q-order ergodic CLT we derive from them. We �nally
propose applications concerning the �rst order CLT for the approximation of Markov Brownian di�usion
stationary regimes with Euler scheme (where we recover existing results from the literature) and the
second order CLT for the approximation of Brownian di�usion stationary regimes using Talay's scheme
[29] of weak order two.
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1 Introduction

In this paper, we design a recursive algorithm which aims to approximate the invariant distribution
(denoted ν) of a Feller process (Xt)t⩾0. Moreover, we establish rates of convergence for our approximation.
In particular, we prove a discretized version of the Functional Central Limit Theorem (CLT) presented
in [2] and which states the following:
Let (Xt)t⩾0 be a progressively measurable Markov stationary ergodic process with initial and invariant
distribution ν and in�nitesimal generator A with domain D(A) (see Section 2.1.2 for de�nition). Then,

for every f ∈ D(A), (n1/2 1
n

∫ tn
0
Af(Xs)ds)t⩾0 converges in distribution, as n tends to in�nity, towards

the distribution of (
√
−2⟨f,Af⟩νWt)t⩾0 with (Wt)t⩾0 a Wiener process.

In this work, we are interested in proving a version of this result when considering the marginal
asymptotic distribution of n1/2 1

n

∫ tn
0
Af(Xs)ds for �xed t > 0. The main di�erence of our approach
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compared to [2], is that we consider discrete time approximations of the time integral
∫ tn
0
Af(Xs)ds and

make possible to replace (Xt)t⩾0 by a weak order approximation (in a sense made precise in Section 3)
with arbitrary initial condition. We then establish a CLT (see Theorem 3.2) for our approximation of
the time integral. However, the rate of convergence is altered by the discretization. In particular, if we
use a q-weak order approximation for (Xt)t⩾0, q ∈ N∗, we propose an adapted discretization of the time
integral such that the CLT is satis�ed with order n1/2 replaced by nq/(2q+1).

In order to build our approximation of ν, we consider random weighted empirical measures built
using a recursive algorithm introduced in [22] and inspired by [13]. Let us be more speci�c about the
motivation of this algorithm.

Invariant distributions are crucial in the study of the long term behavior of stochastic di�erential
systems (see [12] and [7] for an overview of the subject) and their computation has already been widely
explored in the literature. In [28], explicit exact expressions of the invariant density distribution for some
solutions of Stochastic Di�erential Equations are given.

However, in many cases, there is no explicit formula for ν and other approaches must be developed.
A �rst method consists in studying the convergence towards ν of the semigroup (Pt)t⩾0 (i.e. E[f(Xt]) of
the Markov process (Xt)t⩾0 as t tends to in�nity. This is done e.g. in [9] for the total variation topology.
As soon as XT can be simulated, for T large enough, we can design a Monte Carlo method to estimate
PT . Remark that, in addition to the convergence error of PT →

T→∞
ν, it gives rise to a second term in

the error analysis due to the Monte Carlo error for the computation of PT .

Unfortunately, most of the time, (Xt)t⩾0 cannot be simulated at a reasonable cost. A solution is then

to replace (Xt)t⩾0 by a simulable approximation (X
γ

Γn)n∈N, built with transition functions (Qγn)n∈N∗

(given a step sequence (γn)n∈N, Γ0 = 0 and Γn = γ1 + . . . + γn). We usually refer to (X
γ

Γn)n∈N as a
numerical scheme of (Xt)t⩾0. It is then possible to build approximations of ν using Monte Carlo methods

resulting from the weak approximation properties satis�ed by (X
γ

Γn)n∈N. For instance, when γn = γ1,

n ∈ N∗, T ∈ {Γn, n ∈ N}, if Xγ1
T weakly converges to PT as γ1 tends to zero, we can approximate ν(f)

using the Monte Carlo approximation of E[f(Xγ1
T ))] taking γ1 small enough and T large enough (at least

for continuous and bounded f).

The Monte Carlo methods mentioned above do not fully bene�t from the ergodic feature of (Xt)t⩾0. In
fact, as investigated in [29] for strongly Brownian di�usions, the ergodic (or positive recurrence) property
of (Xt)t⩾0 is also satis�ed by its approximation (X

γ1
Γn)n∈N at least for small enough γ1. In particular,

(X
γ1
Γn)n∈N has an invariant distribution νγ1 (supposed to be unique for simplicity) and the sequence of

empirical measures

νγ1n (dx) =
1

Γn

n∑
k=1

γ1δXγ1Γk−1

(dx), Γn = nγ1 (1)

(which can be seen as a discrete version of the time integral Γ−1
n

∫ Γn
0

δXsds studied in [2] with X replaced

by X
γ1
) almost surely weakly converges to νγ1 . In other words, for every continuous and bounded

function f , νγ1n (f) almost surely converges to νγ1(f). This last result makes possible to compute by
simulation, arbitrarily accurate approximations of νγ1(f) using only one simulated path of (X

γ1
Γn)n∈N.

It is an ergodic - or Langevin - simulation of νγ1(f). At this point, it remains to establish at least that
νγ1(f) converges to ν(f) when γ1 converges to zero and, if possible, at which rate. In [29] this rate was
shown to depend closely on the weak order of the numerical scheme. Notice that the rate of convergence
of (νγ1n )n∈N∗ to νγ1 is not established in [29].

To take a step further, the intuition of our algorithm is to build a version (1) such that we avoid the
asymptotic analysis between νγ1 and ν. Concerning Monte Carlo approaches for Brownian di�usions, it
is proved in [1], that the discrete time weak approximation Markov process (X

γ

Γn)n∈N, with step sequence
γ = (γn)n∈N vanishing to 0, weakly converges towards ν. It is then possible to approximate ν(f) using
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the Monte Carlo approximation of E[f(Xγ

Γn)] for n large enough.

In [13], the ideas from [29] and [1] are combined to design a Langevin Euler Monte Carlo recursive
algorithm with decreasing step which a.s. weakly converges to an invariant distribution. This paper
treats the case where (X

γ

Γn)n∈N is an (inhomogeneous) Euler scheme with decreasing step associated
to a strongly mean reverting Brownian di�usion process taking values in Rd. The sequence (νγn)n∈N∗ is
de�ned as the weighted empirical measures of the path of (X

γ

Γn)n∈N (which is the procedure that is used
in every work we mention from now on and which is also the one we use in this paper). In particular,
the a.s. weak convergence of

νγn(dx) =
1

Γn

n∑
k=1

γkδXγΓk−1

(dx), Γn =

n∑
k=1

γk, (2)

towards the (non-empty) set V of the invariant distributions of the underlying Brownian di�usion is
established. Notice also that, this approach does not require that the invariant measure ν is unique by
contrast with the results obtained in [29] and [1] or in [6] where the authors study of the total variation
convergence for the Euler scheme with decreasing step of the over-damped Langevin di�usion. Moreover,
when the invariant measure ν is unique, it is proved in [13] that lim

n→+∞
νγnf = νf a.s. for a class of test

functions f that is not simply restricted to continuous and bounded functions but for a larger class,
made of continuous functions with polynomial growth. More speci�cally, it is shown that, given p > 0,
lim

n→+∞
νγnf = νf a.s. for every function f satisfying |f(x)| ⩽ C(1 + |x|p) for every x ∈ Rd. This last

result implies the a.s. convergence for the p-Wasserstein distance (this is a consequence of Theorem 6.9
in [30]).

In the spirit of [2], a CLT is also established in [13] for the empirical measures (2) of the Euler scheme
with rate n1/3. More speci�caly, it is shown that, for a well chosen step sequence (γn)n∈N∗ , when n
tends to in�nity, n1/3νγn(Af) converges in distribution towards the centered Gaussian distribution with
variance −2⟨f,Af⟩ν . This whole study is made in a strongly mean reverting setting, and the extension
to the weakly mean reverting setting has been realized �rst in [25].

Concerning the study of the almost sure convergence, the results established in [13] gave rise to
many generalizations and extensions. In [14], the initial result is extended to the case of Euler scheme
of Brownian di�usions with weakly mean reverting properties. Thereafter, in [15], the class of test
functions for which we have lim

n→+∞
νγnf = νf a.s. (when the invariant distribution is unique) is extended

to include functions with exponential growth. Finally, in [26], the results concerning the polynomial
case are shown to hold for the computation of invariant measures for weakly mean reverting Levy driven
di�usion processes. For a more complete overview of the studies concerning (2) for the Euler scheme,
the reader can also refer to [19], [16], [25], [23], [24] or [18].

Those results are extended in [22] and generalized to the abstract case where both the Markov
transition sequence (Qγn)n∈N∗ (and then (X

γ

Γn)n∈N) and the Feller process (Xt)t⩾0 are not speci�ed
explicitly. In [22], abstract properties are developed to prove a.s. weak convergence of (2) in this abstract
framework. In particular, it suggests various applications beyond the Euler scheme of Levy processes.
See for instance [21]. An interest of such an abstract framework is that it can be applied to schemes
with higher q-weak order than the Euler scheme (which has weak order of convergence q = 1). In this
paper, we aim to show that this procedure may improve the rate of convergence in the CLT from n1/3

to nq/(2q+1).

In particular, we extend the abstract framework introduced in [22] to prove the CLT in the weakly mean
reverting setting. We establish an abstract ergodic q-order CLT (see Theorem 3.2) which enables to
obtain a discretized version of [2] and recover results from [13], [15], [25] or [18] which are all restricted
to the case q = 1. The proof of Theorem 3.2 relies both on the fact that we deal with a q-weak order
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stochastic approximation (X
γ

Γn)n∈N for (Xt)t⩾0 and that we consider a generalization of (2), de�ned by

νηqn (dx) =
1

Hn

n∑
k=1

ηq,kδXγΓk−1

(dx), Hn =

n∑
k=1

ηk, (3)

with (ηq,n)n∈N∗ a well-chosen weight sequence given in (35). Notice that the weights for q = 1, 2 or 3
appears as extension of the standards Riemann, Trapezoidal or Simpson's homogeneous approximations
of integrals. Up to our knowledge, no second or higher order CLT had been derived in any situation so
far in the literature. However, acceleration techniques inherited from multilevel Monte Carlo (see [10]
for seminal paper) and inspired from Richardson-Romberg extrapolation already exist. For instance, we
can refer to [17] or [20] which allows to reach similar rates as with our approach that is nR/(2R+1), for
the Richardson-Romberg method of order R ⩾ 2.

The paper is organized in the following way. Section 2 presents the results from [22] to obtain a.s.
weak convergence of (3) in an abstract setting. The extension of this abstract framework to be adapted
to derive q-order ergodic CLT is developed in Section 3 where our main abstract result is established
(see Theorem 3.2). Almost sure weak convergence and �rst order CLT for the Euler scheme are given
as example at the end of Section 3. Then, in Section 4, we apply Theorem 3.2 to the second weak order
scheme of Talay for Brownian di�usion processes introduced in [29]. In particular, in Theorem 4.1, we
establish the a.s. weak convergence of the empirical measures. We also establish a �rst order CLT for
(νγn)n∈N∗ . In this case, the convergence has the same rate as for the Euler (i.e. n1/3) scheme. Finally,
we establish the second order CLT for (νη2n )n∈N∗ with rate n2/5. This last result can not be obtained for
the Euler scheme as it is simply a �rst weak order scheme.

2 Convergence to invariant distributions - A general approach

In this section, we present the abstract framework from [22] to show the convergence of weighted empirical
measures de�ned in a similar way as in (3) and built from an approximation (X

γ

Γn)n∈N of a Feller process
(Xt)t⩾0 (which are not speci�ed explicitly). Given that the step sequence (γn)n∈N∗ →

n→+∞
0, it a.s.

weakly converges to the set V, of the invariant distributions of (Xt)t⩾0. This framework is based on as

weak as possible mean reverting assumptions on the pseudo-generator of (X
γ

Γn)n∈N on the one hand and
appropriate rate conditions on the step sequence (γn)n∈N∗ on the other hand.

2.1 Presentation of the abstract framework

2.1.1 Notations

Let (E, |.|) be a locally compact separable metric space, letC(E) the set of continuous functions on E
and C0(E) the set of continuous functions that vanish at in�nity. We equip this space with the sup norm
∥f∥∞ = supx∈E |f(x)| so that (C0(E), ∥.∥∞) is a Banach space. We will denote B(E) the σ-algebra of
Borel subsets of E and P(E) the family of Borel probability measures on E. We will denote by KE the
set of compact subsets of E.
Finally, for every Borel function f : E → R, and every l∞ ∈ R ∪ {−∞,+∞}, lim

x→∞
f(x) = l∞ if and

only if for every ϵ > 0, there exists a compact Kϵ ⊂ KE such that supx∈Kc
ϵ
|f(x) − l∞| < ϵ if l∞ ∈ R,

infx∈Kc
ϵ
f(x) > 1/ϵ if l∞ = +∞, and sup

x∈Kc
ϵ

f(x) < −1/ϵ if l∞ = −∞ with Kc
ϵ = E \Kϵ.

2.1.2 Construction of the random measures

Let (Ω,G,P) be a probability space. We consider a Feller process (Xt)t⩾0 (see [8] for details) on (Ω,G,P)
taking values in a locally compact and separable metric space E. We denote by (Pt)t⩾0 the Feller
semigroup (see [27]) of this process. We recall that (Pt)t⩾0 is a family of linear operators from C0(E)
to itself such that P0f = f , Pt+sf = PtPsf , t, s ⩾ 0 (semigroup property) and lim

t→0
∥Ptf − f∥∞ = 0
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(Feller property). Using this semigroup, we can introduce the in�nitesimal generator of (Xt)t⩾0 as a
linear operator A de�ned on a subspace D(A) of C0(E), satisfying: For every f ∈ D(A),

Af = lim
t→0

Ptf − f

t

exists for the ∥.∥∞-norm. The operator A : D(A) → C0(E) is thus well de�ned and D(A) is called the
domain of A. As a consequence of the Echeverria Weiss theorem (see e.g. [7], Theorem 9.17), the set of
invariant distributions for (Xt)t⩾0 can be characterized in the following way:

V = {ν ∈ P(E),∀t ⩾ 0, Ptν = ν} = {ν ∈ P(E),∀f ∈ D(A), ν(Af) = 0}.

The starting point of our reasoning is thus to consider an approximation of A. First, we introduce the
family of transition kernels (Qγ)γ>0 from C0(E) to itself. Now, let us de�ne the family of linear operators

Ã := (Ãγ)γ>0 from C0(E) into itself, as follows

∀f ∈ C0(E), γ > 0, Ãγf =
Qγf − f

γ
.

The family Ã is usually called the pseudo-generator of the transition kernels (Qγ)γ>0 and is an approximation
of A as γ tends to zero. From a practical viewpoint, the main interest of our approach is that it
is reasonable to assume that there exists γ > 0 such that for every x ∈ E and every γ ∈ [0, γ],
Qγ(x, dy) is simulable at a reasonable computational cost. The family (Qγ)γ>0 is used to build (XΓn)n∈N
(this notation replaces (X

γ

Γn)n∈N from now for clarity in the writing) as the non-homogeneous Markov

approximation of the Feller process (Xt)t⩾0. It is de�ned on the time grid {Γn =
n∑
k=1

γk, n ∈ N} with

the time-step sequence γ := (γn)n∈N∗ satisfying

∀n ∈ N∗, 0 < γn ⩽ γ := sup
n∈N∗

γn < +∞, lim
n→+∞

γn = 0 and lim
n→+∞

Γn = +∞.

Notice that we will sometimes use the notation γ−m for m ∈ N. In this case we will always use the
convention γ−m = 0. The transition probability distributions of (XΓn)n∈N are given by Qγn(x, dy), n ∈
N∗, x ∈ E, i.e. :

P(XΓn+1 ∈ dy|XΓn) = Qγn+1(XΓn , dy), n ∈ N.

We can canonically extend (XΓn)n∈N into a càdlàg process by setting X(t, ω) = XΓn(t)
(ω) with n(t) =

inf{n ∈ N,Γn+1 > t}. Then (XΓn)n∈N is a simulable (as soon as X0 is) non-homogeneous Markov chain
with transitions

∀m ⩽ n, PΓm,Γn(x, dy) = Qγm+1
◦ · · · ◦ Qγn(x, dy),

and law

L(XΓn |X0 = x) = PΓn(x, dy) = Qγ1 ◦ · · · ◦ Qγn(x, dy).

We use (XΓn)n∈N to design a Langevin Monte Carlo algorithm. Notice that this approach is generic
since the approximation transition kernels (Qγ)γ>0 are not explicitly speci�ed and then, it can be used in
many di�erent con�gurations including among others, weak numerical schemes or exact simulation i.e.
(XΓn)n∈N = (XΓn)n∈N. This is of main interest in this paper as we show later that using high weak order
schemes of (Xt)t⩾0 leads to higher rates of convergence in the CLT satis�ed by the weighted empirical
measures. Notice that weighted empirical measures are built in a quite more general way than in (2)
as we consider some general weights which are not necessarily equal to the time steps. We de�ne this
weight sequence. Let η := (ηn)n∈N∗ be such that

∀n ∈ N∗, ηn ⩾ 0, lim
n→+∞

Hn = +∞, with Hn := Hη,n =

n∑
k=1

ηk. (4)
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Now we present our algorithm introduced in [22] and adapted from the one introduced in [13] designed
with a Euler scheme with decreasing step (XΓn)n∈N of a Brownian di�usion process (Xt)t⩾0. For x ∈ E,
let δx denote the Dirac mass at point x. For every n ∈ N∗, we de�ne the random weighted empirical
random measures as follows

νηn(dx) =
1

Hn

n∑
k=1

ηkδXΓk−1
(dx). (5)

This section of the paper is dedicated to present how to prove that a.s. every weak limiting distribution
of (νηn)n∈N∗ belongs to V. In particular when the invariant measure of (Xt)t⩾0 is unique, i.e. V = {ν},
then P− a.s. lim

n→+∞
νηnf = νf , for a generic class of continuous test functions f . The approach consists

in two steps. First, we establish a tightness property to obtain existence of at least one weak limiting
distribution for (νηn)n∈N∗ . Then, in a second step, we identify everyone of these limiting distributions
with an invariant distributions of the Feller process (Xt)t⩾0.

2.1.3 Assumptions on the random measures

In this part, we present the necessary assumptions on the pseudo-generator Ã = (Ãγ)γ>0 in order to
prove the convergence of the empirical measures (νηn)n∈N∗ .

Mean reverting recursive control
In this framework, we introduce a well suited assumption, referred to as the mean reverting recursive

control of the pseudo-generator Ã. This assumption leads to a tightness property on (νηn)n∈N∗ from which
follows the existence (in weak sense) of a limiting distribution for (νηn)n∈N∗ . A supplementary interest of
this approach is that it is designed to obtain the a.s. convergence of (νηn(f))n∈N∗ for a generic class of
continuous test functions f which is larger then Cb(E). To do so, we introduce a Lyapunov function V
related to (XΓn)n∈N. Assume that V a Borel function such that

LV ≡ V : E → [v∗,+∞), v∗ > 0 and lim
x→∞

V (x) = +∞. (6)

We now relate V to (XΓn)n∈N introducing its mean reversion Lyapunov property. Let ψ, ϕ : [v∗,∞) →
(0,+∞) some Borel functions such that Ãγψ ◦ V exists for every γ ∈ (0, γ]. Let α > 0 and β ∈ R. We
assume

RCQ,V (ψ, ϕ, α, β) ≡{
(i) ∃n0 ∈ N∗,∀n ⩾ n0, x ∈ E, Ãγnψ ◦ V (x) ⩽ ψ◦V (x)

V (x) (β − αϕ ◦ V (x)).

(ii) lim inf
y→+∞

ϕ(y) > β/α.
(7)

RCQ,V (ψ, ϕ, α, β) is called the weakly mean reverting recursive control assumption of the pseudo
generator for Lyapunov function V .

Lyapunov functions are usually used to show the existence and sometimes the uniqueness (see e.g.
[4] or [3]) of the invariant measure of Feller processes. In particular, when p = 1, the condition
RCQ,V (Id, Id, α, β)(i) appears as the discrete version of AV ⩽ β −αV , which is used in that interest for
instance in [12], [7], [1] or [19].

The condition RCQ,V (V p, Id, α, β)(i), p ⩾ 1, is studied in the seminal paper [13] (and then in
[14] with ϕ(y) = ya, a ∈ (0, 1],y ∈ [v∗,∞)) concerning the Wasserstein convergence of the weighted
empirical measures of the Euler scheme with decreasing step of a Brownian di�usion. When ϕ =
Id, the Euler scheme is also studied for Markov switching Brownian di�usions in [18]. Notice also
that RCQ,V (Id, ϕ, α, β)(i) with ϕ concave appears in [5] to prove sub-geometrical ergodicity of Markov

chains. In [15], a similar hypothesis to RCQ,V (Id, ϕ, α, β)(i) (with ϕ not necessarily concave and Ãγn
replaced by A), is also used to study the Wasserstein but also exponential convergence of the weighted
empirical measures (5) for the Euler scheme of a Brownian di�usion. Finally in [26] similar properties
as RCQ,V (V p, V a, α, β)(i), a ∈ (0, 1], p > 0, are developed in the study of the Euler scheme for Levy
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processes.

On the one hand, the function ϕ controls the mean reverting property. In particular, we call strongly
mean reverting property when ϕ = Id and weakly mean reverting property when lim

y→+∞
ϕ(y)/y = 0, for

instance ϕ(y) = ya, a ∈ (0, 1) for every y ∈ [v∗,∞). On the other hand, the function ψ is closely related
to the identi�cation of the set of test functions f for which we have lim

n→+∞
νηn(f) = ν(f) a.s., when ν is

the unique invariant distribution of the underlying Feller process.

To this end, for s ⩾ 1, which is related to step weight assumption, we introduce the sets of test
functions for which we will show the a.s. convergence of the weighted empirical measures (5):

CṼψ,ϕ,s(E) =
{
f ∈ C(E), |f(x)| = o

x→∞
(Ṽψ,ϕ,s(x))

}
, (8)

with Ṽψ,ϕ,s : E → R+, x 7→ Ṽψ,ϕ,s(x) :=
ϕ ◦ V (x)ψ ◦ V (x)1/s

V (x)
.

Notice that our approach bene�ts from providing generic results because we consider general Feller
processes and approximations but also because the functions ϕ and ψ are not speci�ed explicitly.

In�nitesimal generator approximation
This section presents the assumption that enables to characterize the limiting distributions of the a.s.

tight sequence (νηn(dx, ω))n∈N∗ . We aim to estimate the distance between V and νηn (see (5)) for n large

enough. We thus introduce an hypothesis concerning the distance between (Ãγ)γ>0, the pseudo-generator
of (Qγ)γ>0, and A, the in�nitesimal generator of (Pt)t⩾0. We assume that there exists D(A)0 ⊂ D(A)
with D(A)0 dense in C0(E) such that:

E(Ã, A,D(A)0) ≡ ∀γ ∈ (0, γ],∀f ∈ D(A)0,∀x ∈ E,

|Ãγf(x)−Af(x)| ⩽ Λf (x, γ), (9)

where Λf : E ×R+ → R+ can be represented in the following way: Let (Ω̃, G̃, P̃) be a probability space.

Let g : E → Rq+, q ∈ N, be a locally bounded Borel measurable function and let Λ̃f : (E×R+×Ω̃,B(E)⊗
B(R+) ⊗ G̃) → Rq+ be a measurable function such that supi∈{1,...,q} Ẽ[supx∈E supγ∈(0,γ] Λ̃f,i(x, γ, ω̃)] <
+∞ and that we have the representation

∀x ∈ E,∀γ ∈ (0, γ], Λf (x, γ) = ⟨g(x), Ẽ[Λ̃f (x, γ, ω̃)]⟩Rq

Moreover, we assume that for every i ∈ {1, . . . , q}, supn∈N∗ νηn(gi, ω) < +∞, P(dω)− a.s., and that Λ̃f,i
satis�es one of the following two properties:
There exists a measurable function γ : (Ω̃, G̃) → ((0, γ],B((0, γ])) such that:

I) P̃(dω̃)− a.s


(i) ∀K ∈ KE , lim

γ→0
sup
x∈K

Λ̃f,i(x, γ, ω̃) = 0,

(ii) lim
x→∞

sup
γ∈(0,γ(ω̃)]

Λ̃f,i(x, γ, ω̃) = 0,
(10)

or

II) P̃(dω̃)− a.s lim
γ→0

sup
x∈E

Λ̃f,i(x, γ, ω̃)gi(x) = 0. (11)

Remark 2.1. Let (F,F , λ) be a measurable space. Using the exact same approach, the results we obtain
hold when we replace the probability space (Ω̃, G̃, P̃) by the product measurable space (Ω̃×F, G̃ ⊗F , P̃⊗λ)
in the representation of Λf and in (10) and (11) but we restrict to that case for sake of clarity in the
writing. This observation can be useful when we study jump process where λ can stand for the jump
intensity.

This representation assumption bene�ts from the fact that the transition functions (Qγ(x, dy))γ∈(0,γ],
x ∈ E, can be represented using distributions of random variables which are involved in the computation
of (XΓn)n∈N∗ . In particular, this approach is well adapted to stochastic approximations associated to a
time grid such as numerical schemes for stochastic di�erential equations with a Brownian part or/and a
jump part.
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Growth control and Step Weight assumptions
We conclude with hypotheses concerning the control of the martingale increments of functions of

the approximation (XΓn)n∈N∗ . Let ρ ∈ [1, 2] and let ϵI : R+ → R+ an increasing function. For
F ⊂ {f, f : (E,B(E)) → (R,B(R))} and g : E → R+ a Borel function, we assume that, for every n ∈ N,

GCQ(F, g, ρ, ϵI) ≡ P− a.s. ∀f ∈ F,

E[|f(XΓn+1)− Qγn+1f(XΓn)|ρ|XΓn ] ⩽ Cf ϵI(γn+1)g(XΓn), (12)

with Cf > 0 a �nite constant which may depend on f .

Remark 2.2. The reader may notice that GCQ(F, g, ρ, ϵI) holds as soon as (12) is satis�ed with Qγn+1
f(XΓn),

n ∈ N∗, replaced by a FX
n := σ(XΓk , k ⩽ n)- progressively measurable process (Xn)n∈N∗ since we have

Qγn+1
f(XΓn) = E[f(XΓn+1

)|XΓn ] and E[|f(XΓn+1
)−Qγn+1

f(XΓn)|ρ|XΓn ] ⩽ 2ρE[|f(XΓn+1
)−Xn|ρ|XΓn ]

for every Xn ∈ L2(FX
n ).

We will combine this �rst assumption with the following step weight related ones:

SWI,γ,η(g, ρ, ϵI) ≡ P− a.s.

∞∑
n=1

∣∣∣ ηn
Hnγn

∣∣∣ρϵI(γn)g(XΓn) < +∞, (13)

and

SWII,γ,η(F ) ≡ P− a.s. ∀f ∈ F,
∞∑
n=0

(ηn+1/γn+1 − ηn/γn)+
Hn+1

|f(XΓn)| < +∞, (14)

with the convention η0/γ0 = 1. Notice that this last assumption holds as soon as the sequence
(ηn/γn)n∈N∗ is non-increasing.

We end this section presenting the main results concerning the almost sure convergence of empirical
measures which are used in this article. Those results were established in [22] in an abstract framework
that we will extend to establish CLT.

2.1.4 Almost sure tightness

From the recursive control assumption, Theorem 2.1 establishes the a.s. tightness of the sequence
(νηn)n∈N∗ and also provides a uniform control of (νηn)n∈N∗ on a generic class of test functions.

Theorem 2.1. Let s ⩾ 1, ρ ∈ [1, 2], v∗ > 0, and let us consider the Borel functions V : E → [v∗,∞),
g : E → R+, ψ : [v∗,∞) → R+ and ϵI : R+ → R+ an increasing function. We have the following
properties:

A. Assume that Ãγn(ψ ◦ V )1/s exists for every n ∈ N∗, and that GCQ((ψ ◦ V )1/s, g, ρ, ϵI) (see (12)),
SWI,γ,η(g, ρ, ϵI) (see (13)) and SWII,γ,η((ψ ◦ V )1/s) (see (14) hold. Then

P-a.s. sup
n∈N∗

− 1

Hn

n∑
k=1

ηkÃγk(ψ ◦ V )1/s(XΓk−1
) < +∞. (15)

B. Let α > 0 and β ∈ R. Let ϕ : [v∗,∞) → R∗
+ be a continuous function such that Cϕ :=

supy∈[v∗,∞) ϕ(y)/y <∞. Assume that (15) holds and

i. RCQ,V (ψ, ϕ, α, β) (see (7)) holds.

ii. LV (see (6)) holds and lim
y→+∞

ϕ(y)ψ(y)1/s

y = +∞.

Then,
P-a.s. sup

n∈N∗
νηn(Ṽψ,ϕ,s) < +∞. (16)

with Ṽψ,ϕ,s de�ned in (8). Therefore, the sequence (νηn)n∈N∗ is P− a.s. tight.
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2.1.5 Identi�cation of the limit

In Theorem 2.1, the tightness - and then existence of a weak limiting distribution - of (νηn)n∈N∗ is
established. From Theorem 2.2, it follows that every limiting point of this sequence is an invariant
distribution of the Feller process with in�nitesimal generator A.

Theorem 2.2. Let ρ ∈ [1, 2]. We have the following properties:

A. Let D(A)0 ⊂ D(A), with D(A)0 dense in C0(E). We assume that Ãγnf exists for every f ∈ D(A)0
and every n ∈ N∗. Also assume that there exists g : E → R+ a Borel function and ϵI : R+ → R+

an increasing function such that GCQ(D(A)0, g, ρ, ϵI) (see (12)) and SWI,γ,η(g, ρ, ϵI) (see (13))
hold and that

lim
n→+∞

1

Hn

n∑
k=1

|ηk+1/γk+1 − ηk/γk| = 0. (17)

Then

P-a.s. ∀f ∈ D(A)0, lim
n→+∞

1

Hn

n∑
k=1

ηkÃγkf(XΓk−1
) = 0. (18)

B. We assume that (18) and E(Ã, A,D(A)0) (see (9)) hold. Then

P-a.s. ∀f ∈ D(A)0, lim
n→+∞

νηn(Af) = 0.

It follows that, P− a.s., every weak limiting distribution νη∞ of the sequence (νηn)n∈N∗ belongs to V,
the set of the invariant distributions of (Xt)t⩾0. Finally, if the hypotheses from Theorem 2.1 point
B. hold and (Xt)t⩾0 has a unique invariant distribution, i.e. V = {ν}, then

P-a.s. ∀f ∈ CṼψ,ϕ,s(E), lim
n→+∞

νηn(f) = ν(f), (19)

with CṼψ,ϕ,s(E) de�ned in (8).

In the particular case where the function ψ is polynomial and V is quadratic, notice that (19) implies
the a.s. convergence of the empirical measures for the p-Wasserstein distances for some p > 0.

2.2 About Growth control and Step Weight assumptions

The following Lemma presents a L1-�niteness property that we can obtain under recursive control
hypotheses and strongly mean reverting assumptions (ϕ = Id). This result is thus useful to prove
SWI,γ,η(g, ρ, ϵI) (see (13)) or SWII,γ,η(F ) (see (14)) for well chosen F and g in this speci�c situation.

Lemma 2.1. Let v∗ > 0, V : E → [v∗,∞), ψ : [v∗,∞) → R+, such that Ãγnψ◦V exists for every n ∈ N∗.
Let α > 0 and β ∈ R. We assume that RCQ,V (ψ, Id, α, β) (see (7)) holds and that E[ψ ◦V (XΓn0

)] < +∞
for every n0 ∈ N∗. Then

sup
n∈N

E[ψ ◦ V (XΓn)] < +∞ (20)

In particular, let ρ ∈ [1, 2] and ϵI : R+ → R+, an increasing function. It follows that if
∑∞
n=1

∣∣∣ ηn
Hnγn

∣∣∣ρϵI(γn) <
+∞, then SWI,γ,η(ψ ◦ V, ρ, ϵI) holds and if

∑∞
n=0

(ηn+1/γn+1−ηn/γn)+
Hn+1

< +∞, then SWII,γ,η(ψ ◦ V ) is

satis�ed.

Now, we provide a general way to obtain SWI,γ,η(g, ρ, ϵI) and SWII,γ,η(F ) for some speci�c g and
F as soon as a recursive control with weakly mean reversion assumption holds.

Lemma 2.2. Let v∗ > 0, V : E → [v∗,∞), ψ, ϕ : [v∗,∞) → R+, such that Ãγnψ ◦ V exists for every
n ∈ N∗. Let α > 0 and β ∈ R. We also introduce the non-increasing sequence (θn)n∈N∗ such that∑
n⩾1 θnγn < +∞. We assume that RCQ,V (ψ, ϕ, α, β) (see (7)) holds and that E[ψ ◦ V (XΓn0

)] < +∞
for every n0 ∈ N∗. Then

∞∑
n=1

θnγnE[Ṽψ,ϕ,1(XΓn−1
)] < +∞
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with Ṽψ,ϕ,1 de�ned in (8). In particular, let ρ ∈ [1, 2] and ϵI : R+ → R+, an increasing function. If we
also assume

SWI,γ,η(ρ, ϵI) ≡
(
γ−1
n ϵI(γn)

( ηn
Hnγn

)ρ)
n∈N∗

is non-increasing and

∞∑
n=1

( ηn
Hnγn

)ρ
ϵI(γn) < +∞, (21)

then we have SWI,γ,η(Ṽψ,ϕ,1, ρ, ϵI) (see (13)). Finally,if

SWII,γ,η ≡
( ηn+1

(γn+1
− ηn

γn
)+

γnHn

)
n∈N∗

is non-increasing and

∞∑
n=1

(ηn+1/γn+1 − ηn/γn)+
Hn

< +∞, (22)

then we have SWII,γ,η(Ṽψ,ϕ,1) (see (14)).

3 Rate of convergence - A general approach

In this section, we extend the abstract framework from Section 2 to be adapted to establish an ergodic
CLT for the empirical measures (5) with the highest possible order. The approach we propose is twofold.
First we give appropriate weak error type estimations and on second we give suitable step weight
assumptions to control the martingale part of increments of functions of the approximation (XΓn)n∈N∗ .
Notice that, together with the choice of weights (ηn)n∈N∗ , the weak error type estimations are the crucial
tool to obtain high order of convergence in the CLT satis�ed by the weighted empirical measures (5).

3.1 Assumption on the random measures

Weak approximation assumption
In this section, our purpose is to propose a new version of E(Ã, A,D(A)0) (see (9) in Section 2) which

is adapted to obtain the CLT with order q ∈ N∗ i.e. Theorem 3.2.
We begin by giving an intuition of this new version of (9). In order to obtain the CLT, even in the case

q = 1, we need a sharper estimate of the error Ãγ − A than the one provided by (9). In particular, we

need to identify the dominating term of Ãγ −A when γ is close to 0 and impose a similar assumption as

(9) but with Ãγ replaced by Ãγ −A and A replaced by the dominating term of Ãγ −A. This approach
is well adapted when q = 1 and for higher values of q, the intuition is similar but assumptions are made

on the dominating term of Ãγ −
∑q
i=1

γi

i! A
i.

We now describe rigorously the framework and the hypotheses we need to impose on the dominating
term of Ãγ −A or its higher order counterpart.
This new version of (9) is expected to act on a more restricted set of test functions so we introduce
F ⊂ {f, f : (E,B(E)) → (R,B(R))} to replace D(A)0.

Moreover, in order to describe the behavior of the dominating term of Ãγ −
∑q
i=1

γi

i! A
i, let us introduce

Mq, a linear operator acting on F , and let us introduce η̃q : R+×{0, . . . , (q− 2)+} → R+ (with notation
b+ = b ∨ 0 for b ∈ R).
Notice that the CLT we obtain in Theorem 3.2 is restricted to test function Af with f ∈ F . Moreover,
the rate of the CLT we obtain is monitored by η̃q while the asymptotic mean is built with Mq.

We are now in a position to introduce the new version of (9). We assume that the weight sequence
(η̃q,n)n∈N∗ = (η̃q(γn, n mod (q − 1)))n∈N∗ (with convention n mod 0 = 0) is decreasing, satis�es (4), is

such that P− a.s., limn→∞ ν
η̃q
n (Mqf) = ν(Mqf) for every f ∈ F and

Eq(F, Ã, A,Mq, η̃q) ≡ ∀f ∈ F,∀x ∈ E,∀γ ∈ (0, γ],∀e ∈ {0, . . . , (q − 2)+}, (23)∣∣∣Rqf(x, γ, e)− η̃q(γ, e)Mqf(x)
∣∣∣ ⩽ η̃q(γ, e)Λf,q(x, γ),
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where Rqf is de�ned in the following way.

We �x the weights of the order one and two discretization, c1 = 1, c2 = ( 12 ,
1
2 ). When q > 2, we

consider C(q) ∈ N, C(q) ⩾ q with C(1) = 1 and λ = (λ1, . . . , λC(q)−2) ∈ RC(q)−2 × RC(q)−3 × . . .× R and
for p ∈ N∗, 2 ⩽ p ⩽ q, the quantity ζq,p(λ) = (ζq,p0 (λ), . . . , ζq,pp−1(λ)) ∈ RC(q)−C(q−p+1)+1. We assume that
ζq,q(λ) satis�es

ζq,qu (λ) =
1

q!
1u<C(q)−1 +

C(q)−3∑
i=0

C(q)−2−i∑
l=1

∑C(q)−2−i
h=l λhi
(q + l)!

(−1)l−u+i
(

l

u− i

)
10⩽u−i⩽l,

for u ∈ {0, . . . , q − 1}. Then, we de�ne

λq := {λ ∈ RC(q)−2 × . . .× R,∀p = 3, . . . , q, ∃ζq,p−1(λ) ∈ Rp−1,Mq,pζq,p−1(λ) = Nq,p(ζq,p(λ))}

where

Nq,p : RC(q)−C(q−p+1)+1 → RC(q)

ζ 7→ 1

(p− 1)!
1e<C(q)−1 + ζq,pe−(C(q−p+1)−2)+−1(λ)1C(q)−C(q−p+1)+1⩾e−(C(q−p+1)−2)+⩾1

− ζq,pe (λ)1e<(C(q)−C(q−p+1)+1)∧(C(q)−1)

and Mq,p ∈ RC(q)×C(q−p+1) is de�ned by Mq,p
j,u = cq−p+2

j−u 1j−u∈{0,...,C(q−p+2)−1}. We then choose

arbitrarily C(q) ⩾ q and λ̂ ∈ λq as soon as it is not empty. Notice that for q ⩽ 3, it is su�cient to take
C(q) = q and λ = 0. The weights for the q order discretization are then given by

cqj =1j⩽C(q)−2 +

C(q)−C(q−1)∑
u=0

ζq,2u (λ̂)(1j=(C(q−1)−2)++u+1 − 1j=u), (24)

for every j ∈ {0, . . . ,C(q)− 1}. Moreover, for every x, y ∈ E, γ ⩾ 0, e ∈ {0, (C(q)− 2)+}, we let

R1f(x, γ, e) :=R1f(x, γ) := −R̃1f(x, γ), and for q ∈ N∗,

Rqf(x, γ, e) :=− (1−
C(q)−2−e∑

l=1

λ̂le)R̃qf(x, γ)−
C(q)−2−e∑

l=1

λ̂leR̃q+lf(x, γ)

−
C(q)−2∑
k=0

C(q)−2−k∑
l=1

∑C(q)−2−k
h=l λ̂hk
(q + l)!

l−1∑
i=0

(−1)l−i−e+k−1

(
l − i− 1

e− k

)
γq+inq+1R1A

q+if(x, γ)10⩽e−k⩽l−i

−
q−2∑
l=1

γq−l
e∧(C(q)−C(l))∑

u=(e−(C(l)−2)+)+

ζq,q−l+1
u (λ̂)RlA

q−lf(x, γ, e− u)

− γ

C(q)−C(q−1)∑
u=0

ζq,2u (λ̂)Rq−1Af(x, γ, e− u)1u⩽e⩽(q−3)++u.

where, for every m ∈ {1, . . . , q}, the measurable functions

R̃mf : E × R+ → R
(x, γ) 7→ γÃγf(x)−

∑m
i=1

γi

i! A
if(x),

are supposed to be well de�ned for every f ∈ F .

In addition, we also assume that Λf,q : E × R+ → R+ can be represented in the following way: Let

(Ω̃, G̃, P̃) be a probability space. Let g : E → Rl+, l ∈ N∗, be a locally bounded Borel measurable function

and let Λ̃f,q : (E × R+ × Ω̃,B(E)⊗ B(R+)⊗ G̃) → Rl+ be a measurable function such that

sup
i∈{1,...,l}

Ẽ[sup
x∈E

sup
γ∈(0,γ]

Λ̃f,q,i(x, γ, ω̃)] < +∞ (25)
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and that the following representation assumption holds

∀x ∈ E,∀γ ∈ (0, γ], Λf,q(x, γ) = ⟨g(x), Ẽ[Λ̃f,q(x, γ, ω̃)]⟩Rl .

Moreover, we assume that for every i ∈ {1, . . . , l}, supn∈N∗ ν
η̃q
n (gi, ω) < +∞, P − a.s., and that Λ̃f,q,i

satis�es one of the two following properties.
There exists a measurable function γ : (Ω̃, G̃) → ((0, γ],B((0, γ])) such that:

I) P̃(dω̃)− a.s


(i) ∀K ∈ KE , lim

γ→0
sup
x∈K

Λ̃f,q,i(x, γ, ω̃) = 0,

(ii) lim
|x|→∞

sup
γ∈(0,γ(ω̃)]

Λ̃f,q,i(x, γ, ω̃) = 0,
(26) or

II) P̃(dω̃)− a.s lim
γ→0

sup
x∈E

Λ̃f,q,i(x, γ, ω̃)gi(x) = 0. (27)

Remark 3.1. Let (F,F , λ) be a measurable space. Using the exact same approach, the results we obtain
hold when we replace the probability space (Ω̃, G̃, P̃) by the product measurable space (Ω̃×F, G̃ ⊗F , P̃⊗λ)
in the representation of Λf,q and in (26) and (27). It is a similar observation as in the study of the
convergence as pointed out in Remark 2.1.

Growth assumption
In this section we introduce a new version of GCQ (see (12)) adapted to prove CLT of order q ∈ N∗.

In particular, this new version is crucial to identify the asymptotic variance in the CLT we obtain in
Theorem 3.2.

We denote by PX,2 the set of FX
n := σ(XΓk , k ⩽ n)- progressively measurable processes (Xn)n∈N∗

with Xn+1 ∈ L2(FX
n ) and E[Xn+1|XΓn ] = 0 for every n ∈ N. Let ρ ∈ [1, 2] and let ϵX, ϵGC : R+ → R+

be two increasing functions such that the weight sequence (ϵX,n)n∈N∗ = (ϵX(γn))n∈N∗ satis�es (4). Let
F ⊂ {f, f : (E,B(E)) → (R,B(R))} and g : E → R+ be a Borel measurable function. Finally, we
introduce a linear operator V de�ned on F that is the main ingredient to compute the asymptotic
variance in Theorem 3.2. In particular, we identify the asymptotic variance in the CLT as the a.s. limit
of weighted (with weights (ϵX,n)n∈N∗) empirical measures (5) applied to functions taking formVf , f ∈ F .

We are now in a position to introduce the new version of (12). We assume that Amf is well de�ned
for every m ∈ {0, . . . , q − 1} and every f ∈ F and that

GCQ,q(F, g, ρ, ϵX, ϵGC ,V) ≡ P− a.s. ∀f ∈ F,∃Xf ∈ PX,2

E
[∣∣∣Bqf(XΓn , XΓn+1 , γn+1, n mod (q − 1))− Xf,n+1

∣∣∣ρ∣∣∣XΓn

]
⩽ Cf ϵGC(γn+1)g(XΓn). (28)

with, for every x, y ∈ E, γ ⩾ 0, e ∈ {0, (C(q)− 2)+},

B1f(x, y, γ, e) := B1f(x, y, γ) := Qγf(x)− f(y), and for q ∈ N∗,

Bqf(x, y, γ, e) := B1f(x, y, γ)

−
C(q)−2∑
k=0

C(q)−2−k∑
l=1

∑C(q)−2−k
h=l λ̂hk
(q + l)!

l−1∑
i=0

(−1)l−i−e+k−1

(
l − i− 1

e− k

)
γq+inq+1B1A

q+if(x, y, γ)10⩽e−k⩽l−i}

−
q−2∑
l=1

γq−l
e∧(C(q)−C(l))∑

u=(e−(C(q)−2)+)+

ζq,q−l+1
u (λ̂)BlA

q−lf(x, y, γ, e− u)

− γ

C(q)−C(q−1)∑
u=0

ζq,2u (λ̂)Bq−1Af(x, y, γ, e− u)1u⩽e⩽(q−3)++u,

and E[|Xf,n+1|2|XΓn ] = ϵX(γn+1)Vf(XΓn) with for every f ∈ F , limn∈N∗ νϵXn (Vf, ω) = ν(Vf), P−
a.s., and
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∀E > 0, lim
n→∞

1

HϵX,n

n−1∑
k=0

E[|Xf,k+1|21|Xf,k+1|>
√
HϵX,nE

|XΓk ]
P
= 0. (29)

Remark 3.2. The reader may notice that GCQ,q(F, q, ρ, ϵX, ϵGC ,V) holds as soon as (12) is satis�ed with

Qγn+1
Amf(XΓn), n ∈ N∗, m ∈ N∗ replaced by a FX

n := σ(XΓk , k ⩽ n)- progressively measurable process

(Xm,n)n∈N∗ , since ρ ∈ [1, 2] and we have Qγn+1
Amf(XΓn) = E[Amf(XΓn+1

)|XΓn ] and E[Xf,n+1|XΓn ] =
0.

In the following, we will combine this assumption with

SWGC,γ(g, ρ, ϵX, ϵGC) ≡ P− a.s.

∞∑
n=1

ϵGC(γn)

H
ρ/2
ϵX,n

g(XΓn) < +∞. (30)

Notice that, as a consequence of Lemma 2.2, if we suppose that RCQ,V (ψ, ϕ, α, β) (see (7)) holds,
that E[ψ ◦ V (XΓn0

)] < +∞ for every n0 ∈ N∗ and that

SWGC,γ(ρ, ϵX, ϵGC) ≡
( ϵGC(γn)
γnH

ρ/2
ϵX,n

)
n∈N∗

is non increasing and

∞∑
n=1

ϵGC(γn)

H
ρ/2
ϵX,n

< +∞, (31)

holds, then we have SWGC,γ(Ṽψ,ϕ,1, ρ, ϵX, ϵGC) (see (30)) with Ṽψ,ϕ,1 de�ned in (8).

3.2 Convergence rate results

We begin with some preliminary results.

Lemma 3.1. (Kronecker). Let (an)n∈N∗ and (bn)n∈N∗ be two sequences of real numbers. If (bn)n∈N∗

is non-decreasing, strictly positive, with lim
n→+∞

bn = +∞ and
∑
n⩾1

an/bn converges in R, then

lim
n→+∞

1

bn

n∑
k=1

ak = 0.

Theorem 3.1. (Chow (see [11], Theorem 2.17)). Let (Mn)n∈N∗ be a real valued martingale with respect
to some �ltration F = (Fn)n∈N. Then

lim
n→+∞

Mn =M∞ ∈ R a.s. on the event

⋃
r∈[0,1]

{ ∞∑
n=1

E[|Mn −Mn−1|1+r|Fn−1] < +∞
}
.

Now, we give a general CLT result from [11] (Corollary 3.1) which applies to martingale arrays.

Proposition 3.1. Let (M̃k,n)k∈{1,..,n},n∈N be a R-valued martingale array and de�ne FM̃
k,n = σ(M̃i,n, i ∈

{0, . . . , k}).We assume that (M̃n)n∈N satis�es the Lindeberg condition:

∀E > 0, lim
n→∞

n−1∑
k=0

E[|M̃k+1,n − M̃k,n|21|M̃k+1,n−M̃k,n|>E|F
M̃
k,n]

P
= 0 (32)

and that

lim
n→∞

n−1∑
k=0

E[|M̃k+1,n − M̃k,n|2|FM̃
k,n]

P
= ζ2

M̃

with ζ2
M̃

an almost sure �nite random variable. Then
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lim
n→∞

M̃n,n
law
= Ñ (ζ2

M̃
),

where Ñ (ζ2
M̃
) is a random variable with Laplace transform E[exp(vÑ (ζ2

M̃
)] = E[exp(v2ζ2

M̃
/2))] for every

v ∈ R.

3.2.1 The q-order ergodic CLT

When we consider the q-order weak approximation (XΓn)n∈N of a Feller process (Xt)t⩾0, it can be
possible to obtain convergence of some weighted empirical measures. Moreover, the rate of convergence
can be improved as q grows. A crucial point to obtain a faster rate is to consider a speci�c weight
sequence when we build the weighted empirical measures (5). We begin by a alternative result which is
crucial for the choice of the weights and for the proof of the q-order CLT established in Theorem 3.2.

Proposition 3.2. Let q ∈ N∗ such that λq is not empty and nq ∈ N such that γnq+1+e = γnq+1 for
e ∈ {0, . . . , (C(q)− 2)+}. Considering (cqe)e∈{0,...,C(q)−1} de�ned in (24), then, for every f ∈ D(A),

γnq+1

C(q)−1∑
e=0

cqeAf(XΓnq+e
) =

(C(q)−2)+∑
e=0

f(XΓnq+e+1)− f(XΓnq+e
) (33)

+Bqf(XΓnq+e
, XΓnq+e+1

, γnq+1, e)

+Rqf(XΓnq+e
, γnq+1, e).

with Bqf de�ned in (28) and Rqf de�ned in (23), as soon as those quantities are well de�ned.

Proof. We prove the result by recurrence on q. The case q = 1 follows directly from the de�nitions of
B1f and R1f remembering that c10 = 1. Assume that q ⩾ 2.

Step 1. Since γnq+1+e = γnq+1 for e ∈ {0, . . . ,C(q)− 2}, then for every l ∈ N∗ with l ⩽ C(q)− 1− e, we
have,

γlnq+1A
q+lf(XΓnq+e

) =

l∑
j=0

(−1)l−j
(
l

j

)
Aqf(XΓnq+e+j

)

+

l−1∑
i=0

l−i−1∑
j=0

(−1)l−i−j−1

(
l − i− 1

j

)
γinq+1B1A

q+if(XΓnq+e+j+1 , XΓnq+e+j
, γnq+1)

+

l−1∑
i=0

l−i−1∑
j=0

(−1)l−i−j−1

(
l − i− 1

j

)
γinq+1R1A

q+if(XΓnq+e+j
, γnq+1).
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In particular, for C(q) ⩾ q and λ = (λ1, . . . , λC(q)−2) ∈ λq ⊂ RC(q)−2 × RC(q)−3 × . . .× R

C(q)−2∑
e=0

f(XΓnq+e+1
)− f(XΓnq+e

) +B1f(XΓnq+e+1
, XΓnq+e

, γnq+1)−
C(q)−2∑
e=0

q−1∑
i=1

γinq+1

i!
Aif(XΓnq+e

)

=

C(q)−2∑
e=0

γqnq+1

1

q!
Aqf(XΓnq+e

) +

C(q)−2−e∑
l=1

γq+lnq+1

∑C(q)−2−e
h=l λhe
(q + l)!

Aq+lf(XΓnq+e
)

+ (1−
C(q)−2−e∑

l=1

λle)R̃qf(XΓnq+e
, γnq+1) +

C(q)−2−e∑
l=1

λleR̃q+lf(XΓnq+e
, γnq+1)

=

C(q)−2∑
e=0

γqnq+1

1

q!
Aqf(XΓnq+e

) +

C(q)−2−e∑
l=1

∑C(q)−2−e
h=l λhe
(q + l)!

l∑
j=0

(−1)l−j
(
l

j

)
γqnq+1A

qf(XΓnq+e+j
)

+

C(q)−2−e∑
l=1

∑C(q)−2−e
h=l λhe
(q + l)!

l−1∑
i=0

l−i∑
j=0

(−1)l−i−j−1

(
l − i− 1

j

)
γq+inq+1R1A

q+if(XΓnq+e+j
, γnq+1)

+

C(q)−2−e∑
l=1

∑C(q)−2−e
h=l λhe
(q + l)!

γq+1
nq+1

l−1∑
i=0

l−i−1∑
j=0

(−1)l−i−j−1

(
l − i− 1

j

)
γq+inq+1B1A

q+if(XΓnq+e+j+1
, XΓnq+e+j

, γnq+1)

+ (1−
C(q)−2−e∑

l=1

λle)R̃qf(XΓnq+e
, γnq+1) +

C(q)−2−e∑
l=1

λleR̃q+lf(XΓnq+e
, γnq+1).

Step 2. Let us prove that for p ∈ {2, . . . , q}

C(q)−2∑
e=0

q∑
i=p

γinq+1

i!
Aif(XΓnq+e

) +

C(q)−2−e∑
l=1

∑C(q)−2−e
h=l λhe
(q + l)!

l∑
j=0

(−1)l−j
(
l

j

)
γqnq+1A

qf(XΓnq+e+j
)

=γpnq+1

C(q)−C(q−p+1)∑
u=0

ζq,pu (λ)(

C(q−p+1)−1∑
e=0

cq−p+1
e Apf(XΓnq+e+u

)) +Dq,q−p, (34)

with for b ∈ {0, . . . , q − 2},

Dq,b =

b∑
l=1

γq−lnq+1

C(b)−C(l)∑
u=0

ζq,q−l+1
u (λ)

(C(l)−2)+∑
e=0

BlA
q−lf(XΓnq+e+u

, XΓnq+e+u+1
, γnq+1, e)

+ γq−lnq+1

C(b)−C(l)∑
u=0

ζq,q−l+1
u (λ)

(C(l)−2)+∑
e=0

RlA
q−lf(XΓnq+e+u

, γnq+1, e).

Notice that c10 = 1, and since

ζq,qu (λ) =
1

q!
1u<C(q)−1 +

C(q)−3∑
i=0

C(q)−2−i∑
l=1

∑C(q)−2−i
h=l λhi
(q + l)!

(−1)l−u+i
(

l

u− i

)
10⩽u−i⩽l

and Dq,0 = 0, then (34) is true for p = q. Assume that (34) is true for some p ∈ {3, . . . , q}, and let
us show that it still holds with p replaced by p − 1. We �rst apply (34) and then (33) with f replaced
by Ap−1f and q replaced by (q − p+ 1) which yields
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C(q)−2∑
e=0

q−1∑
i=p

γinq+1

i!
Aif(XΓnq+e

) +
1

q!
γqnq+1A

qf(XΓnq+e
)

+

C(q)−2−e∑
l=1

∑C(q)−2−e
h=l λhe
(q + l)!

l∑
j=0

(−1)l−j
(
l

j

)
γqnq+1A

qf(XΓnq+e+j )

=γp−1
nq+1

C(q)−C(q−p+1)∑
u=0

ζq,pu (λ)

(C(q−p+1)−2)+∑
e=0

(Ap−1f(XΓnq+e+u+1
)−Ap−1f(XΓnq+e+u

))

+ γp−1
nq+1

C(q)−C(q−p+1)∑
u=0

ζq,pu (λ)

(C(q−p+1)−2)+∑
e=0

Bq−p+1A
p−1f(XΓnq+e+u

, XΓnq+e+u+1
, γnq+1, e)

+ γp−1
nq+1

C(q)−C(q−p+1)∑
u=0

ζq,pu (λ)

(C(q−p+1)−2)+∑
e=0

Rq−p+1A
p−1f(XΓnq+e+u

, γnq+1, e) +Dq,q−p

=γp−1
nq+1

C(q)−C(q−p+1)∑
u=0

ζq,pu (λ)

(C(q−p+1))+∑
e=0

(Ap−1f(XΓnq+e+u+1)−Ap−1f(XΓnq+e+u
)) +Dq,q−p+1.

Moreover, observe that, with notation from (23) and using that ζq,q
C(q)−1(λ) = 0,

C(q)−C(q−p+1)∑
u=0

ζq,pu (λ)

(C(q−p+1)−2)+∑
e=0

(Ap−1f(XΓnq+e+u+1
)−Ap−1f(XΓnq+e+u

)) +

C(q)−2∑
e=0

1

(p− 1)!
Ap−1f(XΓnq+e

)

=

(C(q)−C(q−p+1))∧(C(q)−2)∑
u=0

ζq,pu (λ)

(C(q−p+1)−2)+∑
e=0

(Ap−1f(XΓnq+e+u+1
)−Ap−1f(XΓnq+e+u

))

+

C(q)−2∑
e=0

1

(p− 1)!
Ap−1f(XΓnq+e

)

=

C(q)−1∑
e=0

( 1

(p− 1)!
1e<C(q)−1 + ζq,pe−(C(q−p+1)−2)+−1(λ)1(C(q)−C(q−p+1)+1)∧(C(q)−1)⩾e−(C(q−p+1)−2)+⩾1

− ζq,pe (λ)1e<(C(q)−C(q−p+1)+1)∧(C(q)−1)

)
Ap−1f(XΓnq+e

)

=

C(q)−1∑
e=0

Nq,p(ζq,p(λ))eA
p−1f(XΓnq+e

),

and

C(q)−C(q−p+2)∑
u=0

ζq,p−1
u (λ)

C(q−p+2)−1∑
e=0

cq−p+2
e Ap−1f(XΓnq+e+u

)

=

C(q)−1∑
e=0

C(q)−C(q−p+2)∑
u=0

ζq,p−1
u (λ)cq−p+2

e−u 1e−u∈{0,...,C(q−p+2)−1}

Ap−1f(XΓnq+e
)

=

C(q)−1∑
e=0

(Mq,pζq,p−1(λ))eA
p−1f(XΓnq+e

).

Using that Mq,pζq,p−1(λ) = Nq,p(ζq,p(λ)) and gathering all the terms together completes the proof
of Step 2.
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Step 3. We are now in a position to complete the proof. We apply (33) with f replaced by Af and q
replaced by q − 1, and for u ∈ {0, 1}, we obtain,

γnq+1

C(q−1)−1∑
j=0

cq−1
j A2f(XΓnq+u+j

) =

(C(q−1)−2)+∑
j=0

Af(XΓnq+u+j+1
)−Af(XΓnq+u+j

)

+Bq−1Af(XΓnq+u+j , XΓnq+u+j+1 , γnq+1, j)

+Rq−1Af(XΓnq+u+j
, γnq+1, j).

Combining this expansion with the decomposition established in Step 1 and the result from Step 2
for p = 2 yields

γnq+1

C(q)−2∑
e=0

Af(XΓnq+e
) + γnq+1

C(q)−C(q−1)∑
u=0

ζq,2u (λ)

(C(q−1)−2)+∑
j=0

Af(XΓnq+j+u+1
)−Af(XΓnq+j+u

)

=

C(q)−2∑
e=0

f(XΓnq+e+1
)− f(XΓnq+e

) +B1f(XΓnq+e
, XΓnq+e+1

, γnq+1)

−
C(q)−2−e∑

l=1

∑C(q)−2−e
h=l λhe
(q + l)!

γq+1
nq+1

l−1∑
i=0

l−i−1∑
j=0

(−1)l−i−j−1

(
l − i− 1

j

)
γq+inq+1B1A

q+if(XΓnq+e+j+1
, XΓnq+e+j

, γnq+1)

− γnq+1

(C(q−1)−2)+∑
j=0

C(q)−C(q−1)∑
u=0

ζq,2u (λ)Bq−1Af(XΓnq+u+j
, XΓnq+u+j+1

, γnq+1, j)

−
C(q)−2−e∑

l=1

∑C(q)−2−e
h=l λhe
(q + l)!

l−1∑
i=0

l−i∑
j=0

(−1)l−i−j−1

(
l − i− 1

j

)
γq+inq+1R1A

q+if(XΓnq+e+j
, γnq+1)

− (1−
C(q)−2−e∑

l=1

λle)R̃qf(XΓnq+e
, γnq+1)−

C(q)−2−e∑
l=1

λleR̃q+lf(XΓnq+e
, γnq+1)

− γnq+1

(C(q−1)−2)+∑
j=0

C(q)−C(q−1)∑
u=0

ζq,2u (λ)Rq−1Af(XΓnq+u+j
, γnq+1, j).

−Dq,q−2.

To complete the proof, it simply boils down to apply the de�nition of (cqj)j∈{0,...,q−1} (see (24)), Bqf
(see (28)) and Rqf (see (23)).

We are now in a position to state the q-order ergodic CLT. Before that, we introduce the step size
and the weight sequences. In particular, we assume that

∀n ∈ N, e ∈ {0, . . . , (C(q)− 2)+},
γ(C(q)−1)n+1+e =γ(C(q)−1)n+1, (35)

η(C(q)−1)n+1+e =Cγ,η
(
cqeγ(C(q)−1)n+1 + 1e=0c

q
q−1γ(C(q)−1)(n−1)+1

)
,

with Cγ,η ∈ R∗ and the convention γ−l = 0 for l ∈ N∗.

Theorem 3.2. Let q ∈ N∗ such that λq is not empty, let F ⊂ {f, f : (E,B(E)) → (R,B(R)), Af ∈
Cb(E)}, g : E → R+ a Borel function, ϵX, ϵGC : R+ → R+ be two increasing functions, let η̃q :
R+ × {0, . . . , (q − 2)+} → R+ and let Mq and V be two linear operators de�ned on F . Finally let
γn and ηn, n ∈ N, be the time step and the weight sequences satisfying (35).

Assume that Eq(F, Ã, A,Mq, η̃q) (see (23)), GCQ,q(F, g, ρ, ϵX, ϵGC ,V) (see (12) and (32)) and SWGC,γ(g, ρ, ϵX, ϵGC)
(see (30)) hold.
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Then, for every f ∈ F , we have the following properties:

A. If limn→∞
√
HϵX,n/Hη̃q,n = +∞, then

lim
n→∞

Hn

Cγ,η
√
HϵX,n

νηn(Af)
law
= N (0, ν(Vf)).

B. If limn→∞
√
HϵX,n/Hη̃q,n = l̂ ∈ R∗

+, then

lim
n→∞

Hn

Cγ,η
√
HϵX,n

νηn(Af)
law
= N (l̂−1ν(Mqf), ν(Vf)).

C. If limn→∞
√
HϵX,n/Hη̃q,n = 0, then

lim
n→∞

Hn

Cγ,ηHη̃q,n
νηn(Af)

P
= ν(Mqf)

Moreover, when V = 0 this convergence is almost sure.

Remark 3.3. Notice that if we take γn = 1/nξ (for n = nq(q − 1) with nq ∈ N), ξ ∈ (0, 1/(q + 1)) and
denote

∀n ∈ N∗, rq,n =


Hn√
HϵX,n

=
√
Γn if limn→∞

√
Γn/Hη̃q,n = +∞,

Hn√
HϵX,n

=
√
Γn if limn→∞

√
Γn/Hη̃q,n = l̂,

Hn
Hη̃q,n

if limn→∞
√
Γn/Hη̃q,n = 0,

the rate of convergence of (ν
ηq
n (Af))n∈N∗ in the q-order ergodic CLT, then we have

rq,n ∼
n→+∞

Cn(qξ)∧(1/2−ξ/2).

The highest rate of convergence is thus achieved for ξ = 1/(2q+1) and is given by rq,n ∼
n→+∞

Cnq/(2q+1).

Proof. We assume q ⩾ 2. The case q = 1 is similar but simpler so we leave it out.

Step 1. Let n ∈ N. We begin by noticing that the following decomposition holds

νηn(Af) =
1

Hn

n∑
k=1

ηkAf(XΓk−1
)

=
Cγ,η
Hn

Nq,n∑
k=0

γ(q−1)k+1

C(q)−1∑
e=0

cqeAf(XΓ(q−1)k+e
)

+
1

Hn

n∑
k=(q−1)(Nq,n+1)+1

ηkAf(XΓk−1
)

−
Cγ,ηγ(q−1)Nq,n+1c

q
q−1

Hn
Af(XΓ(q−1)(Nq,n+1)

)

with the notation Nq,n = ⌊(n− 1)/(C(q)− 1)⌋ − 1. Since Af is a bounded function, the second and
third terms of the r.h.s. of the above equation multiplied by Hn

Cγ,η
√
HϵX,n

or Hn
Cγ,ηHη̃q,n

both converge to

zero when n tends to in�nity. We study the �rst term of the r.h.s. of the above equation. By Proposition
3.2 (with nq = (q − 1)k),
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γ(q−1)k+1

C(q)−1∑
e=0

cqeAf(XΓ(q−1)k+e
) =

(C(q)−2)+∑
e=0

f(XΓ(q−1)k+e+1
)− f(XΓ(q−1)k+e

)

+Bqf(XΓ(q−1)k+e
, XΓ(q−1)k+e+1

, γ(q−1)k+1, e)

+Rqf(XΓ(q−1)k+e
, γ(q−1)k+1, e).

Step 2. In this part, we prove that

lim
n→∞

1√
HϵX,n

Nq,n∑
k=0

(C(q)−2)+∑
e=0

Bqf(XΓ(q−1)k+e
, XΓ(q−1)k+e+1

, γ(q−1)k+1, e)
law
= N (0, ν(Vf)).

From Proposition 3.1, since (29) holds and limn∈N∗ νϵXn (Vf, ω) = ν(Vf), P− a.s., we have

lim
n→∞

1√
HϵX,n

n∑
k=1

Xf,k
law
= N (0, ν(Vf))

Notice that when V = 0 the l.h.s. of the above equation is P − a.s. equal to zero for every f ∈ F .
Now, to obtain the convergence in law, we are going to show that P− a.s, for every f ∈ F ,

. lim
n→+∞

1√
HϵX,n

Nq,n∑
k=0

(C(q)−2)+∑
e=0

Bqf(XΓ(q−1)k+e
, XΓ(q−1)k+e+1

, γ(q−1)k+1, e)− Xf,(q−1)k+1+e = 0.

This last result is a consequence of Kronecker's Lemma as soon as we prove the a.s. convergence of
the martingale (Mn)n∈N∗ de�ned by M0 := 0 and

Mn :=

Nq,n∑
k=0

(C(q)−2)+∑
e=0

Bqf(XΓ(q−1)k+e
, XΓ(q−1)k+e+1

, γ(q−1)k+1, e)− Xf,(q−1)k+1+e√
HϵX,(q−1)k+e

.

From the Chow's theorem (see Theorem 3.1), this a.s. convergence is a direct consequence of the a.s.
�niteness of the series

n∑
k=1

E[|Mk −Mk−1|ρ|XΓk−1
],

which follows from GCQ,q(F, g, ρ, ϵX, ϵGC ,V) (see (12)) together with SWGC,γ(g, ρ, ϵX, ϵGC) (see (30)).

Step 3. To complete the proof, let us show that

P− a.s. ∀f ∈ F lim
n→∞

1

Hϵ̃q,n

Nq,n∑
k=0

(C(q)−2)+∑
e=0

Rqf(XΓ(q−1)k+e
γ(q−1)k+1, e) = ν(Mqf).

As a direct consequence of Eq(F, Ã, A,Mq, η̃q) (see (23)), since P−a.s., limn→∞ ν
η̃q
n (Mqf) = ν(Mqf)

for every f ∈ F , we only have to prove that

P− a.s. ∀f ∈ F

lim
n→∞

1

Hϵ̃q,n

Nq,n∑
k=0

(C(q)−2)+∑
e=0

Rqf(XΓ(q−1)k+e
, γ(q−1)k+1, e)− η̃q,(q−1)k+1+eMqf(XΓ(q−1)k+e

) = 0.

which holds as soon as

P− a.s. ∀f ∈ F lim
n→∞

1

Hη̃q,n

n∑
k=1

η̃q,kΛf,q(XΓk−1
, γk) = 0, (36)
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We recall that we have the following decomposition

∀f ∈ F,∀x ∈ E,∀γ ∈ [0, γ], Λf,q(x, γ) = ⟨g(x), Ẽ[Λ̃f,q(x, γ)]⟩Rl

with g : (E,B(E)) → Rl+, l ∈ N∗, a locally bounded Borel measurable function and Λ̃f,w : (E × R+ ×
Ω̃,B(E)⊗B(R+)⊗G̃) → Rl+ a measurable function such that supi∈{1,...,l},x∈E,γ∈(0,γ] Ẽ[Λ̃f,q,i(x, γ)] < +∞.

Since for every i ∈ {1, . . . , l}, supn∈N∗ ν
η̃q
n (gi, ω) < +∞, P(dω) − a.s., (36) follows from the following

result:

Let (x
n
)n∈N ∈ E⊗N. Assume that supi∈{1,...,l} supn∈N∗

1
Hη̃q,n

∑n
k=1 η̃q,kgi(xk−1

) < +∞, then, for

every f ∈ F ,

lim
n→∞

1

Hη̃q,n

n∑
k=1

η̃q,kΛf,q(xk−1
, γk) = 0.

In order to obtain this result, we are going to show that, for every f ∈ F , every i ∈ {1, . . . , l}, and every
(xn)n∈N ∈ E⊗N, then

P̃(dω̃)− a.s. lim
n→∞

1

Hη̃q,n

n∑
k=1

η̃q,kΛ̃f,q,i(xk−1, γk, ω̃)gi(xk−1) = 0,

and the result will follow from the Dominated Convergence theorem since for every n ∈ N∗,

1

Hη̃q,n

n∑
k=1

η̃q,kΛ̃f,q,i(xk−1, γk, ω)gi(xk−1)

⩽ sup
x∈E

sup
γ∈(0,γ]

Λ̃f,2,i(x, γ, ω̃) sup
n∈N∗

1

Hη̃q,n

n∑
k=1

η̃q,kgi(xk−1) < +∞.

with Ẽ[supx∈E supγ∈(0,γ] Λ̃f,q,i(x, γ, ω̃)] < +∞ and supn∈N∗
1

Hη̃q,n

∑n
k=1 η̃q,kgi(xk−1) < +∞. We �x

f ∈ F , i ∈ {1, . . . , N} and (xn)N∈N ∈ E⊗N and we assume that Eq(Ã, A,Mq, η̃q) I) (see (26)) holds for

Λ̃f,q,i. If instead Eq(Ã, A,Mq) II) (see (27)) is satis�ed, the proof is similar but simpler so we leave it
to the reader.

Let n(ω̃) := inf{n ∈ N∗, supk⩾n γk ⩽ γ(ω̃)}. By assumption Eq(F, Ã, A,Mq, η̃q) I) (ii)(see (27)),

P̃(dω̃)− a.s, for every R > 0, there exists KR(ω̃) ∈ KE such that

sup
x∈Kc

R(ω̃)

sup
γ∈(0,γ(ω̃)]

Λ̃f,q,i(x, γ, ω̃) < 1/R.

Moreover,

sup
n⩾n(ω̃)

1

Hη̃q,n

n∑
k=n(ω̃)

η̃q,kΛ̃f,2,i(xk−1, γk, ω̃)g(xk−1)1Kc
R(ω̃)(xk−1)

⩽ sup
x∈Kc

R(ω̃)

sup
γ∈(0,γ(ω̃)]

Λ̃f,q,i(x, γ, ω̃) sup
n∈N∗

1

Hη̃q,n

n∑
k=1

η̃q,kgi(xk−1).

We let R tends to in�nity and since supn∈N∗
1

Hη̃q,n

∑n
k=1 η̃q,kgi(xk−1) < +∞, the l.h.s. of the above

equation converges P̃(dω̃)− a.s. to 0. Finally, since n(ω̃) is P̃(dω̃)− a.s. �nite, we also have

P̃(dω̃)− a.s. ∀R > 0, lim
n→∞

1

Hη̃q,n

n(ω̃)−1∑
k=1

η̃q,kΛ̃f,2,i(xk−1, γk, ω̃)g(xk−1)1Kc
R(ω̃)(xk−1) = 0.
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Moreover, from Eq(F, Ã, A,Mq, η̃q) I) (i)(see (26)), we derive that, P̃(dω̃) − a.s., for every R > 0,

lim
n→∞

Λ̃f,q,i(xn−1, γn, ω̃)1KR(ω̃)(xk−1
) = 0, Then, since gi is a locally bounded function, as an immediate

consequence of the Cesaro's lemma, we obtain

P̃(dω̃) ∀R > 0, lim
n→∞

1

Hη̃q,n

n∑
k=1

η̃q,kΛ̃f,q,i(xk−1, γk, ω̃)gi(xk−1)1KR(ω̃)(xk−1) = 0

Applying the same approach for every i ∈ {1, . . . , q}, the Dominated Convergence Theorem yields:

∀(xn)n∈N ∈ E⊗N,∀f ∈ F, lim
n→∞

1

Hη̃q,n

n∑
k=1

Λf,q(xk−1, γk) = 0.

Finally, since for every i ∈ {1, . . . , l}, supn∈N∗ ν
η̃q
n (gi, ω) < +∞, P−a.s., then (36) follows. We gather

all the terms together and the proof is completed.

3.3 Example - The Euler scheme

Using this abstract approach, we recover the results obtained in [13] or [25] concerning the study of
the Euler scheme of a d-dimensional Brownian di�usion under weakly mean reverting properties. We
consider a N -dimensional Brownian motion (Wt)t⩾0. We are interested in the strong solution - assumed
to exist and to be unique - of the d-dimensional stochastic equation

Xt = x+

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs (37)

where b : Rd → Rd, σ : Rd → Rd×N . Let V : R → [1,+∞), the Lyapunov function of this system such
that LV (see (6)) holds with E = Rd, and

|∇V |2 ⩽ CV V, ∥D2V ∥∞ < +∞.

Moreover, we assume that for every x ∈ R, |b(x)|2 + Tr[σσT (x)] ⩽ V a(x) for some a ∈ (0, 1]. Finally,
for p ⩾ 1, we introduce the following Lp-mean reverting property of V ,

∃α > 0, β ∈ R,∀x ∈ R,

⟨∇V (x), b(x)⟩+ 1

2
∥λp∥∞2(2p−3)+Tr[σσT (x)] ⩽ β − αV a(x)

with for every x ∈ Rd, λp(x) := sup{λp,1(x), . . . , λp,d(x), 0}, with λp,i(x) the i-th eigenvalue of the
matrix D2V (x) + 2(p− 1)∇V (x)⊗2/V (x). We now introduce the Euler scheme of (Xt)t⩾0. Let ρ ∈ [1, 2]
and ϵI(γ) = γρ/2 and assume that (17), SWI,γ,η(ρ, ϵI) (see (21)) and SWII,γ,η (see (22)) hold. Let
(Un)n be a sequence of RN -valued centered independent and identically distributed random variables
with covariance identity and bounded moments of order 2p. We de�ne the Euler scheme with decreasing
step (γn)n∈N∗ , (XΓn)n∈N of (Xt)t⩾0 (37) on the time grid {Γn =

∑n
k=1 γk, n ∈ N} by

∀n ∈ N, XΓn+1
=XΓn + γn+1b(XΓn) +

√
γn+1σ(XΓn)Un+1, X0 = x.

We consider (νηn(dx, ω))n∈N∗ de�ned as in (5) with (XΓn)n∈N de�ned above. Now, we specify the
measurable functions ψ, ϕ : [1,+∞) → [1,+∞) as ψp(y) = yp and ϕ(y) = ya. Moreover, let s ⩾ 1
such that a pρ/s ⩽ p+ a− 1, p/s+ a− 1 > 0 and Tr[σσT ] ⩽ CV p/s+a−1. Then, it follows from Theorem
2.2 that there exists an invariant distribution ν for (Xt)t⩾0. Moreover, (νηn(dx, ω))n∈N∗ a.s. weakly
converges towards V, the set of invariant distributions of (Xt)t⩾0 and when it is unique i.e. V = {ν}, we
have

P− a.s. lim
n→+∞

νηn(f) = ν(f),
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for every ν − a.s. continuous function f ∈ CṼψp,ϕ,s(R
d) de�ned in (8). Taking V : x 7→ 1 + |x|2, we

obtain the a.s. convergence for the 2p/s+2a− 2-Wasserstein distance. In addition to that P− a.s. weak
converge result we can also establish a �rst order CLT. Let ρ̃1 ∈ [1, 2], let Cγ,η > 0 and let us de�ne
η1,n = Cγ,ηγn, n ∈ N∗ and

F1 = {f ∈ C4(Rd;R),∀l ∈ {2, . . . , 4}, Dlf ∈ C0(Rd;R)},

and the linear operator M1 de�ned on C4(Rd;R) such that for every f ∈ C4(Rd;R),

M1f(x) =− 1

2

(
D2f(x); b(x)⊗2

)
− E

[1
2

(
D3f(x); (σ(x)U)⊗2 ⊗ b(x)

)
+

1

4!

(
D4f(x); (σ(x)U)⊗4

)]
.

Let η̃1(γ) = γ2. Assume that (4), (17), SWI,γ,η(ρ, ϵI) (see (21)) and SWII,γ,η (see (22)) hold with η
replaced by η̃1 and by γ. Now, we introduce necessary assumptions concerning the random variables
that are used to build this scheme. Let q ∈ N∗, p ⩾ 0. Now let (Un)n∈N∗ be a sequence of RN -valued
independent and identically distributed random variables such that

MN ,q(U) ≡ ∀n ∈ N∗,∀q̃ ∈ {1, . . . , q}, E[(Un)⊗q̃] = E[(N (0, Id))
⊗q̃], (38)

and

Mp(U) sup
n∈N∗

E[|Un|2p] < +∞. (39)

We assume that the sequence (Un)n∈N∗ satis�es MN ,3(U) (see (38))) and M2(U) (see (39)) and that
SWGC,γ(ρ̃1, γ, γ) (see (31)) holds.
Also assume that gσ,1 ⩽ CV p/s+a−1, with gσ,1 = Tr[σσT ]4+|b|2, that Tr[σσT ] = o|x|→+∞(V p/s+a−1) and

that ν is unique. Finally assume that for every f ∈ F1, |σTDf |2 ∈ CṼψp,ϕ,s(R
d) and M1f ∈ CṼψp,ϕ,s(R

d).

Then, for every f ∈ F1,

i. If limn→∞
√
Γn/Hη̃1,n = +∞,

lim
n→∞

√
Γnν

η1
n (Af)

law
= N (0, ν(|σTDf |2)).

ii. If limn→∞
√
Γn/Hη̃1,n = l̂ ∈ R∗

+,

lim
n→∞

√
Γnν

η1
n (Af)

law
= N (l̂−1ν(M1f), ν(|σTDf |2)).

iii. If limn→∞
√
Γn/Hη̃1,n = 0,

lim
n→∞

Hn

Hη̃1,n
νη1n (Af)

P
= ν(M1f).

This result was initially obtained in [13] but under strongly mean reverting assumption i.e. a = 1.
The extension of this result to the weak mean reverting setting was developed in [25]. Notice that, for
f ∈ F1 the Ito's Lemma yields,

E[f(Xt)
2] =E[f(X0)

2] +

∫ t

0

E[f(Xs)Af(Xs) + |σTDf |2(Xs)]ds.

In particular, choosing X0 ∼ ν, we obtain ν(|σTDf |2)) = −2ν(fAf) and the asymptotic variance of our
�rst order CLT is the same as in the continuous case [2].

Remark 3.4. Notice that if we take γn = 1/nξ, ξ ∈ (0, 1/2) and η = γ, the mentioned step weight
assumptions are satis�ed (take ρ ∈ (1/(1− ξ), 2] and ρ̃1 ∈ (2/(1 + ξ), 2]). Then, if we de�ne by



4 APPLICATION - THE TALAY SECOND WEAK ORDER SCHEME 23

∀n ∈ N∗, rn =


√
Γn if limn→∞

√
Γn/Hη̃1,n = +∞,√

Γn if limn→∞
√
Γn/Hη̃1,n = l̂,

Hn
Hη̃1,n

if limn→∞
√
Γn/Hη̃1,n = 0,

the rate of convergence of (νη1n (Af))n∈N∗ , we have

rn ∼
n→+∞

Cnξ∧(1/2−ξ/2).

The highest rate of convergence is thus achieved for ξ = 1/3 and is given by rn ∼
n→+∞

Cn1/3.

4 Application - The Talay second weak order scheme

Notations.
In the sequel we will use the following notations. First, for α ∈ (0, 1] and f an α-Hölder function we

denote [f ]α = supx̸=y |f(y)− f(x)|/|y − x|α.
Now, let d ∈ N. For any Rd×d-valued symmetric matrix S, we de�ne λS := sup{λS,1, . . . , λS,d, 0}, with
λS,i the i-th eigenvalue of S.

Presentation of the main result.
In this section we study the second order convergence of the weighted empirical measures of a scheme

designed in [29] and adapted to the case of decreasing time steps. We consider a N -dimensional Brownian
motion (Wt)t⩾0. We are interested in the solution - assumed to exist and to be unique - of the d-
dimensional stochastic equation

Xt = x+

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs,

where b : Rd → Rd and σ : Rd → Rd×N , are locally bounded functions. The in�nitesimal generator of
this process is given by

Af(x) =⟨b(x),∇f(x)⟩+ 1

2

d∑
i,j=1

(σσT )i,j(x)
∂2f

∂xi∂xj
(x)

and its domain D(A) contains D(A)0 = C2
K(Rd). Notice that D(A)0 is dense in C0(E). Now, we

present the Talay's scheme, introduced in [29], of (Xt)t⩾0 adapted to the case of decreasing time steps.

Moreover, let (κn)n∈N∗ be a sequence of RN×N -valued independent and identically distributed random
variables such that for every n ∈ N∗, κn is made of N × N independent components and for every
(i, j) ∈ {1, . . . , N}2, P(κi,jn = −1/2) = P(κi,jn = 1/2) = 1/2. At this point we de�ne the sequence
(Wn)n∈N∗ of RN×N -valued random variables such that for every n ∈ N∗,

∀i, j ∈ {1, . . . , N}, Wi,i
n =

1

2
(|U in|2 − 1) and Wi,j

n =
1

2
U inU

j
n − κi∧j,i∨jn for i ̸= j.

For every n ∈ N, the Talay's scheme with decreasing step is de�ned by

XΓn+1
=XΓn +

√
γn+1σ(XΓn)Un+1 + γn+1

(
b(XΓn) + (Dσ(XΓn);σ(XΓn)WT

n+1)
)

+ γ
3/2
n+1σ̃(XΓn)Un+1 + γ2n+1

1

2
Ab(XΓn),

with, for every i ∈ {1, . . . , N}, and j ∈ {1, . . . , d}, σ̃j,i = (σ̃i)j where

σ̃i : Rd → Rd

x 7→ 1
2

d∑
l=1

(
∂xlb(x)σl,i(x) + ∂xlσl,i(x)b(x) +

1
2

d∑
j=1

(σσT )l,j(x)
∂2σi
∂xl∂xj

(x)
)
.
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with, for every i ∈ {1, . . . , N}, σi : Rd → Rd, x 7→ σi(x) = (σ1,i(x), . . . , σd,i(x)).
We will also denote ∆Xn+1 = XΓn+1

−XΓn and

∆X
1

n+1 = γ
1/2
n+1σ(XΓn)Un+1 = γ

1/2
n+1

N∑
i=1

σi(XΓn)U
i
n+1, ∆X

2

n+1 = γn+1b(XΓn), (40)

∆X
3

n+1 = (Dσ(XΓn);σ(XΓn)WT
n+1) = γn+1

N∑
i,j=1

d∑
l=1

∂xlσi(XΓn)σl,j(XΓn)W
i,j
n+1,

∆X
4

n+1 = γ
3/2
n+1σ̃(XΓn)Un+1 = γ

3/2
n+1

N∑
i=1

σ̃i(XΓn)U
i
n+1

∆X
5

n+1 = γ2n+1

1

2
Ab(XΓn)

and X
i

Γn+1
= XΓn +

∑i
j=1 ∆X

i

n+1. Now, we assume the existence of a Lyapunov function V : Rd →
[v∗,∞), v∗ > 0, satisfying LV (see (6)) and which is essentially quadratic:

|∇V |2 ⩽ CV V, sup
x∈Rd

|D2V (x)| < +∞ (41)

It remains to introudce the mean-reverting property of V . We de�ne

∀x ∈ Rd, λψ(x) := λD2V (x)+2∇V (x)⊗2ψ′′◦V (x)ψ′◦V (x)−1 . (42)

When ψ(y) = ψp(y) = yp, we will also use the notation λp instead of λψ. Now, let ϕ : [v∗,+∞) → R+,
and assume that for every x ∈ Rd,

B(ϕ) ≡ |b(x)|2 +Tr[σσT (x)] + |Dσ(x)|2 Tr[σσT (x)] + |σ̃(x)|2 + |Ab(x)|2 ⩽ Cϕ ◦ V (x). (43)

We are now able to introduce the Lp mean-reverting property of V . Let p ⩾ 0. Let β ∈ R, α > 0.
We assume that lim inf

y→∞
ϕ(y) > β/α and

Rp(α, β, ϕ, V ) ≡ ∀x ∈ Rd, ⟨∇V (x), b(x)⟩+ 1

2
χp(x) ⩽ β − αϕ ◦ V (x), (44)

with

χp(x) =

{
∥λ1∥∞Tr[σσT (x)] if p ⩽ 1

∥λp∥∞2(2p−3)+Tr[σσT (x)] if p > 1.
(45)

Finally we consider the linear operator M1 de�ned on C4(Rd;R) such that for every f ∈ C4(Rd;R),

M1f(x) =− 1

2

(
Df(x);Ab(x)

)
(46)

− E
[1
2

(
D2f(x); b(x)⊗2 + 2b(x)⊗ (Dσ(x);σ(x)WT ) + (Dσ(x);σ(x)WT )⊗2

)
+

1

2

(
D3f(x); (σ(x)U)⊗2 ⊗ (b(x) + (Dσ(x);σ(x)WT )) + (σ(x)U)⊗ (σ̃(x)U)

)
+

1

4!

(
D4f(x); (σ(x)U)⊗4

)]
.

We also consider the linear operator M2 de�ned on C6(Rd;R) such that for every f ∈ C6(Rd;R),
M2f = M̃2f − 1

2M1Af with
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M̃2f(x) =− E
[(
D2f(x);

1

2
(σ̃(x)U)⊗2) +

1

2
b(x)⊗Ab(x)

)
(47)

+
1

2

(
D3f(x);

1

3
(Dσ(x);σ(x)WT )⊗3 + b(x)⊗2 ⊗ (Dσ(x);σ(x)WT ) +

1

2
(σ(x)U)⊗2 ⊗Ab(x)

+ (σ(x)U)⊗ (b(x) + (Dσ(x);σ(x)WT ))⊗ (σ̃(x)U) +
1

3
b(x)⊗3

)
+

1

2

(
D4f(x);

1

2
(σ(x)U)⊗2 ⊗ (b(x)⊗2 + 2b(x)⊗ (Dσ(x);σ(x)WT ) + (Dσ(x);σ(x)WT )⊗2)

+
1

3
(σ(x)U)⊗3 ⊗ (σ̃(x)U)

)
+

1

4!

(
D5f(x); (σ(x)U)⊗4 ⊗ (b(x) + (Dσ(x);σ(x)WT ))

)
+

1

6!

(
D6f(x); (σ(x)U)⊗6

)]
.

We are now in a position to provide our main result concerning convergence of weighted empirical
measures of the Talay's scheme. This �rst part of this result concerns the P − a.s. weak convergence
while the second part establishes �rst and second order CLT.

Theorem 4.1. Let p > 0, a ∈ (0, 1], s ⩾ 1, ρ ∈ [1, 2] and, ψp(y) = yp, ϕ(y) = ya and ϵI(γ) = γρ/2. Let
α > 0 and β ∈ R.
A. Assume that the sequence (Un)n∈N∗ satis�es MN ,2(U) (see (38)) and M(2p)∨(2pρ/s)∨2(U) (see (39)).

Also assume that (41), B(ϕ) (see (43)), Rp(α, β, ϕ, V ) (see (44)), LV (see (6), SWI,γ,η(ρ, ϵI) (see
(21)), SWII,γ,η(V

p/s) (see (14)) and (17) also hold and that apρ/s ⩽ p+ a− 1.

Then, if p/s+ a− 1 > 0, (νηn)n∈N∗ is P− a.s. tight and

P-a.s. sup
n∈N∗

νηn(V
p/s+a−1) < +∞. (48)

Moreover, assume also that b, σ, |Dσ|Tr[σσT ]1/2, σ̃ and Ab have sublinear growth and that
gσ ⩽ CV p/s+a−1, with gσ = Tr[σσT ] + |Dσ|Tr[σσT ]1/2 + Tr[σ̃σ̃T ]1/2. Then, every weak limiting
distribution ν of (νηn)n∈N∗ is an invariant distribution of (Xt)t⩾0 and when ν is unique, we have

P-a.s. ∀f ∈ CṼψp,ϕ,s(R
d), lim

n→+∞
νηn(f) = ν(f), (49)

with CṼψp,ϕ,s(R
d) de�ned in (8). Notice that when p/s ⩽ p∨1+a−1, the assumption SWII,γ,η(V

p/s)

(see (14)) can be replaced by SWII,γ,η (see (22)).

B. Let q ∈ {1, 2}, let ρ̃q ∈ [1, 2], let Cγ,η > 0 and let us de�ne η1,n = Cγ,ηγn, η2,n+1 = Cγ,η(γn +
γn+1)/2, n ∈ N∗ (with γ0 = 0) and

Fq = {f ∈ C2(q+1)(Rd;R),∀l ∈ {1, . . . , 2(q + 1)}, Dlf ∈ C0(Rd;R), Af ∈ F1 if q = 2}.

Finally let η̃q(γ) = γq+1.

Assume that the sequence (Un)n∈N∗ satis�es MN ,2q+1(U) (see (38)) and Mq+1(U) (see (39)) and
that SWGC,γ(ρ̃q, γ, γ) (see (31)) holds.
Also assume that gσ,q ⩽ CV p/s+a−1, with gσ,q = Tr[σσT ]2(q+1) + |b|q+1 + |Dσ|q+1 Tr[σσT ](q+1)/2 +
Tr[σ̃σ̃T ] + |Ab|q, that Tr[σσT ] = o|x|→+∞(V p/s+a−1), that ν is unique and that (4) and the
hypotheses from point A. hold with η replaced by η̃q and by γ. Finally assume that for every
f ∈ Fq, |σTDf |2 ∈ CṼψp,ϕ,s(R

d) and Mqf ∈ CṼψp,ϕ,s(R
d).

Then, for every f ∈ Fq, we have
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i. If limn→∞
√
Γn/Hη̃q,n = +∞, ,

lim
n→∞

√
Γnν

ηq
n (Af)

law
= N (0, ν(|σTDf |2)).

ii. If limn→∞
√
Γn/Hη̃q,n = l̂ ∈ R∗

+,

lim
n→∞

√
Γnν

ηq
n (Af)

law
= N (l̂−1ν(Mqf), ν(|σTDf |2)).

iii. If limn→∞
√
Γn/Hη̃q,n = 0,

lim
n→∞

Hn

Hη̃q,n
νηqn (Af)

P
= ν(Mqf)

Remark 4.1. Notice that if we take γn = 1/nξ, ξ ∈ (0, 1/(q+1)), the mentioned step weight assumptions
of Theorem 4.1 point B. are satis�ed (take ρ ∈ (1/(1− ξ), 2] and ρ̃q ∈ (2/(1 + ξ), 2]). Then, if we de�ne
by

∀n ∈ N∗, rq,n =


√
Γn if limn→∞

√
Γn/Hη̃q,n = +∞,√

Γn if limn→∞
√
Γn/Hη̃q,n = l̂,

Hn
Hη̃q,n

if limn→∞
√
Γn/Hη̃q,n = 0,

the rate of convergence of (ν
ηq
n (Af))n∈N∗ , we have

rq,n ∼
n→+∞

Cn(qξ)∧(1/2−ξ/2).

The highest rate of convergence is thus achieved for ξ = 1/(2q+1) and is given by rq,n ∼
n→+∞

Cnq/(2q+1).

In particular in the �rst order case (q = 1) we have r1,n ∼
n→+∞

Cn1/3 which is, as expected, the same

rate as for the Euler scheme (see Remark 3.4). However, for the second order case (q = 2) we obtain
a faster rate of convergence since r2,n ∼

n→+∞
Cn2/5. This rate can be achieved because (XΓn)n∈N is a

second weak order scheme but also because the step sequence (η2,n)n∈N∗ is well chosen.

The next part of this Section is dedicated to the proof of Theorem 4.1.

4.1 Recursive control

Proposition 4.1. Let v∗ > 0, and let ϕ : [v∗,∞) → R+ be a continuous function such that Cϕ :=
supy∈[v∗,∞) ϕ(y)/y < +∞. Now let p > 0 and de�ne ψp(y) = yp. Let α > 0 and β ∈ R.

Assume that (Un)n∈N∗ is a sequence of independent random variables such that U satis�es MN ,2(U)
(see (38)) and M(2p)∨2(U) (see (39)).
Also assume that (41), B(ϕ) (see (43)), Rp(α, β, ϕ, V ) (see (44)), are satis�ed.

Then, for every α̃ ∈ (0, α), there exists n0 ∈ N∗, such that

∀n ⩾ n0,∀x ∈ Rd, Ãγnψp ◦ V (x) ⩽
ψp ◦ V (x)

V (x)
p(β − α̃ϕ ◦ V (x)). (50)

Then RCQ,V (ψ, ϕ, pα̃, pβ) (see (7)) holds for every α̃ ∈ (0, α) such that lim inf
y→+∞

ϕ(y) > β/α̃. Moreover,

when ϕ = Id we have

sup
n∈N

E[V p(XΓn)] < +∞. (51)

Proof. We distinguish the cases p ⩾ 1 and p ∈ (0, 1).
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Case p ⩾ 1. First, we focus on the case p ⩾ 1. From the Taylor's formula and the de�nition of
λψp = λp (see (42)), we have

ψp ◦ V (XΓn+1
) =ψp ◦ V (XΓn) + ⟨XΓn+1

−XΓn ,∇V (XΓn)⟩ψ′
p ◦ V (XΓn)

+
1

2

(
D2V (Υn+1)ψ

′
p ◦ V (Υn+1) +∇V (Υn+1)

⊗2ψ′′
p ◦ V (Υn+1); (XΓn+1

−XΓn)
⊗2

)
⩽ψp ◦ V (XΓn) + ⟨XΓn+1

−XΓn ,∇V (XΓn)⟩ψ′
p ◦ V (XΓn)

+
1

2
λp(Υn+1)ψ

′
p ◦ V (Υn+1)|XΓn+1 −XΓn |2. (52)

with Υn+1 ∈ (XΓn , XΓn+1). First, from (41), we have supx∈Rd λp(x) < +∞.
Since U and W are made of centered random variables, we deduce from MN ,2(U) (see (38)) and

M4(U) (see (39)) that

E[XΓn+1
−XΓn |XΓn ] = γn+1b(XΓn) + γ2n+1

1

2
Ab(XΓn)

E[|XΓn+1
−XΓn |2|XΓn ] ⩽ γn+1Tr[σσ

T (XΓn)] + γ
3/2
n+1C

(
Tr[σσT (XΓn)] + |b(XΓn)|2

+ |Dσ(XΓn)|2 Tr[σσT (XΓn)] + |σ̃(x)|2 + |Ab(x)|2
)
,

with C a positive constant. Assume �rst that p = 1. Using B(ϕ) (see (43)), for every α̃ ∈ (0, α),
there exists n0(α̃) such that for every n ⩾ n0(α̃),

γ2n+1

1

2
Ab(XΓn)+

1

2
∥λ1∥∞γ3/2n+1C

(
Tr[σσT (XΓn)] + |b(XΓn)|2 (53)

+ |Dσ(XΓn)|2 Tr[σσT (XΓn)] + |σ̃(x)|2 + |Ab(x)|2
)
⩽ γn+1(α− α̃)ϕ ◦ V (XΓn).

From assumption Rp(α, β, ϕ, V ) (see (44) and (45)), we conclude that

Ãγnψ1 ◦ V (x) ⩽ β − α̃ϕ ◦ V (x)

Assume now that p > 1.Since |∇V | ⩽ CV V (see (41)), then
√
V is Lipschitz. Now, we use the following

inequality: Let l ∈ N∗. We have

∀α > 0,∀ui ∈ Rd, i = 1, . . . , l,
∣∣ l∑
i=1

ui
∣∣α ⩽ l(α−1)+

l∑
i=1

|ui|α.

V p−1(Υn+1) ⩽
(√
V (XΓn) + [

√
V ]1|XΓn+1

−XΓn |
)2p−2

⩽2(2p−3)+(V p−1(XΓn) + [
√
V ]2p−2

1 |XΓn+1
−XΓn |2p−2)

To study the `remainder' of (52), we multiply the above inequality by |XΓn+1
−XΓn |2. First, we study

the second term which appears in the r.h.s. and using B(ϕ) (see (43)), for every p ⩾ 1,

|XΓn+1
−XΓn |2p ⩽ Cγpn+1ϕ ◦ V (XΓn)

p(1 + |Un+1|4p).

Let α̂ ∈ (0, α). Then, we deduce from M2p(U) (see (39)) that there exists n0(α̂) ∈ N such that for
any n ⩾ n0(α̂), we have

E[|XΓn+1
−XΓn |2p|XΓn ] ⩽ γn+1ϕ ◦ V (XΓn)

p α− α̂

∥ϕ/Id∥p−1
∞ ∥λp∥∞2(2p−3)+ [

√
V ]2p−2

1
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To treat the other term of the `remainder' of (52) we proceed as in (53) with ∥λ1∥∞ replaced by
∥λp∥∞22p−3[

√
V ]2p−2

1 , α replace by α̂ and α̃ ∈ (0, α̂). We gather all the terms together and using (45),
for every n ⩾ n0(α̃) ∨ n0(α̂), we obtain

E[V p(XΓn+1
)− V p(XΓn)|XΓn ] ⩽γn+1pV

p−1(XΓn)(β − αϕ ◦ V (XΓn))

+ γn+1pV
p−1(XΓn)

(
ϕ ◦ V (XΓn)(α̂− α̃)

+ (α− α̂)
V 1−p(XΓn)ϕ ◦ V (XΓn)

p

∥ϕ/Id∥p−1
∞

)
⩽γn+1V

p−1(XΓn)(βp− α̃pϕ ◦ V (XΓn)).

which is exactly the recursive control for p > 1.

Case p ∈ (0, 1). Now, let p ∈ (0, 1) so that x 7→ xp is concave. it follows that

V p(XΓn+1)− V p(XΓn) ⩽ pV p−1(XΓn)(V (XΓn+1)− V (XΓn))

We have just proved that we have the recursive control RCQ,V (ψ, ϕ, α, β) holds for ψ = Id (with α
replaced by α̃ > 0), and since V takes positive values, we obtain

E[V p(XΓn+1)− V p(XΓn)|XΓn ] ⩽pV
p−1(XΓn)E[V (XΓn+1)− V (XΓn)|XΓn ]

⩽γn+1V
p−1(XΓn)(pβ − pα̃ϕ ◦ V (XΓn)),

which completes the proof of (50). The proof of (51) is an immediate application of Lemma 2.1 as soon
as we notice that the increments of the Talay's scheme have �nite polynomial moments which implies
(20).

4.2 In�nitesimal approximation

Proposition 4.2. Assume that b, σ, |Dσ|Tr[σσT ]1/2, σ̃ and Ab have sublinear growth. We have the
following properties:

A. Assume that the sequence (Un)n∈N∗ satis�es MN ,2(U) (see (38)) and that supn∈N∗ νηn(Tr[σσ
T ]) <

+∞, supn∈N∗ νηn(|Dσ|Tr[σσT ]1/2) < +∞ and supn∈N∗ νηn(Tr[σ̃σ̃
T ]1/2) < +∞.

Then, E(Ã, A,D(A)0) (see (9)) is satis�ed.

B. Let F1 = {f ∈ C4(Rd;R),∀q ∈ {1, . . . , 4}, Dqf ∈ C0(Rd;R)}, let M1 de�ned in (46) and let
η̃1(γ) = γ2.

Assume that the sequence (Un)n∈N∗ satis�es MN ,3(U) (see (38)) and M2(U) (see (39)) and that
supn∈N∗ ν η̃1n (g1) < +∞, with g1 : Rd → R such that for every x ∈ Rd, g1(x) = Tr[σσT (x)]2 +
|b(x)|2 + |Dσ(x)|2 Tr[σσT (x)] + Tr[σ̃σ̃T (x)] + |Ab(x)|. Finally assume that P − a.s., for every
f ∈ F1, limn→∞ ν η̃1n (M1f) = ν(M1f).

Then E1(F1, Ã, A,M1, η̃1) (see (23)) is satis�ed.

C. Let F2 = {f ∈ C6(Rd;R),∀q ∈ {2, . . . , 6}, Dqf ∈ C0(Rd;R), Af ∈ F1}, let M2 de�ned in (47) and
let η̃2(γ) = γ3.

Assume that the sequence (Un)n∈N∗ satis�es MN ,5(U) (see (38)) and M3(U) (see (39)) and that
supn∈N∗ ν η̃2n (g2) < +∞ with g2 : Rd → R such that for every x ∈ Rd, g2(x) = Tr[σσT (x)]3 +
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|b(x)|3 + |Dσ(x)|3 Tr[σ̃σ̃T (x)]3/2 + Tr[σ̃σ̃T (x)] + |Ab(x)|2. Finally assume that P − a.s., for every
f ∈ F2, limn→∞ ν η̃2n (M2f) = ν(M2f).

Then E2(F2, Ã, A,M2, η̃2) (see (23)) is satis�ed.

Proof. The proof of point A. is very similar to the proof of point B. and point C. but simpler and thus
left to the reader. The proof of point B. and point C. is a direct consequence of the following Lemma.

Lemma 4.1. Assume that b, σ, |Dσ|Tr[σσT ]1/2, σ̃ and Ab have sublinear growth. We have the following
properties:

A. Assume that the sequence (Un)n∈N∗ satis�es MN ,3(U) (see (38)) and M2(U) (see (39)).

Then, for every f ∈ C4(Rd;R) such that Dqf ∈ C0(Rd;R) for q ∈ {1, . . . , 4}, then

∣∣∣E[f(XΓn+1
)− f(XΓn)|XΓn ]− γn+1Af(XΓn)+γ

2
n+1M1f(XΓn)

∣∣∣
⩽γ2n+1Λf,1(XΓn , γn+1),

with, given l ∈ N∗ and a probability space (Ω̃, G̃, P̃),

∀x ∈ Rd,∀γ ∈ (0, γ], Λf,1(x, γ) = ⟨g1(x), Ẽ[Λ̃f,1(x, γ, ω̃)]⟩Rl ,

with Λ̃f,1 satisfying (25) and (26), M1 de�ned in (46) and g1 : Rd → Rl, such that for every
x ∈ Rd, |g1(x)| ⩽ 1 + Tr[σσT (x)]2 + |b(x)|2 + |Dσ(x)|2 Tr[σσT (x)] + Tr[σ̃σ̃T (x)] + |Ab(x)|.

B. Assume that the sequence (Un)n∈N∗ satis�es MN ,5(U) (see (38)) and M3(U) (see (39)).

Then, for every f ∈ C6(Rd;R) such that Dqf ∈ C0(Rd;R) for q ∈ {2, . . . , 6}, then

∣∣∣E[f(XΓn+1
)− f(XΓn)|XΓn ]− γn+1Af(XΓn)−

γ2n+1

2
A2f(XΓn)+γ

3
n+1M̃2f(XΓn)

∣∣∣
⩽γ3n+1Λf,2(XΓn , γn+1),

with, given l ∈ N∗ and a probability space (Ω̃, G̃, P̃),

∀x ∈ Rd,∀γ ∈ (0, γ], Λf,2(x, γ) = ⟨g2(x), Ẽ[Λ̃f,2(x, γ, ω̃)]⟩Rl ,

with Λ̃f,2 satisfying (25) and (26) and M̃2 de�ned in (47) and g2 : Rd → Rl, such that for every
x ∈ Rd, |g2(x)| ⩽ 1 + Tr[σσT (x)]3 + |b(x)|3 + |Dσ(x)|3 Tr[σσT (x)]3/2 +Tr[σ̃σ̃T (x)] + |Ab(x)|2.

Notice that to obtain Proposition 4.2 point B., we use Lemma 4.1 point A. and to obtain Proposition
4.2 point C., we combine Lemma 4.1 point A. (with f replaced by Af) and Lemma 4.1 point B.

Proof of Lemma 4.1. We simply prove point point B.. The proof of point pointA. is similar but simpler.
The �rst step consists in writing the following decomposition

f(XΓn+1
)− f(XΓn) =

4∑
j=0

f(X
j

Γn)− f(X
j−1

Γn )

with notations (40) and X
0

Γn = XΓn . At this point it remains to study each term of the sum of the r.h.s.
of the above equation. For j = 1, we use Taylor expansion at order 6 and it follows that

|E[f(X1

Γn)|XΓn ]− f(XΓn)| ⩽
6∑
i=1

γ
i/2
n+1(D

if(XΓn);E[(σ(XΓn)Un+1)
⊗i)|XΓn ])

i!

+ γ3n+1Λf,2,1(XΓn , γn+1)
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with Λf,2,1(x, γ) = g2,1(x)Ẽ[Λ̃f,2,1(x, z, γ)] where Λ̃f,2,1(x, γ) = R̃f,2,1(x, z, γ, U,Θ) with U ∼ PU , Θ ∼
U[0,1] under P̃, g2,1(x) = Tr[σσT (x)]3 and

R̃f,2,1 : Rd × R+ × RN × [0, 1] → R+

(x, γ, u, θ) 7→ R̃f,2,1(x, γ, u, θ),

with

R̃f,2,1(x, γ, u, θ) =
|u|6

5!
(1− θ)5|D6f(x+ θ

√
γσ(x)u)−D6f(x)|.

We are going to prove that Λ̃f,2,1 satis�es (26). We �x u ∈ RN and θ ∈ [0, 1]. Now, since the function
σ has sublinear growth, there exists Cσ ⩾ 0 such that |σ(x)| ⩽ Cσ(1 + |x|) for every x ∈ Rd. Therefore,
since f has compact support, there exists γ(u, θ) > 0 and R > 0 such that

sup
|x|>R

sup
γ⩽γ(u,θ)

R̃f,2,1(x, γ, u, θ) = 0.

It follows that (26) (ii) holds. Moreover since D6f is bounded, and M3(U) (see (39)) holds, Λ̃f,2 also
satis�es (25).

The rest of the proof is completely similar and involves heavy calculus so we just give the sketch to
follow for j = 2 and invite the reader to follow the same line for j ∈ {3, 4, 5}. For j = 2, we use Taylor
expansion at order 3 and it follows that

|E[f(X2

Γn)|XΓn ]− f(X
1

Γn)| ⩽
3∑
i=1

γin+1E[(Dif(X
1

Γn); (b(XΓn))
⊗i)|XΓn ]

i!

+
γ3n+1

2
(D3f(XΓn); b(XΓn)

⊗3) + γ3n+1Λf,2,2(XΓn , γn+1)

with Λf,2,2(x, γ) = g2,2(x)Ẽ[Λ̃f,2,2(x, z, γ)] where Λ̃f,2,2(x, γ) = R̃f,2,2(x, z, γ, U,Θ) with U ∼ PU ,
Θ ∼ U[0,1] under P̃, g2,2(x) = |b(x)|3 and

R̃f,2,1 : Rd × R+ × RN × [0, 1] → R+

(x, γ, u, θ) 7→ R̃f,2,1(x, γ, u, θ),

with

R̃f,2,2(x, γ, u, θ) =
1

2
(1− θ)2|D3f(x+

√
γσ(x)u+ θγb(x))−D3f(x)|.

Following the same approach as for the case j = 1 we can show that Λ̃f,2,2 satis�es (26) and (25).

To complete the study for j = 1, we replace Dif(X
1

Γn , i ∈ {1, 2} by an upper bound of their Taylor

expansion at order 2(3− i) and at point X
j−1

Γn = XΓn , that is

|E[Dif(X
1

Γn)|XΓn ]−Dif(XΓn)| ⩽
2(3−i)∑
ī=1

γ
ī/2
n+1(D

ī+if(XΓn);E[(σ(XΓn)Un+1)
⊗ī)|XΓn ])

ī!

+ γ3−in+1ΛDif,2,1(XΓn , γn+1)

with ΛDif,2,2(x, γ) = Tr[σσT (x)]3−iẼ[Λ̃Dif,2,2(x, z, γ)] where Λ̃Dif,2,2(x, γ) = R̃Dif,2,2(x, z, γ, U,Θ) with

U ∼ PU , Θ ∼ U[0,1] under P̃, and

R̃Dif,2,2 : Rd × R+ × RN × [0, 1] → R+

(x, γ, u, θ) 7→ R̃Dif,2,2(x, γ, u, θ),
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with

R̃Dif,2,2(x, γ, u, θ) =
|u|2(3−i)

(5− 2i)!
(1− θ)5−2i|D3−if(x+ θ

√
γσ(x)u)−D3−if(x)|.

Following the same approach as for the case j = 1 we can show that Λ̃Dif,2,2 satis�es (26) and (25).
We do not detail the rest of the proof which is similar but simply describe the approach we use. For

j = {3, 4, 5} we apply the same method as for j = 2: We �rst use the Taylor expansion at point X
j−1

Γn
such that the remainder has the form γ3n+1Λf,2,j . Then we develop each term of this expansion at point

X
j−2

Γn at a well chosen order such that the global remainder is still of the form γ3n+1Λf,2,j (Λf,2,j is

obviously changed). We iterate the method until we use the Taylor expansion at point XΓn . Then,
the �nal remainder Λf,2 has the expected form and the term which appears in the expansion can be

identi�ed with γn+1Af(XΓn) +
γ2
n+1

2 A2f(XΓn) + γ3n+1M̃2f(XΓn). To complete the proof we notice that

for every f ∈ C6(Rd) and every j ∈ {1, . . . , 5}, R̃f,2,j = R̃−f,2,j .

4.3 Growth control

Lemma 4.2. Let p > 0, a ∈ (0, 1], s ⩾ 1, ρ ∈ [1, 2] and, ψ(y) = yp and ϕ(y) = ya. We suppose that the
sequence (Un)n∈N∗ satis�es Mρ∨(2pρ/s)(U) (see (39)). Then, for every n ∈ N and every f ∈ D(A)0,

E[|f(XΓn+1
)−f(XΓn + γn+1b(XΓn) + γ2n+1

1

2
Ab(XΓn))|ρ|XΓn ] (54)

⩽Cfγ
ρ/2
n+1 Tr[σσ

T (XΓn)]
ρ/2 + Cfγ

ρ
n+1|Dσ|ρ Tr[σσT ]ρ/2 + Cfγ

ρ3/2
n+1 Tr[σ̃σ̃T (XΓn)]

ρ/2.

with D(A)0 = C2
K(Rd). In other words, we have GCQ(D(A)0, gσ, ρ, ϵI) (see (12)) with gσ = Tr[σσT ]ρ/2+

|Dσ|ρ Tr[σσT ]ρ/2 +Tr[σ̃σ̃T (XΓn)]
ρ/2 and ϵI(γ) = γρ/2 for every γ ∈ R+.

Moreover, if (41) and B(ϕ) (see (43)) hold and

SWpol(p, a, s, ρ) apρ/s ⩽ p+ a− 1. (55)

Then, for every n ∈ N, we have

E[|V p/s(XΓn+1
)− V p/s(XΓn)|ρ|XΓn ] ⩽ Cγ

ρ/2
n+1V

p+a−1(XΓn). (56)

In other words, we have GCQ(V p/s, V p+a−1, ρ, ϵI) (see (12)) with and ϵI(γ) = γρ/2 for every γ ∈ R+.

Proof. We begin by noticing that

|XΓn+1
−(XΓn + γn+1b(XΓn) + γ2n+1

1

2
Ab(XΓn))|

⩽Cγ1/2n+1 Tr[σσ
T (XΓn)]

1/2|Un+1|+ Cγn+1|Dσ|Tr[σσT ]1/2|Wn+1|+ γ
3/2
n+1 Tr[σ̃σ̃

T (XΓn)]
1/2|Un+1|.

Let f ∈ D(A). Then f is Lipschitz and the previous inequality gives (54). Using Remark 2.2, we
obtain GCQ(D(A)0, gσ, ρ, ϵI).

We focus now on the proof of (56). We �rst notice that B(ϕ) (see (43)) implies that for any n ∈ N,

|XΓn+1 −XΓn | ⩽ Cγ
1/2
n+1

√
ϕ ◦ V (XΓn)(1 + |Un+1|+ |Wn+1||)
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Case 2p ⩽ s. We notice that V p/s is α-Hölder for any α ∈ [2p/s, 1] (see Lemma 3. in [26]) and then
V p/s is 2p/s-Hölder. We deduce that

E[|V p/s(XΓn+1)−V p/s(XΓn)|ρ|XΓn ] ⩽ C[V p/s]ρ2p/sγ
ρ/2
n+1V

aρ/2(XΓn).

In order to obtain (56), it remains to use apρ/s ⩽ a+ p− 1.

Case 2p ⩾ s. Using the following inequality

∀u, v ∈ R+,∀α ⩾ 1, |uα − vα| ⩽α2α−1(vα−1|u− v|+ |u− v|α),

with α = 2p/s, and since
√
V is Lipschitz, we have

∣∣V p/s(XΓn+1)− V p/s(XΓn)
∣∣ ⩽22p/sp/s(V p/s−1/2(XΓn)|

√
V (XΓn+1)−

√
V (XΓn)|

+ |
√
V (XΓn+1)−

√
V (XΓn)|2p/s)

⩽22p/sp/s([
√
V ]1V

p/s−1/2(XΓn)|XΓn+1 −XΓn |

+ [
√
V ]

2p/s
1 |XΓn+1 −XΓn |2p/s).

In order to obtain (56), it remains to use the assumptions B(ϕ) (see (43)) and then apρ/s ⩽ p+ a− 1.

Lemma 4.3. Let ρ ∈ [1, 2] and, ψ(y) = yp and ϕ(y) = ya. We suppose that the sequence (Un)n∈N∗

satis�es Mρ(U) (see (39)). Then, for every n ∈ N, we have: for every f ∈ F = {f ∈ C2(Rd;R), Dqf ∈
Cb(Rd;R),∀q ∈ {1, 2}}.

E[|f(XΓn+1)−f(XΓn)−
√
γn+1(Df(XΓn);σ(XΓn)Un+1)|ρ|XΓn ] (57)

⩽Cfγ
ρ
n+1 Tr[σσ

T (XΓn)]
ρ + Cfγ

ρ
n+1|b(Xn)|+ Cfγ

ρ
n+1|Dσ(XΓn)|ρ Tr[σσT (XΓn)]

ρ/2

+ Cfγ
ρ3/2
n+1 Tr[σ̃σ̃T (XΓn)]

ρ/2 + Cfγ
2ρ
n+1|Ab(XΓn)|ρ.

In particular for q ∈ {1, 2}, assume that P− a.s., limn→+∞ νγn(|σTDf |2) = ν(|σTDf |2) for every f ∈ F
satisfying Af ∈ Cb(Rd;R) when q = 2 and that Tr[σσT ] = o|x|→+∞(W ) with supn∈N∗ νγn(W ) < +∞.

Then GCQ,q(F, g, ρ, ϵX, ϵGC ,V) (see (28)) is satis�ed with g = Tr[σσT ]ρ + |b|ρ + |Dσ|ρ Tr[σσT ]ρ/2 +
Tr[σ̃σ̃T ]ρ/2 + |Ab|ρ, ϵX(γ) = γ and ϵGC(γ) = γρ for every γ ∈ R+ and Vf = |σTDf |2 for every
f ∈ C1(Rd;R).

Proof. The �rst step consists in writing

f(XΓn+1
)− f(XΓn) =f(XΓn +

√
γn+1σ(XΓn)Un+1)− f(XΓn) (58)

+ f(XΓn+1)− f(XΓn +
√
γn+1σ(XΓn)Un+1).

We study the �rst term of the r.h.s. of the above equation. Using Taylor expansion at order two and
the fact that Df ∈ Cb(Rd) yields∣∣f(XΓn +

√
γn+1σ(XΓn)Un+1)− f(XΓn)−

√
γn+1(Df(XΓn);σ(XΓn)Un+1)

∣∣
⩽

1

2
∥D2f∥∞|√γn+1σ(XΓn)Un+1|2.

Now we study the second term of the r.h.s. of (58). From Taylor expansion at order one

|f(XΓn+1
)− f(XΓn +

√
γn+1σ(XΓn)Un+1)| ⩽∥Df∥∞

∣∣∣γn+1

(
b(XΓn) + (Dσ(XΓn);σ(XΓn)WT

n+1)
)

+ γ
3/2
n+1σ̃(XΓn)Un+1 + γ2n+1Ab(XΓn)

∣∣∣.
Gathering both terms of (58), raising to the power ρ and taking conditional expectancy thus yields (57).
To obtain GCQ,q(F, g, ρ, ϵX, ϵGC ,V) (see (28)), we observe that Af is bounded when q = 2 and it remains
to show that (29) holds with Xf,n =

√
γn+1(Df(XΓn);σ(XΓn)Un+1), n ∈ N. This is already done in the

seminal paper [13] (see Proposition 2.) and we invite the reader to refer to this result.
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4.4 Proof of Theorem 4.1

Proof of Theorem 4.1 point A.
This result follows from Theorem 2.1 and Theorem 2.2. The proof consists in showing that the

assumptions from those theorems are satis�ed.

Step 1. Mean reverting recursive control First, we show that RCQ,V (ψp, ϕ, pα̃, pβ) and
RCQ,V (ψ1, ϕ, α̃, β) (see (7)) is satis�ed for every α̃ ∈ (0, α).

Since (41), B(ϕ) (see (43)) and Rp(α, β, ϕ, V ) (see (44)) hold, it follows from Proposition 4.1 that
RCQ,V (ψp, ϕ, pα̃, pβ) (see (7)) is satis�ed for every α̃ ∈ (0, α) since lim infy→+∞ ϕ(y) > β/α̃. Moreover
let us notice that for every p ⩽ 1 then Rp(α, β, ϕ, V ) (see (44)) is similar to R1(α, β, ϕ, V ) and then
RCQ,V (ψ1, ϕ, α̃, β) (see (7)) is satis�ed for every α̃ ∈ (0, α)

Step 2. Step weight assumption Now, we show that SWI,γ,η(V
p∨1+a−1, ρ, ϵI) (see (13)) and

SWII,γ,η(V
p∨1+a−1) (see (14)) hold.

First we noticel that from Step1. the assumptionRCQ,V (ψp∨1, ϕ, (p∨1)α̃, (p∨1)β) (see (7)) is satis�ed
for every α̃ ∈ (0, α). Then, using SWI,γ,η(ρ, ϵI) (see (21)) with Lemma 2.2 gives SWI,γ,η(V

p∨1+a−1, ρ, ϵI)
(see (13)). Similarly, SWII,γ,η(V

p∨1+a−1) (see (14) follows from SWII,γ,η (see (22)) and Lemma 2.2.

Step 3. Growth control assumption Now, we prove GCQ(F, V p∨1+a−1, ρ, ϵI) (see (12)) for
F = D(A)0 and F = {V p/s} .

This is a consequence of Lemma 4.2. We recall that ρ ∈ [1, 2]. ConsequentlyMρ∨(2pρ/s)(U) (see (39))

holds. Now, we notice that from B(ϕ) (see (43)), we have Tr[σσT ]ρ/2+ |Dσ|ρ Tr[σσT ]ρ/2+Tr[σ̃σ̃T ]ρ/2 ⩽
CV ρa/2 with aρ/2 ⩽ p+ a− 1 since SWpol(p, a, s, ρ) (see (55)) holds. Then Lemma 4.2 implies that for
F = D(A)0 and F = {V p/s}, then GCQ(F, V p∨1+a−1, ρ, ϵI) (see (12)) holds

Step 4. Conclusion

i. The �rst part of Theorem 4.1 (see (48)) is a consequence of Theorem 2.1. Let us observe that
assumptions from Theorem 2.1 indeed hold.

On the one hand, we observe that from Step 2. and Step 3. the assumptions GCQ(V p/s, V p∨1+a−1, ρ, ϵI)
(see (12)), SWI,γ,η(V

p∨1+a−1, ρ, ϵI) (see (13)) and SWII,γ,η(V
p∨1+a−1) (see (14)) hold which are

the hypotheses from Theorem 2.1 point A. with g = V p∨1+a−1.

On the other hand, form Step 1. the assumptionRCQ,V (ψp, ϕ, pα̃, pβ) (see (7)) is satis�ed for every
α̃ ∈ (0, α). Moreover, since LV (see (6)) holds and that p/s+ a− 1 > 0, then the hypotheses from
Theorem 2.1 point B. are satis�ed.

We thus conclude from Theorem 2.1 that (νηn)n∈N∗ is P− a.s. tight and (48) holds which concludes
the proof of the �rst part of Theorem 4.1 point A..

ii. Let us now prove the second part of Theorem 4.1 (see (49)) which is a consequence of Theorem 2.2.

On the one hand, we observe that from Step 2. and Step 3. the assumptions GCQ(D(A)0, V
p∨1+a−1, ρ, ϵI)

(see (12)) and SWI,γ,η(V
p∨1+a−1, ρ, ϵI) (see (13)) hold which are the hypotheses from Theorem

2.2 point A. with g = V p∨1+a−1.

On the other hand, since b, σ, |Dσ|Tr[σσT ]1/2, σ̃ and Ab have sublinear growth and that gσ ⩽
CV p/s+a−1, with gσ = Tr[σσT ] + |Dσ|Tr[σσT ]1/2 + Tr[σ̃σ̃T ]1/2, so that P-a.s. supn∈N∗ νηn(gσ) <

+∞, it follows from Proposition 4.2 that E(Ã, A,D(A)0) (see (9)) is satis�ed. Then, the hypotheses
from Theorem 2.2 point B. hold and (49) follows from (19).
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Proof of Theorem 4.1 point B.
First we notice that using Theorem 4.1 point A., then for every f ∈ Fq, |σTDf |2 ∈ CṼψp,ϕ,s(R

d),

Mqf ∈ CṼψp,ϕ,s(R
d) and

P− a.s. lim
n→∞

νγn(|σTDf |2) = ν(|σTDf |2) and lim
n→∞

ν η̃qn (Mqf) = ν(Mqf).

Now, we notice that using Proposition 4.2, pointB. and pointC., gives Eq(Fq, Ã, A,Mq, η̃q) (see (23)).

Moreover, Lemma 4.3 gives GCQ,q(Fq, g, ρ, ϵX, ϵGC ,V) (see (28)) with g = Tr[σσT ]ρ+|b|ρ+|Dσ|ρ Tr[σσT ]ρ/2+
Tr[σ̃σ̃T ]ρ/2+|Ab|ρ, ϵX(γ) = γ and ϵGC(γ) = γρ for every γ ∈ R+, every ρ ∈ [1, 2], and withVf = |σTDf |2.
Since B(ϕ) (see (43)) holds, then g ⩽ CV ρa/2 and it follows that GCQ,q(Fq, V p∨1+a−1, ρ̃q, ϵX, ϵGC ,V) (see
(28)) is satis�ed.

Observing that SWGC,γ(ρ̃q, γ, γ) (see (31)) holds, the proof of Theorem 4.1 point B. is thus a direct
consequence of Theorem 3.2 taking q = 1 and q = 2.
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