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Abstract

This paper provides a general and abstract approach to compute invariant distributions for Feller processes.
More precisely, we show that the recursive algorithm presented in [10] and based on simulation algorithms of
stochastic schemes with decreasing step can be used to build invariant measures for general Feller processes.
We also propose various applications: Approximation of Markov Brownian di�usion stationary regimes with
Milstein or Euler scheme and approximation of Markov switching Brownian di�usion stationary regimes using
Euler scheme.
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1 Introduction

In this paper, we propose a method for the recursive computation of the invariant distribution (denoted ν)
of a Feller processes (Xt)t>0. The starting idea is to consider a non-homogeneous discrete Markov process
which can be simulated using a family of transitions kernels (Qγ)γ>0 and approximating (Xt)t>0 in a sense
made precise further on.
As suggested by the pointwise Birkho� ergodic theorem, we then show that some sequence (νn)n∈N∗ of ran-
dom empirical measures a.s. weakly converges toward ν under some appropriate mean-reverting and moment
assumptions. An abstract framework is developed which, among others, enables to extend this convergence
to the Lp-Wasserstein distance. For a given f , νn(f) can be recursively de�ned making its computation
straightforward.

Invariant distributions are crucial in the study of the long term behavior of stochastic di�erential systems.
We invite the reader to refer to [9] and [5] for an overview of the subject. The computation of invariant
distributions for stochastic systems has already been widely explored in the literature. In [22], explicit ex-
act expressions of the invariant density distribution for some solutions of Stochastic Di�erential Equations
are given. However, in many cases there is no explicit formula for ν. A �rst approach consists in study-
ing the convergence, as t tends to in�nity, of the semigroup (Pt)t>0 of the Markov process (Xt)t>0 with
in�nitesimal generator A towards the invariant measure ν. This is done e.g. in [7] for the total variation
topology which is thus adapted when the simulation of PT is possible for T large enough. Whenever (Xt)t>0

can be simulated, we can use a Monte Carlo method to estimate (Pt)t>0, i.e. E[f(Xt)], t > 0, producing
a second term in the error analysis. When (Xt)t>0 cannot be simulated at a reasonable cost, a solution

consists in simulating an approximation of (Xt)t>0, using a numerical scheme (X
γ

Γn)n∈N built with tran-
sition functions (Qγn)n∈N∗ (given a step sequence (γn)n∈N, Γ0 = 0 and Γn = γ1 + .. + γn). If the process

(X
γ

Γn)n∈N weakly converges towards (Xt)t>0, a natural construction relies on numerical homogeneous schemes
((γn)n∈N is constant, γn = γ1 > 0, for every n ∈ N∗). This approach induces two more terms to control
in the approximation of ν in addition to the error between PT and ν for a large enough �xed T > 0, such
that there exists n(T ) ∈ N∗,with T = n(T )γ1: The �rst one is due to the weak approximation of E[f(XT )]
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by E[f(X
γ1

T )] and the second one is due to the Monte Carlo error resulting from the computation of E[f(X
γ1

T ].

Such an approach does not bene�t from the ergodic feature of (Xt)t>0. In fact, as investigated in [23] for
Brownian di�usions, the ergodic (or positive recurrence) property of (Xt)t>0 is also satis�ed by its approx-

imation (X
γ

Γn)n∈N at least for small enough time step γn = γ1, n ∈ N∗. Then (X
γ1

Γn)n∈N has an invariant
distribution νγ1 (supposed to be unique for simplicity) and the sequence of empirical measures

νγ1
n (dx) =

1

Γn

n∑
k=1

γ1δXγ1
Γk−1

(dx), Γn = nγ1.

almost surely weakly converges to νγ1 . With this last result makes it is possible to compute by simulation,
arbitrarily accurate approximations of νγ1(f) using only one simulated path of (X

γ

Γn)n∈N. It is an ergodic -
or Langevin - simulation of νγ1(f). However, it remains to establish at least that νγ1(f) converges to ν(f)
when γ1 converges to zero and, if possible, at which rate. Another approach was proposed in [1], still for
Brownian di�usions, which avoids the asymptotic analysis between νγ1 and ν. The authors directly prove
that the discrete time Markov process (X

γ

Γn)n∈N, with step sequence γ = (γn)n∈N vanishing to 0, weakly
converges toward ν. Therefore, the resulting error is made of two terms. The �rst one is due to this weak
convergence and the second one to the Monte Carlo error involved in the computation of the law of X

γ

Γn ,
for n large enough. The reader may notice that in mentioned approaches, strong ergodicity assumptions are
required for the process with in�nitesimal generator A.

In [10], these two ideas are combined to design a Langevin Euler Monte Carlo recursive algorithm with
decreasing step which a.s. weakly converges to the right target ν. This paper treats the case where (X

γ

Γn)n∈N
is a (inhomogeneous) Euler scheme with decreasing step associated to a strongly mean reverting Brownian
di�usion process. The sequence (νγn)n∈N∗ is de�ned as the weighted empirical measures of the path of
(X

γ

Γn)n∈N (which is the procedure that is used in every work we mention from now on and which is also the
one we use in this paper). In particular, the a.s. weak convergence of

νγn(dx) =
1

Γn

n∑
k=1

γkδXγΓk−1

(dx), Γn =

n∑
k=1

γk, (1)

toward the (non-empty) set V of the invariant distributions of the underlying Brownian di�usion is established.
Moreover, when the invariant measure ν is unique, it is proved that lim

n→+∞
νγnf = νf a.s. for a larger class of

test functions than C0 which contains ν − a.s. continuous functions with polynomial growth i.e. convergence
for the Wasserstein distance. In the spirit of [2] for the empirical measure of the underlying di�usion, they also
obtained rates and limit gaussian laws for the convergence of (νγn(f))n∈N∗ for test functions f which can be
written f = Aϕ. Note that, this approach does not require that the invariant measure ν is unique by contrast
with the results obtained in [23] and [1] or in [4] where the authors study of the total variation convergence
for the Euler decreasing step of the over-damped Langevin di�usion under strong ergodicity assumptions. for
instance. In this case, it is established that a.s., every weak limiting distribution of (νγn)n∈N∗ is an invariant
distribution for the Brownian di�usion. This �rst paper gave rise to many generalizations and extensions.
In [11], the initial result is extended to the case of Euler scheme of Brownian di�usions with weakly mean
reverting properties. Thereafter, in [12], the class of test functions for which we have lim

n→+∞
νγnf = νf a.s.

(when the invariant distribution is unique) is extended to include functions with exponential growth. Finally,
in [19], the results concerning the polynomial case are shown to hold for the computation of invariant measures
for weakly mean reverting Levy driven di�usion processes, still using the algorithm from [10]. This extension
encourages relevant perspectives concerning not only the approximation of mean reverting Brownian di�usion
stationary regimes but also to treat a larger class of processes. For a more complete overview of the studies
concerning (1) for the Euler scheme, the reader can also refer to [15], [13], [18], [16], [17] or [14].

In this paper, we extend those existing results and show that the Langevin Euler Monte Carlo algorithm
presented in [10] and generalized to the case where (Qγ)γ>0 is not speci�ed explicitly, enables to approximate
invariant, not necessarily unique, measures for Feller processes. In a �rst step, we present an abstract frame-
work adapted to the computation of invariant distributions for Feller processes under general mean reverting
assumptions (including weakly mean reverting assumptions). Then, we establish a.s weak convergence of
(νγn)n∈N∗ . Moreover, when the invariant distribution ν is unique we obtain lim

n→+∞
νγnf = νf a.s. for a generic

class of continuous test functions f (adapted among other to polynomial and exponential test functions f).
Then in a second step, we apply this abstract results to concrete cases and obtain original results. Notice that
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the existing results mentioned above can be recovered from our abstract framework. We begin by providing
Wasserstein convergence results concerning Euler and Milstein schemes of Brownian di�usion processes in a
weakly mean reverting setting. Then, we propose a detailed application concerning the Euler scheme of a
Markov Switching di�usion for test functions f with polynomial growth (Wasserstein convergence) or expo-
nential growth. Here, we extend the results from [14] where the authors adapted the algorithm from [10]
under strong ergodicity assumptions for the Wasserstein convergence.

2 Convergence to invariant distributions - A general approach

In this section, we show that the empirical measures de�ned in the same way as in (1) and built from an
approximation (X

γ

Γn)n∈N of a Feller process (Xt)t>0 (which are not speci�ed explicitly), where the step
sequence (γn)n∈N∗ →

n→+∞
0, a.s. weakly converges the set V, of the invariant distributions of (Xt)t>0. To this

end, we will provide as weak as possible mean reverting assumptions on the pseudo-generator of (X
γ

Γn)n∈N
on the one hand and appropriate rate conditions on the step sequence (γn)n∈N∗ on the other hand.

2.1 Presentation of the abstract framework

2.1.1 Notations

Let (E, |.|) be a locally compact separable metric space, we denote C(E) the set of continuous functions on
E and C0(E) the set of continuous functions that vanish a in�nity. We equip this space with the sup norm
‖f‖∞ = supx∈E |f(x)| so that (C0(E), ‖.‖∞) is a Banach space. We will denote B(E) the σ-algebra of Borel
subsets of E and P(E) the family of Borel probability measures on E. We will denote by KE the set of
compact subsets of E.
Finally, for every Borel function f : E → R, and every l∞ ∈ R∪{−∞,+∞}, lim

x→∞
f(x) = l∞ if and only if for

every ε > 0, there exists a compact Kε ⊂ KE such that supx∈Kc
ε
|f(x)− l∞| < ε if l∞ ∈ R, infx∈Kc

ε
f(x) > 1/ε

if l∞ = +∞, and sup
x∈Kc

ε

f(x) < −1/ε if l∞ = −∞ with Kc
ε = E \Kε.

2.1.2 Construction of the random measures

Let (Ω,G,P) be a probability space. We consider a Feller process (Xt)t>0 (see [6] for details) on (Ω,G,P)
taking values in a locally compact and separable metric space E. We denote by (Pt)t>0 the Feller semigroup
(see [20]) of this process. We recall that (Pt)t>0 is a family of linear operators from C0(E) to itself such that
P0f = f , Pt+sf = PtPsf , t, s > 0 (semigroup property) and lim

t→0
‖Ptf − f‖∞ = 0 (Feller property). Using

this semigroup, we can introduce the in�nitesimal generator of (Xt)t>0 as a linear operator A de�ned on a
subspace D(A) of C0(E), satisfying: For every f ∈ D(A),

Af = lim
t→0

Ptf − f
t

exists for the ‖.‖∞-norm. The operator A : D(A)→ C0(E) is thus well de�ned and D(A) is called the domain
of A. From the Echeverria Weiss theorem (see Theorem 2.1), the set of invariant distributions for (Xt)t>0

can be characterized in the following way:

V = {ν ∈ P(E),∀t > 0, Ptν = ν} = {ν ∈ P(E),∀f ∈ D(A), ν(Af) = 0}.

The starting point of our reasoning is thus to consider an approximation of A. First, we introduce the
family of transition kernels (Qγ)γ>0 from C0(E) to itself. Now, let us de�ne the family of linear operators

Ã := (Ãγ)γ>0 from C0(E) into itself, as follows

∀f ∈ C0(E), γ > 0, Ãγf =
Qγf − f

γ
.

The family Ã is usually called the pseudo-generator of the transition kernels (Qγ)γ>0 and is an approximation
of A as γ tends to zero. From a practical viewpoint, the main interest of our approach is that we can consider
that there exists γ > 0 such that for every x ∈ E and every γ ∈ [0, γ], Qγ(x, dy) is simulable at a reasonable

computational cost. We use the family (Qγ)γ>0, to build (XΓn)n∈N (this notation replaces (X
γ

Γn)n∈N from
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now for clarity in the writing) as the non-homogeneous Markov approximation of the Feller process (Xt)t>0.

It is de�ned on the time grid {Γn =
n∑
k=1

γk, n ∈ N} with the sequence γ := (γn)n∈N∗ of time step satisfying

∀n ∈ N∗, 0 < γn 6 γ := sup
n∈N∗

γn < +∞, lim
n→+∞

γn = 0 and lim
n→+∞

Γn = +∞.

Its transition probability distributions are given by Qγn(x, dy), n ∈ N∗, x ∈ E, i.e. :

P(XΓn+1 ∈ dy|XΓn) = Qγn+1(XΓn , dy), n ∈ N.

We can canonically extend (XΓn)n∈N into a càdlàg process by settingX(t, ω) = XΓn(t)
(ω) with n(t) = inf{n ∈ N,Γn+1 > t}.

Then (XΓn)n∈N is a simulable (as soon as X0 is) non-homogeneous Markov chain with transitions

∀m 6 n, PΓm,Γn(x, dy) = Qγm+1
◦ · · · ◦ Qγn(x, dy),

and law

L(XΓn |X0 = x) = PΓn(x, dy) = Qγ1
◦ · · · ◦ Qγn(x, dy).

We use (XΓn)n∈N to design a Langevin Monte Carlo algorithm. Notice that this approach is generic
since the approximation transition kernels (Qγ)γ>0 are not explicitly speci�ed and then, it can be used
in many di�erent con�gurations including among others, weak numerical schemes or exact simulation i.e.
(XΓn)n∈N = (XΓn)n∈N. In particular, using high weak order schemes for (Xt)t>0 may lead to higher rates of
convergence for the empirical measures. The approach we use to build the empirical measures is quite more
general than in (1) as we consider some general weights which are not necessarily equal to the time steps.
We de�ne this weight sequence. Let η := (ηn)n∈N∗ be such that

∀n ∈ N∗, ηn > 0, lim
n→+∞

Hn = +∞, with Hn =

n∑
k=1

ηk.

Now we present our algorithm adapted from the one introduced in [10] designed with a Euler scheme with
decreasing step (XΓn)n∈N of a Brownian di�usion process (Xt)t>0. For x ∈ E, let δx denote the Dirac mass
at point x. For every n ∈ N∗, we de�ne the random weighted empirical random measures as follows

νηn(dx) =
1

Hn

n∑
k=1

ηkδXΓk−1
(dx). (2)

This paper is dedicated to show that a.s. every weak limiting distribution of (νηn)n∈N∗ belongs to V. In par-
ticular when the invariant measure of (Xt)t>0 is unique, i.e. V = {ν}, we show that P−a.s. lim

n→+∞
νηnf = νf ,

for a generic class of continuous test functions f . The approach we develop consists in two steps. First,
we establish a tightness property to obtain existence of at least one weak limiting distribution for (νηn)n∈N∗ .
Then, in a second step, we identify everyone of these limiting distributions with an invariant distributions of
the Feller process (Xt)t>0 exploiting the Echeverria Weiss theorem (see Theorem 2.1).

2.1.3 Assumptions on the random measures

In this part, we present the necessary assumptions on the pseudo-generator Ã = (Ãγ)γ>0 in order to prove
the convergence of the empirical measures (νηn)n∈N∗ .

Recursive control
In our framework, we introduce a well suited assumption, referred to as the mean reverting recursive control

of the pseudo-generator Ã, that leads to a tightness property on (νηn)n∈N∗ from which follows the existence
(in weak sense) of a limiting distribution for (νηn)n∈N∗ . A supplementary interest of our approach is that it
is designed to obtain the a.s. convergence of (νηn(f))n∈N∗ for a generic class of continuous test functions f
which is larger then Cb(E). To do so, we introduce a Lyapunov function V related to (XΓn)n∈N. Assume
that V a Borel function such that

LV ≡ V : (E → [v∗,+∞), v∗ > 0 and lim
x→∞

V (x) = +∞. (3)
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We now relate V to (XΓn)n∈N introducing its mean reversion Lyapunov property. Let ψ, φ : [v∗,∞)→ (0,+∞)

some Borel functions such that Ãγψ ◦ V exists for every γ ∈ (0, γ]. Let α > 0 and β ∈ R. We assume

RCQ,V (ψ, φ, α, β) ≡{
(i) ∃n0 ∈ N∗,∀n > n0, x ∈ E, Ãγnψ ◦ V (x) 6 ψ◦V (x)

V (x) (β − αφ ◦ V (x)).

(ii) lim inf
y→+∞

φ(y) > β/α.
(4)

Lyapunov functions are usually used to show the existence and sometimes the uniqueness of the invariant
measure of Feller processes. We refer to the extensive literature on the topic for more details: See for instance
[9], [5] or [15]. Notice that the condition RCQ,V (Id, φ, α, β)(i) with φ concave appears in [3] to prove sub-
geometrical ergodicity of Markov chains. In [12], a similar hypothesis to RCQ,V (Id, φ, α, β)(i), with φ not

necessarily concave, is also used (with Ãγn replaced by A) to study the convergence of the weighted empirical
measures (2) for the Euler scheme of a Brownian di�usion. The function φ controls the mean reverting
property. In particular, we call strongly mean reverting property when φ = Id and weakly mean reverting
property when lim

y→+∞
φ(y)/y = 0, for instance φ(y) = ya, a ∈ (0, 1) for every y ∈ [v∗,∞). The function ψ is

closely related to the identi�cation of the set of test functions f for which we have lim
n→+∞

νηn(f) = ν(f) a.s.,

when ν is the unique invariant distribution of the underlying Feller process. To this end, for s > 1, which
is related to step weight assumption, we introduce the sets of test functions for which we will show the a.s.
convergence of the weighted empirical measures (2):

CṼψ,φ,s(E) =
{
f ∈ C(E), |f(x)| = o

x→∞
(Ṽψ,φ,s(x))

}
, (5)

with Ṽψ,φ,s : E → R+, x 7→ Ṽψ,φ,s(x) :=
φ ◦ V (x)ψ ◦ V (x)1/s

V (x)
.

Notice that our approach bene�ts from providing generic results because we consider general Feller processes
and approximations but also because the functions φ and ψ are not speci�ed explicitly.

In�nitesimal generator approximation
This section presents the assumption that enables to characterize the limiting distributions of the a.s. tight

sequence (νηn(dx, ω))n∈N∗ . We aim to estimate the distance between V and νηn (see (2)) for n large enough.

We thus introduce an hypothesis concerning the distance between (Ãγ)γ>0, the pseudo-generator of (Qγ)γ>0,
and A, the in�nitesimal generator of (Pt)t>0. We assume that there exists D(A)0 ⊂ D(A) with D(A)0 dense
in C0(E) such that:

E(Ã, A,D(A)0) ≡ ∀γ ∈ (0, γ],∀f ∈ D(A)0,∀x ∈ E,

|Ãγf(x)−Af(x)| 6 Λf (x, γ), (6)

where Λf : E × R+ → R+ can be represented in the following way: Let (Ω̃, G̃, P̃) be a probability space.

Let g : E → Rq+, q ∈ N, be a locally bounded Borel measurable function and let Λ̃f : (E × R+ × Ω̃,B(E) ⊗
B(R+) ⊗ G̃) → Rq+ be a measurable function such that supi∈{1,...,q} Ẽ[supx∈E supγ∈(0,γ] Λ̃f,i(x, γ, ω̃)] < +∞
and

∀x ∈ E,∀γ ∈ (0, γ], Λf (x, γ) = 〈g(x), Ẽ[Λ̃f (x, γ, ω̃)]〉Rq

Moreover, we assume that for every i ∈ {1, . . . , q}, supn∈N∗ ν
η
n(gi, ω) < +∞, P(dω) − a.s., and that Λ̃f,i

satis�es one of the following two properties:
There exists a measurable function γ : (Ω̃, G̃)→ ((0, γ],B((0, γ])) such that:

I) P̃(dω̃)− a.s


(i) ∀K ∈ KE , lim

γ→0
sup
x∈K

Λ̃f,i(x, γ, ω̃) = 0,

(ii) lim
x→∞

sup
γ∈(0,γ(ω̃)]

Λ̃f,i(x, γ, ω̃) = 0,
(7)

II) P̃(dω̃)− a.s lim
γ→0

sup
x∈E

Λ̃f,i(x, γ, ω̃)gi(x) = 0. (8)

Remark 2.1. Let (F,F , λ) be a measurable space. Using the exact same approach, the results we obtain hold
when we replace the probability space (Ω̃, G̃, P̃) by the product measurable space (Ω̃ × F, G̃ ⊗ F , P̃ ⊗ λ) in the
representation of Λf and in (7) and (8) but we restrict to that case for sake of clarity in the writing. This
observation can be useful when we study jump process where λ can stand for the jump intensity.
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This representation assumption bene�ts from the fact that the transition functions (Qγ(x, dy))γ∈(0,γ], x ∈ E,
can be represented using distributions of random variables which are involved in the computation of (XΓn)n∈N∗ .
In particular, this approach is well adapted to stochastic approximations associated to a time grid such as
numerical schemes for stochastic di�erential equations with a Brownian part or/and a jump part.

Growth control and Step Weight assumptions
We conclude with hypothesis concerning the control of the martingale part of one step of our approximation.

Let ρ ∈ [1, 2] and let εI : R+ → R+ an increasing function. For F ⊂ {f, f : (E,B(E)) → (R,B(R))} and
g : E → R+ a Borel function, we assume that, for every n ∈ N,

GCQ(F, g, ρ, εI) ≡ P− a.s. ∀f ∈ F,
E[|f(XΓn+1

)− Qγn+1
f(XΓn)|ρ|XΓn ] 6 Cf εI(γn+1)g(XΓn), (9)

with Cf > 0 a �nite constant which may depend on f . We will combine this assumption with the following
step weight related ones:

SWI,γ,η(g, ρ, εI) ≡ P− a.s.
∞∑
n=1

∣∣∣ ηn
Hnγn

∣∣∣ρεI(γn)g(XΓn) < +∞. (10)

Remark 2.2. The reader may notice that GCQ(F, g, ρ, εI) holds as soon as (9) is satis�ed with Qγn+1f(XΓn),

n ∈ N∗, replaced by a FXn := σ(XΓk , k 6 n)- progressively measurable process (Xn)n∈N∗ since we have
Qγn+1f(XΓn) = E[f(XΓn+1)|XΓn ] and E[|f(XΓn+1)−Qγn+1f(XΓn)|ρ|XΓn ] 6 2ρE[|f(XΓn+1)−Xn|ρ|XΓn ] for

every Xn ∈ L2(FXn ).

We will also use the hypothesis

SWII,γ,η(F ) ≡ P− a.s. ∀f ∈ F,
∞∑
n=0

(ηn+1/γn+1 − ηn/γn)+

Hn+1
|f(XΓn)| < +∞, (11)

with the convention η0/γ0 = 1. Notice that this last assumption holds as soon as the sequence (ηn/γn)n∈N∗

is non-increasing.

At this point we can focus now on the main results concerning this general approach.

2.2 Convergence

2.3 Preliminary results

In this section, we recall standard general results we employ to study the convergence. Our approach will
rely on a speci�c version of the Martingale problem characterizing the existence of a Feller Markov process
which directly provides the existence of a steady regime i.e. an invariant distribution. This is the object of
the Echeverria Weiss theorem.

Theorem 2.1. A. (Echeverria Weiss (see [5] Theorem 9.17)). Let E be a locally compact and separable
metric space and let A : D(A) ⊂ C0(E) → C0(E) be a linear operator satisfying the positive maximum
principle1, such that D(A) is dense in C0(E) and that there exists a sequence of functions ϕn ∈ D(A)
such that lim

n→+∞
ϕn = 1 and lim

n→+∞
Aϕn = 0 with supn∈N{‖Aϕn‖∞} < +∞. If ν ∈ P(E) satis�es

∀f ∈ D(A),

∫
E

Afdν = 0, (12)

then there exists a stationary solution to the martingale problem (A, ν).
B. (Hille Yoshida (see [21] (Chapter VII, Proposition 1.3 and Proposition 1.5) or [5] (Chapter IV,

Theorem 2.2)) ). The in�nitesimal generator of a Feller process satis�es the hypothesis from point A.
except for (12).

1∀f ∈ D(A), f(x0) = sup{f(x), x ∈ E} > 0, x0 ∈ E ⇒ Af(x0) 6 0.
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This paper is devoted to the proof of the existence of a measure ν which satis�es (12). Using this result,
property (12) is su�cient to prove that ν is an invariant measure for the process with in�nitesimal generator
A. To be more speci�c, the measure ν is built as the limit of a sequence of random empirical measures
(νηn)n∈N∗ . When (12) holds for this limit, we say that the sequence (νηn)n∈N∗ converges towards an invariant
distribution of the Feller process with generator A. We begin with some preliminary results.

Lemma 2.1. (Kronecker). Let (an)n∈N∗ and (bn)n∈N∗ be two sequences of real numbers. If (bn)n∈N∗ is
non-decreasing, strictly positive, with lim

n→+∞
bn = +∞ and

∑
n>1

an/bn converges in R, then

lim
n→+∞

1

bn

n∑
k=1

ak = 0.

Theorem 2.2. (Chow (see [8], Theorem 2.17)). Let (Mn)n∈N∗ be a real valued martingale with respect to
some �ltration F = (Fn)n∈N. Then

lim
n→+∞

Mn = M∞ ∈ R a.s. on the event

⋃
r∈[0,1]

{ ∞∑
n=1

E[|Mn −Mn−1|1+r|Fn−1] < +∞
}
.

2.3.1 Almost sure tightness

From the recursive control assumption, the following Theorem establish the a.s. tightness of the sequence
(νηn)n∈N∗ and also provides a uniform control of (νηn)n∈N∗ on a generic class of test functions.

Theorem 2.3. Let s > 1, ρ ∈ [1, 2], v∗ > 0, and let us consider the Borel functions V : E → [v∗,∞),
g : E → R+, ψ : [v∗,∞)→ R+ and εI : R+ → R+ an increasing function. We have the following properties:

A. Assume that Ãγn(ψ ◦ V )1/s exists for every n ∈ N∗, and that GCQ((ψ ◦ V )1/s, g, ρ, εI) (see (9)),
SWI,γ,η(g, ρ, εI) (see (10)) and SWII,γ,η((ψ ◦ V )1/s)) (see (11) hold. Then

P-a.s. sup
n∈N∗

− 1

Hn

n∑
k=1

ηkÃγk(ψ ◦ V )1/s(XΓk−1
) < +∞. (13)

B. Let α > 0 and β ∈ R. Let φ : [v∗,∞)→ R∗+ be a continuous function such that Cφ := supy∈[v∗,∞) φ(y)/y <∞.
Assume that (13) holds and
i. RCQ,V (ψ, φ, α, β) (see (4)) holds.

ii. LV (see (3)) holds and lim
y→+∞

φ(y)ψ(y)1/s

y = +∞.

Then,
P-a.s. sup

n∈N∗
νηn(Ṽψ,φ,s) < +∞. (14)

with Ṽψ,φ,s de�ned in (5). Therefore, the sequence (νηn)n∈N∗ is P− a.s. tight.
Proof. We �rst prove point A. For n ∈ N∗, we write

−
n∑
k=1

ηkÃγk(ψ ◦ V )1/s(XΓk−1
) =−

n∑
k=1

ηk
γk

((ψ ◦ V )1/s(XΓk)− (ψ ◦ V )1/s(XΓk−1
))

+

n∑
k=1

ηk
γk

((ψ ◦ V )1/s(XΓk)− Qγk(ψ ◦ V )1/s(XΓk−1
))

We study the �rst term of the r.h.s. First, an Abel transform yields

− 1

Hn

n∑
k=1

ηk
γk

((ψ ◦ V )1/s(XΓk)−(ψ ◦ V )1/s(XΓk−1
))

=
η1

Hnγ1
(ψ ◦ V )1/s(X0)− ηn

Hnγn
(ψ ◦ V )1/s(XΓn)

+
1

Hn

n∑
k=2

(ηk
γk
− ηk−1

γk−1

)
(ψ ◦ V )1/s(XΓk−1

).
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We recall that (ψ ◦ V )1/s is non negative. From SWII,γ,η((ψ ◦ V )1/s) (see (11)), we have

E
[

sup
n∈N∗

n∑
k=1

1

Hk

(ηk
γk
− ηk−1

γk−1

)
+

(ψ ◦ V )1/s(XΓk−1
)
]
< +∞,

so that

P− a.s. sup
n∈N∗

n∑
k=1

1

Hk

(ηk
γk
− ηk−1

γk−1

)
+

(ψ ◦ V )1/s(XΓk−1
) < +∞.

By Kronecker's lemma, we deduce that

P− a.s. lim
n→+∞

1

Hn

n∑
k=2

(ηk
γk
− ηk−1

γk−1

)
+

(ψ ◦ V )1/s(XΓk−1
) = 0.

This concludes the study of the �rst term and now we focus on the second one. From Kronecker lemma, it
remains to prove the almost sure convergence of the martingale (Mn)n∈N∗ de�ned by M0 := 0 and

Mn :=

n∑
k=1

ηk
γkHk

(
(ψ ◦ V )1/s(XΓk)− Qγk(ψ ◦ V )1/s(XΓk−1

)
)
, n ∈ N∗.

Using the Chow's theorem (see Theorem 2.2), this a.s. convergence is a direct consequence of the a.s. �niteness
of the series

∞∑
n=1

( ηn
γnHn

)ρ
E[|(ψ ◦ V )1/s(XΓn)− Qγn(ψ ◦ V )1/s(XΓn−1)|ρ|XΓn−1 ],

which follows from GCQ((ψ ◦ V )1/s, g, ρ, εI) (see (9)) and SWI,γ,η(g, ρ, εI) (see (10)).
Now, we focus on the proof of point B. Using RCQ,V (ψ, φ, α, β)(i) (see (4)), there exists n0 ∈ N∗, such that
for every n > n0, we have

E
[ψ ◦ V (XΓn+1)

ψ ◦ V (XΓn)

∣∣∣XΓn

]
6 1 + γn+1

β − αφ ◦ V (XΓn)

V (XΓn)
.

Since the function de�ned on R∗+ by y 7→ y1/s is concave and Cφ := supy∈[v∗,∞) φ(y)/y < +∞, for n large
enough we use the Jensen's inequality and we derive

E
[(ψ ◦ V (XΓn+1)

ψ ◦ V (XΓn)

)1/s∣∣∣XΓn

]
6
(

1 + γn+1
β − αφ ◦ V (XΓn)

V (XΓn)

)1/s

61 +
γn+1(β − αφ ◦ V (XΓn))

sV (XΓn)
.

Now when β > 0, by RCQ,V (ψ, φ, α, β)(ii) (see (4)), there exists λ ∈ (0, 1) and yλ ∈ (0,+∞) such
that for every y > yλ, then φ(y) > β/(λα). It follows that the Borel function Cλ,s : [v∗,+∞) → R,
y 7→ Cλ,s(y) := y−1ψ(y)1/s(β − λαφ(y)) is locally bounded on [v∗,+∞) and non positive on [yλ,+∞), hence
Cλ,s := supy∈[v∗,+∞) Cλ,s(y) < +∞. When β < 0, since φ and ψ are positive functions, then the function
Cλ,s is non positive and it follows that

Qγn+1
(ψ ◦ V )1/s(XΓn) 6(ψ ◦ V )1/s(XΓn)

+
γn+1

s
(Cλ,s ◦ V (XΓn)− (1− λ)αṼψ,φ,s(XΓn)),

which yields,

Ṽψ,φ,s(XΓn) 6 − s

α(1− λ)
Ãγn+1(ψ ◦ V )1/s(XΓn) +

Cλ,s ∨ 0

α(1− λ)
.

Consequently (14) follows from (13). The tightness of (νηn)n∈N∗ is a immediate consequence of (14) since
lim
x→∞

Ṽψ,φ,s(x) = +∞.



2 CONVERGENCE TO INVARIANT DISTRIBUTIONS - A GENERAL APPROACH 9

2.3.2 Identi�cation of the limit

In Theorem 2.3, we obtained the tightness of (νηn)n∈N∗ . It remains to show that every limiting point of this
sequence is an invariant distribution of the Feller process with in�nitesimal generator A. This is the interest
of the following Theorem which relies on the in�nitesimal generator approximation.

Theorem 2.4. Let ρ ∈ [1, 2]. We have the following properties:

A. Let D(A)0 ⊂ D(A), with D(A)0 dense in C0(E). We assume that Ãγnf exists for every f ∈ D(A)0

and every n ∈ N∗. Also assume that there exists g : E → R+ a Borel function and εI : R+ → R+ an
increasing function such that GCQ(D(A)0, g, ρ, εI) (see (9)) and SWI,γ,η(g, ρ, εI) (see (10)) hold and
that

lim
n→+∞

1

Hn

n∑
k=1

|ηk+1/γk+1 − ηk/γk| = 0. (15)

Then

P-a.s. ∀f ∈ D(A)0, lim
n→+∞

1

Hn

n∑
k=1

ηkÃγkf(XΓk−1
) = 0. (16)

B. We assume that (16) and E(Ã, A,D(A)0) (see (6)) hold. Then

P-a.s. ∀f ∈ D(A)0, lim
n→+∞

νηn(Af) = 0.

It follows that, P− a.s., every weak limiting distribution νη∞ of the sequence (νηn)n∈N∗ belongs to V, the
set of the invariant distributions of (Xt)t>0. Finally, if the hypothesis from Theorem 2.3 point B. hold
and (Xt)t>0 has a unique invariant distribution, i.e. V = {ν}, then

P-a.s. ∀f ∈ CṼψ,φ,s(E), lim
n→+∞

νηn(f) = ν(f), (17)

with CṼψ,φ,s(E) de�ned in (5).

In the particular case where the function ψ is polynomial, (17) also reads as the a.s. convergence of the
empirical measures for some Lp-Wasserstein distances, p > 0, that we will study further in this paper for
some numerical schemes of some di�usion processes. From the liberty granted by the choice of ψ in this
abstract framework, where only a recursive control with mean reverting is required, we will also propose an
application for functions ψ with exponential growth.

Proof. We prove point A. We write

−
n∑
k=1

ηkÃγkf(XΓk−1
) =−

n∑
k=1

ηk
γk

(f(XΓk)− f(XΓk−1
))

+

n∑
k=1

ηk
γk

(f(XΓk)− Qγkf(XΓk−1
))

We study the �rst term of the r.h.s. We derive by an Abel transform that

− 1

Hn

n∑
k=1

ηk
γk

(f(XΓk)− f(XΓk−1
)) =

η1

Hnγ1
f(X0)− ηn

Hnγn
f(XΓn)

+
1

Hn

n∑
k=2

(ηk
γk
− ηk−1

γk−1

)
f(XΓk−1

).

Since f is bounded and lim
n→+∞

ηn/(Hnγn) = 0, we deduce that lim
n→+∞

ηnf(XΓn)/(Hnγn)
a.s.
= 0 and, on the

other hand, we deduce from (15) that

lim
n→+∞

1

Hn

n∑
k=1

ηk
γk

(f(XΓk)− f(XΓk−1
)) = 0.
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This completes the study of the �rst term. To treat the second term, the approach is quite similar to the one
in the proof of Theorem 2.3 point A. using GCQ(D(A), g, ρ, εI) (see (9)) with SWI,γ,η(g, ρ, εI) (see (10)).
Details are left to the reader. Now, we focus on the proof of point B. First we write

1

Hn

n∑
k=1

ηkÃγkf(XΓk−1
)− νηn(Af) =

1

Hn

n∑
k=1

ηk
(
Ãγkf(XΓk−1

)−Af(XΓk−1
)
)
.

Now we use the short time approximation E(Ã, A,D(A)0) (see (6)) and it follows that,∣∣∣ 1

Hn

n∑
k=1

ηk(Ãγkf(XΓk−1
)−Af(XΓk−1

))
∣∣∣ 6 1

Hn

n∑
k=1

ηkΛf (XΓk−1
, γk).

Moreover, we have the following decomposition:

∀f ∈ D(A)0,∀x ∈ E,∀γ ∈ [0, γ], Λf (x, γ) = 〈g(x), Ẽ[Λ̃f (x, γ)]〉Rq

with g : (E,B(E))→ Rq+, q ∈ N, a locally bounded Borel measurable function and Λ̃f : (E×R+× Ω̃,B(E)⊗
B(R+) ⊗ G̃) → Rq+ a measurable function such that supi∈{1,...,q} Ẽ[supx∈E supγ∈(0,γ] Λ̃f,i(x, γ)] < +∞.
Since for every i ∈ {1, . . . , q}, supn∈N∗ ν

η
n(gi, ω) < +∞, P(dω) − a.s., the P(dω) − a.s. convergence of

1
Hn

∑n
k=1 ηkΛf (XΓk−1

, γk) towards zero for every f ∈ D(A)0, will follow from the following result: Let

(xn)n∈N ∈ E⊗N. If

sup
i∈{1,...,q}

sup
n∈N∗

1

Hn

n∑
k=1

ηkgi(xk−1) < +∞,

then, for every f ∈ D(A)0, lim
n→+∞

1
Hn

∑n
k=1 ηkΛf (xk−1, γk) = 0. In order to obtain this result, we �rst show

that, for every f ∈ D(A)0, every i ∈ {1, . . . , q}, and every (xn)n∈N ∈ E⊗N, then

P̃(dω̃)− a.s. lim
n→+∞

1

Hn

n∑
k=1

ηkΛ̃f,i(xk−1, γk, ω̃)gi(xk−1) = 0,

and the result will follow from the Dominated Convergence theorem since, for every n ∈ N∗,

1

Hn

n∑
k=1

ηkΛ̃f,i(xk−1, γk, ω̃)gi(xk−1)

6 sup
x∈E

sup
γ∈(0,γ]

Λ̃f,i(x, γ, ω̃) sup
n∈N∗

1

Hn

n∑
k=1

ηkgi(xk−1) < +∞.

with Ẽ[supx∈E supγ∈(0,γ] Λ̃f,i(x, γ, ω̃)] < +∞ and supn∈N∗
1
Hn

∑n
k=1 ηkgi(xk−1) < +∞. We �x f ∈ D(A)0,

i ∈ {1, . . . , q} and (xn)n∈N ∈ E⊗N and we assume that E(Ã, A,D(A)0) I) (see (7)) holds for Λ̃f,i and gi. If

instead E(Ã, A,D(A)0) II) (see (8)) is satis�ed, the proof is similar but simpler so we leave it to the reader.

By assumption E(Ã, A,D(A)0) I) (ii)(see (8)), P̃(dω̃) − a.s, for every R > 0, there exists KR(ω̃) ∈ KE such

that supx∈Kc
R(ω̃) supγ∈(0,γ(ω̃)] Λ̃f,i(x, γ, ω̃) < 1/R. Then from E(Ã, A,D(A)0) I) (i)(see (7)), we derive that,

P̃(dω̃)− a.s, for every R > 0, lim
n→+∞

Λ̃f,i(xn−1, γn, ω̃)1KR(ω̃)(xk−1) = 0, Then, since gi is a locally bounded

function, as an immediate consequence of the Cesaro's lemma, we obtain

P̃(dω̃)− a.s. ∀R > 0,

lim
n→+∞

1

Hn

n∑
k=1

ηkΛ̃f,i(xk−1, γk, ω̃)gi(xk−1)1KR(ω̃)(xk−1) = 0

Let n(ω̃) := inf{n ∈ N∗, supk>n γk 6 γ(ω̃)}. By the assumption E(Ã, A,D(A)0) I) (ii) (see (7)), we have,

P̃(dω̃)− a.s, lim
|x|→+∞

supn>n(ω̃) Λ̃f,i(x, γn, ω̃) = 0, Moreover,

sup
n>n(ω̃)

1

Hn

n∑
k=n(ω)

ηkΛ̃f,i(xk−1, γk, ω̃)g(xk−1)1Kc
R(ω̃)(xk−1)

6 sup
x∈Kc

R(ω̃)

sup
γ∈(0,γ(ω̃)]

Λ̃f,i(x, t, ω̃) sup
n∈N∗

1

Hn

n∑
k=1

ηkgi(xk−1).
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We let R tends to in�nity and since supn∈N∗
1
Hn

∑n
k=1 ηkgi(xk−1) < +∞, the l.h.s. of the above equation

converges P̃(dω̃)− a.s. to 0. Finally, since n(ω̃) is P̃(dω̃)− a.s. �nite, we also have

P̃(dω̃)− a.s. ∀R > 0,

lim
n→+∞

1

Hn

n(ω̃)−1∑
k=1

ηkΛ̃f,i(xk−1, γk, ω̃)g(xk−1)1Kc
R(ω̃)(xk−1) = 0.

Applying the same approach for every i ∈ {1, . . . , q}, the Dominated Convergence Theorem yields:

∀(xn)n∈N ∈ E⊗N,∀f ∈ D(A)0, lim
n→+∞

1

Hn

n∑
k=1

ηkΛf (xk−1, γk) = 0.

and since for every i ∈ {1, . . . , q}, supn∈N∗ ν
η
n(gi, ω) < +∞, P(dω)− a.s., then

P(dω)− a.s. ∀f ∈ D(A)0,
1

Hn

n∑
k=1

ηk(Ãγkf(XΓk−1
)−Af(XΓk−1

)) = 0.

It follows that P(dω) − a.s., for every f ∈ D(A)0, lim
n→+∞

νηn(Af) = 0. The conclusion follows from the

Echeverria Weiss theorem (see Theorem 2.1). Simply notice that we maintain the assumptions of this Theorem
when D(A) is replaced by D(A)0, since D(A)0 ⊂ D(A) and D(A)0 is dense in C0(E).

2.4 About Growth control and Step Weight assumptions

The following Lemma presents a L1-�niteness property that we can obtain under recursive control hypothesis
and strongly mean reverting assumptions (φ = Id). This result is thus useful to prove SWI,γ,η(g, ρ, εI) (see
(10)) or SWII,γ,η(F ) (see (11)) for well chosen F and g in this speci�c situation.

Lemma 2.2. Let v∗ > 0, V : E → [v∗,∞), ψ : [v∗,∞) → R+, such that Ãγnψ ◦ V exists for every n ∈ N∗.
Let α > 0 and β ∈ R. We assume that RCQ,V (ψ, Id, α, β) (see (4)) holds and that E[ψ ◦ V (XΓn0

)] < +∞ for
every n0 ∈ N∗. Then

sup
n∈N

E[ψ ◦ V (XΓn)] < +∞ (18)

In particular, let ρ ∈ [1, 2] and εI : R+ → R+, an increasing function. It follows that if
∑∞
n=1

∣∣∣ ηn
Hnγn

∣∣∣ρεI(γn) < +∞,

then SWI,γ,η(ψ ◦ V, ρ, εI) holds and if
∑∞
n=0

(ηn+1/γn+1−ηn/γn)+

Hn+1
< +∞, then SWII,γ,η(ψ ◦ V ) is satis�ed

Proof. First, we deduce fromRCQ,V (ψ, Id, α, β)(i) that there exists n0 ∈ N such that for n > n0,RCQ,V (ψ, Id, α, β)
can be rewritten

E[ψ ◦ V (XΓn+1
)|XΓn ] 6ψ ◦ V (XΓn) + γn+1

ψ ◦ V (XΓn)

V (XΓn)
(β − αV (XΓn))

Now, let λ ∈ (0, 1) and yλ = β/(λα). It follows that the Borel function Cλ : [v∗,+∞)→ R, y 7→ Cλ(y) := y−1ψ(y)(β−
λαy) is locally bounded on [v∗,+∞) and non positive on [yλ,+∞), hence Cλ := supy∈[v∗,yλ) Cλ(y) < +∞
and

E[ψ ◦ V (XΓn+1)|XΓn ] 6ψ ◦ V (XΓn) + γn+1(Cλ ◦ V (XΓn)− (1− λ)αψ ◦ V (XΓn)),

6ψ ◦ V (XΓn)(1− γn+1(1− λ)α) + γn+1Cλ.

Applying a simple induction we deduce that E[ψ ◦ V (XΓn)] 6 E[ψ ◦ V (Xn0)] ∨ Cλ
(1−λ)α .

Now, we provide a general way to obtain SWI,γ,η(g, ρ, εI) and SWII,γ,η(F ) for some speci�c g and F as
soon as a recursive control with weakly mean reversion assumption holds.

Lemma 2.3. Let v∗ > 0, V : E → [v∗,∞), ψ, φ : [v∗,∞)→ R+, such that Ãγnψ ◦ V exists for every n ∈ N∗.
Let α > 0 and β ∈ R. We also introduce the non-increasing sequence (θn)n∈N∗ such that

∑
n>1 θnγn < +∞.

We assume that RCQ,V (ψ, φ, α, β) (see (4)) holds and that E[ψ ◦ V (XΓn0
)] < +∞ for every n0 ∈ N∗. Then

∞∑
n=1

θnγnE[Ṽψ,φ,1(XΓn−1)] < +∞
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with Ṽψ,φ,1 de�ned in (5). In particular, let ρ ∈ [1, 2] and εI : R+ → R+, an increasing function. If we also
assume

SWI,γ,η(ρ, εI) ≡
(
γ−1
n εI(γn)

( ηn
Hnγn

)ρ)
n∈N∗

is non-increasing and

∞∑
n=1

( ηn
Hnγn

)ρ
εI(γn) < +∞, (19)

then we have SWI,γ,η(Ṽψ,φ,1, ρ, εI) (see (10)). Finally,if

SWII,γ,η ≡
( ηn+1

(γn+1
− ηn

γn
)+

γnHn

)
n∈N∗

is non-increasing and

∞∑
n=1

(ηn+1/γn+1 − ηn/γn)+

Hn
< +∞, (20)

then we have SWII,γ,η(Ṽψ,φ,1) (see (11)).

Proof. Now when β > 0, by RCQ,V (ψ, φ, α, β)(ii) (see (4)), there exists λ ∈ (0, 1) and yλ ∈ (0,+∞) such
that for every y > yλ, then φ(y) > β/(λα). It follows that the Borel function Cλ,s : [v∗,+∞) → R,
y 7→ Cλ,s(y) := y−1ψ(y)(β − λαφ(y)) is locally bounded on [v∗,+∞) and non positive on [yλ,+∞), hence
Cλ := supy∈[v∗,+∞) Cλ(y) < +∞. When β < 0, since φ and ψ are positive functions, then the function Cλ is
non positive. Using the same approach as in the proof of Theorem 2.3 point B., we deduce that there exists
n0 ∈ N such that we have the following telescopic decomposition:

∀n > n0, θn+1γn+1Ṽψ,φ,1(XΓn) 6θn+1
ψ ◦ V (XΓn)− E[ψ ◦ V (XΓn+1)|XΓn ]

α(1− λ)

+ γn+1θn+1
Cλ

α(1− λ)

6
θnψ ◦ V (XΓn)− θn+1E[ψ ◦ V (XΓn+1

)|XΓn ]

α(1− λ)

+ γn+1θn+1
Cλ

α(1− λ)
.

where the last inequality follows from the fact that the sequence (θn)n∈N∗ is non-increasing. Taking expectancy
and summing over n yields the result as ψ takes positive values and E[ψ◦V (Xn0)] < +∞ for every n0 ∈ N∗.

This result concludes the general approach in a generic framework to prove convergence. The next part
of this paper is dedicated to various applications.

2.5 Example - The Euler scheme

Using this abstract approach, we recover the results obtained in [10] and [11] for the Euler scheme of a d-
dimensional Brownian di�usion. We consider a N -dimensional Brownian motion (Wt)t>0. We are interested
in the strong solution - assumed to exist and to be unique - of the d-dimensional stochastic equation

Xt = x+

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs (21)

where b : Rd → Rd, σ : Rd → Rd×N . Let V : R → [1,+∞), the Lyapunov function of this system such that
LV (see (3)) holds with E = Rd, and

|∇V |2 6 CV V, ‖D2V ‖∞ < +∞.

Moreover, we assume that for every x ∈ R, |b(x)|2 + Tr[σσ∗(x)] 6 V a(x) for some a ∈ (0, 1]. Finally, for
p > 1, we introduce the following Lp-mean reverting property of V ,

∃α > 0, β ∈ R,∀x ∈ R,

〈∇V (x), b(x)〉+
1

2
‖λp‖∞2(2p−3)+Tr[σσ∗(x)] 6 β − αV a(x)
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with for every x ∈ Rd, λp(x) := sup{λp,1(x), . . . , λp,d(x), 0}, with λp,i(x) the i-th eigenvalue of the matrix
D2V (x) + 2(p − 1)∇V (x)⊗2/V (x). We now introduce the Euler scheme of (Xt)t>0. Let ρ ∈ [1, 2] and
εI(γ) = γρ/2 and assume that (15), SWI,γ,η(ρ, εI) (see (19)) and SWII,γ,η (see (20)) hold. Let (Un)n be
a sequence of RN -valued centered independent and identically distributed random variables with covariance
identity and bounded moments of order 2p. We de�ne the Euler scheme with decreasing step (γn)n∈N∗ ,
(XΓn)n∈N of (Xt)t>0 (21) on the time grid {Γn =

∑n
k=1 γk, n ∈ N} by

∀n ∈ N, XΓn+1
=XΓn + γn+1b(XΓn) +

√
γn+1σ(XΓn)Un+1, X0 = x.

We consider (νηn(dx, ω))n∈N∗ de�ned as in (2) with (XΓn)n∈N de�ned above. Now,we specify the measurable
functions ψ, φ : [1,+∞)→ [1,+∞) as ψ(y) = yp and φ(y) = ya. Moreover, let s > 1 such that a pρ/s 6 p+
a − 1 and p/s + a − 1 > 0. Then, it follows from Theorem 2.4 that there exists an invariant distribution ν
for (Xt)t>0. Moreover, (νηn(dx, ω))n∈N∗ a.s. weakly converges toward V, the set of invariant distributions of
(Xt)t>0 and when it is unique i.e. V = {ν}, we have

lim
n→+∞

νηn(f) = ν(f),

for every ν − a.s. continuous function f ∈ CṼψ,φ,s(R
d) de�ned in (5). Notice that this result was initially

obtained in [10] when a = 1 and in [11] when a ∈ (0, 1] and in both cases s = ρ = 2. Afterwards, the study
was extended in the case function ψ with polynomial growth in [13]. We do not recall this result. However, in
the sequel we prove the convergence of the empirical measures for both polynomial growth and exponential
growth of ψ for the Euler scheme of a Brownian Markov switching di�usions and those mentioned results can
be recovered from a simpli�ed version of our approach.

3 Applications

In this section, we propose some concrete applications which follow from the results presented in Section
2. We �rst give Wasserstein convergence results concerning the Milstein scheme of a weakly mean reverting
Brownian di�usion. Then, we propose a detailed application for the Euler scheme of a Markov Switching
di�usion for test functions with polynomial or exponential growth. As a preliminary, we give some standard
notations and properties that will be used extensively in the sequel.

First, for α ∈ (0, 1] and f an α-Hölder function we denote [f ]α = supx6=y |f(y)− f(x)|/|y − x|α.
Now, let d ∈ N. For any Rd×d-valued symmetric matrix S, we de�ne λS := sup{λS,1, . . . , λS,d, 0}, with λS,i
the i-th eigenvalue of S.

3.1 Wasserstein convergence for the Milstein scheme

In this section, we establish Wasserstein convergence results for the empirical measures (2) built with the Mil-
stein approximation scheme of a one-dimensional weakly mean reverting Brownian di�usion. The framework
presented in Section 2 is well suited this scheme and we present the result that we obtain in this case. The
Milstein scheme has not been investigated until now but the convergence results are similar to the Euler case
that is why, even if the proofs are more technical, we simply state them. Moreover, looking at E(Ã, A,D(A)0)
(see (6)), the approximation of A seems to rely on the weak order of the scheme. As a consequence, even
from a rate of convergence viewpoint, intuitively, it does not possible to achieve a better rate of convergence
of (νηn)n∈N∗ with Milstein scheme than with Euler scheme. We will give the proof of this result in a further
paper. We consider a one dimensional Brownian motion (Wt)t>0. We are interested in the strong solution -
assumed to exist and to be unique - of the one dimensional stochastic equation

Xt = x+

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs (22)

where b, σ, ∂xσ : R → R. Moreover, we assume that for every x ∈ R, |b(x)|2 + |σ(x)|2 + |σσ′(x)|2 6 C(1 +
|x|2a) for some a ∈ (0, 1]. Finally, for p > 1, we introduce the following Lp-mean reverting property:

∃α > 0, β ∈ R, ∀x ∈ R, 2xb(x) + (4p− 3)2(2p−3)+σ2(x) 6 β − α|x|2a

We now introduce the Milstein scheme for (Xt)t>0. Let ρ ∈ [1, 2] and εI(γ) = γρ/2 and assume that (15),
SWI,γ,η(ρ, εI) (see (19)) and SWII,γ,η (see (20)) hold. Let (Un)n be a sequence of centered independent and
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identically distributed random variables with variance one and bounded moments of order 2p. We de�ne the
Milstein scheme with decreasing step (γn)n∈N∗ , (XΓn)n∈N of (Xt)t>0 (22) by: X0 = x, ∀n ∈ N,

XΓn+1
=XΓn + γn+1b(XΓn) +

√
γn+1σ(XΓn)Un+1 + γn+1σσ

′(XΓn)(|Un+1|2 − 1),

Then V : R→ [1,+∞), x 7→ 1 + x2 is a Lyapunov function for this scheme. We consider (νηn(dx, ω))n∈N∗ de-
�ned as in (2) with (XΓn)n∈N de�ned above. Now,we specify the measurable functions ψ, φ : [1,+∞)→ [1,+∞)
as ψ(y) = yp and φ(y) = ya. Moreover, let s > 1 such that apρ/s 6 p+ a− 1 and p/s+ a− 1 > 0. Then, it
follows from Theorem 2.4 that there exists an invariant distribution ν for (Xt)t>0. Moreover, (νηn(dx, ω))n∈N∗

a.s. weakly converges toward V, the set of invariant distributions of (Xt)t>0 and when it is unique i.e. V = {ν},
we have

lim
n→+∞

νηn(f) = ν(f),

for every ν − a.s. continuous function f : R → R such that, for every x ∈ R, |f(x)| 6 C(1 + |x|p), with
p < p/s+ a− 1. In other words (νηn)n∈N∗ converges towards ν (as n tends to in�nity) for the Lp Wasserstein
distances.

3.2 The Euler scheme for a Markov Switching di�usion

In this part of the paper, we study invariant distributions for Markov switching Brownian di�usions. The
framework presented in Section 2 is well suited to this case. Our results extend those obtained in [14] and
inspired by [10]. More particularly, in [14], the convergence of (νηn)n∈N∗ is only established under a strongly
mean reverting assumption that is φ = Id. In this paper, we do not restrict to that case and consider a
weakly mean-reverting setting, namely φ(y) = ya, a ∈ (0, 1] for every y ∈ [v∗,∞). As a �rst step, we consider
polynomial test functions that is ψ(y) = yp, p > 1 for every y ∈ [v∗,∞) like in [14] (where p > 4 is required).
As a second step, still under a weakly mean-reverting setting (but where φ is not explicitly speci�ed), we
extend those results to functions ψ with exponential growth which enables to obtain convergence of the
empirical measures for much wider class of test functions.
Now, we present the Markov switching model, its decreasing step Euler approximation and the hypothesis
necessary to obtain the convergence of (νηn)n∈N∗ . We consider a d-dimensional Brownian motion (Wt)t>0

and (ζt)t>0 a continuous time Markov chain taking values in the �nite state space {1, . . . ,M0}, M0 ∈ N∗
with generator Q = (qz,w)z,w∈{1,...,M0} and independent from W . We are interested in the strong solution -
assumed to exist and to be unique - of the d-dimensional stochastic equation

Xt = x+

∫ t

0

b(Xs, ζs)ds+

∫ t

0

σ(Xs, ζs)dWs

where for every z ∈ {1, . . . ,M0}, b(., z) : Rd → Rd and σ(., z) → Rd×d are locally bounded functions.

We recall that qz,w > 0 for z 6= w, z, w ∈ {1, . . . ,M0} and
M0∑
w=1

qz,w = 0 for every z ∈ {1, . . . ,M0}. The

in�nitesimal generator of this process reads

Af(x, z) =〈b(x, z),∇xf(x, z)〉+
1

2

d∑
i,j=1

(σσ∗)i,j(x, z)
∂2f

∂xi∂xj
(x, z)

+

M0∑
w=1

qz,wf(x,w),

for every (x, z) ∈ E := Rd×{1, . . . ,M0}. Moreover, the domainD(A) ofA containsD(A)0 = {f de�ned on E,∀z ∈ {1, . . . ,M0}, f(., z) ∈ C2
K(Rd)}.

Notice that D(A)0 is dense in C0(E). The reader may refer to [24] for more details concerning Markov switch-
ing di�usion processes where properties such as recurrence, ergodicity and stability are established. We
consider the Euler genuine scheme of this process for every n ∈ N and every t ∈ [Γn,Γn+1], de�ned by

Xt =XΓn + (t− Γn)b(XΓn , ζΓn) + σ(XΓn , ζΓn)(Wt −WΓn) (23)

We will also denote ∆Xn+1 = XΓn+1 −XΓn and

∆X
1

n+1 = γn+1b(XΓn , ζΓn), ∆X
2

n+1 = σ(XΓn , ζΓn)(WΓn+1
−WΓn), (24)



3 APPLICATIONS 15

and X
i

Γn+1
= XΓn +

∑i
j=1 ∆X

i

n+1. In the sequel we will use the notation Un+1 = γ
−1/2
n+1 (WΓn+1 −WΓn).

Finally, we consider a Lyapunov function V : Rd × {1, . . . ,M0} → [v∗,∞), v∗ > 0, which satis�es LV (see
(3)) with E = Rd × {1, . . . ,M0}, and

|∇xV |2 6 CV V, sup
(x,z)∈E

|D2
xV (x, z)| < +∞. (25)

Its mean-reverting properties will be de�ned further depending on the set of `test functions' f . We also de�ne

∀x ∈ Rd, z ∈ {1, . . . ,M0}, λψ(x, z) := λD2
xV (x,z)+2∇xV (x,z)⊗2ψ′′◦V (x,z)ψ′◦V (x,z)−1 . (26)

When ψ(y) = ψp(y) = yp, p > 0, we will also use the notation λp instead of λψ. We suppose that there exists
C > 0 such that b and σ satisfy

B(φ) ≡ ∀x ∈ Rd,∀z ∈ {1, . . . ,M0},
|b(x, z)|2 + Tr[σσ∗(x, z)] 6 Cφ ◦ V (x, z) (27)

Test functions with polynomial growth.
Having in mind Wasserstein convergence, we introduce a weaker assumption on the sequence (Un)n∈N∗

than Gaussian distribution . Let q ∈ N∗, p > 0. We suppose that (Un)n∈N∗ is a sequence of independent and
identically distributed random variables such that

MN ,q(U) ≡ ∀n ∈ N∗,∀q̃ ∈ {1, . . . , q}, E[(Un)⊗q̃] = E[(N (0, Id))
⊗q̃] (28)

Mp(U) ≡ sup
n∈N∗

E[|Un|2p] < +∞ (29)

We assume that

∃cV > 1,∀x ∈ Rd, sup
z∈{1,...,M0}

V (x, z) 6 cV inf
z∈{1,...,M0}

V (x, z). (30)

Let α > 0 and β ∈ R. We introduce the mean-reverting property of the scheme for the Lyapunov function
V . We assume that lim inf

y→+∞
φ(y) > β/α and that there exists ε0 > 0, such that we have

Rp(α, β, φ, V ) ≡ ∀x ∈ Rd,∀z ∈ {1, . . . ,M0},

〈∇V (x, z), b(x, z)〉+
1

2
χp(x, z) 6 β − αφ ◦ V (x, z), (31)

with

χp(x, z) =‖λp‖∞2(2p−3)+Tr[σσ∗(x, z)]

+ V 1−p(x, z)

M0∑
w=1

(qz,w + ε0)V p(x,w) (32)

Theorem 3.1. Let p > 1, a ∈ (0, 1], s > 1, ρ ∈ [1, 2], ψp(y) = yp, φ(y) = ya and εI(γ) = γρ/2. Let α > 0
and β ∈ R. Assume that (Un)n∈N∗ satis�es MN ,2(U) (see (28)) and Mp(U) (see (29)).
Also assume that (25), B(φ) (see (27)), Rp(α, β, φ, V ) (see (31)), LV (see (3)), SWI,γ,η(ρ, εI) (see (19)),
SWII,γ,η (see (20)), (15) and (30) hold and that pρ/s 6 p+ a− 1. Then, if p/s+ a− 1 > 0, (νηn)n∈N∗ (built
with (Xt)t>0 de�ned in (23)) is P− a.s. tight and

P-a.s. sup
n∈N∗

νηn(V p/s+a−1) < +∞.

Assume also that for every z ∈ {1, . . . ,M0}, b(., z) and σ(., z) have sublinear growth and Tr[σσ∗(x, z)] 6 CV p/s+a−1(x, z).
Then every weak limiting distribution ν of (νηn)n∈N∗ is an invariant distribution of (Xt)t>0 and when ν is
unique, we have

P-a.s. ∀f ∈ CṼψp,φ,s(E), lim
n→+∞

νηn(f) = ν(f),

with CṼψp,φ,s(E) de�ned in (5).
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Test functions with exponential growth.
We modify the hypothesis concerning the Lyapunov function V in the following way. First, we assume that

∀z ∈ {1, . . . ,M0},∀x ∈ Rd V (x, z) = V (x, 1), (33)

and we will use the notation V (x) := V (x, 1). We assume that

∀x ∈ Rd,∀z ∈ {1, . . . ,M0},
Tr[σσ∗(x, z)]|b(x)|

(
|∇V (x)|+ |b(x, z)|

)
6 CV 1−p(x)φ ◦ V (x) (34)

Now let p 6 1 and let α > 0 and β ∈ R. We assume that lim inf
y→+∞

φ(y) > β+/α, β+ = 0 ∨ β, and

Rp,λ(α, β, φ, V ) ≡ ∀x ∈ Rd,∀z ∈ {1, . . . ,M0},

〈∇V (x), b(x, z) + κp(x, z)〉+
1

2
χp(x, z) 6 β − αφ ◦ V (x), (35)

with

κp(x, z) = λp
V p−1(x)

φ ◦ V (x)
σσ∗(x, z)∇V (x)

and

χp(x, z) = − V 1−p(x)

φ ◦ V (x)Cσ(x, z)
ln(det(Σ(x, z)))

with Σ : Rd×{1, . . . ,M0},→ Sd+,∗, Sd+,∗ being the set of a positive de�nite matrix, de�ned by (x, z) 7→ Σ(x, z) := Id−
‖D2V ‖∞Cσ(x, z)V p−1(x)σ∗σ(x, z), where Cσ : Rd×{1, . . . ,M0} → R∗+ satis�es infx∈Rd infz∈{1,...,M0} Cσ(x, z) > 0.

Theorem 3.2. Let p ∈ [0, 1], λ > 0, s > 1, ρ ∈ [1, 2], let φ : [v∗,∞) → R+ be a continuous function
such that Cφ := supy∈[v∗,+∞) φ(y)/y < +∞ and lim inf

y→+∞
φ(y) = +∞, let ψ(y) = exp(λyp), y ∈ R+ and let

εI(γ) = γρ/2 and ε̃I(γ) = γρ(p∧1/2). Let α > 0 and β ∈ R. We assume that ρ < s, (33), (25), B(φ) (see
(27)), Rp,λ(α, β, φ, V ) (see (35)) and LV (see (3)) hold. We also suppose that SWI,γ,η(ρ, εI), SWI,γ,η(ρ, ε̃I)
(see (19)), SWII,γ,η (see (20)), (15) and (34) hold. Then (νηn)n∈N∗ (built with (Xt)t>0 de�ned in (23)) is
P− a.s. tight and

P-a.s. sup
n∈N∗

νηn

(φ ◦ V
V

exp
(
λ/sV p)

)
< +∞.

Assume also that for every z ∈ {1, . . . ,M0}, b(., z) and σ(., z) have sub-linear growth. Then, every weak
limiting distribution ν of (νηn)n∈N∗ is an invariant distribution of (Xt)t>0 and if ν is unique,

P-a.s. ∀f ∈ CṼψ,φ,s(E), lim
n→+∞

νηn(f) = ν(f),

with CṼψ,φ,s(E) de�ned in (5).

3.2.1 Proof of the recursive mean-reverting control

Test functions with polynomial growth

Proposition 3.1. Let v∗ > 0, and let φ : [v∗,∞)→ R∗+ be a continuous function such that Cφ := supy∈[v∗,∞) φ(y)/y < +∞.
Now let p > 1 and de�ne ψp(y) = yp, y ∈ R+.
Assume that the sequence (Un)n∈N∗ satis�es MN ,2(U) (see (28)) and Mp(U) (see (29)).
We suppose that (25), (30), B(φ) (see (27)), Rp(α, β, φ, V ) (see (31)) for some α > 0 and β ∈ R, are
satis�ed. Then, for every α̃ ∈ (0, α), there exists n0 ∈ N∗, such that

∀n > n0,∀x ∈ Rd,∀z ∈ {1, . . . ,M0},

Ãγnψp ◦ V (x, z) 6
ψp ◦ V (x, z)

V (x, z)
p
(
β − α̃φ ◦ V (x, z)

)
. (36)

Then RCQ,V (ψp, φ, pα̃, pβ) (see (4)) holds for every α̃ ∈ (0, α) such that lim inf
y→+∞

φ(y) > β/α̃. Moreover, when

φ = Id, we have

sup
n∈N

E[ψp ◦ V (XΓn , ζΓn)] < +∞. (37)
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Proof. First we write

V p(XΓn+1
, ζΓn+1

)− V p(XΓn , ζΓn) =V p(XΓn+1
, ζΓn)− V p(XΓn , ζΓn) (38)

+ V p(XΓn+1 , ζΓn+1)− V p(XΓn+1 , ζΓn)

We study the �rst term of the r.h.s. of the above equality. From the second order Taylor expansion and the
de�nition of λψp = λp (see (26)), we derive

ψp ◦ V (XΓn+1
, ζΓn)

=ψp ◦ V (XΓn , ζΓn) + 〈XΓn+1
−XΓn ,∇xV (XΓn , ζΓn)〉ψ′p ◦ V (XΓn , ζΓn)

+
1

2
D2
xV (Υn+1, ζΓn)ψ′p ◦ V (Υn+1, ζΓn)(XΓn+1

−XΓn)⊗2

+
1

2
∇xV (Υn+1, ζΓn)⊗2ψ′′p ◦ V (Υn+1, ζΓn)(XΓn+1

−XΓn)⊗2

6ψp ◦ V (XΓn , ζΓn) + 〈XΓn+1
−XΓn ,∇xV (XΓn , ζΓn)〉ψ′p ◦ V (XΓn , ζΓn)

+
1

2
λp(Υn+1, ζΓn)ψ′p ◦ V (Υn+1, ζΓn)|XΓn+1 −XΓn |2. (39)

with Υn+1 ∈ (XΓn , XΓn+1
). First, from (25), we have supz∈{1,...,M0} supx∈Rd λp(x, z) < +∞. Now, since

(Un)n∈N∗ is i.i.d. and satis�es MN ,1(U) (see (28)), we compute

E[XΓn+1 −XΓn |XΓn , ζΓn ] = γn+1b(XΓn , ζΓn)

E[|XΓn+1
−XΓn |2|XΓn , ζΓn ] = γn+1Tr[σσ

∗(XΓn , ζΓn)] + γ2
n+1|b(XΓn , ζΓn)|2.

We focus on the study of the last term of the r.h.s of (39), also called the `remainder'.

Case p = 1. Assume �rst that p = 1. Using B(φ) (see (27)), for every α̃ ∈ (0, α), there exists n0(α̃) such
that, for every n > n0(α̃),

1

2
‖λ1‖∞γ2

n+1|b(XΓn , ζΓn)|2 6 γn+1(α− α̃)φ ◦ V (XΓn , , ζΓn). (40)

From assumption Rp(α, β, φ, V ) (see (31) and (32)), we gather all the terms of (39) together and we conclude
that

γ−1
n+1E[V (XΓn+1

, ζΓn)− V (XΓn , ζΓn)|XΓn , ζΓn ]+

M0∑
z=1

(qζΓn ,z + ε0)V (XΓn , z)

6 β − α̃φ ◦ V (XΓn , ζΓn).

Case p > 1. Assume now that p > 1 so that ψ′p(y) = pyp−1. Since |∇V |2 6 CV V (see (25)), then
√
V is

Lipschitz. Now, we use the following inequality: Let l ∈ N∗. We have

∀α > 0,∀ui ∈ Rd, i = 1, . . . , l,
∣∣ l∑
i=1

ui
∣∣α 6 l(α−1)+

l∑
i=1

|ui|α. (41)

It follows that

V p−1(Υn+1, ζΓn) 6
(√
V (XΓn , ζΓn) + [

√
V ]1|XΓn+1

−XΓn |
)2p−2

62(2p−3)+(V p−1(XΓn , ζΓn) + [
√
V ]2p−2

1 |XΓn+1
−XΓn |2p−2)

To study the `remainder' of (39), we multiply the above inequality by |XΓn+1
−XΓn |2. First, we study the

second term which appears in the r.h.s. and using B(φ) (see (27)), for any p > 1,

|XΓn+1 −XΓn |2p 6 Cγpn+1φ ◦ V (XΓn , ζΓn)p(1 + |Un+1|2p).

Let α̂ ∈ (0, α). Therefore, we deduce from Mp(U) (see (29)) that there exists n0(α̂) ∈ N such that for any
n > n0(α̂), we have

E[|XΓn+1
−XΓn |2p|XΓn , ζΓn ]

6 γn+1φ ◦ V (XΓn , ζΓn)p
α− α̂

Cp−1
φ ‖λp‖∞2(2p−3)+ [

√
V ]2p−2

1

.
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To treat the other term of the `remainder' of (39), we proceed as in (40) with ‖λ1‖∞ replaced by ‖λp‖∞22p−3[
√
V ]2p−2

1 ,
α replaced by α̂ and α̃ ∈ (0, α̂). We gather all the terms of (39) together and using Rp(α, β, φ, V ) (see (31)
and (32)), for every n > n0(α̃) ∨ n0(α̂), we obtain

E[V p(XΓn+1 , ζΓn)−V p(XΓn , ζΓn)|XΓn , ζΓn ]

+ V 1−p(XΓn , ζΓn)

M0∑
z=1

(qζΓn ,z + ε)V p(XΓn , z)

6 γn+1pV
p−1(XΓn , ζΓn)(β − αφ ◦ V (XΓn , ζΓn))

+ γn+1pV
p−1(XΓn , ζΓn)

(
φ ◦ V (XΓn , ζΓn)(α̂− α̃)

+ (α− α̂)
V 1−p(XΓn , ζΓn)φ ◦ V (XΓn , ζΓn)p

Cp−1
φ

)
6 γn+1V

p−1(XΓn , ζΓn)
(
βp− α̃pφ ◦ V (XΓn , ζΓn)

)
.

Now, we focus on the second term of the r.h.s. of (38). First, since ζ and W are independent, it follows, with
notations (24), that

E[V p(XΓn+1 , ζΓn+1)−V p(XΓn+1 , ζΓn)|XΓn , ζΓn ,∆Xn+1]

= γn+1

M0∑
z=1

(qζΓn ,z + o
n→+∞

(γn+1))V p(XΓn+1
, z).

Now, using the same reasoning as for the �rst term of the r.h.s. of (38) and (30), since p > 1, we derive, for
every z ∈ {1, . . . ,M0},

|E[V p(XΓn+1 , z)−V p(XΓn , z)|XΓn , ζΓn ]|

6C(γ
1/2
n+1V

p−1(XΓn , z)φ ◦ V (XΓn , ζΓn) + γpn+1φ ◦ V (XΓn , ζΓn)p

+ γn+1V
p−1/2(XΓn , z)

√
φ ◦ V (XΓn , ζΓn))

6Cγ1/2
n+1V

p(XΓn , ζΓn)

where C > 0 is a constant which may change from line to line. We deduce that there exists ε : R+ → R+

satisfying lim
γ→0

ε(γ) = 0, such that we have

E[V p(XΓn+1
, ζΓn+1

)−V p(XΓn+1
, ζΓn)|XΓn , ζΓn ]

=γn+1

M0∑
z=1

(
qζΓn ,z + o(γn+1)

)
E[V p(XΓn+1 , z)|XΓn , ζΓn ]

6γn+1

M0∑
z=1

(qζΓn ,z + ε(γn+1))V p(XΓn , z).

This yields (36) as a direct consequence ofRp(α, β, φ, V ) (see (31) and (32)). The proof of (37) is an immediate
application of Lemma 2.2 as soon as we notice that the increments of the Euler scheme (for Markov Switching
di�usions) have �nite polynomial moments which implies (18).

Test functions with exponential growth
In this section we do not relax the assumption on the Gaussian structure of the increment as we do in the

polynomial case with hypothesis (28) and (29). In particular, it leads the following result:

Lemma 3.1. Let Λ ∈ Rd×d and U ∼ N (0, Id). We de�ne Σ ∈ Rd×d by Σ = Id − 2Λ∗Λ. Assume that
Σ ∈ Sd+,∗. Then, for every h ∈ (0, 1),

∀v ∈ Rd, E
[

exp
(√

h〈v, U〉+ h|ΛU |2
)]

6 exp
( h

2(1− h)
|v|2
)

det(Σ)−h/2. (42)
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Proof. A direct computation yields

E[exp(|ΛU |2)] =

∫
Rd

(2π)−d/2 exp
(
− 1

2
〈−2Λ∗Λu+ u, u〉

)
du = det(Σ)−1/2.

Now, (42) follows from the Hölder inequality since

E[exp(
√
h〈v, U〉+ h|ΛU |2)] 6E

[
exp

( √h
1− h

〈v, U〉
)]1−h

E[exp(|ΛU |2)]h

= exp
( h

2(1− h)
|v|2
)

det(Σ)−h/2.

Using those results, we deduce the recursive control for exponential test functions.

Proposition 3.2. Let v∗ > 0, and let φ : [v∗,∞)→ R+ be a continuous function such that Cφ := supy∈[v∗,∞) φ(y)/y < +∞.
Now let p ∈ [0, 1], λ > 0 and de�ne ψ(y) = exp(λyp), y ∈ R+. We suppose that (25), (33), B(φ) (see (27))
and Rp,λ(α, β, φ, V ) (see (35)) are satis�ed.

Then, for every α̃ ∈ (0, α), there exists β̃ ∈ R+ and n0 ∈ N∗, such that

∀n > n0,∀x ∈ Rd, Ãγnψ ◦ V (x) 6
ψ ◦ V (x)

V (x)
p
(
β̃ − α̃φ ◦ V (x)

)
. (43)

Then, RCQ,V (ψ, φ, pα̃, pβ̃) (see (4)) holds as soon as lim inf
y→+∞

φ(y) = +∞. Moreover, when φ = Id we have

sup
n∈N

E[ψ ◦ V (XΓn)] < +∞. (44)

Proof. When p = 0, the result is straightforward. Since p 6 1, the function de�ned on R+ by y 7→ yp is
concave. Using then the Taylor expansion at order 2 of the function V , we have, for every x, y ∈ Rd,

V p(y)− V p(x) 6pV p−1(x)
(
V (y)− V (x)

)
6pV p−1(x)

(
〈∇V (x), y − x〉+

1

2
‖D2V ‖∞|y − x|2

)
.

Using this inequality with x = XΓn and y = XΓn+1
= XΓn + ∆X

1

n+1 + ∆X
2

n+1, with notations (24), we
derive

V p(XΓn + ∆Xn+1)− V p(XΓn)

6pV p−1(XΓn)〈∇V (XΓn),∆X
1

n+1 + ∆X
2

n+1〉

+
1

2
pV p−1(XΓn)‖D2V ‖∞(|∆X1

n+1|2 + |∆X2

n+1|2 + 2〈∆X1

n+1,∆X
2

n+1〉).

It follows that

E[exp(λV p(XΓn+1
))|XΓn , ζΓn ] 6 Hγn+1

(XΓn , ζΓn)Lγn+1
(XΓn , ζΓn)

with, for every x ∈ Rd, every z ∈ {1, . . . ,M0} and every γ ∈ R∗+,

Hγ(x, z) = exp(λV p(x) + γλpV p−1(x)〈∇V (x), b(x, z)〉

+ γ2 1

2
λp‖D2V ‖∞V p−1(x)|b(x, z)|2)

and

Lγ(x, z) =E[exp(
√
γλpV p−1(x)〈∇V (x) + γ‖D2V ‖∞b(x, z), σ(x, z)U〉

+
1

2
γλp‖D2V ‖∞V p−1(x)|σ(x, z)U |2)]

where U ∼ N (0, Id). In order to compute Lγ(x, z), we use Lemma 3.1 (see (42)) with parameters h = Cσ(x, z)−1γλp,

v =
√
Cσ(x)λpV p−1(x)σ∗(x, z)(∇V (x) + γ‖D2V ‖∞b(x, z)) and the matrix

Σ(x, z) = Id − ‖D2V ‖∞Cσ(x, z)V p−1(x)σ∗σ(x, z)
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, where infx∈Rd infz∈{1,...,M0} Cσ(x, z) > 0 and Σ(x, z) ∈∈ Sd+,∗i. It follows from (42) and h/(2(1 − h)) 6 h
for h ∈ (0, 1/2], that for every γ 6 infx∈Rd infz∈{1,...,M0} Cσ(x, z)/(2λp),

Lγ(x, z) 6 exp
( γλpCσ(x, z)−1

2(1− γλpCσ(x, z)−1)
|v|2 − 1

2
γλpCσ(x, z)−1 ln(det(Σ(x, z)))

)
6 exp

(
γλpCσ(x, z)−1|v|2 − 1

2
γλpCσ(x, z)−1 ln(det(Σ(x, z)))

)
At this point, we focus on the �rst term inside the exponential. We have

|v|2 6Cσ(x, z)λpV 2p−2(x)
(
〈σσ∗(x, z)∇V (x),∇V (x)〉

+ Tr[σσ∗(x, z)](γ‖D2V ‖∞2〈∇V (x), b(x, z)〉+ γ2‖D2V ‖2∞|b(x, z)|2)
)

Using B(φ) (see (27)), (34) and Rp,λ(α, β, φ, V ) (see (35)), it follows that there exists C > 0 such that

Hγ(x, z)Lγ(x, z) 6 exp
(
λV p(x) + γλpV p−1(x)(β − αφ ◦ V (x)) + Cγ2V p−1(x)φ ◦ V (x)

)
which can be rewritten

Hγ(x, z)Lγ(x, z) 6 exp
((

1− γpαφ ◦ V (x)

V (x)

)
λV p(x)

+ γpα
φ ◦ V (x)

V (x)
V p(x)

( λβ

αφ ◦ V (x)
+ γC/(αp)

))
.

Using the convexity of the exponential function, we have for every γpαCφ < 1,

Hγ(x, z)Lγ(x, z) 6 exp
(
λV p(x)

)
− γpαφ ◦ V (x)

V (x)
exp

(
λV p(x)

)
+ γpα

φ ◦ V (x)

V (x)
exp

(
V p(x)

( λβ

αφ ◦ V (x)
+ γC/(αp)

))
.

It remains to study the last term of the r.h.s of the above inequality. The function de�ned on [v∗,+∞) by
y 7→ exp(yp( λβ

αφ(y) + γC/(αp))) is continuous and locally bounded. Moreover, by Rp,λ(α, β, φ, V ) (see (35)),

we have lim inf
y→+∞

φ(y) > β+/α. Hence, there exists ζ ∈ (0, 1) and yζ > v∗ such that φ(y) > β+/(αζ) for every

y > yζ . Consequently, as soon as γ < ζλαp/C, for every α̃ ∈ (0, α) there exists β̃ > 0 such that

φ ◦ V (x)

V (x)
exp

(
V p(x)

( λβ

αφ ◦ V (x)
+ γC/(αp)

))
6
β̃

α

exp(λV p(x))

V (x)

+
α− α̃
α

φ ◦ V (x)

V (x)
exp(λV p(x))

and the proof of the recursive control (43) is completed. Finally (44) follows from (18), which follow from
the equation above, and Lemma 2.2.

3.2.2 In�nitesimal control

Proposition 3.3. We suppose that the sequence (Un)n∈N∗ satis�es MN ,2(U) (see (28)). We also assume that
for every z ∈ {1, . . . ,M0}, b(., z) and σ(., z) have sublinear growth and that supn∈N∗ ν

η
n(Tr[σσ∗]) < +∞, a.s.

Then, E(Ã, A,D(A)0) (see (6)) is ful�lled.

Proof. First we recall that D(A)0 = {f : Rd×{1, . . . ,M0},∀z ∈ {1, . . . ,M0}, f(., z) ∈ C2
K(Rd)} and we write,

for f ∈ D(A)0,

f(XΓn+1
, ζΓn+1

)− f(XΓn , ζΓn) =f(XΓn+1
, ζΓn+1

)− f(XΓn+1
, ζΓn)

+ f(XΓn+1
, ζΓn)− f(XΓn , ζΓn).

We study the �rst term of the r.h.s. of the above equation. Since U and ζ are independent, we have, with
notation (24),

E[f(XΓn+1 , ζΓn+1)−f(XΓn+1 , ζΓn)|XΓn , ζΓn ,∆Xn+1]

=γn+1

M0∑
z=1

(
qζΓn ,z + o(γn+1)

)
f(XΓn+1

, z).
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Using Taylor expansions at order one and two, for every z ∈ {1, . . . ,M0} and the fact that the sequence
(Un)n∈N∗ is i.i.d., we obtain

E[f(XΓn+1 , z)− f(XΓn , z)|XΓn = x, ζΓn ]

=E[f(XΓn + ∆X
1

n+1, z)− f(XΓn , z)|XΓn = x, ζΓn ]

+ E[f(XΓn+1
, z)− f(XΓn + ∆X

1

n+1, z)|XΓn = x, ζΓn ]

6
∫ 1

0

|∇xf(x+ θb(x, ζΓn)γn+1, z)||b(x, ζΓn)γn+1|dθ

+

∫ 1

0

|D2
xf(x+ b(x, ζΓn)γn+1 + θσ(x, ζΓn)

√
γn+1v, z)||

√
γn+1σ(x, ζΓn)u|2dθP̃U (du).

where P̃U denotes the distribution of U1. Combining the two last inequalities, we derive

γ−1
n+1E[f(XΓn+1

, ζΓn+1
)− f(XΓn+1

, ζΓn)|XΓn , ζΓn ]

6
M0∑
z=1

qζΓn ,zf(XΓn , z) + o(γn+1)‖f‖∞

+

M0∑
z=1

(
|qζΓn ,z|+ o(γn+1)

)(
Λf,1(XΓn , ζΓn , γn+1)|b(XΓn , ζΓn)|

+ Λf,2(XΓn , ζΓn , γn+1) Tr[σσ∗(XΓn , ζΓn)]
)
.

We study each term in the r.h.s. of the inequality above. First, we have Λf,1(x, z, γ) = |b(x, z)|Ẽ[Λ̃f,1(x, z, γ)]

where Λ̃f,1(x, z, t) = R̃f,1(x, z, t,Θ) with Θ ∼ U[0,1] under P̃, and

R̃f,1 : Rd × {1, . . . ,M0} × R+ × [0, 1] → R+

(x, z, γ, θ) 7→
M0∑
w=1
∇xf(x+ θb(x, z)γ,w)|γ|.

We are going to prove that E(Ã, A,D(A)0) I) (see (7)) holds. Since b has sublinear growth w.r.t. its �rst
variable, there exists Cb > 0 such that |b(x, z)| 6 Cb(1 + |x|) for every x ∈ Rd and z ∈ {1, . . . ,M0}.
Therefore, since f has a compact support, it follows that there exists γ0 > 0 and R > 0 such that we have
sup|x|>R,z∈{1,...,M0} supγ6γ0

|R̃f,1(x, z, γ, θ)| = 0 for every θ ∈ [0, 1] which implies E(Ã, A,D(A)0) I) (ii).

Since ∇xf is bounded, it is immediate that E(Ã, A,D(A)0) I) (i) holds. Finally, b is locally bounded and

de�ning and g1(x, z) = 1x6R|b(x, z)|, the couple (Λ̃f,1, g1) satis�es E(Ã, A) I).

Now, we have Λf,2(x, z, γ) = g2(x, z)Ẽ[Λ̃f,2(x, z, γ)] where Λ̃f,2(x, z, γ) = R̃f,2(x, z, γ, U,Θ) with U ∼ PU ,
Θ ∼ U[0,1] under P̃ and g2(x, z) = Tr[σσ∗(x, z)] and

R̃f,2 : Rd × {1, . . . ,M0} × R+ × RN × [0, 1] → R+

(x, z, γ, u, θ) 7→ R̃f,2(x, z, γ, u, θ),

with

R̃f,2(x, z, γ, u, θ) =

M0∑
w=1

D2
xf(x+ b(x, z)γ + θσ(x, z)

√
γu,w)|√γu|2.

We are going to prove that E(Ã, A,D(A)0) I) (see (7)) holds for the couple (Λ̃f,2, g2). We �x u ∈ RN and
θ ∈ [0, 1]. Now, since the functions b and σ have sublinear growth, there exists Cb,σ > 0 such that |b(x, z)|+
|σ(x, z)| 6 Cb,σ(1 + |x|) for every x ∈ Rd and z ∈ {1, . . . ,M0}. Therefore, since f has compact support, there
exists γ0(u, θ) > 0 and R > 0 such that

sup
|x|>R,z∈{1,...,M0}

sup
γ6γ0(u,θ)

|R̃f,2(x, z, γ, u, θ)| = 0.

It follows that E(Ã, A,D(A)0) I) (ii) holds. Moreover sinceD2
xf is bounded, it is immediate that E(Ã, A,D(A)0)

I) (i) is also satis�ed. Finally, we recall that supn∈N∗ ν
η
n(Tr[σσ∗]) < +∞, a.s. and U is bounded in L2 and

then E(Ã, A) I) holds for (Λ̃f,2, g2)
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Moreover, it is immediate to show that E(Ã, A,D(A)0) II) (see 8)) holds for every couple of functions with
form ( o

n→+∞
(γn+1)‖f‖∞, 1) which concludes the study of the �rst term.

It remains to study E[f(XΓn+1
, ζΓn) − f(XΓn , ζΓn)|XΓn , ζΓn ]. Using once again Taylor expansions at order

one and two, we derive

γ−1
n+1

(
E[f(XΓn+1 , ζΓn)−f(XΓn , ζΓn)|XΓn = x, ζΓn = z]

−〈∇xf(x, z), b(x, z)〉 − 1

2

d∑
i,j=1

(σσ∗)i,j(x, z)
∂2f

∂xi∂xj
(x, z)

)
6
∫ 1

0

|∇xf(x+ θb(x, z)γn+1, z)−∇xf(x)||b(x, z)|dθ

+

∫ 1

0

|D2
xf(x+ b(x, z)γn+1 + θσ(x, z)

√
γn+1u, z)

−D2
xf(x)||σ(x, z)v|2dθpU (du).

Using a similar reasoning as before, one can show that E(Ã, A,D(A)0) I) holds for (Λ̃f,3, g1) and (Λ̃f,4, g2)

where Λ̃f,3(x, z, γ) = R̃f,3(x, z, γ,Θ) and Λ̃f,4(x, z, γ) = R̃f,4(x, z, γ, U,Θ) with U ∼ pU and Θ ∼ U[0,1] under

P̃,

R̃f,3 : Rd × {1, . . . ,M0} × R+ × [0, 1] → R+

(x, z, γ, θ) 7→ |∇xf(x+ θb(x, z)γ, z)−∇xf(x, z)|,

and

R̃f,4 : Rd × {1, . . . ,M0} × R+ × RN × [0, 1] → R+

(x, z, γ, u, θ) 7→ R̃f,4(x, z, γ, u, θ),

with

R̃f,4(x, z, γ, u, θ)|D2
xf(x+ b(x, z)γ + θσ(x, z)

√
γu, z)−D2

xf(x)||u|2.

We gather all the terms together and the proof is completed.

3.2.3 Proof of Growth control and Step Weight assumptions

Test functions with polynomial growth.

Lemma 3.2. Let p > 1, a ∈ (0, 1], ρ ∈ [1, 2], s > 1 and let ψp(y) = yp and φ(y) = ya . We suppose that the
sequence (Un)n∈N∗ satis�es M(ρ/2)∨(pρ/s)(U) (see (29)). Then, for every n ∈ N, we have

∀f ∈ D(A)0, E[|f(XΓn+1
, ζΓn+1

)−f(X
1

Γn , ζΓn)|ρ|XΓn , ζΓn ]

6 Cfγ
ρ/2
n+11 ∨ Tr[σσ∗(XΓn , ζΓn)]ρ/2. (45)

with notations (24). In other words, we have GCQ(D(A)0, 1 ∨ Tr[σσ∗]ρ/2, ρ, εI) (see (9)) with εI(γ) = γρ/2

for every γ ∈ R+.
Moreover, if (25), (30) and B(φ) (see (27)) hold and pρ/s 6 p+ a− 1, then, for every n ∈ N, we have

E[|V p/s(XΓn+1
, ζΓn+1

)− V p/s(XΓn , ζΓn)|ρ|XΓn , ζΓn ]

6 Cγ
ρ/2
n+1V

p+a−1(XΓn , ζΓn), (46)

In other words, we have GCQ(V p/s, V p+a−1, ρ, εI) (see (9)) with εI(γ) = γρ/2 for every γ ∈ R+.

Proof. We begin by noticing that, with notations (24),

|XΓn+1
−X1

Γn+1
| 6 Cγ

1/2
n+1 Tr[σσ∗(XΓn , ζΓn)]1/2|Un+1|

Let f ∈ D(A)0. We employ this estimation and since for f ∈ D(A)0 then f(., z) is uniformly Lipschitz in
z ∈ {1, . . . ,M0}, it follows that

E
[
|f(XΓn+1

, ζΓn)− f(X
1

Γn , ζΓn)|ρ|XΓn , ζΓn
]
6 Cγ

ρ/2
n+1|σσ∗(XΓn , ζΓn)|ρ/2.
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Moreover,

E[|f(XΓn+1
, ζΓn+1

)− f(XΓn+1
, ζΓn)|ρ|XΓn , ζΓn ]

=γn+1

M0∑
z=1

(qζΓn ,z + o
n→+∞

(γn+1))E[|f(XΓn+1
, z)− f(XΓn+1

, ζΓn)|ρ|XΓn , ζΓn ]

6Cγn+1‖f‖ρ∞.

Gathering both terms concludes the study for f ∈ D(A)0.
We focus now on the case f = V p/s. We notice that B(φ) (see (27)) implies that for any n ∈ N,

|XΓn+1
−XΓn | 6 Cγ

1/2
n+1

√
φ ◦ V (XΓn , ζΓn)(1 + |Un+1|).

We rewrite the term that we study as follows

V p/s(XΓn+1 , ζΓn+1)− V p/s(XΓn , ζΓn) =V p/s(XΓn+1 , ζΓn)− V p/s(XΓn , ζΓn)

+ V p/s(XΓn+1
, ζΓn+1

)− V p/s(XΓn+1
, ζΓn).

We study the �rst term of the r.h.s. of the equality above. Using the following inequality

∀u, v ∈ R+,∀α > 1, |uα − vα| 6α2α−1(vα−1|u− v|+ |u− v|α), (47)

with α = 2p/s, it follows from (25) that
√
V (., z) is Lipschitz uniformly in z ∈ {1, . . . ,M0} and∣∣V p/s(XΓn+1 , z)−V p/s(XΓn , z)

∣∣
622p/sp/s

(
V p/s−1/2(XΓn , z)

∣∣√V (XΓn+1 , z)−
√
V (XΓn , z)

∣∣
+ |
√
V (XΓn+1 , z)−

√
V (XΓn , z)|2p/s

)
622p/sp/s

(
[
√
V ]1V

p/s−1/2(XΓn , z)|XΓn+1 −XΓn |

+ [
√
V ]

2p/s
1 |XΓn+1 −XΓn |2p/s

)
.

We use the assumption pρ/s 6 p+ a− 1, a ∈ (0, 1], p > 1 and it follows from B(φ) (see (27)) and (30) when
z 6= ζΓn , that

E[|V p/s(XΓn+1 , z)− V p/s(XΓn , z)|ρ|XΓn , ζΓn ] 6 Cγ
ρ/2
n+1V

p+a−1(XΓn , z).

In order to treat the �rst term, we put z = ζΓn in this estimation. It remains to study the second term. We
notice that since pρ/s 6 p+a−1, it is immediate from the previous inequality that for every z ∈ {1, . . . ,M0},
we have

E
[
V pρ/s(XΓn+1 , z)|XΓn , z

]
6 CV p+a−1(XΓn , z).

. We focus on the term to estimate and using this inequality, we obtain

E[|V p/s(XΓn+1
,ζΓn+1

)− V p/s(XΓn+1
, ζΓn)|ρ|XΓn , ζΓn ]

=γn+1

M0∑
z=1

(
qζΓn ,z + o(γn+1)

)
× E[|V p/s(XΓn+1

, z)− V p/s(XΓn+1
, ζΓn)|ρ|XΓn , ζΓn ]

6Cγn+1

M0∑
z=1

(
|qζΓn ,z|+ γn+1

)(
V p+a−1(XΓn , z) + V p+a−1(XΓn , ζΓn)

)
6Cγn+1V

p+a−1(XΓn , ζΓn),

where the last inequality follows from (30). We rearrange the terms and the proof of (46) is completed.
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Test functions with exponential growth.

Lemma 3.3. Let p ∈ [0, 1], λ > 0, s > 1, ρ ∈ [1, 2] and let φ : [v∗,∞) → R+ be a continuous function such
that Cφ := supy∈[v∗,∞) φ(y)/y < +∞ and let ψ(y) = exp(λyp). We assume that ρ < s, (25), (33) and B(φ)
(see (27)) hold, and that

∀λ̃ 6 λ, ∃C > 0,∀n ∈ N,

E[exp(λ̃V p(XΓn+1))|XΓn , ζΓn ] 6 C exp(λ̃V p(XΓn)). (48)

Then, for every n ∈ N, we have

E[| exp(λ/sV p(XΓn+1
))− exp(λ/sV p(XΓn))|ρ|XΓn , ζΓn ]

6Cγρ(p∧1/2)
n+1

φ ◦ V (XΓn)

V (XΓn)
exp(λV p(XΓn)). (49)

In other words, we have GCQ(exp(λ/sV p), V −1.φ ◦ V. exp(λV p), ρ, εI) (see (9)) and εI(γ) = γρ(p∧1/2) for
every γ ∈ R+.

Proof. When p = 0 the result is straightforward. We begin by noticing that B(φ) (see (27)) implies that for
every n ∈ N,

|XΓn+1
−XΓn | 6 Cγ1/2

n

√
φ ◦ V (XΓn)(1 + |Un+1|2).

Let x, y ∈ Rd. From Taylor expansion at order one, we derive,∣∣ exp(λ/sV p(y))− exp(λ/sV p(x))
∣∣

6
λ

s

(
exp(λ/sV p(y)) + exp(λ/sV p(x))

)∣∣V p(y)− V p(x)
∣∣. (50)

First, let p ∈ [1/2, 1] we use (47) with α = 2p and since
√
V is Lipschitz, we obtain

|V p(y)− V p(x)| 622pp(V p−1/2(x)|
√
V (y)−

√
V (x)|+ |

√
V (y)−

√
V (x)|2p)

622pp(V p−1/2(x)[
√
V ]1|y − x|+ [

√
V ]2p1 |y − x|2p).

When p ∈ [0, 1/2]. We notice that from (25), the function V p is α-Hölder for every α ∈ [2p, 1] (see Lemma 3.
in [19]) and then V p is 2p-Hölder that is

|V p(y)− V p(x)| 6[
√
V ]2p|y − x|2p.

We focus on the case p ∈ [1/2, 1]. When p 6 1/2 the proof is similar and left to the reader. Using (50), we
derive from the Hölder inequality that

E
[
| exp(λ/sV p(XΓn+1

))− exp(λ/sV p(XΓn))|ρ|XΓn , ζΓn
]

6C exp(λρ/sV p(XΓn))
(
V pρ−ρ/2(XΓn)E

[
|XΓn+1

−XΓn |ρ|XΓn , ζΓn
]

+ E
[
|XΓn+1

−XΓn |2pρ|XΓn , ζΓn
])

+ CE
[

exp(λρ/sV p(XΓn+1
))
(
V pρ−ρ/2(XΓn)|XΓn+1

−XΓn |ρ

+ |XΓn+1
−XΓn |2pρ

)∣∣∣XΓn , ζΓn

]
6C exp(λρ/sV p(XΓn))

(
V pρ−ρ/2(XΓn)E

[
|XΓn+1

−XΓn |ρ|XΓn , ζΓn
]

+ E
[
|XΓn+1

−XΓn |2pρ|XΓn , ζΓn
])

+ CV pρ−ρ/2(XΓn)E
[

exp(λρθ/sV p(XΓn+1))|XΓn , ζΓn ]1/θ

× E[|XΓn+1
−XΓn |ρθ/(θ−1)|XΓn , ζΓn

](θ−1)/θ

+ CE
[

exp(λρθ/sV p(XΓn+1))|XΓn , ζΓn ]1/θ

× E[|XΓn+1
−XΓn |2pρθ/(θ−1)|XΓn , ζΓn

](θ−1)/θ
,
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for every θ > 1. From (48) and since ρ < s, we take θ ∈ (1, ρ/s] and we get

E
[

exp(λρθ/sV p(XΓn+1
)|XΓn , ζΓn

]
6C exp(λθρ/sV p(XΓn , ζΓn)).

Rearranging the terms and since ρ < s, we conclude from B(φ) (see (27)) that

E[| exp(λ/sV p(XΓn+1
))− exp(λ/sV p(XΓn+1

))|ρ|XΓn+1
, ζΓn ]

6C exp(λρ/sV p(XΓn))
(
γρ/2n V pρ−ρ/2(XΓn)|φ ◦ V (XΓn)|ρ/2

+ γpρn |φ ◦ V (XΓn)|pρ
)

6Cγρ/2n

φ ◦ V (XΓn)

V (XΓn)
exp(λV p(XΓn)),

and the proof of (50) is completed.

3.2.4 Proof of Theorem 3.1

The proof of Theorem 3.1, follows directly from Theorem 2.3, Theorem 2.4. The hypothesis of those theorems
are given by Proposition 3.1, Proposition 3.3, Lemma 3.2 and Proposition 3.4 which is given below.

Proposition 3.4. Let p > 1, a ∈ (0, 1], s > 1, ρ ∈ [1, 2] and, ψp(y) = yp, φ(y) = ya and εI(γ) = γρ/2. Let
α > 0 and β ∈ R. Assume that (Un)n∈N∗ satis�es MN ,2(U) (see (28)) and Mp(U) (see (29)).
Also assume that (25), B(φ) (see (27)), Rp(α, β, φ, V ) (see (31)) and SWI,γ,η(ρ, εI) (see (19)) hold. Then
SWI,γ,η(V p+a−1, ρ, εI) (see (10)) hold and we have the following properties:
A. If SWII,γ,η (see (20)) and (30) also hold and pρ/s 6 p+a−1, then we have SWII,γ,η(V p/s) (see (11))

and

P-a.s. sup
n∈N∗

− 1

Hn

n∑
k=1

ηkÃγk(ψp ◦ V )s(XΓk−1
, ζΓk−1

) < +∞. (51)

Moreover,

P-a.s. sup
n∈N∗

νηn(V p/s+a−1) < +∞. (52)

Furthermore, if we also suppose that LV (see (3)) holds and that p/s+ a− 1 > 0, then (νηn)n∈N∗ is P−
a.s. tight.

B. If (15) holds, then

P-a.s. ∀f ∈ D(A)0 lim
n→+∞

1

Hn

n∑
k=1

ηkÃγkf(XΓk−1
, ζΓk−1

) = 0 (53)

Proof. The result is an immediate consequence of Theorem 2.3 and Theorem 2.4. It remains to check the
assumptions of those Theorems. First, we show SWI,γ,η(V p+a−1, ρ, εI) (see (10)). From B(φ) (see (27) and
p > 1, it will directly follow that SWI,γ,η(1∨Tr[σσ∗], ρ, εI) (see (10)) holds. Since (25), B(φ) (see (27)) and
Rp(α, β, φ, V ) (see (31)) hold, it follows from Proposition 3.1 that RCQ,V (ψp, φ, pα̃, pβ) (see (4)) is satis�ed
since α̃ ∈ (0, α) and lim infy→+∞ φ(y) > β/α̃. Then, using SWI,γ,η(ρ, εI) (see (19)) with Lemma 2.3 gives
SWI,γ,η(V p+a−1, ρ, εI) (see (10)). In the same way, since pρ/s 6 p + a − 1, we deduce from SWII,γ,η (see
(20)) and Lemma 2.3 that SWII,γ,η(V p/s) (see (11)) holds.
Now,we are going to prove GCQ(F, V a+p−1, ρ, εI) (see (9)) for F = D(A)0 and F = {V p/s} and the proof of
(51) and (53) will be completed. Notice that (52) will follow from RCQ,V (ψp, φ, pα̃, pβ) (see (4)) and Theorem
2.3. This is a consequence of Lemma 3.2. We notice that ρ 6 2p and ρ/s 6 1. ConsequentlyM(ρ/2)∨(pρ/s)(U)
(see (29)) hold. Now, we notice that Lemma 3.2 and the fact that under B(φ) (see (27)) and p > 1, we have
Tr[σσ∗] 6 CV p+a−1, imply that for every F = D(A)0 and F = {V p/s}, then GCQ(F, V a+p−1, ρ, εI) (see (9))
holds and the proof is completed.

3.2.5 Proof of Theorem 3.2

The proof of Theorem 3.2, follows directly from Theorem 2.3, Theorem 2.4. The hypothesis of those theorems
are given by Proposition 3.2, Proposition 3.3, Lemma 3.2 and Proposition 3.5 which is given below.
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Proposition 3.5. Let p ∈ [0, 1], λ > 0, s > 1, ρ ∈ [1, 2] and let φ : [v∗,∞) → R+ be a continuous function
such that Cφ := supy∈[v∗,∞) φ(y)/y < +∞ and lim infy→+∞ φ(y) = +∞, let ψ(y) = exp(λyp), y ∈ R+ and

let εI(γ) = γρ/2 and ε̃I(γ) = γρ(p∧1/2). Let α > 0 and β ∈ R. We assume that ρ < s, (33), (25), B(φ) (see
(27)) and Rp,λ(α, β, φ, V ) (see (35)) hold. Also assume that SWI,γ,η(ρ, ε̃I) (see (19)) and (34) hold. Then
SWI,γ,η(V −1φ ◦ V exp(λV p), ρ, ε̃I) (see (10)) hold and we have the following properties
A. If SWII,γ,η (see (20)) holds, then we have SWII,γ,η(exp(λ/sV p)) (see (11)) and

P-a.s. sup
n∈N∗

− 1

Hn

n∑
k=1

ηkÃγk(ψ ◦ V )s(XΓk−1
) < +∞, (54)

and we also have,

P-a.s. sup
n∈N∗

νηn

(φ ◦ V
V

exp(λ/sV p)
)
< +∞. (55)

Besides, when LV (see (3)) holds, then (νηn)n∈N∗ is P− a.s. tight.
B. If (15) and SWI,γ,η(ρ, εI) (see (19)) hold, then

P-a.s. ∀f ∈ D(A)0 lim
n→+∞

1

Hn

n∑
k=1

ηkÃγkf(XΓk−1
, ζΓk−1

) = 0 (56)

Proof. The result is an immediate consequence of Theorem 2.3 and Theorem 2.4. It remains to check the
assumptions of those Theorems. First, we show SWI,γ,η(V −1.φ ◦ V. exp(λ/sV p), ρ, ε̃I) (see (10)). We begin

by noticing that Rp,λ(α, β, φ, V ) (see (35)) implies Rp,λ̃(α, β, φ, V ) for every λ̃ 6 λ. Since (25), B(φ) (see
(27)), Rp,λ(α, β, φ, V ) (see (35)) and (34) hold, it follows from Proposition 3.1 with limy→+∞ φ(y) = +∞,

that there exists α̃ ∈ (0, α) and β̃ ∈ R+ such that RCQ,V (ψ̃, φ, α̃, β̃) (see (4)) is satis�ed for every function

ψ̃ : [v∗,∞)→ R+ such that ψ̃(y) = exp(λ̃V p) with λ̃ 6 λ. At this point, we notice that this property and the
fact that φ has sublinear growth imply (48). Then, using SWI,γ,η(ρ, ε̃I) (see (19)) with Lemma 2.3, gives
SWI,γ,η(V −1φ ◦ V exp(λV p), ρ, ε̃I) (see (10)). Similarly SWI,γ,η(1 ∨ Tr[σσ∗], ρ, εI) (see (10)) follows from
SWI,γ,η(ρ, εI) (see (19)) and B(φ) (see (27). In the same way, we deduce from SWII,γ,η (see (20)) and
Lemma 2.3 that SWII,γ,η(V −1.φ ◦ V. exp(λ/sV p)) (see (11)) holds.
Now,we are going to prove GCQ(D(A)0, V

−1φ◦V exp(λV p), ρ, εI) and GCQ(exp(λ/sV p), V −1.φ◦V. exp(λV p), ρ, ε̃I)

(see (9)) and the proof of (54) and (56) will be completed. Notice that (52) will follow from RCQ,V (ψ, φ, α̃, β̃)
(see (4)) and Theorem 2.3. The proof is a consequence of Lemma 3.2 (see (45)) and Lemma 3.3. We no-
tice indeed that B(φ) (see (27)) gives Tr[σσ∗]ρ/2 6 (φ ◦ V )ρ. Moreover, we have already shown that (48)
is satis�ed. These observations combined with (49) imply that GCQ(D(A)0, V

−1φ ◦ V exp(λV p), ρ, εI) and
GCQ(exp(λ/sV p), V −1.φ ◦ V. exp(λV p), ρ, ε̃I) (see (9)) hold and the proof is completed.
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