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Abstract

This paper provides a general and abstract approach to compute invariant distributions for Feller processes.
More precisely, we show that the recursive algorithm presented in [10] and based on simulation algorithms of
stochastic schemes with decreasing step can be used to build invariant measures for general Feller processes.
We also propose various applications: Approximation of Markov Brownian diffusion stationary regimes with
Milstein or Euler scheme and approximation of Markov switching Brownian diffusion stationary regimes using
Euler scheme.
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1 Introduction

In this paper, we propose a method for the recursive computation of the invariant distribution (denoted v)
of a Feller processes (X;);>0. The starting idea is to consider a non-homogeneous discrete Markov process
which can be simulated using a family of transitions kernels (Q)),>0 and approximating (X;);>o in a sense
made precise further on.

As suggested by the pointwise Birkhoff ergodic theorem, we then show that some sequence (v, )nen+ of ran-
dom empirical measures a.s. weakly converges toward v under some appropriate mean-reverting and moment
assumptions. An abstract framework is developed which, among others, enables to extend this convergence
to the LP-Wasserstein distance. For a given f, v,(f) can be recursively defined making its computation
straightforward.

Invariant distributions are crucial in the study of the long term behavior of stochastic differential systems.
We invite the reader to refer to [9] and [5] for an overview of the subject. The computation of invariant
distributions for stochastic systems has already been widely explored in the literature. In [22], explicit ex-
act expressions of the invariant density distribution for some solutions of Stochastic Differential Equations
are given. However, in many cases there is no explicit formula for v. A first approach consists in study-
ing the convergence, as t tends to infinity, of the semigroup (P;);>o of the Markov process (X;);>o with
infinitesimal generator A towards the invariant measure v. This is done e.g. in [7] for the total variation
topology which is thus adapted when the simulation of Pr is possible for T' large enough. Whenever (X;);>0
can be simulated, we can use a Monte Carlo method to estimate (P;);>0, i.e. E[f(X;)], t > 0, producing
a second term in the error analysis. When (X;);>¢ cannot be simulated at a reasonable cost, a solution
consists in simulating an approximation of (X¢):>0, using a numerical scheme (Y;n)neN built with tran-
sition functions (Q,, )nen- (given a step sequence (v, )nen, I'o = 0 and I';, = 41 + .. + 7). If the process
(Y; Jnen weakly converges towards (X;);>0, a natural construction relies on numerical homogeneous schemes
((¥n)nen is constant, v, = v1 > 0, for every n € N*). This approach induces two more terms to control
in the approximation of v in addition to the error between Pr and v for a large enough fixed T' > 0, such
that there exists n(T") € N*,with T" = n(T")v;: The first one is due to the weak approximation of E[f(Xr)]

e-mails :

nanciers”.

gilles.pages@upmec.fr, clement.rey@upmec.fr This research benefited from the support of the "Chaire Risques Fi-



1 INTRODUCTION

by E[f(X;")] and the second one is due to the Monte Carlo error resulting from the computation of E[f(X.].

Such an approach does not benefit from the ergodic feature of (X;):>o. In fact, as investigated in [23] for
Brownian diffusions, the ergodic (or positive recurrence) property of (X;):>o is also satisfied by its approx-
imation (Y;n)neN at least for small enough time step v, = v1,n € N*. Then (Y;ln)neN has an invariant
distribution v (supposed to be unique for simplicity) and the sequence of empirical measures

v (dz) Z’}/léX’Yl (dz), I, =nv.

almost surely weakly converges to v7'. With this last result makes it is possible to compute by simulation,
arbitrarily accurate approximations of v71(f) using only one simulated path of (Y;n)neN. It is an ergodic -
or Langevin - simulation of v7(f). However, it remains to establish at least that v7'(f) converges to v(Jf)
when 7, converges to zero and, if possible, at which rate. Another approach was proposed in [I], still for
Brownian diffusions, which avoids the asymptotic analysis between v7* and v. The authors directly prove
that the discrete time Markov process (Y;n)neN, with step sequence v = (V,)nen vanishing to 0, weakly
converges toward v. Therefore, the resulting error is made of two terms. The first one is due to this weak
convergence and the second one to the Monte Carlo error involved in the computation of the law of Y;n,
for n large enough. The reader may notice that in mentioned approaches, strong ergodicity assumptions are
required for the process with infinitesimal generator A.

In [10], these two ideas are combined to design a Langevin Euler Monte Carlo recursive algorithm with
decreasing step which a.s. weakly converges to the right target v. This paper treats the case where (Y;n)nEN
is a (inhomogeneous) Euler scheme with decreasing step associated to a strongly mean reverting Brownian
diffusion process. The sequence (v)),en+ is defined as the weighted empirical measures of the path of
(an)nEN (which is the procedure that is used in every work we mention from now on and which is also the
one we use in this paper). In particular, the a.s. weak convergence of

v (dx) kaéxw da:) r,= Z%’ (1)
B k=1

toward the (non-empty) set V of the invariant distributions of the underlying Brownian diffusion is established.
Moreover, when the invariant measure v is unique, it is proved that lirf v f =vf a.s. for a larger class of
n—-+oo

test functions than CY which contains v — a.s. continuous functions with polynomial growth i.e. convergence
for the Wasserstein distance. In the spirit of [2] for the empirical measure of the underlying diffusion, they also
obtained rates and limit gaussian laws for the convergence of (v)(f))nen+ for test functions f which can be
written f = Ap. Note that, this approach does not require that the invariant measure v is unique by contrast
with the results obtained in [23] and [1] or in [4] where the authors study of the total variation convergence
for the Euler decreasing step of the over-damped Langevin diffusion under strong ergodicity assumptions. for
instance. In this case, it is established that a.s., every weak limiting distribution of (v))nen+ is an invariant
distribution for the Brownian diffusion. This ﬁrst paper gave rise to many generahzatlons and extensions.
In [II], the initial result is extended to the case of Euler scheme of Brownian diffusions with weakly mean

reverting properties. Thereafter, in [12], the class of test functions for which we have liIE vif=vfa.s.
n—-+0oo

(when the invariant distribution is unique) is extended to include functions with exponential growth. Finally,
in [19], the results concerning the polynomial case are shown to hold for the computation of invariant measures
for weakly mean reverting Levy driven diffusion processes, still using the algorithm from [I0]. This extension
encourages relevant perspectives concerning not only the approximation of mean reverting Brownian diffusion
stationary regimes but also to treat a larger class of processes. For a more complete overview of the studies
concerning ([1) for the Euler scheme, the reader can also refer to [15], [13], [18], [16], [17] or [14].

In this paper, we extend those existing results and show that the Langevin Euler Monte Carlo algorithm
presented in [10] and generalized to the case where (Q,),0 is not specified explicitly, enables to approximate
invariant, not necessarily unique, measures for Feller processes. In a first step, we present an abstract frame-
work adapted to the computation of invariant distributions for Feller processes under general mean reverting
assumptions (including weakly mean reverting assumptions). Then, we establish a.s weak convergence of
(v )nen+. Moreover, when the invariant distribution v is unique we obtain ngrfoo v f =vf a.s. for a generic

class of continuous test functions f (adapted among other to polynomial and exponential test functions f).
Then in a second step, we apply this abstract results to concrete cases and obtain original results. Notice that
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the existing results mentioned above can be recovered from our abstract framework. We begin by providing
Wasserstein convergence results concerning Euler and Milstein schemes of Brownian diffusion processes in a
weakly mean reverting setting. Then, we propose a detailed application concerning the Euler scheme of a
Markov Switching diffusion for test functions f with polynomial growth (Wasserstein convergence) or expo-
nential growth. Here, we extend the results from [14] where the authors adapted the algorithm from [I0]
under strong ergodicity assumptions for the Wasserstein convergence.

2 Convergence to invariant distributions - A general approach

In this section, we show that the empirical measures defined in the same way as in and built from an

approximation (YFY”)%N of a Feller process (X;);>o (which are not specified explicitly), where the step

sequence (Yn)nen- —J>r 0, a.s. weakly converges the set V), of the invariant distributions of (X;)¢>o. To this
n——+00

end, we will provide as weak as possible mean reverting assumptions on the pseudo-generator of (Y;n)nEN
on the one hand and appropriate rate conditions on the step sequence (yy,)nen+ on the other hand.

2.1 Presentation of the abstract framework
2.1.1 Notations

Let (E,|.|) be a locally compact separable metric space, we denote C(E) the set of continuous functions on
E and Cy(F) the set of continuous functions that vanish a infinity. We equip this space with the sup norm
| flloe = sup,eg |f(2)] so that (Co(E),||.||) is a Banach space. We will denote B(E) the o-algebra of Borel
subsets of £ and P(F) the family of Borel probability measures on E. We will denote by Kg the set of
compact subsets of E.

Finally, for every Borel function f : E — R, and every lo, € RU{—00,+00}, :vll}IIolo f(x) =l if and only if for

every € > 0, there exists a compact K. C Kg such that sup,¢ e [f(2) —loo| < €if loo € R, infocre f(z) > 1/€

if oo = +00, and sup f(z) < —1/€if loc = —00 with K¢ = E\ K..
TeK¢

2.1.2 Construction of the random measures

Let (©,G,P) be a probability space. We consider a Feller process (X;)i>o0 (see [6] for details) on (£, G,P)
taking values in a locally compact and separable metric space E. We denote by (P;)¢>0 the Feller semigroup
(see [20]) of this process. We recall that (P;);>0 is a family of linear operators from Cy(E) to itself such that
Pof = f, Poosf = P.Psf, t,s > 0 (semigroup property) and tlgr(l) |P:f — flloo = 0 (Feller property). Using
this semigroup, we can introduce the infinitesimal generator of (X;);>¢ as a linear operator A defined on a
subspace D(A) of Cy(E), satisfying: For every f € D(A),

Af=1m =7

t—0 t

exists for the ||.||co-norm. The operator A : D(A) — Co(E) is thus well defined and D(A) is called the domain
of A. From the Echeverria Weiss theorem (see Theorem , the set of invariant distributions for (X;);>0
can be characterized in the following way:

V={vePE)Vt>0,Pv=v}={veP(E)VSfeDA),v(Af) =0}

The starting point of our reasoning is thus to consider an approximation of A. First, we introduce the
family of transition kernels (Q4),~o from Co(E) to itself. Now, let us define the family of linear operators

A = (A,)y>0 from Cy(E) into itself, as follows

Q. f—f

VfeCo(E), >0, A f= -

The family Ais usually called the pseudo-generator of the transition kernels (Q,),>0 and is an approximation
of A as «y tends to zero. From a practical viewpoint, the main interest of our approach is that we can consider
that there exists 7 > 0 such that for every z € E and every v € [0,7], Q(z, dy) is simulable at a reasonable
computational cost. We use the family (Q.)>0, to build (Xr, )nen (this notation replaces (Y;n)neN from
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now for clarity in the writing) as the non-homogeneous Markov approximation of the Feller process (X;);>o-
n

It is defined on the time grid {T';, = Y &, n € N} with the sequence 7 := (v, )nen+ of time step satisfying

k=1

VneN 0<v,<7:= sup v, < 400, lim v, =0 and lim T, = +oc.
neN* n—-+oo n——+0o

Its transition probability distributions are given by Q. (z,dy),n € N*, z € E, i.e. :

]P)(YI‘ € dleFn) = Q’Yn+1 (an,dy), ne€N.

n41

We can canonically extend (X1, )nen into a cadlag process by setting X (t,w) = Xp, ,, (w) with n(t) = inf{n € N, ;1 > t}.
Then (Xr, )nen is a simulable (as soon as X is) non-homogeneous Markov chain with transitions

Vm < n, ﬁFnHFn (l" dy) =9 O---0 Q”Yn (mv dy)7

Ym+1

and law

L(Xr,

Xo=1)= P[‘n (z,dy) =Qy, 0---0Q, (z,dy).

We use (X, )nen to design a Langevin Monte Carlo algorithm. Notice that this approach is generic
since the approximation transition kernels (Q,),>o are not explicitly specified and then, it can be used
in many different configurations including among others, weak numerical schemes or exact simulation i.e.
(X1, )nen = (X1, Jnen- In particular, using high weak order schemes for (X;);>0 may lead to higher rates of
convergence for the empirical measures. The approach we use to build the empirical measures is quite more
general than in (1) as we consider some general weights which are not necessarily equal to the time steps.
We define this weight sequence. Let 1 := (9,,)nen+ be such that

n
VneN*, 1, >0, lim H,=+co, with H,=>» .
n—-+oo
k=1
Now we present our algorithm adapted from the one introduced in [10] designed with a Euler scheme with
decreasing step (Xr, )nen of a Brownian diffusion process (X;);>0. For = € E, let ¢, denote the Dirac mass
at point x. For every n € N*, we define the random weighted empirical random measures as follows

1 n
vi(de) = o > Mlx,,  (dz). (2)
" k=1

This paper is dedicated to show that a.s. every weak limiting distribution of (v),en+ belongs to V. In par-
ticular when the invariant measure of (X;);>¢ is unique, i.e. V = {v}, we show that P—a.s. lirf vif=vf,
n—-—+0oo

for a generic class of continuous test functions f. The approach we develop consists in two steps. First,
we establish a tightness property to obtain existence of at least one weak limiting distribution for (7),enx.
Then, in a second step, we identify everyone of these limiting distributions with an invariant distributions of
the Feller process (X;):>o exploiting the Echeverria Weiss theorem (see Theorem [2.1]).

2.1.3 Assumptions on the random measures

In this part, we present the necessary assumptions on the pseudo-generator A= (gv)npo in order to prove
the convergence of the empirical measures (V1) en=-

Recursive control

In our framework, we introduce a well suited assumption, referred to as the mean reverting recursive control
of the pseudo-generator A, that leads to a tightness property on (v7),en+ from which follows the existence
(in weak sense) of a limiting distribution for (v7),en«. A supplementary interest of our approach is that it
is designed to obtain the a.s. convergence of (v]1(f))nen~ for a generic class of continuous test functions f
which is larger then Cy(E). To do so, we introduce a Lyapunov function V related to (Xt, )nen. Assume
that V' a Borel function such that

Ly = V:(E = [vs,400),v., >0 and lim V(x) = +oo. (3)

Tr— 00
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We now relate V to (Xr, )nen introducing its mean reversion Lyapunov property. Let 1, ¢ : [vs, 00) — (0, +00)
some Borel functions such that A, o V exists for every v € (0,7]. Let o > 0 and § € R. We assume

RCQ V(1)/J ¢7 ,ﬁ) =
(i) Jno e N*Vn>=ng,z€E, A, poV(z)< wo‘(/x) (B—apoV(x)).
(i1) limJirnf o(y) > B/a. (4)
y——+o00

Lyapunov functions are usually used to show the existence and sometimes the uniqueness of the invariant
measure of Feller processes. We refer to the extensive literature on the topic for more details: See for instance
[9], [5] or [15]. Notice that the condition RCq v (14, ¢, a, 8)(i) with ¢ concave appears in [3] to prove sub-
geometrical ergodicity of Markov chains. In [12], a similar hypothesis to RCq. v (L4, ¢, @, 8)(i), with ¢ not
necessarily concave, is also used (with E% replaced by A) to study the convergence of the weighted empirical
measures for the Euler scheme of a Brownian diffusion. The function ¢ controls the mean reverting
property. In particular, we call strongly mean reverting property when ¢ = I; and weakly mean reverting
property when ygl}rloo #(y)/y = 0, for instance ¢(y) = y*, a € (0,1) for every y € [v,,00). The function ¢ is

closely related to the identification of the set of test functions f for which we have EIJIrl v(f) =v(f) a.s.,

when v is the unique invariant distribution of the underlying Feller process. To this end, for s > 1, which
is related to step weight assumption, we introduce the sets of test functions for which we will show the a.s.
convergence of the weighted empirical measures :

Cy, . (B) ={f €C(E).[f@)| = o (Vyos(x))}, (5)

¢poV(x)poV(x)/
V(z) '

with Vi E =Ry, z0 Vg o(z) =

Notice that our approach benefits from providing generic results because we consider general Feller processes
and approximations but also because the functions ¢ and v are not specified explicitly.

Infinitesimal generator approximation
This section presents the assumption that enables to characterize the limiting distributions of the a.s. tight
sequence (]!(dx,w))nen-. We aim to estimate the distance between V and v! (see (2))) for n large enough.

We thus introduce an hypothesis concerning the distance between (A )0, the pseudo-generator of (Q.)0,
and A, the infinitesimal generator of (P;):>o. We assume that there exists D(A)y C D(A) with D(A)y dense
in Co(E) such that:

5(12{,14,@(14)0) = Vy e ( ] Ve D( )07V$ €L,
|A’Yf<m) - f($)| < Af<x77)7 (6)

where Ay : E x Ry — Ry can be represented in the following way: Let (Q Q If”) be a probability space.
Let g : E — R%, ¢ € N, be a locally bounded Borel measurable function and let Af (E xRy x Q ,B(E)®

B(R;) ®G) — R% be a measurable function such that SUD;ef1,...q} Elsup,cp SUP~e(0.5] Agi(z,v,0)] < +oo
and

Vo€ EVy e (03], Ap(z,7) = (9(2), E[As(z,7, @) )rs

Moreover, we assume that for every i € {1,...,q}, sup,ey ¥1(gi,w) < 400, P(dw) — a.s., and that A,
satisfies one of the following two properties:
There exists a measurable function v : (©2,G) — ((0,7], B((0,7])) such that:

i) VK €eKg, limsupAs;(z, v @) =0,
(4) g, lim sup i@, 7, @)

I) P(dd) - a.s () lim  sup Agi(z,v,0) =0, (7)
) T e (0,7(@))
IT) P(do) —a.s hm sup Afl(x v,@)gi(z) = 0. (8)

Remark 2.1. Let (F,F,\) be a measurable space. Using the ezact same approach, the results we obtain hold
when we replace the probability space (Q G, P) by the product measurable space (Q xF,GoF,P® A) in the
representation of Ay and in @) and (@ but we restrict to that case for sake of clarity in the writing. This
observation can be useful when we study jump process where \ can stand for the jump intensity.
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This representation assumption benefits from the fact that the transition functions (Q,(x, dy)) e 5, € E,
can be represented using distributions of random variables which are involved in the computation of (X1, ),en-.
In particular, this approach is well adapted to stochastic approximations associated to a time grid such as
numerical schemes for stochastic differential equations with a Brownian part or/and a jump part.

Growth control and Step Weight assumptions

We conclude with hypothesis concerning the control of the martingale part of one step of our approximation.
Let p € [1,2] and let ez : Ry — Ry an increasing function. For F C {f, f : (E,B(FE)) — (R,B(R))} and
g : F — R, a Borel function, we assume that, for every n € N,

GCq(F,9,p,ez) = P—as. VfeF,
E[|f<yrn+1) - Q’Yn+1 f(yryz)|p|YFn] < C.fez(’yn-Fl)g(yFn)v (9)

with C'y > 0 a finite constant which may depend on f. We will combine this assumption with the following
step weight related ones:

1 (1m)9(Xr,) < +o0. (10)

SWz yn(g,pe1) = P—a.s. nz_:l ‘Hnrfyn

Remark 2.2. The reader may notice that GCq(F, g, p, ex) holds as soon as (@) is satisfied with Q. ., f(Xr,),

n € N*, replaced by a FX = o(Xr,,k < n)- progressively measurable process (X,)nen+ Since we have

Q’Yn+1 f(yl—‘n) = ]Eif(yrn+1)|yF7L] and E['f(yrn«i»l) - Q’Yn+1 f(yrn)‘p|yrn} < 2pE[|f(yFn+1) - fn|p|ylﬂn] fOT
every X, € L*(FX).

We will also use the hypothesis
SWII,A/,U(F> = P-a.s. Vf c F,

o~ (Mt 1/ Vst — T/ Vn)+ | o~
> DheerPe — el (X, )| < o (1)

n=0

with the convention 79/v9 = 1. Notice that this last assumption holds as soon as the sequence (7, /vn)nen-
is non-increasing.

At this point we can focus now on the main results concerning this general approach.

2.2 Convergence
2.3 Preliminary results

In this section, we recall standard general results we employ to study the convergence. Our approach will
rely on a specific version of the Martingale problem characterizing the existence of a Feller Markov process
which directly provides the existence of a steady regime i.e. an invariant distribution. This is the object of
the Echeverria Weiss theorem.

Theorem 2.1. A. (Echeverria Weiss (see [5] Theorem 9.17)). Let E be a locally compact and separable
metric space and let A : D(A) C Co(E) — Co(FE) be a linear operator satisfying the positive mazimum
pm'ncipleﬂ such that D(A) is dense in Co(E) and that there exists a sequence of functions ¢, € D(A)
such that nggloo on =1 and ngrfoc A, =0 with sup,en{l|Aenllo} < +00. If v € P(E) satisfies

Vf € D(A), /E Afdv =0, (12)

then there exists a stationary solution to the martingale problem (A,v).
B. (Hille Yoshida (see [Z1] (Chapter VII, Proposition 1.8 and Proposition 1.5) or [5] (Chapter IV,
Theorem 2.2)) ). The infinitesimal generator of a Feller process satisfies the hypothesis from point

except for (@

Y € D(A), f(xo) = sup{f(x),z € E} > 0,20 € E = Af(x0) <O0.
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This paper is devoted to the proof of the existence of a measure v which satisfies . Using this result,
property is sufficient to prove that v is an invariant measure for the process with infinitesimal generator
A. To be more specific, the measure v is built as the limit of a sequence of random empirical measures
(V) nen+. When holds for this limit, we say that the sequence (v]]),en~ converges towards an invariant
distribution of the Feller process with generator A. We begin with some preliminary results.

Lemma 2.1. (Kronecker). Let (an)nen and (bn)nen= be two sequences of real numbers. If (by)nen= is

non-decreasing, strictly positive, with hm by, = +o00 and > a,/b, converges in R, then
n>1

Theorem 2.2. (Chow (see [8], Theorem 2.17)). Let (Mn)neN* be a real valued martingale with respect to
some filtration F = (Fp)nen- Then

lim M, =M, € Ra.s. on the event

n—-+4o00o
U { SUE(M, — My T Faa] < +oo}.

ref0,1] n=1

2.3.1 Almost sure tightness

From the recursive control assumption, the following Theorem establish the a.s. tightness of the sequence
(V) nen+ and also provides a uniform control of (v]1),en+ on a generic class of test functions.

Theorem 2.3. Let s > 1, p € [1,2], v, > 0, and let us consider the Borel functions V : E — [vs,0),

g:E—=>Ry, ¢: [U*, o0) = Ry and ez : Ry — Ry an increasing function. We have the following properties:

A. Assume that A (W o VY exists for every n € N*, and that GCq((v o VY%, g,p,ez) (see (@),
SWz.4n(9, p,€1) (see ) and SWII,%n((on)l/S)) (see hold. Then

P-a.s. sup —— anAw (o V)Y*(Xp,_,) < 400. (13)
neN*

B. Leta>0and 3 € R. Let ¢ : [v.,00) — R be a continuous function such that Cy := sup,c(,. o) ¢(y)/y < oc.
Assume that holds and

i. RCov (¥, 0,a,0) (see (4 ) holds.

4. Ly (see (H)) holds and lim LIC)LIE) A +00.
y——+00 Y
Then, )
P-a.s.  sup v/ (Vi g,s) < +00. (14)
neN*

with, f/¢7¢7s defined in (@ Therefore, the sequence (V])nen+ is P — a.s. tight.
Proof. We first prove point [A]] For n € N*, we write

=S A, (o VAR, ) == S B (o V)V (Xn,) — (40 V)V (Rr, )

k=1 k=1 Tk
- Nk ~ S
+ 3 (@ o V) (Rr) = 00 (0o V) (R ))
k=1
We study the first term of the r.h.s. First, an Abel transform yields

3 (o V) (K ) (o V) (R, )

"k1

§\§

n

_ ™ o V5 (X — o NY/5(X
- Hmw V) (R) — 0 V)R,

T, Z(% M>(¢°V)1/S(7Fk,l)~

V-1
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We recall that (¥ o V)'/* is non negative. From SWrz ., ((¥ 0 V)'/*) (see (L1)), we have

1 (ﬁk Mhe—1
Yk Ve—1

}E[ sup Zn: — )+(1po V)l/s(Y]_“kil>i| < +00,

so that

P—a.s. sup Z L (71C — nk_l) (o V)I/S(Ynfl) < +o0.
+

neNt i— He \ve - Vb1
By Kronecker’s lemma, we deduce that
. 1 - Tk Nk—1 1/s/~
P—a.s. lim (———) o V)V (X =0.
nrtoo Hy =\ Yk +(¢ ) &)

This concludes the study of the first term and now we focus on the second one. From Kronecker lemma, it
remains to prove the almost sure convergence of the martingale (M, ),en+ defined by My := 0 and

< 77 ENe'd SV *
M, = ,; kafk (o V)*(Xp,) = 9y (¥ o V)/*(Xr, ,)), neN".

Using the Chow’s theorem (see Theorem [2.2)), this a.s. convergence is a direct consequence of the a.s. finiteness
of the series

S () Bl 0 V)Y (R, ) — 9y, (0 V)Y (X, )PIXr, L

which follows from GCq (v 0 V)V/*,g,p, x) (see (9) and SWr - 4(g, p, ex) (see (10)).
Now, we focus on the proof of point Using RCq.v (¥, ¢, @, B)(i) (see ), there exists ng € N*, such that
for every n > ng, we have

6 - O[¢ o V(Y[‘n)
V(Xr,)

E {1? o V(YFnJA)
YoV (Xr,)

an} <1+ 941

Since the function defined on R*. by y + y'/* is concave and Cy := SUPyc(o.,00) P(¥)/y < +o00, for n large
enough we use the Jensen’s inequality and we derive

boV(Xr,,,)
B[ (v

)" [] <o BT
Ynt1(B—agoV(Xr,))

<1+ i
SV(XF")

Now when 3 > 0, by RCqv (¥, ¢, a, B)(ii) (see (@), there exists A € (0,1) and yx € (0,+0c0) such
that for every y > wy», then ¢(y) > B/(Aa). It follows that the Borel function Cy s : [vs, +00) — R,
y = Oxs(y) =y (y)/*(8 — Aap(y)) is locally bounded on [v,, +00) and non positive on [y, +oc), hence
Cys = SUPy (v, ,+00) Ch,s(y) < 400. When 3 < 0, since ¢ and 9 are positive functions, then the function
C) s is non positive and it follows that

Q. (60 V)*(X,) <o V) (X,)
+ 2 (Crs 0 V(RT,) = (1= NaVy (X, ),
which yields, B
S C)\,S VO
a(l—X) all—=A)’

Consequently follows from . The tightness of (V1) en+ 18 a immediate consequence of since
lim Vy .s(z) = +00. O
Tr—r00

Viss(X1,) < — Ay (o V)Y (X)) +
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2.3.2 Identification of the limit

In Theorem we obtained the tightness of (¥]1),en+. It remains to show that every limiting point of this
sequence is an invariant distribution of the Feller process with infinitesimal generator A. This is the interest
of the following Theorem which relies on the infinitesimal generator approximation.

Theorem 2.4. Let p € [1,2]. We have the following properties:

A. Let D(A)y C D(A), with D(A)o dense in Co(E). We assume that Z%f exists for every f € D(A)g
and every n € N*. Also assume that there exists g : E — Ry a Borel function and ez : Ry — R4 an
increasing function such that GCo(D(A)o, g,p,€x) (see (@)) and SWrz (g, p,€z) (see (@) hold and

that
1 n
Jm o i 2:1 [Mk+1/ Y41 — M6/ k] = 0. (15)
Then
D R
P-a.s. Vf € D(A)o, ngglwﬂ—n;nmwﬂxm,l) = 0. (16)

B. We assume that (@ and E(A, A, D(A)o) (see (@) hold. Then

P-a.s. Vf e D(A)o, Er}rl vl(Af) =0.

It follows that, P — a.s., every weak limiting distribution vl of the sequence (V])nen+ belongs to V, the
set of the invariant distributions of (Xi)i>o. Finally, if the hypothesis from Theorempoint hold
and (X¢)i>0 has a unique invariant distribution, i.e. V = {v}, then

(E),  lim _vi(f) =v(f), (17)

Vy,e.s n—-+o00

P-a.s. Vf €Cy

with Cy, . (E) defined in (@)

In the particular case where the function v is polynomial, also reads as the a.s. convergence of the
empirical measures for some LP-Wasserstein distances, p > 0, that we will study further in this paper for
some numerical schemes of some diffusion processes. From the liberty granted by the choice of % in this
abstract framework, where only a recursive control with mean reverting is required, we will also propose an
application for functions v with exponential growth.

Proof. We prove point [A] We write

n

S A f X ) == > B (X)) - F(Xr, )
k=1 k=1 'k

+ 3 P (f(Xry) — 90 (K )
h=1 ¥

We study the first term of the r.h.s. We derive by an Abel transform that

f*z"’@ F(Xr) = (X, ) =P 1K) — = F(Xr,)

no_ 1’7/@ Hn’}/l anyn
b (B B Ry,
Hy =\ e o

Since f is bounded and hm nn/( H,7,) = 0, we deduce that EI_P mnf(Xr,)/(Hyvn) 0 and, on the
n (oo}
other hand, we deduce from 15) that

n—)Jroo

lim Z” F(Xr,) — F(Xr,_,)) =0.
"1

2 \
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This completes the study of the first term. To treat the second term, the approach is quite similar to the one
in the proof of Theorem [2.3] point [A.| using GCo(D(A), g,p,ez) (see (9)) with SWz (g, p,ez) (see (10)).

Details are left to the reader. Now, we focus on the proof of point [B} First we write
1 & o~ = —
HiznkA’ka(Xqu) vi(Af) = an A’ka XFk ) - Af(Xqu))'
" k=1
Now we use the short time approximation (A, A, D(A)g) (see @) and it follows that,

1 & _ o o 1 & o
‘F an(A’ka(Xkad - Af(XFk—l))‘ < F anAf(Xkalvryk)
" k=1 " k=1

Moreover, we have the following decomposition:
Vf e D(A)y,Vr € E,¥y € [0,7], Az, ) = (g(x), E[A s (x,7)])ra

with g : (B, B(E)) — R%, ¢ € N, a locally bounded Borel measurable function and A : (E xRy x Q,B(E)®
B(R;) ® G) — R% a measurable function such that SUD;eq1,....q} Elsup,cp SUP., ¢ (0.7) Afi(z,7)] < +oo.
Slnce for every ¢ € {1,...,q}, sup,en~ V1(gi,w) < 400, P(dw) — a.s., the P(dw) — a.s. convergence of
H S vy meAf(Xr, k) towards zero for every f € D(A)g, will follow from the following result: Let

(xn)nEN S E®N If

sup  sup — Negi(Tk—1) < +00,
i€{1,....q} nen+ Hp £ Z '

then, for every f € D(A)y, lim

n—-+00

that, for every f € D(A)g, every i € {1,...,q}, and every (T, )nen € E®Y, then

1" Sor_ i A f(Tu—1,7%) = 0. In order to obtain this result, we first show

P(d%) — a.s. ngr—ir-looH anAf, Tp-1, Y, @)9i(Th—1) = 0,

and the result will follow from the Dominated Convergence theorem since, for every n € N*,

1
Z’?kl\f, (Tr—1, Y, @) i (Th—1)
Tl k=1

<2 2, e 09) 1 3 ) <
with E[sup,cp SUDe(0,5] Asi(z,7,)] < 400 and sup,,cy- H%q > orey Mgi(Ti—1) < +oo. We fix f € D(A)o,
ie€{l,...,q} and (Tp)nen € E®Y and we assume that £(A, A, D(A)o) [I)| (see ) holds for A ; and g;. If
instead £(A, A, D(A)) (see (8)) is satisfied, the proof is similar but simpler so we leave it to the reader.
By assumption £(A, A, D(A)o) )| (ii)(see (8)), P(di) — a.s, for every R > 0, there exists Kr(®) € K such
that sup,c e (o) SUPe(0,4(@)] Agi(z,7,&) < 1/R. Then from E(A, A, D(A)o) [1)| (i) (see ), we derive that,
]f”(dd)) — a.s, for every R > 0, nErJrrlOO ]\f’i(fn,l,'ymd))]lKR(g,)(Ek,l) = 0, Then, since g; is a locally bounded

function, as an immediate consequence of the Cesaro’s lemma, we obtain

P(d&) —a.s. YR >0,

. 1 < o _
lim i ;Wk/\f,i(xk—h%,w)gi(xk—l)]lKR(@)(ﬂ«"k—l) =0

n—-+oo

Let n(@) := inf{n € N*,sup;>, 7 < 7(@)}. By the assumption E(A, A, D(A)o) D] (ii) (see ), we have,

P(d&) —a.s, lim SUP, > (@) Af,i (T, 7n, @) = 0, Moreover,
|z|—+o00 Z= ’

n
n>n%)an Z Mg i (T, Yo 0)9 (F—1) L it (@) (Ti—1)

~ _ 1 »
< sup sup Ay i(z,t,@) sup ankgi(xk—l)-
zeKg (@) v€(0,7(@)] neNs Hn i —
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We let R tends to infinity and since sup,cy- 7 ZZ 1 Mk9i(Te—1) < +00, the l.h.s. of the above equation

converges P(di) — a.s. to 0. Finally, since n(@) is P(d&) — a.s. finite, we also have

P(d&) —a.s. YR >0,

n(@)—1
i i ; e 10 (Tu—1, 7, @) 9 (T —1) L e () (To—1) = 0.

Applying the same approach for every i € {1,..., ¢}, the Dominated Convergence Theorem yields:

R PR _
V(@2 )ne € BV VF €D(A)y,  lm e kz_:lnk/\f(fkfla'%) =0.
and since for every i € {1,...,q}, sup,en- (9, w) < +00, P(dw) — a.s., then
P(dw) —a.s.  Yf e D(A)o, Z A, f(Xr, ) — Af(Xr,_,)) =0.

L
It follows that P(dw) — a.s., for every f € D(A)o, lim vl(Af) = 0. The conclusion follows from the

Echeverria Weiss theorem (see Theorem . Simply notlce that we maintain the assumptions of this Theorem
when D(A) is replaced by D(A)y, since D(A)o C D(A) and D(A)y is dense in Co(F). O

2.4 About Growth control and Step Weight assumptions

The following Lemma presents a L;-finiteness property that we can obtain under recursive control hypothesis
and strongly mean reverting assumptions (¢ = I4). This result is thus useful to prove SWrz 5 (g, p, ez) (see
(10)) or SWzz 4.5 (F) (see ) for well chosen F and ¢ in this specific situation.

Lemma 2.2. Let v, >0, V : E = [04,00), 9 : [vx,00) = Ry, such that A W oV exists for every n € N*.
Let a > 0 and § € R. We assume that RCq,v (¢, 14, B) (see (l)) holds and that E[¢o V (X1, )] < +oo for
every ng € N*. Then

supE[y o V(X1,)] < +o0 (18)
neN

P
7| ez(m) < 400,

then SWrz (¥ oV, p,ez) holds and if 3.7 ("”“/7;{“ /¥t < 4o then SWrr ~m( o V) is satisfied

n+1

In particular, let p € [1,2] and ez : Ry — Ry, an increasing function. It follows that if Y~ ‘

Proof. First, we deduce from RCq v (v, I4, o, 8) (i) that there exists ng € Nsuch that for n > ng, RCq v (¥, 14, o, )
can be rewritten

z/JoV(Xp )

E[¢ o V(Xr,.)IXr,] <¢ o V(Xr,) + 41 VX )

(B - aV(YFn))

Now, let A € (0,1) and yx = 8/(Ac). It follows that the Borel function C : [v,, +00) = R,y — Ca(y) :== y~(y) (-
Aay) is locally bounded on [v., +00) and non positive on [yx, +00), hence Cy := sup,c(,, ,,,) Ca(y) < +00

and
E[y o V(Xr,.,,)IXr,] <¢ o V(Xr,) + 7m+1(Cro V(Xr,) — (1 = MNay o V(XT,)),
<Y o V(Xr, )(1 = Yns1(1 = A)a) + 14105
Applying a simple induction we deduce that E[¢) o V(Xr, )] < E[¢p o V(X,,)] V u?iﬁ)a O

Now, we provide a general way to obtain SWz - (g, p, ez) and SWrz , ,(F') for some specific g and F' as
soon as a recursive control with weakly mean reversion assumption holds.

Lemma 2.3. Let v, >0, V : E = [0,,00), ¥, ¢ : [vs,00) = Ry, such that g%w oV exists for every n € N*.
Let « > 0 and 8 € R. We also introduce the non-increasing sequence (0, )nen+ such that En>1 OnYn < +00.

We assume that RCq v (¢, ¢, a, ) (see ) holds and that E[¢) o V(ano)] < 400 for every ng € N*. Then

Z Gn'ynE[wa(anfl)} < 400

n=1



2 CONVERGENCE TO INVARIANT DISTRIBUTIONS - A GENERAL APPROACH

with ‘7¢7¢71 defined in (@ In particular, let p € [1,2] and ez : Ry — R4, an increasing function. If we also
assume

_ T \p . . .
SW ) = ( 1 n ) n d
Iy.m(Ps €z) Y €z(7y )(Hn%) Ley. '8 mon-increasing an

> (ga) ertm) < oo, (19)

n=1

then we have SWz .,(Vyp.o.1,p, €1) (see @)) Finally,if

Mnt1 UJ)

, n/ T . . .
SWizNg = <(%+;/7H%)nel\!* s mon-increasing and
n
- / /Vn)
Z (41 %+1 n/In)+ < 400, (20)
1 n

then we have SWrz o ,(Vy.s1) (see (ﬂ)}

Proof. Now when 8 > 0, by RCq,v (¢, ¢, a, 5)(i7) (see (), there exists A € (0,1) and y» € (0,+00) such
that for every y > yx, then ¢(y) > B/(Aa). It follows that the Borel function Cj 4 : [vs,+00) — R,
y = Chrs(y) ==y 1(y)(B — Aag(y)) is locally bounded on [v,, +00) and non positive on [y, +00), hence
Cy = SUPye(p, +00) O (Y) < +00. When 3 < 0, since ¢ and 1) are positive functions, then the function C) is
non positive. Using the same approach as in the proof of Theorem [2.3] point [B.] we deduce that there exists
ng € N such that we have the following telescopic decomposition:

YoV(Xr,)—E[foV(Xr,,,)|Xr,]
a(l =)
C
a(l—2A)
< 9n¢ o V(an) - 9n+1E[w o V(erwﬂ)‘yrn]
= a(l—=2X)

Cx
+ nt10nt1 m~

Vn = ng,  Oni1¥ni Vo1 (Xr,) <Onii

+ ’Yn-‘rlon—f—l

where the last inequality follows from the fact that the sequence (6,,),en+ is non-increasing. Taking expectancy
and summing over n yields the result as 1) takes positive values and E[)oV (X, )] < +oo for every ng € N*. O

This result concludes the general approach in a generic framework to prove convergence. The next part
of this paper is dedicated to various applications.

2.5 Example - The Euler scheme

Using this abstract approach, we recover the results obtained in [I0] and [II] for the Euler scheme of a d-
dimensional Brownian diffusion. We consider a N-dimensional Brownian motion (W;);>o. We are interested
in the strong solution - assumed to exist and to be unique - of the d-dimensional stochastic equation

X, =x+/t b(Xs)ds+/ta(Xs)dW5 (21)
0 0

where b: R? = R? o : RY — RN, Let V : R — [1,+00), the Lyapunov function of this system such that
Ly (see (3)) holds with E = R?, and

VVE <OV, 1DVl < +ox.

Moreover, we assume that for every z € R, |b(x)|> + Tr[oo*(z)] < V() for some a € (0,1]. Finally, for
p = 1, we introduce the following L,-mean reverting property of V,

da > 0,8 € RVz € R,
1 .
(VV(2),b(x)) + 5IIAplloo2(2”*‘”+Tr[w*(x)} <B—aVi(z)

12
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with for every x € RY, X\, (z) := sup{\p1(2),..., \p.a(z),0}, with X, ;(z) the i-th eigenvalue of the matrix
D2V (z) + 2(p — 1)VV(2)®?/V(x). We now introduce the Euler scheme of (X;);>0. Let p € [1,2] and
ez(y) = v/ and assume that , SWr o n(p,ez) (see (19)) and SWrz .., (see ) hold. Let (Uy,)n be
a sequence of RY-valued centered independent and identically distributed random variables with covariance
identity and bounded moments of order 2p. We define the Euler scheme with decreasing step (yn)nen,

(Xt Jnen of (X¢)izo (1) on the time grid {I', = 3>1_; v, n € N} by
Vn € N, yFn+1 :yl“n + ’7n+1b(yf‘n) + \/'7n+10'(yFn)Un+17 XO =x.

We consider (v]](dz,w))nen~ defined as in with (Xt, )nen defined above. Now,we specify the measurable
functions ¥, ¢ : [1,400) — [1,+00) as ¥ (y) = y? and ¢(y) = y*. Moreover, let s > 1 such that app/s < p+
a—1and p/s+a—1> 0. Then, it follows from Theorem that there exists an invariant distribution v
for (X)i>0. Moreover, (V)1(dz,w))nen+ a.s. weakly converges toward V), the set of invariant distributions of
(Xt)i>0 and when it is unique i.e. ¥V = {v}, we have

lim vi(f) = v(f),

n—-+oo

for every v — a.s. continuous function f € CV¢,¢,S<Rd) defined in H Notice that this result was initially
obtained in [I0] when ¢ = 1 and in [11I] when a € (0, 1] and in both cases s = p = 2. Afterwards, the study
was extended in the case function ¢ with polynomial growth in [13]. We do not recall this result. However, in
the sequel we prove the convergence of the empirical measures for both polynomial growth and exponential
growth of ¢ for the Euler scheme of a Brownian Markov switching diffusions and those mentioned results can

be recovered from a simplified version of our approach.

3 Applications

In this section, we propose some concrete applications which follow from the results presented in Section
We first give Wasserstein convergence results concerning the Milstein scheme of a weakly mean reverting
Brownian diffusion. Then, we propose a detailed application for the Euler scheme of a Markov Switching
diffusion for test functions with polynomial or exponential growth. As a preliminary, we give some standard
notations and properties that will be used extensively in the sequel.

First, for o € (0,1] and f an a-Hélder function we denote [f]a = sup,, [f(y) — f(z)|/|y — =|*.
Now, let d € N. For any R?%-valued symmetric matrix S, we define A\g := sup{Ag1,...,As,4,0}, with Ag;
the i-th eigenvalue of S.

3.1 Wasserstein convergence for the Milstein scheme

In this section, we establish Wasserstein convergence results for the empirical measures built with the Mil-
stein approximation scheme of a one-dimensional weakly mean reverting Brownian diffusion. The framework
presented in Section [2] is well suited this scheme and we present the result that we obtain in this case. The
Milstein scheme has not been investigated until now but the convergence results are similar to the Euler case
that is why, even if the proofs are more technical, we simply state them. Moreover, looking at £(A, A, D(A)o)
(see @), the approximation of A seems to rely on the weak order of the scheme. As a consequence, even
from a rate of convergence viewpoint, intuitively, it does not possible to achieve a better rate of convergence
of (V1) nen+ with Milstein scheme than with Euler scheme. We will give the proof of this result in a further
paper. We consider a one dimensional Brownian motion (W;);>o. We are interested in the strong solution -
assumed to exist and to be unique - of the one dimensional stochastic equation

X, = a:+/t b(XS)der/ta(Xs)dWS (22)
0 0

where b, 0,0,0 : R — R. Moreover, we assume that for every x € R, [b(z)|? + |o(z)]? + |oo’(z)|* < C(1 +
|z|2*) for some a € (0,1]. Finally, for p > 1, we introduce the following L,-mean reverting property:

Ja > 0,8 €R, Ve e R, 2zb(x)+ (4p —3)2%P 402 (z) < B — afz|>

We now introduce the Milstein scheme for (X;);>0. Let p € [1,2] and ez(y) = v*/? and assume that ,
SWr y.0(pez) (see ([19)) and SWrz 4,5, (see (20)) hold. Let (U,), be a sequence of centered independent and

13
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identically distributed random variables with variance one and bounded moments of order 2p. We define the
Milstein scheme with decreasing step (vn)nen+, (X1, )nen of (X¢)i>0 by: Xg =z, Vn € N,

Xr,, =Xr, + m+10(Xr,) + VIn10(Xr, ) Unt1 + Yng100" (X1, ) (|Unsa|* = 1),

Then V : R — [1,+00), z + 1 + 22 is a Lyapunov function for this scheme. We consider (v/1(dz,w))pen= de-
fined as in (2) with (X, )nen defined above. Now,we specify the measurable functions 1, ¢ : [1, +00) — [1, +00)
as Y(y) = y? and ¢(y) = y*. Moreover, let s > 1 such that app/s <p+a—1and p/s+a—1>0. Then, it
follows from Theorem [2.4]that there exists an invariant distribution v for (X;);>0. Moreover, (v!(dz,w))nen-
a.s. weakly converges toward V), the set of invariant distributions of (X;);>0 and when it is unique i.e. V = {v},
we have

: n(Ey —
Timun(f) = ()

for every v — a.s. continuous function f : R — R such that, for every z € R, |f(z)] < C(1 + |z|P), with

D < p/s+a—1. In other words (1]]),en+ converges towards v (as n tends to infinity) for the Ly Wasserstein

distances.

3.2 The Euler scheme for a Markov Switching diffusion

In this part of the paper, we study invariant distributions for Markov switching Brownian diffusions. The
framework presented in Section [2|is well suited to this case. Our results extend those obtained in [14] and
inspired by [I0]. More particularly, in [I4], the convergence of (1),en~ is only established under a strongly
mean reverting assumption that is ¢ = I;. In this paper, we do not restrict to that case and consider a
weakly mean-reverting setting, namely ¢(y) = y*, a € (0,1] for every y € [v,,00). As a first step, we consider
polynomial test functions that is ¢(y) = y?, p > 1 for every y € [v4, 00) like in [14] (where p > 4 is required).
As a second step, still under a weakly mean-reverting setting (but where ¢ is not explicitly specified), we
extend those results to functions ¥ with exponential growth which enables to obtain convergence of the
empirical measures for much wider class of test functions.

Now, we present the Markov switching model, its decreasing step Euler approximation and the hypothesis
necessary to obtain the convergence of (v1),cn+. We consider a d-dimensional Brownian motion (W;);>0
and ((;)¢>0 a continuous time Markov chain taking values in the finite state space {1,..., My}, My € N*
with generator Q = (¢,w)zwe{1,....M,} and independent from . We are interested in the strong solution -
assumed to exist and to be unique - of the d-dimensional stochastic equation

t t
Xi=a+ / b(X., C)ds + / o (X, C)dW,
0 0

where for every z € {1,..., My}, b(.,2) : R — R? and o(.,2) — R¥? are locally bounded functions.
M

We recall that ¢, ,, > 0 for z # w, z,w € {1,..., My} and i gsw = 0 for every z € {1,...,My}. The
w=1

infinitesimal generator of this process reads

1, 02
Af(z,2) =(b(z,2), Vo f(z,2)) + 3 Z (00%);,5(z, Z)axiazcj (z,2)

Mo

5 g (2, w),
w=1

for every (r,z) € E := R¥x{1,..., My}. Moreover, the domain D(A) of A contains D(A)y = {f defined on E,Vz € {1,...

Notice that D(A)g is dense in Co(E). The reader may refer to [24] for more details concerning Markov switch-
ing diffusion processes where properties such as recurrence, ergodicity and stability are established. We
consider the Euler genuine scheme of this process for every n € N and every ¢t € [I',,[',41], defined by

Xy =Xp, + (t =Tn)b(Xr,,Cr,) +0(Xr,, ¢r, ) (W — Wh,) (23)

We will also denote AX,,; = Xp, ., — X1, and

1 —_ —2 J—
AX, 1 = Y10 X1, ,Cr,), AX, i =0Xr,. ) Wr,,, —Wr,), (24)
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and Y;nﬂ = Xr, + 22:1 AYZH. In the sequel we will use the notation U, = vgi{z(anH - Wr,).
Finally, we consider a Lyapunov function V : R? x {1,..., My} — [vs,00), v, > 0, which satisfies Ly (see
(3)) with £ =R? x {1,..., My}, and

IV.V|?> < CyV, sup |D?V(z,z)| < 4o0. (25)
(z,2)€E

Its mean-reverting properties will be defined further depending on the set of ‘test functions’ f. We also define

Vz € Rd, z e {1, ey ]\40}7 )\w (.’17, Z) = )‘D%V(:c,z)+2vxV(ac,Z)®2¢”0V(gc,z)1/ﬂov(;c,z)*1- (26)

When 9¥(y) = ¥p(y) = y?, p > 0, we will also use the notation A, instead of A,,. We suppose that there exists
C > 0 such that b and o satisfy

B(p) = Ve e RUVz € {1,..., Mo},
b(x, 2)|? + Tr[oo*(x, 2)] < Cpo V(x,2) (27)

Test functions with polynomial growth.

Having in mind Wasserstein convergence, we introduce a weaker assumption on the sequence (U,)nen-
than Gaussian distribution . Let ¢ € N*, p > 0. We suppose that (U, )nen+ is a sequence of independent and
identically distributed random variables such that

My,U) = VYneN Vge{l,...,q}, E[U,)%] =E[N(0,1;))%] (28)
M,(U) = sup E[|U,|*] < +o0 (29)
neN*
We assume that
Jey > 1,Vz € RY, sup  V(z,2)<cy inf  V(z, 2). (30)
z€{1,....Mo} ze{l,...,Mo}

Let @ > 0 and g € R. We introduce the mean-reverting property of the scheme for the Lyapunov function
V. We assume that 1imj_nf @(y) > B/« and that there exists ey > 0, such that we have
y——+00

Rp(a, 8,0, V) = Ve eREVze {1,..., M},

L (@,2) < B—ado V(z,2), (31)

(VV(z,2),b(z,2)) + 5

with

Xp (@, 2) =[IAp[| 2P+ Tr[o0™ (2, 2)]
Mo
HVIP(2,2) Y (ge + €0)VP (2, w) (32)

w=1

Theorem 3.1. Letp > 1,a € (0,1], s > 1,p € [1,2], ¥p(y) = v?, ¢(y) = y* and ez(y) = /2. Let o > 0
and B € R. Assume that (Un)nen- satisfies My 2(U) (see (28)) and My(U) (see (29)).
Also assume that (25), B(¢) (see (27)), Ryp(a,B,0,V) (see ), Ly (see (3)), SWzn(p,ez) (see (19)),

SWrz4m (see @)}, and @) hold and that pp/s < p+a—1. Then, ifp/s+a—1>0, (V1) pen+ (built
with (X;)i>0 defined in ) is P — a.s. tight and

P-a.s. sup v(VP/*t91) < foo0.
neN*

Assume also that for every z € {1,..., Mo}, b(., 2) and o(., z) have sublinear growth and Tr[oo*(z, z)] < CVP/ste=1(z, 2).
Then every weak limiting distribution v of (V])nen~ is an invariant distribution of (Xi)i>o0 and when v is
unique, we have

P-a.s. Vf €Cy (E), lim v(f) =v(f),

pr,<p,s n—-+oo

with Cy;, (E) defined in @)

P58
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Test functions with exponential growth.
We modify the hypothesis concerning the Lyapunov function V in the following way. First, we assume that

Vze{l,...,My},Vx e R V(x,2)=V(z,1), (33)
and we will use the notation V(z) := V(x,1). We assume that

Vr e RIVz € {1,..., My},
Tr[oo™ (z, 2)][b(x)| (VV ()] + b(z, 2)]) < CVITP(z)¢ o V(x) (34)
Now let p < 1 and let a > 0 and 8 € R. We assume that hminf o(y) > B4/, B+ =0V 3, and

Ror(a, 8,0, V) = VeeRULVze{l,...,My},
(VV (@), bz, 2) + g, 2)) + 5 Xp(2) < B~ a0 Vi(a), (3)
with
-
kip(,2) = )\QDFV(;JO’*(IE, 2)VV(z)
and
| €))

Xp('rvz) = _¢O V(Z')Cg(l',Z) ln(det(E(as,z)))

with ¥ : RIx{1,..., My}, — Si,*, S_‘f_y* being the set of a positive definite matrix, defined by (z, 2) — X(x, 2) := I;—
DV ||ocCo (x, 2)VP~ (z)0* 0 (2, 2), where Cyy : REx{1,..., Mo} — R satisfies inf, cga inf.eq1,. . aoy Co(,2) > 0.

Theorem 3.2. Let p € [0,1[,A > 0, s > 1, p € [1,2], let ¢ : [vs,00) — Ry be a continuous function
such that Cy = supye[v* +oo) 8(Y)/y < +00 and limianS( ) = 400, let Y(y) = exp()\yp) y € Ry and let

er(y) = Vp/ and éz(y) = y*PN/2) . Let o > 0 and B € R. We assume that p < s, , B(P) (see

@), Rpa(a, 3,0,V (see ) and Ly (see_(3)) hold. We also suppose that SWIWn(p,ez) SWZ ~m(ps €7)
(see (@) SWIIWW (see and (.) hold. Then (v1)nen+ (built with (Xt)i>o defined in (29)) is
P — a.s. tight and

P-a.s.  sup VZ(¢ oV exp ()\/SVP)) < 4-00.

neN*

Assume also that for every z € {1,..., My}, b(.,2) and o(.,z) have sub-linear growth. Then, every weak
limiting distribution v of (V1)nen+ is an invariant distribution of (X;)i>0 and if v is unique,

P-a.s. Vf€Cy, . (B), nl{f_{loo v (f) =v(f),

with Cy; ((E) defined in @)

3.2.1 Proof of the recursive mean-reverting control
Test functions with polynomial growth

Proposition 3.1. Let v, > 0, and let ¢ : [v.,00) — R% be a continuous function such that Cy := sup,c(,. o) #(y)/y < +00.
Now let p > 1 and define ¥, (y) =P, y € Ry.
Assume that the sequence Un)neN* satisfies Mpr2(U) (see (@)} and My(U) (see (29)).

We suppose that (25), @) B(¢) (see [27), Rp(c, 8,6,V (see (31 (ﬂ)) for some o > 0 and B € R, are

satisfied. Then, for every & € (O a) there ewxists no € N*, such that

Vn > ng, Vo € RUVz € {1,..., My},

YpoV(z,z)
Viz,z)
Then RCq,v (¥p, ¢, p&, pB) (see ) holds for every a € (0, ) such that ly@i{}f o(y) > B/a&. Moreover, when

¢ = Id, we have

Aty o V(w,2) < p(B—agoV(x,z2)). (36)

sugE[iﬁp oV(Xr,,(r,)] < +oo. (37)
ne
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Proof. First we write

1% (yFnH ’ Cr‘n+1) - VP (an ) CF,L) =Vr (YFnJrl ’ CFn) - Ve (YFn ’ CFn) (38)
+ % (an+1 ) CFn+1) - VP (an+1 ) CFn)

We study the first term of the r.h.s. of the above equality. From the second order Taylor expansion and the
definition of Ay, = A, (see (26)), we derive

Yo V(Xr,,,,(r,)
=¢poV(Xr,,Cr,) + (Xr,,, — Xr,, VoV(Xr,, (0, )¢y, 0 V(XT,, Cr,)

1 _ _
+ ing(TTH‘lv CFnW;/; o V(Tn-‘rla Crn)(XFn+1 - XF7L)®2
1 _ _
+ §VxV(Tn+1, Crn)®21/);,’ oV(Ypy1,Cr, ) (Xr, .\ — Xrn)®2
<YpoV(Xr,,¢r,) + (Xr,,, — Xr,, VoV(Xr,,Cr, )y, 0 V(XT,, Cr,)

1 — —
+ 5/\P(Tn+17 QFHW;/; o V(Tn-‘rl’ CF7L)|XF71+1 - XFn |2' (39)

with Y41 € (Xr,,Xr,,,). First, from 1} we have sup,crq, g} SUPgera Ap(Z,2) < +o0o. Now, since
(Un)nen- is i.i.d. and satisfies Mus1(U) (see (28))), we compute

E[XFTLH — Xr,[Xr,: (] = Y1b(Xr,, Cr,)
E[Xr,,, — Xr, *[Xr,,¢r,) = Y1 Trloo™ (X, ¢0,)] + vos1 (X1, ¢,
We focus on the study of the last term of the r.h.s of , also called the ‘remainder’.

Case p=1.  Assume first that p = 1. Using B(¢) (see (27)), for every a € (0, o), there exists ng(&) such
that, for every n > ng(&),

1 _ ) _
§||)\1||oo%21+1|b(Xrna )P <mpi(a—a)poV(Xr,,,Cr,). (40)
From assumption R, (o, 5, ¢, V) (see and ), we gather all the terms of together and we conclude
that
T BV (X1, 10 6r) = V(X o)X, G+ Y (e, = + €0)V(XT,, 2)
z=1

<B—-apoV(Xr,,(r,).

Case p > 1.  Assume now that p > 1 so that 1, (y) = pyP~L. Since |[VV|? < Oy V (see ), then V/V is
Lipschitz. Now, we use the following inequality: Let [ € N*. We have

l l
Vo > 0,Vu; e RYi=1,...,1, 1D ] <1 g (41)
=1

i=1

It follows that

VP (T, Cr) <(VV(Xr, o) + VVE X, — X, )2

<
<D (V7 (K, Gr) + VYR R, = K, 7)

n+1

To study the ‘remainder’ of |D we multiply the above inequality by |an+1 — Xr,|?. First, we study the
second term which appears in the r.h.s. and using B(¢) (see (27)), for any p > 1,

[ Xr, 0 = X, [ <O ya6 0 V(Xr, Cr, )P (L + [Unsa ).

Let & € (0, ). Therefore, we deduce from M, (U) (see ) that there exists no(&) € N such that for any
n > no(&), we have

E[Xr,,, — Xr, |*|Xr,.(r,]

n+1
a—a&

< V Y 9 P °
FYTL+1¢O ( I, Crn,) Cg—l||Ap||002(2p—3)+[\/‘7]%27—2
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To treat the other term of the ‘remainder’ of , we proceed as in with || A1 [|ee replaced by [|Ap[loo 2273 [VV]3F 2,
a replaced by & and & € (0,&). We gather all the terms of together and using R,(«,3,¢,V) (see
and (32)), for every n > no(&) V no(&), we obtain

E[VP(Xr,,,,¢r,)—VP(Xr,, ()X, Cr,]
Mo

+ Vlfp(ypn ,Cr,) Z(qérwz +OVP(Xr,, 2)
z=1

g 'Yn—&-lpvpil(yf‘na Cl"n)(ﬂ - Ot¢ o V(ana Crn))
+ Y10V (X1, Cr,) <¢ oV(Xr,,(r,) (& —a)

_ d) Vl_p(yFn ) CFg:j{? V(YFH ’ CFn )P )
¢

< Y1 VPN (X1, Cr,) (Bp — épd o V(Xr,, Cr,))-

+ («

Now, we focus on the second term of the r.h.s. of . First, since ¢ and W are independent, it follows, with
notations , that

E[Vp (an-u ) CFn+1 )7‘/17 (an-ﬂ ) Cl"n ) |an 5 gl"n ; AYTH-l]

Mo
=it 3 (er, et 0 (i )V(Rrs2).
z=1

Now, using the same reasoning as for the first term of the r.h.s. of and (30), since p > 1, we derive, for
every z € {1,..., My},

[E[VP(Xr,1,2)=VP(XT,, 2)[XT,, (]
gC(%llfle_l(YFn ,2)poV(Xr,,Cr,) +vh 100 V(Xr,,(r, )P
+ Y1 VP2(Xr,, 2)y 60 V(X1 Cr,)
<CyA VP (Xr,, Cr,)

7

where C' > 0 is a constant which may change from line to line. We deduce that there exists ¢ : Ry — R4
satisfying lin% g(y) = 0, such that we have
Y

E[VP(Xr, 1, Cr)=VP(Xr, 0 Cr,) [ X, G,
MO o .
=Tn+1 Z (qun,z + 0(7n+1))E[Vp(XFn+1 ) Z)|Xrn, ’ CFn]
z=1
My
SVn+1 Z(QCFH,Z + E(’VnJrl))Vp(XFn ) Z)

z=1

This yields (36]) as a direct consequence of R, (e, 8, ¢, V) (see and ) The proof of is an immediate
application of Lemma as soon as we notice that the increments of the Euler scheme (for Markov Switching
diffusions) have finite polynomial moments which implies . O

Test functions with exponential growth
In this section we do not relax the assumption on the Gaussian structure of the increment as we do in the
polynomial case with hypothesis and (29). In particular, it leads the following result:

Lemma 3.1. Let A € R™4 and U ~ N(0,1;). We define ¥ € R4 by ¥ = I; — 2A*A. Assume that
Y e Si’*. Then, for every h € (0,1),

Vv e RY, E[exp (\/E(v, U)+ h|AU|2)] < exp ( |v\2) det(2) /2. (42)

21— h)
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Proof. A direct computation yields
1
Elexp(|AU[?)] :/ (2m) =2 exp ( -5 (=20 Autw, u>)du = det(x) /2.
Rd

Now, follows from the Holder inequality since

Mo 0)] e (AU

Elexp(Vh{v, U) + h|AU|?)] <E{exp (

—exp (mw?) det() "2,

O
Using those results, we deduce the recursive control for exponential test functions.

Proposition 3.2. Letv, >0, and let ¢ : [v.,00) — Ry be a continuous function such that Cy := sup,c(,,, o) #(y)/y < +00.
Now let p € [0,1], A > 0 and define ¥(y) = exp(Ay?), y € Ry. We suppose that , , B(p) (see )
and Ry (o, B,0,V) (see ) are satisfied.

Then, for every & € (0, ), there exists 8 € Ry and nyg € N*, such that
YoV(x)

Vn > ng,Va € RY, gy,ﬂ/) oV(z) < WP(B —ago V(x)) (43)
Then, RCQ,V(w,de,pB) (see ) holds as soon as liginf @(y) = +o00. Moreover, when ¢ = Id we have
y oo
supE[t) o V(Xr, )] < +oc. (44)
neN

Proof. When p = 0, the result is straightforward. Since p < 1, the function defined on Ry by y — P is
concave. Using then the Taylor expansion at order 2 of the function V, we have, for every z,y € RY,

VP(y) = VP(x) <pVP~H(2) (V(y) — V()

VP @) (TV @)y = 2) + SN0V acly — o).

Using this inequality with z = X, and y = Xr, ., = Xr, + AY:LH + AYEL_H, with notations , we

derive

n+1

VP(Xr, + AX 1) - VP(X1,)
<PV (X )V (X, ). Ay + AX )
+ oV K ) IDV e (1AT 4 f + A+ 28T, 4, AT ),
It follows that
Elexp(A\V? (X1, )| X1, (] < Hy, oo (X1, 00 ) Ly (X1, Gy )
with, for every x € R, every z € {1,..., My} and every v € R%,
H. (z,2) =exp(AVP(z) + yApVP 1 (2)(VV (2), b(z, 2))
£l DV oV (@) o, 2) )

and

L., (z, z) =Elexp(y/AApVP 1 (2)(VV (2) + 7| D*V || sob(, 2), 0(z, 2)U)

2DV VP @), 2)U )]
where U ~ N(0, I4). In order to compute L. (z, z), we use Lemma(see ) with parameters h = Cy(z, 2) ~1yAp,
v =+/Co(2)ApVP~ (z)o*(,2)(VV (x) + || D?V | sb(z, 2)) and the matrix
Y(z,2) = Iy — |D*V || 0o Co(, 2) VP~ (z) 0% 0 (2, 2)
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, where inf, cgainf.cqy, arpy Co(z,2) > 0 and %(x, 2) €€ S_ji_)*i. It follows from and h/(2(1 = h)) < h
for h € (0,1/2], that for every v < inf,crainf.cri ) Colw, 2)/(2Ap),

YAPCo (2, 2) 7t
(1 = yApCy(x,2)~1)

<exp (7)\ng($, 2) o2 - %’y)\pC,,(x, z)~1 1n(det(E(w,z)))>

L., (x,z) <exp (2 lv]? — %’y)\pCa(m, 2) " n(det(2(z, z))))

At this point, we focus on the first term inside the exponential. We have
[v|? <Cy(z, 2)ApV 2 (z) ((00™ (2, 2)VV (z), VV (2))
+Trfoo™ (2, 2)| (Y| D*V || 2(VV (), b(x, 2)) +7*| D*V |3 b, 2)[*))
Using B(¢) (see (27)), and Ry a(o, B,¢,V) (see ), it follows that there exists C' > 0 such that
H,(2,2)L(z,2) <exp (AVP(2) +yApVP 1 (2)(B — ap o V(z)) + CH* VP (2)p o V(z))

which can be rewritten

H,(z,z)Ly(x,2) <exp ((1 — Wpaw)/\‘/p(x)

V)
e Vo) (s 41T )

Using the convexity of the exponential function, we have for every ypaCy < 1,

Hy(z,2)Ly(z,2) <exp (A\VP(z)) — fypaw exp (AVP(2))
+apa e ey (V2(a) (20 440 ) ).

It remains to study the last term of the r.h.s of the above inequality. The function defined on [v.,+00) by

T exp(yi’(ag(ﬁy) +~vC/(ap))) is continuous and locally bounded. Moreover, by R, x(a, 5,¢,V) (see ),

we have lim+inf #(y) > B+/a. Hence, there exists ¢ € (0,1) and y¢ > v, such that ¢(y) > B4+ /(a() for every
y——400

y > yc. Consequently, as soon as v < (Aap/C, for every a € (0, ) there exists B > 0 such that

¢poV(x) AB = B exp(AVP (x))
R S Vp C’ gi
V(e) e ( (”)(aqso Vi) 7 (en)) <5 V(@)
a—a¢poV(x)
)
and the proof of the recursive control is completed. Finally follows from (18)), which follow from
the equation above, and Lemma[2:2] O

3.2.2 Infinitesimal control

Proposition 3.3. We suppose that the sequence (Uy)nen- satisfies My 2(U) (see (28)). We also assume that
for every z € {1,..., My}, b(., z) and o(., z) have sublinear growth and that sup, cy- v)1(Tr[oo*]) < 400, a.s.

Then, E(A, A, D(A)o) (see (@) is fulfilled.
Proof. First we recall that D(A)g = {f : RYx {1,...,Mp},Vz € {1,..., Mo}, f(.,2) € C%(R%)} and we write,
for f € D(A)o,
f(YFnJA s CFn+1) - f(yrna Crn) :f(YFnJA ) CFn+1) - f(yrn+1 ) Crn)
+ f(yFnJA ’ Crn) - f(YFn7<Fn)'

We study the first term of the r.h.s. of the above equation. Since U and ( are independent, we have, with
notation ([24)),

E[f(yrn‘h ; CFTL-H )_f(yFn,+l ) CI‘W,)‘YFM CFn ; AYTHJ]
Moy

=Tn+1 Z (QCrn,z + 0(7n+1))f(yrn+1vz)'

z=1

20
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Using Taylor expansions at order one and two, for every z € {1,..., My} and the fact that the sequence
(Un)nen+ is i.i.d., we obtain

E[f(yf,ﬁ_mz) - f(yfnmzﬂyrn =z, CFW]
=E[f(Xr, + AX,.1.2) = f(Xr,,2) Xr, = 2.(r,]
+ E[f(yrn+l ) Z) - f(yrn + AY'}L-&-D Z)|an =z, Crn]

1
< / IV f & + 05, € Vs s 2) b, Co, Y yos1 B
0

1
+ / |D2f(x + bz, Cr, )Ynt1 + 00(2, Cr, )/ Ans1s 2) ||V Ant1o (2, Cr, )ul*dOPy (du).
0

where Py denotes the distribution of Us. Combining the two last inequalities, we derive

’Y;—il-lE[f(YFnJA ) <F7z+l) - f(yr'rz+1 ) Crn)lyr‘n ’ Crn}

My
< der, 2 F (X, 2) + 0(rns) 1 flloe
z=1
Mo
+ Z (|qCFn72‘ + 0(7n+1)) (Af,l(XFnaCFna 7n+1)|b(XFn7 an)|
z=1

+ As2(Xr,, Crns Yns1) Trloo™ (X, Cr,)])-

We study each term in the r.h.s. of the inequality above. First, we have As1(x, z,v) = |b(z, z)|I~E[/~\f,1(x, z,7)]
where Ay (7, 2,t) = Ryi1(w, 2,t,0) with © ~ U]y 1) under P, and

Rir REX{l,...,Mo} xRy x[0,1] — Ry
Mo
(,2,7,0) = > Vof(z+0b(z,2)y,w)[v].

w=1

We are going to prove that £(A, A, D(A)o) [I)| (see ) holds. Since b has sublinear growth w.r.t. its first
variable, there exists C, > 0 such that |b(z,z)] < Cy(1 + |z|) for every z € R? and z € {1,..., Mp}.
Therefore, since f has a compact support, it follows that there exists 79 > 0 and R > 0 such that we have
SUP| 4> R,2€{1,..., Mo} SUPy <, |7~2f71(x,z,’y, 0)| = 0 for every 6 € [0,1] which implies E(E,A,D(A)O) (ii).
Since V., f is bounded, it is immediate that 5(/1 A, D(A)o) D) (i) holds. Finally, b is locally bounded and
defining and g, (=, 2) = l.<g|b(z, 2)|, the couple (A1, g;) satisfies E(4, A)

Now, we have Afs(x,2,7) = gg(.’L‘,Z)INE[Af)Q(.’E,Z,’}/)] where Af,g(m,z,’y) = Ry2(z,2,7,U,0) with U ~ Py,
© ~ Ujp,1) under P and gy(z,z) = Tr[oo*(x, z)] and

Rpo RIx{l,....,Mp} xRy xRN x[0,1] — Ry
(x,z,’y,u,@) = RﬁQ(l‘,Z,’Y,U,@),

with

My
Rpale,2u,0) = 3 DEf(w+b(a, 2y + 00 (2, 2)y/Fu, w)ly/Ful.

w=1

We are going to prove that (A, A, D(A)o) [T)| (see (7)) holds for the couple (Af2,g2). We fix u € RN and
6 € [0,1]. Now, since the functions b and ¢ have sublinear growth, there exists Cj, , > 0 such that |b(z, z)| +
lo(z,2)] < Cyo(1+ |z|) for every z € R and z € {1,..., My}. Therefore, since f has compact support, there
exists yo(u,#) > 0 and R > 0 such that

wpswp [Ryale e u6)] =0
|z|>R,z€{1,....Mo} v<vo0(u,0)

It follows that £(A, A, D(A)) |ﬁ| (ii) holds. Moreover since D2 f is bounded, it is immediate that (A, A, D(A))
(i) is also satisfied. Finally, we recall that sup,,cy- v(Tr[oc*]) < 400, a.s. and U is bounded in L? and

then £(A, A) [1)| holds for (Aj, g2)

21
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Moreover, it is immediate to show that £(A, A, D(A)o) (see ) holds for every couple of functions with
form (0 (Yn+1)llflloos 1) which concludes the study of the first term.

—+o00 e o
It remains to Study E[f<XF'rL+1’CF'rL) - f(XFmCFn)
one and two, we derive

7;—11-1 (]E[f(YFnJA 5 Cl—‘n)_f(yrn s Crn)|yrn =, Cl—‘n = Z]

Xr,,Cr,]. Using once again Taylor expansions at order

d 2
(Va2 b ) = 5 D (o s g (. 2)

ij=1

1
< / Vo F (4 0b(, 2y, 2) — Vo f ()] bz 2)]d6

1

b [ IR+ 2+ 00 (,2) i )
0

— D2f(@)llo(x, 2)oPdbpy (du).

Using a similar reasoning as before, one can show that £(A, A, D(A)o) [I)| holds for (As3,91) and (A4, go)
where Af3(z,2,7) = Ry3(z,2,7,0) and A a(z, 2,7) = Rya(z,2,7,U,0) with U ~ py and © ~ Ujg 1) under

P,
Riz REx{l,...,Mo} xRy x[0,1] — Ry
(2.27.0) = |Vof(z+0b(z,2)7,2) — Vaf(w,2)],

and

Rpa REx{l,...,Mo} xRy xRV x [0,1] — Ry

(x,z,7,u,0) — Ryralz,z,7v,u,0),

with

Ry a(x,z,7,u,0)| D% f(x + bz, 2)y + 00 (x, 2)\/7u, 2) — D2 f(z)||ul?.
We gather all the terms together and the proof is completed. O

3.2.3 Proof of Growth control and Step Weight assumptions
Test functions with polynomial growth.

Lemma 3.2. Let p > 1,a € (0,1], p € [1,2], s > 1 and let ¥,(y) = y? and ¢(y) = y* . We suppose that the
sequence (Uy )nen- satisfies M, 2y (pp/s)(U) (see @)) Then, for every n € N, we have

N 71 PR
VfeD(A)o, E[f(Xr,Crnn)—f(Xr,, ¢ )l Xr,,(r,]
< Cp2V Troo* (X, G, )72 (45)

with notations . In other words, we have GCo(D(A)o, 1V Tr[oc*]?/2, p,e1) (see @) with ez(y) = v*/?
for every v € R,

Moreover, if , @) and B(¢) (see ) hold and pp/s < p+ a — 1, then, for every n € N, we have

E[|VP/*(Xr, 1, Cr0) — VP (X1, o) P1X T, G,
< 075421 VPHeTY (X L (), (46)

In other words, we have QCQ(VP/S, Vrta=l s er) (see (@) with ez(7y) = /% for every v € R,.

Proof. We begin by noticing that, with notations ,

R —1 1/2 %/~
Xr,,, — Xr, | <O Trloo™ (X, G002 Ui

Let f € D(A)p. We employ this estimation and since for f € D(A)y then f(.,z) is uniformly Lipschitz in
z€{1,..., My}, it follows that

E[lf(Xr,.1,¢r,) — f(yin .¢r,,) o2,

?|Xr,, (] < OvAloo* (X, . Cr,)
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Moreover,

E[lf(Xr,.1:Cru) — fF(Xiy, )1 X, Cr, )

Mo
=Tn+1 Z(qCFn )2 + n_)o_"_oo('Yn+1))E[|f(XF"+17z) - f(XFn+17CFn)|p‘XFn’ CFn]
z=1

<Ol f1I5-

Gathering both terms concludes the study for f € D(A)o.
We focus now on the case f = V?/5. We notice that B(¢) (see ) implies that for any n € N,

| Xr,., — Xr,| < C’lelﬁ ¢poV(Xr,,Cr, )+ |Upsal]).

n+1

We rewrite the term that we study as follows

Vp/s(yF,LH’CF —VPs(Xr, () :Vp/S(YF,L+17CF,L) —VPs(Xr, ()

+ Vp/s (an+1 ) gl"n+1) - Vp/s (an.u 5 CFW, ) .

n+1)

We study the first term of the r.h.s. of the equality above. Using the following inequality
Yu,v € Ry, Va > 1, [u® — v <a2° (v Hu — | + Ju — v|%), (47)
with a = 2p/s, it follows from that \/V (., 2) is Lipschitz uniformly in z € {1,..., My} and
‘Vp/s (an«kl J Z)_VP/S (YF’1L7 Z)|
<2%/op/s(VPIV2(Xp, ) VYV (X, 2) = VV(XT,, 7))
+VV(Xr,..,2) — VV(Xr,, 2)[*P/%)
<22p/sp/s([\/thp/s—l/Q(yrn’ Z)‘YF
+ WV X, = X, [270).

—Xr

n+1

n

We use the assumption pp/s <p+a—1, a € (0,1], p > 1 and it follows from B(¢) (see ([27)) and when
z 75 CF,,” that

E[|VP/*(Xrp,,,,2) — VP/*(Xr,, )" Xr,., (0] < O Ve Xy, 2).

n+417

In order to treat the first term, we put z = (r,, in this estimation. It remains to study the second term. We
notice that since pp/s < p+a—1, it is immediate from the previous inequality that for every z € {1,..., My},
we have

E[V?/*(Xr,,,,2)|Xr,, 2] <CVPT* (X, 2).
. We focus on the term to estimate and using this inequality, we obtain

EHVP/S(YFWH 7<Fn+1) - Vp/s (an-%—l ) Cr'n,)|p‘yrn’ Crn]

Mo
=Tn+1 Z (QQFW 2t O(VnJrl))
z=1
x B[|[V?/*(Xr,,,,2) — V¥/*(Xr,,,, 0, )IP[Xr,, (r,]
Mo
<CYnt1 Z (lgcr, 2| + yns1) (VPFO N (X, 2) + VPP Y(Xr,, Cr,))
z=1

<C’Yn+lvp+a_1 (an 5 CFn )a

where the last inequality follows from . We rearrange the terms and the proof of is completed. [
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Test functions with exponential growth.

Lemma 3.3. Letp € [0,1],A >0, s> 1, p € [1,2] and let ¢ : [vs,00) — Ry be a continuous function such
that Cy := Supyeyy, o0y A(Y)/y < +00 and let 1 (y) = exp(Ay?). We assume that p <'s, , and B(¢)
(see (27) hold, and that

YA <A, 3C > 0,Yn €N,
E[exp(j\Vp(ypnﬂ)ﬂypn,Cpn} < CGXP(S\VP(YFH)). (48)
Then, for every n € N, we have
E[| exp(A/sVP(Xr,,,))—exp(A/sVP(Xr, )" Xr,, Cr,]

pn1y2) o V(Xp,)

SO ST eV (X)) (49)

In other words, we have GCq(exp(\/sVP),V~1.¢ o V.exp(AVP), p,ez) (see (@) and ez(y) = PPA/2) for

every v € Ry.
Proof. When p = 0 the result is straightforward. We begin by noticing that B(¢) (see (27)) implies that for
every n € N,

X0 = X1, < C7/2 ¢ o V(X )1+ [Unia ).

n+1

Let 2,y € RY. From Taylor expansion at order one, we derive,

| exp(A/sVP () — exp(A/sV (x))|

< %(exp(k/sV”(y)) +exp(A/sVP(2)))[VP(y) — VP (x)|. (50)

First, let p € [1/2, 1] we use with a = 2p and since /V is Lipschitz, we obtain
VP (y) = VP(x)] <22Pp(VP 2 (@) [VV (y) = VV (@) + VYV (y) = VV (@) [*P)
<2Pp(VP (@) [VV iy — 2| + [VVIPly — 2[7).

When p € [0,1/2]. We notice that from (25)), the function V? is a-Hélder for every a € [2p, 1] (see Lemma 3.
in [19]) and then V? is 2p-Holder that is

V2 (y) — VP ()] <[VV]zply — z[*.

We focus on the case p € [1/2,1]. When p < 1/2 the proof is similar and left to the reader. Using (50), we
derive from the Holder inequality that

E[|exp(A/sV?(Xr,,,)) — exp(A/sV?(Xr,))’| X, . Cr, ]
<Cexp(rp/sVP(Xr, ) (VP 7/2(Xp, E[IX ., — Xr, [*[Xr, . Cr, ]
+E[[Xr, ., - Xr, (X, (] )
+ CE | exp(Ap/sV* (Xr, ) (VP /(K1) X, — X, |°
+[Xr,., — Xr,[#7) X, .,
<Cexp(Ap/sV?(Xr,)) (V72X B[ Xr, ., - Xr, /[ Xr, . Cr]
+E[|Xr,.. — X1, || X, Crn])
+ CVPP=r2 (Xt )E[exp(Apd/sVP(Xt, . )) | XT,, (o, ]
< E[[Xr, ., — X, 1”0V X, 60,7
+ C’IE[exp()\,o@/svp(an+1 NI X, Cpn]l/(’
< E[[Xr, ., — X,/ [Xr, ¢, ]

n+1 I
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for every 6 > 1. From and since p < s, we take 6§ € (1, p/s] and we get
E[exp(Apf/sVP(Xr,,,)|XT,,(r,.] <Cexp(Mp/sVP(Xr,,(r,)).
Rearranging the terms and since p < s, we conclude from B(¢) (see (27))) that
E[| exp(A/sV? (X, ))— exp(A/sVP(Xr, ,)IIXr, .0 Cr,]
<Cexp(Ap/sVP(Xr,)) (/2 VPP =#2 (X, )¢ o V (X, )|/
+9501¢ o V(Xr,)[P?)

C p/2¢o ( )

r,
V(Xr,)
and the proof of is completed. O

exp(A\V?(Xr,)),

3.2.4 Proof of Theorem [3.1]

The proof of Theorem follows directly from Theorem [2.3] Theorem [2.4] The hypothesis of those theorems
are given by Proposition Proposition Lemma [3.2] and Propos1t10n 4] which is given below.

Proposition 3.4. Letp > 1,a € (O 1, s = 1,p € [1,2] and, ¥,(y) = 37, ¢(y) = y* and ez(y) = v*/%. Let
a>0and f €R. Assume that Un)nen+ satzsﬁes My 2(U) (see (@) and M,(U) (see (@))
Also assume that , B(o (see (m)), a,B,¢, V) (see ) and SWx . (p, ex) (see @)} hold. Then
SWrz oy (VPTO 1,p er) (s ) hold and we have the following properties:

A. If Wit~y (see @) and @) also hold and pp/s < p+a—1, then we have SWrz ., ,(VP/?) (see (n))

and
P-as. sup *onkA% (¥p 0 V)* (X ys Cros) < +00. (51)
neN*
Moreover,
P-a.s. sup v/1(VP/sFe71) < foo. (52)
neN*

Furthermore, if we also suppose that Ly (see (3)) holds and that p/s+a—1> 0, then (V1) ,en- is P —
a.s. tight.
B. If holds, then

P-a.s. Vf € D(A)O ngr-ir-loo Hin ;nkA"/k f(XFk717CFk71) =0 (53)
Proof. The result is an immediate consequence of Theorem [2.3] and Theorem 2.4l It remains to check the
assumptions of those Theorems. First, we show SWrz ., ,,(VPT4™L p e7) (see (10)). From B(¢) (see (27) and
p > 1, it will directly follow that SWz - ,,(1V Tr[oc*], p, ez) (see (10)) holds. Since , B(9) (see (27)) and
Rp(a, 8,¢,V) (see (31)) hold, it follows from Proposition [3.1] that RCq,v (¢, ¢, pd, pﬁ) (see () is satisfied
since & € (0,) and liminf, , o ¢(y) > B/&. Then, using SWz . ,(p,ez) (see (19)) with Lemma [2.3] gives
SWz 4 n(VPTAL p 1) (see ) In the same way, since pp/s < p+a — 1, we deduce from SWzz , , (see
(20)) and Lemmathat SWrz.4.n(VP/#) (see (11)) holds.
Now,we are going to prove GCq(F,Vatr=1 p, eI) (see @) for F = D(A)y and F = {V?/*} and the proof of
and (53) will be completed. Notice that 2) will follow from RCq,v (¢, ¢, pix, pB) (see () and Theorem
This i 1s a consequence of Lemma We notlce that p < 2p and p/s < 1. Consequently M, 2yy (pp/s)(U)
see (29)) hold. Now, we notice that Lemmam and the fact that under B(¢) (see (27)) and p > 1, we have
Tr[oo*] < CVP+e~1 imply that for every F' = D(A)y and F = {V?/*}, then GCq(F,V**P~1 p ez) (see @)
holds and the proof is completed. O

3.2.5 Proof of Theorem [3.2]

The proof of Theorem [3.2] m follows directly from Theorem [2.3] Theorem [2.4] The hypothesis of those theorems
are given by Proposition [3.2] Proposition [3.3] Lemma [3:2] and Pr0p031t10n 5| which is given below.
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Proposition 3.5. Let p € [0,1|,A >0, s > 1, p € [1,2] and let ¢ : [v.,00) = R be a continuous function
such that Cy = supycp,,, o) ¢(¥)/y < +00 and liminf, 1 ¢(y) = +oo, let P(y) = exp(A\y?), y € Ry and

let ez(y) = v*/? and éz(y) = v*®PN/2) | Let o > 0 and B € R. We assume that p < s, , , B(g) (see
@27) and Ry (v, B,0,V) (see (38)) hold. Also assume that SWr ., (p,éz) (see (19)) and hold. Then
SWz 4 0(VTipo Vexp(AVP), p,éz) (see @)} hold and we have the following properties

A. If S Wiz 0 (see @)) holds, then we have SWxzz - »(exp(A/sVP)) (see ) and

I —  ~ —
P-a.s. sup —— anA% (Yo V) (Xr,_,) < +o0, (54)
neN* Hn =1
and we also have,
v
P-a.s.  sup VZ(QSO exp(/\/SVp)> < 400. (55)
neN* |4

Besides, when Ly (see (3)) holds, then (v1)nen- is P — a.s. tight.
B. If and SWr ~ n(p; ez) (see @) hold, then

P-as. VfeD(A) lim Hi > Ay, f(Xr,,Cr,,) =0 (56)
" k=1

Proof. The result is an immediate consequence of Theorem [2.3] and Theorem [2:4] It remains to check the
assumptions of those Theorems. First, we show SWz ., (V1.4 o V.exp(\/sV?P), p,éz) (see (10)). We begin
by noticing that Rp (e, 8,9, V) (see ) implies Rp,;(a,ﬁ,qb, V) for every A < A. Since 1D B(p) (see
(127)), Rpa(c, 8,6, V) (see (35)) and (34)) hold, it follows from Proposition with lim,_, 4 ¢(y) = +o0,
that there exists @ € (0, ) and 3 € R, such that RCQJ/(QZJ,(;S,ONQB) (see s satisfied for every function
¥ : [vy,00) — Ry such that ¢(y) = exp(AV?) with A < A. At this point, we notice that this property and the
fact that ¢ has sublinear growth imply (48). Then, using SWz  ,(p,éz) (see (19)) with Lemma gives
SWz.40(V7r o Vexp(AVP), p,éz) (see (10)). Similarly SWz (1 V Tr[oo*], p,ez) (see (10)) follows from
SWrz . n(p,ez) (see ) and B(¢) (see (27). In the same way, we deduce from SWzz ., (see ) and
Lemmathat SWizAm(V 1o V.exp(A/sVP)) (see ) holds.

Now,we are going to prove GCqo(D(A)g, V1oV exp(AV?P), p, ez) and GCq(exp(A/sVP), V= 1.goV. exp(AVP), p,
(see @) and the proof of 1} and will be completed. Notice that 1} will follow from RCq v (¥, ¢, &, B)
(see (4)) and Theorem The proof is a consequence of Lemma (see (@5)) and Lemma We no-
tice indeed that B(¢) (see (27)) gives Tr[oo*]?/? < (¢ o V))?. Moreover, we have already shown that
is satisfied. These observations combined with (49) imply that GCq(D(A)o, V¢ o V exp(AV?P), p,ez) and
GCq(exp(A/sVP),V~=1.go V.exp(AVP), p,éz) (see (9)) hold and the proof is completed. O
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