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Abstract

In this paper, we show that the abstract framework developed in [2I] and inspired by [12] can be used
to build invariant distributions for Brownian diffusion processes using the Milstein scheme and for diffusion
processes with censored jump using the Euler scheme. Both studies rely on a weakly mean reverting setting
for both cases. For the Milstein scheme we prove the convergence for test functions with polynomial (Wasser-
stein convergence) and exponential growth. For the Euler scheme of diffusion processes with censored jump
we prove the convergence for test functions with polynomial growth.
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1 Introduction

In this paper, we apply a method developed in [2T] for the recursive computation of the invariant distribution
(denoted v) of a Brownian diffusion process (X;);>o. The main idea of this approach is to consider a non-
homogeneous discrete Markov process which can be simulated using a family of transitions kernels (Q~)~>0
and approximating (X;):>o. This paper aims to show that this method can be used in two non trivial situa-
tions under a weakly mean reverting setting. First, it can used for the computation of invariant distributions
for Brownian diffusion processes using the Milstein scheme. Then, it can be used for the computation of
invariant distributions for diffusion processes with censored jump using the Euler scheme

As suggested by the pointwise Birkhoff ergodic theorem, [21] shows that some sequence (v, )nen+ of ran-
dom empirical measures a.s. weakly converges toward v under some appropriate mean-reverting and moment
assumptions. An abstract framework is developed in [21I] which can be used, among others, to obtain con-
vergence of LP-Wasserstein distance. Notice that for a given f, v,(f) can be recursively defined making its
computation straightforward.

Invariant measures are crucial in the study of the long term behavior of stochastic differential systems.
We invite the reader to refer to [I0] and [5] for an overview of the subject. The computation of invariant
distributions for stochastic systems has already been widely explored in the literature. In [26], explicit ex-
act expressions of the invariant density distribution for some solutions of Stochastic Differential Equations
are given. However, in many cases there is no explicit formula for v. A first approach consists in study-
ing the convergence, as t tends to infinity, of the semigroup (P;);>o of the Markov process (X;);>o with
infinitesimal generator A towards the invariant measure v. This is done e.g. in [§] for the total variation
topology which is thus adapted when the simulation of Pr is possible for T' large enough. Whenever (X;);>0
can be simulated, we can use a Monte Carlo method to estimate (P;);>0, i.e. E[f(X)], t > 0, producing
a second term in the error analysis. When (X;);>¢ cannot be simulated at a reasonable cost, a solution
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consists in simulating an approximation of (X;);>¢, using a numerical scheme (Y;n)neN built with tran-
sition functions (Q,, )nen- (given a step sequence (v,)nen, I'o = 0 and I',, = v1 + .. + 75,). If the process
(an)nEN weakly converges towards (X;);>0, a natural construction relies on numerical homogeneous schemes
((¥n)nen is constant, v, = v1 > 0, for every n € N*). This approach induces two more terms to control
in the approximation of v in addition to the error between Pr and v for a large enough fixed T' > 0, such
that there exists n(T') € N*,with T" = n(T")vy1: The first one is due to the weak approximation of E[f(Xy)]
by E[f(X;")] and the second one is due to the Monte Carlo error resulting from the computation of E[f (X ].

Such an approach does not take advantage of the ergodic feature of (Xy);>o. In fact, as investigated
in [27] for Brownian diffusions, the ergodic (or positive recurrence) property of (X;):>o is also satisfied by
its approximation (Y;n)neN at least for small enough time step v, = v1,n € N*. Then (Y;n)neN has an
invariant distribution ©"* (supposed to be unique for simplicity) and the empirical measures

1 n
v (dx) = o ZWSY;; 1 (dz), L, =nm.
" k=1 .

almost surely weakly converges to v?'. Using this last result makes it is possible to compute by simulation
arbitrarily accurate approximations of v71(f) using only one simulated path of (Y;n)nel\% It is an ergodic -
or Langevin - simulation of v7*(f). However, it remains to establish at least that v7*(f) converges to v(f)
when v, converges to zero and, if possible, at which rate.

Another approach was proposed in [I], still for Brownian diffusions, which avoids the asymptotic analysis
between v and v. The authors directly prove that the discrete time Markov process (Y;n)neN, with step
sequence v = (Y )nen vanishing to 0, weakly converges toward v. Therefore, the resulting error is made of two
terms. The first one is due to this weak convergence and the second one to the Monte Carlo error involved in
the computation of the law of Y;n, for n large enough. We also refer to [4] for the study of the total variation
convergence for the Euler decreasing step of the over-damped Langevin diffusion. The reader may notice that
in both approaches, strong ergodicity assumptions are required for the process with infinitesimal generator A.

In [12], theses two ideas are combined to design a Langevin Euler Monte Carlo recursive algorithm with
decreasing step which a.s. weakly converges to the right target v. This paper treats the case where (Y;n)nEN
is a (inhomogeneous) Euler scheme with decreasing step associated to a strongly mean reverting Brownian
diffusion process. The sequence (v)),en- is defined as the weighted empirical measures of the path of
(an)nEN (which is the procedure that is used in every work we mention from now on and which is also the
one we use in this paper). In particular, the a.s. weak convergence of

1 n n
vy (de) = Z%fsfgk (dz), D= > s (1)
" k=1 N k=1

toward the (non-empty) set 1V of the invariant distributions of the underlying Brownian diffusion is estab-
lished. Moreover, when the invariant measure v is unique, it is proved that lim v)f = vf a.s. for a larger
n—oo

class of test functions which than C° which contains v — a.s. continuous functions with polynomial growth
i.e. convergence for the Wasserstein distance. In the spirit of [2] for the empirical measure of the underlying
diffusion, they also obtained rates and limit gaussian laws for the convergence of (v} (f))nen+ for test functions
f which can be written f = Ap. Note that, this approach does not require that the invariant measure v is
unique by contrast with the results obtained in [27], [I] or [4] for instance. In this case, it is established that
a.s., every weak limiting distribution of (1)), en~ is an invariant distribution for the Brownian diffusion. This
first paper gave rise to many generalizations and extensions. In [13], the initial result is extended to the case
of Euler scheme of Brownian diffusions with weakly mean reverting properties. Thereafter, in [14], the class
of test functions for which we have nh_}rr;o v f =vf a.s. (when the invariant distribution is unique) is extended

to include functions with exponential growth. Finally, in [23], the results concerning the polynomial case are
shown to hold for the computation of invariant measures for weakly mean reverting Levy driven diffusion
processes, still using the algorithm from [12]. This extension encourages relevant perspectives concerning not
only the approximation of mean reverting Brownian diffusion stationary regimes but also to treat a larger
class of processes. For a more complete overview of the studies concerning for the Euler scheme, the
reader can also refer to [18], [15], [22], [19], [20] or [16].

Those results are extended in [21] and generalized to the case where (Q,),0 is not specified explicitly, to
approximate invariant, not necessarily unique, distributions for general Feller processes. In [21], an abstract
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framework, that can be used to prove every mentioned existing result, is developed which suggests various
applications beyond the Euler scheme of Levy processes. This is the purpose of this paper where we study the
particular case of the Milstein scheme for Brownian diffusion processes and the Euler scheme of a diffusion
process with censored jump (which is an extension of Levy processes). In particular, when (Y;n)neN is the
Milstein scheme of a Brownian diffusion process (respectively the Euler scheme of a diffusion process with
censored jump), we establish the a.s weak convergence of (1)), en+. Moreover, when the invariant distribu-
tion v is unique we obtain nh_)n(%o vYf =vf a.s. when f has polynomial growth in a first step (Wasserstein

convergence) and when f has exponential growth in a second step (resp. when f has polynomial growth).
Notice that for the Wasserstein convergence using the Milstein scheme, the simulation of Levy area is not
necessary and then the approach we develop can also be applied to the antithetic Milstein scheme presented
in [9]. Concerning the Euler scheme of a diffusion process with censored jump we establish the convergence
of the empirical measures for the Wasserstein distance.

We begin by recalling the abstract result from [21] and then we focus on the specific applications.

2 Convergence to invariant distributions - A general approach

In this section, we show that the empirical measures defined in the same way as in and built from an

approximation (YFY”)%N of a Feller process (X;);>o (which are not explicitly specified), where the step

sequence (Yn)nen+ — 0, a.s. weakly converges the set V, of the invariant distributions of (X;);»¢. This
n—oo

results are proved in [21I] for generic approximation (le")neN and Feller processes (X;);>0. We will then
apply those results to the case of the Milstein scheme of stochastic Brownian diffusion and also to the case
of the Euler scheme of a diffusion process with censored jump.

To this end, we will provide as weak as possible mean reverting assumptions on the pseudo generator of
(Y;n)neN on the one hand and appropriate rate conditions on the step sequence (7, )nen+ on the other hand.

2.1 Presentation of the abstract framework
2.1.1 Notations

Let (E,|.|) be a locally compact separable metric space, we denote C(E) the set of continuous functions on
E and Cy(F) the set of continuous functions that vanish a infinity. We equip this space with the sup norm
| flloc = sup,eg |f(2)] so that (Co(E),||.||) is a Banach space. We will denote B(E) the o-algebra of Borel
subsets of £ and P(F) the family of Borel probability measures on E. We will denote by Kg the set of
compact subsets of E.

Finally, for every Borel function f : E — R, and every lo, € RU{—00,+00}, :vll}IIolo f(z) =l if and only if for

every € > 0, there exists a compact K. C Kg such that sup,¢ e [f(2) —loo| < €if loo € R, infocre f(z) > 1/€

if oo = +00, and sup f(z) < —1/€if loc = —o0 with K¢ = E\ K..
TeK¢

2.1.2 Construction of the random measures

Let (©,G,P) be a probability space. We consider a Feller process (X;)i>o0 (see [6] for details) on (£, G,P)
taking values in a locally compact and separable metric space E. We denote by (P;)¢>o the Feller semigroup
(see [24]) of this process. We recall that (P;);>0 is a family of linear operators from Cy(E) to itself such that
Pyf = f, Porsf = P.Psf, t,s > 0 (semigroup property) and tlgr(l) |P:f — flloo = 0 (Feller property). Using
this semigroup, we can introduce the infinitesimal generator of (X;);>¢ as a linear operator A defined on a
subspace D(A) of Cy(E), satisfying: For every f € D(A),

Af = tim 2 =T
t—0 t

exists for the ||.||co-norm. The operator A : D(A) — Co(E) is thus well defined and D(A) is called the domain
of A. From the Echeverria Weiss theorem (see [5] Theorem 9.17), the set of invariant distributions for (X;);>0
can be characterized in the following way:

V={vePE)Vt>0,Pv=v}={veP(E)VSfeDA),v(Af) =0}
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The starting point of our reasoning is thus to consider an approximation of A. First, we introduce the
family of transition kernels (Q4),~o from Co(E) to itself. Now, let us define the family of linear operators

A= (A,)4>0 from Cy(F) into itself, as follows

Qvf_f.

VfeCy(E), v>0, A f= >

(2)

The family Ais usually called the pseudo-generator of the transition kernels (Q,),>0 and is an approximation
of A as 7y tends to zero. From a practical viewpoint, the main interest of our approach is that we can consider
that there exists 7 > 0 such that for every « € E and every v € [0,7], Q(z, dy) is simulable at a reasonable
computational cost. We use the family (Q.),~0, to build (Xt, )nen (this notation replaces (Y;n)nEN from

now for clarity in the writing) as the non-homogeneous Markov approximation of the Feller process (X;)¢>o.
n

It is defined on the time grid {T",, = Y vk, n € N} with the sequence 7 := (v, )nen- of time step satisfying
k=1

VneN" 0<v,<7:= sup v, < 00, lim v, =0 and lim T, = +oc.
neN* n—4oo n—-4oo

Its transition probability distributions are given by Q, (x,dy),n € N*, z € E, i.e. :

P(Xr,,, € dy|Xr,) =9,,,,Xr,,dy), neN.

We can canonically extend (Xt, ),en into a cadlag process by setting X (¢, w) = an(t) (w) with n(t) = inf{n € N,T'),;1 > t}.

Then (X1, )nen is a simulable (as soon as X is) non-homogeneous Markov chain with transitions

Vm < n, Pr, r,(z,dy) =Q o---0Q, (x,dy),

Ym+1

and law

L(Xr,

Xo=1)=Pr,(z,dy) =Q,,0---0Q, (x,dy).

We use (X1, )nen to design a Langevin Monte Carlo algorithm. Notice that this approach is generic
since the approximation transition kernels (Q,),>o are not explicitly specified and then, it can be used
in many different configurations including among others, weak numerical schemes or exact simulation i.e.
(X1, )nen = (X1, Jnen- In particular, using high weak order schemes for (X;);>0 may lead to higher rates of
convergence for the empirical measures. The approach we use to build the empirical measures is quite more
general than in as we consider some general weights which are not necessarily equal to the time steps.
We define this weight sequence. Let 1 := (9,,)nen+ be such that

vneN* n,>=0, lim H, = +oo, with H, = an.
k=1

n—-+oo

Now we present our algorithm introduced in [2I] and adapted from the one introduced in [I2] designed with
a Euler scheme with decreasing step (Xr, )nen of a Brownian diffusion process (X;);>0. For x € E, let 4,
denote the Dirac mass at point x. For every n € N*, we define the random weighted empirical random
measures as follows

1 n
vi(de) = o Y s, (dw). (3)
" k=1

This paper is dedicated to show that, when (Xt ),en is the Milstein scheme of a Brownian diffusion
process (respectively the Euler scheme of a censored jump diffusion) (X;);>0, then a.s. every weak limit-
ing distribution of (¥]1),en- belongs to V. In particular when the invariant measure of (X;);>o is unique,
i.e. V = {v}, we show that nhﬁngo vlf =vf P —a.s., for a generic class of continuous test functions f. The

approach developed in [21] consists in two steps. First, we give a tightness property to obtain existence of a
weak limiting distribution for (!),en+. Then, in a second step, we identify this limiting distribution with
an invariant distribution of the Feller process (X;):>o0.

2.1.3 Assumptions on the random measures

In this part, we present the necessary assumptions on the pseudo-generator A= (gv)ﬁpo in order to prove
the convergence of the empirical measures (V) en=-
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Recursive control

In our framework, we introduce a well suited assumption, referred to as the mean reverting recursive control
of the pseudo-generator A, that leads to a tightness property on (v),en+ from which follows the existence
(in weak sense) of a limiting distribution for (v),en+. A supplementary interest of our approach is that it
is designed to obtain the a.s. convergence of (v71(f))nen+ for a generic class of continuous test functions f
which is larger then Cy(E). To do so, we introduce a Lyapunov function V related to (Xr,)nen. Assume
that V' a Borel function such that

Ly = V:(FE = [vs,+0),v. >0 and lim V(z)= +4oo. (4)
xr—r0o0

We now relate V to (X1, )nen introducing its mean reversion Lyapunov property. Let ¥, ¢ : [v,, 00) — (0, 4+00)
some Borel functions such that gﬁ/} oV exists for every v € (0,7]. Let @ > 0 and 5 € R. We assume

(1) 3Ing e N*Vn > ng,z € E, AWOV(@é%ﬁ(ﬁ—a(boV@)).
Reavioa) = { (i) Timinf 9(3) > Bo: ' I8 ®)
Yy—+00

Lyapunov functions are usually used to show the existence and sometimes the uniqueness of the invariant
measure of Feller processes. We refer to the extensive literature on the topic for more details: See for instance
[10], [5] or [18]. Notice that the condition RCq v (14, ¢, v, B)(i) with ¢ concave appears in [3] to prove sub-
geometrical ergodicity of Markov chains. In [14], a similar hypothesis to RCq. v (14, ¢, @, 8)(i), with ¢ not
necessarily concave, is also used (with Z% replaced by A) to study the convergence of the weighted empirical
measures for the Euler scheme of a Brownian diffusion. The function ¢ controls the mean reverting
property. In particular, we call strongly mean reverting property when ¢ = I; and weakly mean reverting
property when ygrfoo #(y)/y = 0, for instance ¢(y) = y*, a € (0,1) for every y € [v,,0). The function ¢ is

closely related to the identification of the set of test functions f for which we have lirJr: vi(f) =v(f) as.,
n—-+oo

when v is the unique invariant distribution of the underlying Feller process. To this end, for s > 1, which
is related to step weight assumption, we introduce the sets of test functions for which we will show the a.s.
convergence of the weighted empirical measures (3):

Cy,, (B)={f €C(B).|f(x)| = o (Vuual@)}. (©)
N N o V() o V(x5
with V¢’¢7S B — R+,1’ — Vw@)s(l’) = ¢ V( i;b(x)v( ) .

Notice that our approach benefits from providing generic results because we consider general Feller processes
and approximations but also because the functions ¢ and v are not specified explicitly.

Infinitesimal generator approximation

This section presents the assumption that enables to characterize the limiting distributions of the a.s. tight
sequence (v]!(dz,w))nen+. We aim to estimate the distance between V and v]! (see (3)) for n large enough.
We thus introduce an hypothesis concerning the distance between (;L,)7>0, the pseudo-generator of (Q,)+>o,
and A, the infinitesimal generator of (P;);>o. We assume that there exists D(A)y C D(A) with D(A)y dense
in Cy(E) such that:

E(A,ADA)) =  Vve(0ALVfED(A) Ve e E, [A,f(x)—Af(z)| < As(e,), (7)

where Ay : E x Ry — Ry can be represented in the following way: Let (Q,Q,I@’) be a probability space.
Let g : E — RY%, ¢ € N, be a locally bounded Borel measurable function and let Ay : (E x Ry x Q,B(E) ®
B(R;) ®G) — R% be a measurable function such that SUP;e(1,....q} Elsup,cp SUP,¢(0.7] Agi(z,7,@)] < +oo
and

Ve e E,Vy € (Oai]’ Af(xv’)/) = <g(x)’I~E[Af(x77’a))]>Rq

Moreover, we assume that for every i € {1,...,q}, sup,ey ¥(gi,w) < 400, P(dw) — a.s., and that A,

satisfies one of the following two properties:

There exists a measurable function 7 : (€, G) — ((0,7], B((0,7])) such that:

(1) VK eKg, ’11_% fgg Agi(z,v,0) =0,

(¢¢) lim  sup /iﬁi(x,’y,(b) =0, (8)
T e (0,5(@))

I) P(dd) —a.s
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I1) P(d&) — a.s lim sup A ;(z,v,0)gi(z) = 0. (9)
702¢cE
Remark 2.1. Let (F,F,\) be a measurable space. Using the exact same approach, the results we obtain hold
when we replace the probability space (Q,G,P) by the product measurable space (2 x F,G ® F, P® A) in the
representation of Ay and in (@ and @ but we restrict to that case for sake of clarity in the writing. This
observation can be useful when we study jump process where \ can stand for the jump intensity.

This representation assumption benefits from the fact that the transition functions (Q,(x, dy)),c5), € E,
can be represented using distributions of random variables which are involved in the computation of (Xt, )nen--
In particular, this approach is well adapted to stochastic approximations associated to a time grid such as
numerical schemes for stochastic differential equations with a Brownian part or/and a jump part.

Growth control and Step Weight assumptions

We conclude with hypothesis concerning the control of the martingale part of one step of our approximation.
Let p € [1,2] and let ez : Ry — R4 an increasing function. For F C {f, f : (E,B(F)) — (R,B(R))} and
g: E — R, a Borel function, we assume that, for every n € N,

GCo(F,g,per) = P—as. YfeF, E[f(Xr,,,)— 2., /(Xr)I’IXr,] <Crez(yny1)9(Xr,), (10)

with C'y > 0 a finite constant which may depend on f. We will combine this assumption with the following
step weight related ones:

 e2(1m)g(Xr,) < +oo. (11)

o
SWz (g, pez) = P—a.s. Z ‘ n
n=1 nYn

Remark 2.2. The reader may notice that GCo(F, g, p, €z) holds as soon as @) is satisfied with Q. ., f(Xr,),

n € N*, replaced by a Fff = o(Xr,,k < n)- progressively measurable process (X,)nen- since we have

Q’Yn,+1f(yrn) = ]E[f( w+1)|XF ] and E[|f(yrn+1) - Q’Yn+1f(YFn)‘p|yFn} g QPE“f(YFn-H) —xn|P|YFn] fOT
every X, € L2(FX).

We will also use the hypothesis

SWiz4m(F) = P—as. VfeF, Z 77n+1/7n];1 T/ ) + |f(YFn)| < +00, (12)
n—0 n+1

with the convention 79/vo = 1. Notice that this last assumption holds as soon as the sequence (1, /¥n)nen-
is non-increasing.

At this point we can focus now on the main results concerning this general approach.

2.2 Convergence

We give abstract results which are proved in [21].

2.2.1 Almost sure tightness

From the recursive control assumption, the following Theorem establish the a.s. tightness of the sequence
(VM) nen+ and also provides a uniform control of (v),en+ on a generic class of test functions.

Theorem 2.1. Let s > 1, p € [1,2], v, > 0, and let us consider the Borel functions V : E — [vs,0),

g:E =Ry, ¢:[ve,00) = Ry and ez : Ry — Ry an increasing function. We have the following properties:

A. Assume that Z% (1 o V)5 exists for every n € N*, and that GCo((v o V)% g, p,ez) (see (@),
SWz..0(9, prez) (see (11) and SWrz (1 0 V)/#)) (see hold. Then

P-a.s. sup —— anA% (o V)Y*(Xp,_,) < 400, (13)
neN*

B. Leta>0andB € R. Let ¢ : [vi,00) — RY be a continuous function such that Cy := sup,c(,. ) ¢(y)/y < co.
Assume that holds and

i. RCov (W, p,a,0) (see (@)} holds.
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2. Ly (see ) holds and ygrfoo W = too0.

Then, ~
P-a.s.  sup v (Vip,g,s) < +00.
neN*

with ‘7¢7¢7S defined in @) Therefore, the sequence (V1)pen+ is P — a.s. tight.

2.2.2 Identification of the limit

In Theorem [2.1] we obtained the tightness of (]]),en+. It remains to show that every limiting point of this
sequence is an invariant distribution of the Feller process with infinitesimal generator A. This is the interest
of the following Theorem which relies on the infinitesimal generator approximation.

Theorem 2.2. Let p € [1,2]. We have the following properties:

A. Let D(A)y C D(A), with D(A)o dense in Co(E). We assume that ﬁ%f exists for every f € D(A)g
and every n € N*. Also assume that there exists g : E — Ry a Borel function and ez : Ry — Ry an
increasing function such that GCo(D(A)o, g, p,ez) (see (10)) and SWx ,.,(g, p.ez) (see (11])) hold and

that
. I
nglfoo an kz—:l Mkt1/Ye1 — M/ V| = 0. (14)
Then
P Vf e D(A li 1y A, f(X =0 (15)
-a.s. fe ( )Oa n—1>I-iI-1c>o Hﬂ;nk ka( Fk—l) — Y.

B. We assume that and E(A, A, D(A)o) (see (@) hold. Then

P-a.s. Vf € D(A)o, nllgloo vl(Af) =0.

It follows that, P — a.s., every weak limiting distribution v of the sequence (V]!)nen+ belongs to V, the
set of the invariant distributions of (Xi)i>o. Finally, if the hypothesis from Theorempoint hold
and (X;)i>0 has a unique invariant distribution, i.e. V = {v}, then

P-a.s. VfeCy, | (EB), lim v (f) =v(f), (16)

n—-+o0o

with Cy; ((E) defined in @

In the particular case where the function v is polynomial, also reads as the a.s. convergence of the
empirical measures for some LP-Wasserstein distances, p > 0, that we will study further in this paper for
some numerical schemes of some diffusion processes. From the liberty granted by the choice of % in this
abstract framework, where only a recursive control with mean reverting is required, we will also propose an
application for functions ¢ with exponential growth.

2.3 About Growth control and Step Weight assumptions

We present other useful abstract results from [21]. The following Lemma presents a L;-finiteness property
that we can obtain under recursive control hypothesis and strongly mean reverting assumptions (¢ = I,).
This result is thus useful to prove SWr (g, p,ez) (see (LI)) or SWrz 4,,(F) (see (12)) for well chosen F
and ¢ in this specific situation.

Lemma 2.1. Let v, >0, V : E = [0,,00), ¥ : [vx,00) = Ry, such that g%w oV exists for every n € N*.
Let a > 0 and § € R. We assume that RCq,v (¢, 14, B) (see @) holds and that E[) o V(Xr, )] < 400 for
every ng € N*. Then

supE[¢y o V(X1,)] < +0 (17)
neN

p
Hpvn €z(n) < 400,

then SWr (¥ oV, p,ez) holds and if 3. (""“/%}}“:J;”"M")J’ < 400, then SWzz o n(1 o V) is satisfied

In particular, let p € [1,2] and ez : Ry — R, an increasing function. It follows that if > o, | 722

Now, we provide a general way to obtain SWz - (g, p, €z) and SWzz  ,(F') for some specific g and F' as
soon as a recursive control with weakly mean reversion assumption holds.
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Lemma 2.2. Let v, >0, V : E = [0,,00), ¥, ¢ : [vs,00) = Ry, such that gﬂ,nw oV emists for every n € N*.
Let « > 0 and 8 € R. We also introduce the non-increasing sequence (0, )nen+ such that Zn21 0nVn < +00.

We assume that RCq v (¢, ¢, a, 5) (see @)} holds and that E[ o V(ano)] < 400 for every ng € N*. Then

Z an’YnE[Vw@,l(yFn—l)} < 400

n=1

with f/¢7¢71 defined in (@ In particular, let p € [1,2] and ez : Ry — R4, an increasing function. If we also
assume

oo
p
SWrz ~n(p,€z) (7;161(7,1)( [l )p)neN* is non-increasing and Z( !l ) er(Yn) < 400,  (18)

Hyvn = \Hpvn
then we have SWz (Vo1 p, €z) (see ) Finally,if
G ~ )+ o (1 /Ynt1 = /) +
SWizvm ("Jr’yniHn“)neN* 1s non-increasing and Z A < 400, (19)

n=1

then we have SWrz o ,(Vy.s1) (see )

This result concludes the general approach in a generic framework to prove convergence. The next part
of this paper is dedicated to various applications.

3 Applications

3.1 Notations
First, for o € (0,1] and f a a-Hélder function we denote [f]a = sup,, |f(y) — f(@)|/|y — [

Now, let d € N. For any R4*?-valued symmetric matrix S, we define \g := sup{As1,..As.4,0}, with g,
the i-th eigenvalue of S.

We also recall the Burkholder—Davies—Gundy (BDG) inequality for martingales. Let p > 1/2 and (M)@o

a Re-valued martingale with respect to the filtration FM := U(M, s < t). Then, there exists C,, > 0 such
that

¥t>0,  E[sup |M[*] < CLE[(M)]]. (20)
s€[0,t]

3.2 The Milstein scheme

In this part, we treat the case of a Milstein scheme (introduced in [I7]) with decreasing steps for a Brownian
diffusion process. We propose two approaches under weakly mean reverting assumptions. The first one relies
on polynomial test functions and the second one relies on exponential test functions. More particularly we
propose a setting with functions ¢ such that ¥ (y) = y?, p > 0 for every y € [vs,00). The other setting is
based on functions ¥(y) = exp(Ay?), p € [0,1/2], A = 0, for every y € [v, 00).

3.2.1 Presentation and main result

We consider a d-dimensional Brownian motion (W;);>o. We are interested in the solution of the d-dimensional
stochastic equation
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where b : R? — R? and o, 0,,0 : RY — R4 | € {1,...d}, are locally bounded functions. The infinitesimal
generator of this process is given by

d 2
Af(@) = B, V@) + 5 Y (W*)w(“”)asing (@)

and its domain D(A) contains D(A)y = C%(R?). Notice that D(A) is dense in Co(E). Now, we introduce
the Milstein scheme for (X;)¢>o defined for every n € N and ¢ € [T',T's41], by

X, =Xr. + (t— D)b(Xr, ) + o(Xe ) (Wi — Wr, ) + Z D0, (X Vo (X, / / AV

1,5,1=1 ) A
with 0; : R? - RY x5 04(x) = (01,4(2),...,04:(x)). We introduce the notations:
| PR
—1 — . .
AX,, =ymib(Xr,), AX.., = Z Z@xlal Xr,)or;(Xr,) / / dWdW?¢,
i,7=11=1 r, Tn
—9 —
AX,q =o(Xr, )W, —Wr,). (21)
and Y;Hl =Xr, + Z;’:l AY;H. In the sequel we will use the notation U,, 11 = ’y;ﬂQ(anH — Wr,) and
. Frnt1 s ] )
Wit = Wylh)ijeqt,....ap with Wi n+l = 7n+1 f J awidw;.
n I'n

Now, we assume that the Lyapunov function V : R? — [v,,00), v, > 0, satisfies Ly (see (4)) and is
essentially quadratic:

IVV[2 < CvV, sup |D?*V (z)] < +o0 (22)
zERC
We also define
Vz € Rd, Ay () 1= /\D2V(z)JrQVV(x)®2w”oV(z)w’oV(x)*1~ (23)

When ¢ (y) = 1¥,(y) = y?, we will also use the notation )\, instead of A,. Now, let ¢ : [v,, +00) — Ry, and
assume that

B(¢p) = VeeR? |bx)]?+ Trloo*(z Z 8,03 ()01 ()2 < CpoV(x). (24)

4,7,0=1

Polynomial case.

In case of Wasserstein convergence, we introduce a weaker assumption than Gaussian distribution for the
sequence (U, )nen+. Let ¢ € N*) p > 0. We suppose that (Up,),en+ is a sequence of independent and identically
distributed random variables such that

MyoU) =  VneN Vie{l,...,q}, E[U.)®Y =E[N(0,14)*, (25)
and
M, (U) su£*E[|Un|2p]<+oo. (26)

Moreover, we will also assume that (W,,),en+ is a sequence of independent and centered random variables
such that M,(W) holds for some p we will precise further on.

We are now able to introduce the mean-reverting property of V. Let p > 0. Let § € R, a > 0. We assume
that liminf ¢(y) > 8/« and
y—00

(@) <B—adoV(a), (27)

Rp(a,5,6,V) =  VeeR: (VV(@),b(x))+
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with

Ao Tr[oo™ (x ifp<i1
Y ){ll oo Tr[o0™ (2)] p 28)

| M llee2® D Tr[oo*(2)]  if p > 1.

Theorem 3.1. Let p > 0,a € (0,1], s = 1,p € [1,2] and, ¥,(y) = v*, ¢(y) = y* and ez(vy) = /2. Let
a >0 and 8 € R. Assume that the sequence (Uy)nen+ satisfies Mar2(U) (see ) and My (pp/sv1(U) (see
@)} Moreover, assume that (Wy)nen+ s a sequence of independent and centered random variables such
that My (pp/syvi(WV) (see ) holds.

Also assume that E (see (m)), (o, B,0,V) (see (m)), Ly (see {4)), SWr~n(p,ex) (see @),
SWrz 4 0(VP/®) (see (12 (ﬂ)} and also hold and that app/s < p+a—1. Then, zfp/s—l—a— 1>0, (V)nen
is P — a.s. tight and

P-a.s. sup v1(VP/s+e71) < oo,
neN*
Moreover, assume also that b, o and ijl 110z,0501 ;| have sublinear growth and that g, < cyp/sta=l

with go = Tr[oo*] + zl ji=10z,0i00|. Then, every weak limiting distribution v of (v)])nen- is an invariant
distribution of (X¢)i>0 and when v is unique, we have

(Rd), lim v!(f) =v(f),

Vip,o,s n—+4o0o

P-a.s. Vf eCy

with C% LR ) defined in (6). Notice that when p/s < pV 1+ a — 1, the assumption SWrz - ,(VP/®) (see
(.)) can be replaced by SWrz ., (see (@)

Exponential case.
For the exponential case we modify this assumption in the following way. Let p < 1/2 and let @ > 0 and
B € R. We assume that hminf(b( y) > By /a, B+ =0V B, and
Yy——+00

Rpa(@,f0.V) = Vo eRL (VV(@)be) +my(o)) + o) < f-agoViz),  (29)
with
ISy Vi@
2;;&“0@ Joui( )+>\pmoa (x)VV (x)
and

_ ViTP(a)
Xp(T) = b0V (z)

with ¥ : R? — 8¢ ,, 8¢, being the set of a positive definite matrix, defined by

Cy,(x) " n(det(Z(x))

S(e) 1= 1a(1 — 2, (0)[VT)d /22 Z 00,3 ()13(@)]) = 1DV e Co (2)VP~ (@) ()
zgl 1
with C, : RY — R* satisfying inf,cgs C,(z) > 0.

Theorem 3.2. Let p € [0,1/2],A > 0, s 2 1, p € [1,2] and, let ¢ : [v.,00) — Ry be a continuous
function such that Cy := sup,cp,, ) ¢(¥)/y < +oo and lig}_nf d(y) = 400, let Y(y) = exp(\yP), y € Ry
, Pt

and let ez(y) = /% and éz(y) = y**. Let a > 0 and B € R. We assume that p < s, B(¢) (see ),
Rpala, 8,6, V) (see ) and Ly (see (4))) hold. We also suppose that SWrz , (p,€ex), SWz n(p,éz) (see
{18)), SWrzym (see ), and hold. Then (V) nen+ is P — a.s. tight and

P-a.s.  sup VZ(¢O 4

v exXP (/\/SV”)> < 400.
neN*
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Moreover, assume also that b, o and Z?’j’l:l |0, 001, ;| have sublinear growth. Then, every weak limiting

distribution v of (V) nen+ is an invariant distribution of (X;)i>0 and when v is unique, we have

P-a.s. YfeCy (RY, P-a.s. ILm v(f)=v(f),

Vi,é,s

with Cy,, | S(Rd) defined in (@

3.2.2 Recursive control

Polynomial case

Proposition 3.1. Letv, > 0, and let ¢ : [v,,00) — Ry be a continuous function such that Cy := SUPy 1o, 00) o(y)/y < 4o0.
Now let p > 0 and define 1, (y) = y?. Let a >0 and B € R.

Assume that (Up)nen- is a sequence of independent random variables such that U satisfies My 2(U) (see

(23)) and Mpy1(U) (see (26)). Moreover, assume that Wy )nen- is a sequence of independent and centered

random variables such that M1 (W) (see (26)) holds.

Also assume that , B(¢) (see ), Rp(a, 8,0, V) (see ), are satisfied. Then, for every & € (0, ),

there exists ng € N*, such that

pr —apoV(z)). (30)

Then RCqo v (¥, ¢, p&, pB) (see (ﬁ)) holds for every & € (0,«) such that limJirnf o(y) > B/a. Moreover,
y——400
when ¢ = Id we have

Vn = no,Vr € R4 A, oV (x) <

sugE[V”(YPn)} < 4o00. (31)

Proof. We distinguish the cases p > 1 and p € (0,1).

Case p > 1.  First ,we focus on the case p > 1. From the Taylor’s formula and the definition of )\% =X
(see (23)), we have
YpoV(Xr,,,) =¢poV(Xr,) + (Xr,,, — Xr,, VV(Xr, )¢, 0 V(XT,)
1 _ _
+ §(D2V(Tn+l)¢; oV(Thnt1) + VV(TTL+1)®21/’1/3/ o V(Tnt1))( X,y — X1
<YpoV(Xr,)+ (Xr,,, — Xr,,VV(Xr, )¢, o V(XT,)

)®2

n

1 — 7
+ (L) 0V (Tust) K, — X, 2 (32)

with Y, 41 € (X1, Xr,,,)- First, from , we have sup, cga Ap(z) < +00.
Since W is made of centered random variables, we deduce from My o(U) (see ), M(U) (see (26))
and My(W) (see (26)), that

E[YF7L+1 - an |y]~—‘n] = ’yn_i'_lb(YFn)
— — — p— J— d p— —
E[[Xr,,, — X0, 2 Xr,] < i Trloo™(Xr,)] + 110X, + cavigy Y 10n,0i(Xr,)ou;(Xr,)
i,4,1=1
d
ey D 10n0i(Xr,Jory (X, ) Tefoo” (X, )]
ij,l=1
with ¢4 a positive constant. Assume first that p = 1. Using B(¢) (see (24)), for every & € (0, ), there
exists ng(&) such that for every n > ng(&),

d
1 -~ _ —
3 Mooy a (X, )I” + el Y 90i(Xr,)ou;(Xr,)P) (33)

i,7,l=1

d
1 - - . _ -
3 IMllsecary Y 100,03(Xr, )or; (Xr, )| Trloo™ (Xr, )]V < qnia (0 = @)g 0 V(X,).

4,7,l=1
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From assumption R, (a, 8, ¢, V) (see and (28)), we conclude that
A%@/J oV(z) < B —apoV(x)

Assume now that p > 1.Since |[VV| < CyV (see ), then /V is Lipschitz. Now, we use the following
inequality: Let [ € N*. We have

l l
Vo> 0V € R i=1,..,0 D w" <1070 "juy|”. (34)
i=1 =1

2p—2

VI (Y1) S(VV(Xp,) + [VVEIXT,, — X1, )

<23+ (VY (Xr,) + [VVIP Xy, — X1, [77?)

n+1

To study the ‘remainder’ of , we multiply the above inequality by |an+1 — Xr,|?. First, we study the
second term which appears in the r.h.s. and using B(¢) (see ), for every p > 1,

| X1, = X1, [P < CAh 100 VX, )P+ [Ungd [P + [Waga 7).

n+1

Let & € (0, ). Then, we deduce from My, (U) (see (26)), Mo, (W) (see (26)), that there exists no(&) € N
such that for any n > ng(&), we have

» a—a&
16/ all3 [ Aplloo22P=3)+ [VV]3P 2

To treat the other term of the ‘remainder’ of (32) we proceed as in with |||l replaced by
||)\p|\0022p’3[ﬁ]3p72, a replace by & and & € (0,4). We gather all the terms together and using ,
for every n > no(@) V no(&), we obtain

E[[Xr,,, — X1, [*|Xr,] < Ynp100 V(Xr,)

n+1

EV?(Xr,.,) — V?(Xr,)|Xr,] <%1pV? ' (X1,) (B — apo V(XT,))
A VTP(Xr, )¢ o V(XT, )
o/ Lall%"

+Yn1pV? T (X, ) (60 V(Xr,) (6 — &) + (o

)

<Y1 VP H X1, ) (Bp — apgp o V(XT,)).

which is exactly the recursive control for p > 1.

Case p € (0,1). Now, let p € (0,1) so that o — P is concave. it follows that

VP(Xr,,,) - V*(Xr,) <pV?'(Xr,)(V(Xr,,,) = V(XT,))

n+1)

We have just proved that we have the recursive control RCq v (¢, ¢, o, §) holds for ¢ = Iy (with a replaced
by @ > 0), and since V takes positive values, we obtain

E[V*(Xr,,,) - V?(Xr,)Xr,] <pV?~ ' (Xr, E[V(Xr,,,) — V(Xr,)|XT,]

VPN (Xr,)(pB — pag o V(Xr,)),

nit)

which completes the proof of (30). The proof of is an immediate application of Lemma [2.1] as soon as
we notice that the increments of the Milstein scheme have finite polynomial moments which implies (17).

Exponential case
In this section we will not relax the assumption on the Gaussian structure of the increment as we do
in the polynomial case with hypothesis (see and ) In order to obtain our result, we introduce a

12
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supplementary assumption in order to express the iterated stochastic integrals in terms of products of the
increments of the Brownian motion. The so called commutative noise assumption is the following

Ve e R Vi, j € {1,...,d}, Zangz z)oy i(z Zangj Youi(x).

In this case, with the notation from , we have

n+1 Z Zalzaz (Xr,)o;(Xr, )(le bl len)(Wlén“ - Wlin)
1] 1i=1

d d
1 _ _
_i’YnJrl Zl ; 8ml0—i(XFn)0—l,i(XFn)'

In the sequel we will adopt the following notation

S _ 1 _ _
AX 1 =¥nr1b(XT,) = 57n41 S  0w0iXr,)oi(Xr,)-,
=1 1l=1
d d

AT 1 ~ ¥ j i i
AX i1 =5 D D 0n0i(Xr,)on; (X )(WR, , = WL )WL, = WE,) (35)

ij=11=1

Lemma 3.1. Let A € R4 and U ~ N(0,1;). We define ¥ € R™ by ¥ = I; — 2A*A. Assume that
¥ € 8¢.,. Then, for every h € (0,1),

Vo € RY, E[exp (\/E@, U) + h|AU|2)} < exp ( )W) det(D) /2. (36)

2(1—nh
Proof. A direct computation yields

Elexp(|AU[?)] = /}Rd(zw)*d/2 exp ( - %<72A*Au +u, u>)du = det(x) /2.

Now, follows from the Holder inequality since

Efexp(vA (v, U) + HAUP)] < Elexp(- 2 (v, U))]' " Elexp(|AUP)]" = exp (

h 2 —h/2
1-h sa—m" )det(z) '

Using this result, we deduce the recursive control for exponential test functions.

Proposition 3.2. Letv, >0, and let ¢ : [v.,00) — Ry be a continuous function such that Cy := sup,c(,,, ooy #(y)/y < +00.
Now let p € (0,1/2], A > 0 and define ¢ : [v.,00) = Ry such that ¥(y) = exp(Ay?). We suppose that
) (see ) and Rp (o, 8,6, V) (see @)), are satisfied. Also assume that

Vo e RY, Trloo™ (2)][b(@)|(VV (2) + [b(x)]) < CV'7P(x)¢ o V(2) (37)
Then, for every & € (0, ), there exists B e Ry and ng € N*, such that

o V(x)

Vn > ng,x €RY A, o Vi(z) < Vi)

p(B —agoV(z)). (38)

Then, RCQ,V(w,gb,pd,pB) (see (ﬁ)) holds as soon as liminf ¢(y) = +00. Moreover, when ¢ = Id we have

y—r+o00

supE[y o V(XT,)] < +o0. (39)

neN
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Proof. First, with notations (33)), we rewrite

V?(Xr,.,,) — V*(Xr,) =V*(Xr, + AX,,, + AX, ;) - VP(Xr,)
+VP(Xr,,,) — V'(Xr, + AX,, + AKX, )

an we study each term separately. Since p < 1, the function defined on [v.,00) by y — yP is concave.
Using then the Taylor expansion of order 2 of the funct1on V, for every z,y € R%,

VP (y) = VP(z) <pVP~H2) (V(y) - V(2))
— 1
<PV @) ((VV(2),y = @) + 51DV ]|ocly — 2?).
. .. . . ~ ~ <~ e <2 . .
Using this inequality with # = Xt and y = Xr,,, = Xr, + AX, ,; + AX, ,, with notations and
(35)
VP(Xr, + AX .y + AX,, ) — VP(Xr,) <pVP ' Xr, )(VV(Xr, ), AKX, + AX, )

1 1~ <=1 —2
+ VP X )ID?V || AX g + AX 44 2

Now, we study the other term. Since p < 1/2, then the function defined on [v,,c0) by y +— 3?? is concave
and we obtain

- — ~ =1 2
VP(XFn,+1)_Vp(XFn + A)(n-‘,-l =+ AXn-i—l)
~ 1 —92 — — ~—=1 <2
<pVPYV2(AX 0 + AKX, ) (VV (X)) — VV (X, +AX, +AX, L))
<pVV)r YAAX |

In the sequel, we will use the notation

vz e R, b(z) ) +

d d
ZZam,az x)oy ().

i=1 =1

l\.')\»—l

It follows that

E[exp()‘vp(yrn-{-l )) |an] < H"/n+1 (Xrn)L’)’n+l (XFT:,)

with, for every z € R%, v € R%,

%)

H,(2) = exp(AVP (&) + 7 ApV?~H (@)(VV (), b(x)) + vzékpllDQVHoon’l(x)ll;(:v)

and

L (z) =E[exp(y7ApV? ™ (@)(VV (@) + 1| D*V |[ocb(), o (2)U) + véx\pllDQVHooV”’l(%)IO(%)UI2

1
F VY]l ZZ@ZUZ z)ay,;(2)||U?

1,j=11=1

where U = (Uy,...Uy), with U;, i € {1,...,d}, some independent and identically distributed standard
normal random variables In order to compute L, (z), we use Lemma (see ) with h = C,(x) 1y Ap,
v =1/Cy(z)ApVP~( 2)(VV(z) +v]|D?V||ob(z)) and the positive definite matrix

d
D) = 1a(1 - QCU(x)[W]wf‘“Q% > 1000i(@)015 (@)]) = DV [acCo (2, 2)VF " (@) o (a, 2)

ijl=1

14

where inf,cga Cy () > 0 and X(z, 2) €€ 8§ ). We apply Lemma and it follows that for v < inf,cga Cy(x)/(2\p)
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YAPCo () !
1 —yApCo(x)~ )

<exp (YAC, (2) o - 5wc(,@c)—l In(det(S(x)))

Ly (2) <exp (5 o2~ S7ApC ()~ In(det(S(2))))

At this point, we focus on the first term inside the exponential. We have

[v|> <Cy(2)ApV2P~2(z) (oo™ (2)VV (2), VV (2))
+ Tr[oo™ (2)] (V| D2V [[o2{VV (2),b(x)) + 7* | D*V % b(x)[*))

Using B(¢) (see (24)), and Rp (o, 8,6, V) (see ( ), it follows that there exists C' > 0 such that
H,(z)L,(z) <exp (AVP(z) + yApVP 1 (z)(B — apo V(z)) + C?VP~l(z)po V(z))

which can be rewritten

H, )2, o) <exp (10 25 DA 0) 4 9pa 5 L o) (20— T ).

Using the convexity of the exponential function, we have for every ypaCy < 1,
AB
adoV(x)

It remains to study the last term of the r.h.s of the above inequality. The function defined on [v., +00) by
T exp(yp(ag(ﬂy) +~vC/(ap))) is continuous and locally bounded. Moreover, by R, x(a, 5,¢,V) (see ),
we have lim+inf #(y) > B+/a. Hence, there exists ¢ € (0,1) and y¢ > v, such that ¢(y) > B4+ /(a(Q) for every

Yy—+00

H,(x)L(z) <exp ()\Vp(a:)) - ’ypaLV(m) exp ()\Vp(x)) + Wpaw exp (Vp(x)(

V(e) Viz) +4C/(ep) ).

y = y¢. Consequently, as soon as v < CAap/C, for every & € (0, ) there exists B > 0 such that

poV(x) » AB — Bexp(A\VP(x)) a—adpoV(x) »
V(x) P (V ($)(a¢o V(x) —|—’yC’/(ozp)>) S a  V(z) + a V(z) exp(AV¥(z))

and the proof of the recursive control is completed. Finally follows from , which follow from
the equation above, and Lemma

O

3.2.3 Proof of the infinitesimal estimation

Proposition 3.3. We suppose that the sequence (Un)nen- satisfies My 2(U) (see (25)) and that the sequence
(Wh)nen- is centered and satisfies My,5(W) (see @)

We also assume that b, o and Zij,lzl |0z, 0i01 ;| are locally bounded functions with sublinear growth and that
we have sup,,cy- V)1 (Trloo*]) < 400 and sup,,cy- VQ(E?J’I:l |0z, 0101 5]) < +o0.

Then, we have E(A, A, D(A)o) (see (@)

Proof. First, we recall that D(A)y = C%(E). The proof consists in studying successively the three terms of
the following decomposition:

= 2]+ E[f(Xp,,,) — f(Xr, )| Xr, = 4]
|Xr = 1]

E[f(yl—‘n+1 - f(yl—‘n) X n

n+1)

Yol (Xr, )~ F(Xr,) X, = 2] — (Vo f(2), b(@)) < /IVf(fC + 0b(x)vn41) — V£ ()| |b(x)|dO

Using a similar reasonning as in the proof of Proposition 3.3 in [21], one can show that there exists R > 0
such that £(A, A, D(A)o) [D)] holds for (A1, |b(x)|1Lj,j<r) with
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Ri1 REXRy x[0,1] — Ry

and Ay (x,t) = Ry (x,t,0) with © ~ Ujp,1) under P(d).
We focus on the second term. We define Afo(z, 2,7) = ga(z, 2)E[A; o(z, 2,7)] with 11}]2(56, v) = 7@332(56, 2,7,U,0),

Rpo REXRy xRIx[0,1] — Ry
(,7,0,0) = [PD2f(z +9b(x) + b0 (x)v) — D*f(z)],

with U ~ py, © ~ Ujp 1) under P(do) and go(z) = Tr[oo*(z)].

We are going to prove that £(A, A, D(A)o) [I)| (see ) holds for the couple (Ao, g2). We fix v € R and
6 € [0,1]. Now, since the functions b and o, 4, j,! € {1,...,d} have sublinear growth, there exists Cj , > 0
such that |b(z)| + Tr[oo*(x)]}/? < Cp(1 + |z|) for every x € R%. Therefore, since f has compact support,
there exists to(v,) > 0 and R > 0 such that supj, 5 SupP,<t,(v.0) Rfa(z,v,v,0)] = 0. Tt follows that

E(A, A, D(A)o)[D)|(ii) holds. Moreover since V f is continuous and b and o, are locally bounded functions, it is
immediate that £(A, A, D(A)o) [T)| (i) is also satisfied. Finally, we recall that sup,,cy- v/(Tr[oo*]) < 400, a.s.
and U is bounded in Ly and then £(A, A, D(A)o) [[)| holds for (A2, go).

Finally, we notice that from Taylor’s formula with My »(U) that

B (XF,..) — F (X, )X, =l = 5 Tloo @D (@)] < i Tl @) [ Rpalo..)B(d)

To study the last term, we define A;% (z,2,7) = g5’ (=, z)IEI[[\f s (x, 2, y)] with Af 3(99 v) = Riy(w, 2,7, U, W, 0),

Ry, RIXRy xR R [0,1] — Ry
d
(x,v,v,w,0) — |w;||[Vf(x+yb(x)+ /yo(x)v+ v ZI: Og,0i(x)oy j(x)w;
iji=1
=V ()|

and (U, W) ~ pw,w), © ~Ujg 1y under P(d2) and g7 (¢) = Y1, [0s,01(2)o1,5(x)|.

We are going to prove that £(A, A, D(A)o) [T)| (see @ holds for every couple (A}’Jg, oY, 0,5 € {1, ., d}.
We fix v € R™4 and 6 € [0,1]. Now, since the functions b, o and 9,,0;07,;, 4,7,1 € {1,...,d} have sublinear
growth, there exists Cj, > 0 such that |b(z)| + Tr[oo*(2)]"/? + Z?’j’l:l |8xl0'i($)0'[7j($)| < Cpo(l+|2))
for every z € R?. Therefore, since f has compact support, there exists o(v,6) > 0 and R > 0 such that
SUP 3> R SUP~ <1 (0,0) R 75 (257, 0,0)| = 0. It follows that £(A, A, D(A)o) [I)| (ii) holds. Moreover since V f
is continuous and b, ¢ and 90,,0,01 5, 4,7,1 € {1,...,d} are locally bounded functions, it is immediate that
E(A, A, D(A)o) [D)| (i) is also satisfied. Finally, we recall that sup,,cy- v (Zl 110z,0i015]) < +00, a.s. and
(W9 1<; j.<a is bounded in L; and then £(A, A, D(A), )holds for (A}’JS, 7.

Finally, it follows from the fact that W is centered and bounded in L; and from Taylor’s formula,

Elf(Xy,,,) — f(Xp,, )IXr, =] :E[f@i )= P ) — et (VE(2), AX, )X, = 4]

<~yn+1Zgg’J E[A(2,7)]

1,j=1

3.2.4 Proof of Growth control and Step Weight assumptions

Polynomial case
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Lemma 3.2. Let p > 0,a € (0,1], s > 1, p € [1,2] and, ¥(y) = y? and ¢(y) = y*. We suppose
that the sequence (Up)nen- satisfies M, 2)v(pp/s)(U) (see @)) and that the sequence (Wy)nen satisfies
Mp/2)v(pp)s) (W) (see @)) Then, for every n € N, we have: for every f € D(A)oy,

d d

— —1 — e
Bllf (Xr,,) = F(Xr,)PIXr,] < Ol Trloo™ (Xe, )12 + Cpvinan 3D 0 oil@)ona(@)lP. (40)
i=1 =1

with D(A)g = C%(R?). In other words, we have GCq(D(A)o, 9o, p,€z) (see (@) with g, = Trloo*]P/? +
iy Yl |0u,0i014]7 and ez(y) = 47/? for every v € Ry.

Moreover, if and B(¢) (see (24))) hold and

‘SWpol(p7a757p) Clpp/S ngra—l (4]‘)
Then, for every n € N, we have
EV?/*(Xr, ) = VP/* (X, )IP[Xr,] < Oy Ve (Xr,). (42)

In other words, we have QCQ(VP/S, Vvrta=l p er) (see (@) with and ez(y) = y*/? for every v € Ry.
Proof. We begin by noticing that

d d

—1 g — —
— X1, | < Cyl2 Trfoo* (Xe, )2 Ui | + Cng | 3N 100,05(Xr, )00 (X, ) P12 W |
=1 =1

|an+1

Let f € D(A). Then f is Lipschitz and the previous inequality gives (40).

We focus now on the proof of (#2)). We first notice that B(¢) (see (24))implies that for any n € N,

| Xr ., — an| < 077114-21 ¢o V(yFn)(l + [Unt1] + [Wall)

n+1

Case 2p < s. We notice that V?/5 is a-Holder for any a € [2p/s, 1] (see Lemma 3. in [23]) and then V?/#
is 2p/s-Holder. We deduce that

E[|V?/*(Xr,,, )~V (X, )1 Xgr,] < CVPYy, ALA V(X ,yr,).

In order to obtain , it remains to use app/s < a+p— 1.

Case 2p > s. Using the following inequality
Vu,v € Ry, Va > 1, Ju® — v <a2* W Hu — ] + Ju —v]%), (43)

with o = 2p/s, and since v/V is Lipschitz, we have

|Vp/s(yrn+l) - V”/S(an)] <@%/ep/s(VPIH2(Xp )WV (Xr,,,) — VV (X,
+ |\/‘7(an+1) - \/V(an)|2p/s)
<2%/op/s(VV L VP 2(Xp ) [ Xr
+ WV X,y — X, [270).

- Xr,|

n+1

In order to obtain ([42), it remains to use the assumptions B(¢) (see (24)) and then app/s <p+a— 1.
O]

17
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Exponential case

Lemma 3.3. Letp € [0,1/2],A >0, s > 1, p € [1,2] and,let ¢ : [vy,00) = Ry be a continuous function such
that Cy := Supyey, ) ?(y)/y < o0 and lylggg d(y) = 400, let P(y) = exp(M\yP), y € Ry. Assume that
and B(¢) (see (24))) hold, that p < s, and that

VA< A3C=0,¥neN,  Elexp(\V?(Xr,,,))|Xr,] <Cexp(AVP(XT,)). (44)
Then, for every n € N, we have

pp (b o V(yrn)

B exp(y/sV? (X)) = exp(/sV? (X, D[, < ot S0 s

exp(A\VP(Xr,)),  (45)

In other words, we have GCo(exp(A/sVP),V=1¢ o Vexp(AV?P), p,ez) (see @) and ez(y) = PP for every
vyeR,.

Proof. When p = 0 the result is straightforward. Before we prove the result, we notice that B(¢) (see (24))
implies that for any n € N,,

Xr 0 = X, | SO/ 9o V(X )L+ [Unsa [* + Wasa ).

Let ,y € R%. From Taylor expansion at order one, we derive,

|exp(A/sVP(y)) — exp(A/sVP(2))] < g(exp(k/sz(y)) +exp(N/sVP(2))[VP(y) — VP (2)].

Since p < 1/2, we notice that the function V? is a-Holder for every a € [2p, 1] (see Lemma 3. in [23]) and
then V? is 2p-Holder that is

VP(y) — VP(2)] <[VV]gply — z|?.

Combining both above inequalities, we derive

E[lexp(\/sV?(XT,,,))—exp(\/sV?(Xr,)) "X, ]

<Cexp(Ap/sz(ypn))E[|Yp —YFHFPP‘yFn]

n+1

+ CE [ exp(Ap/sV" (X)X, . — Xr, *[Xr,
<Cexp(A\p/sVP(Xr,))E[ X1, ., — X1, [*"”| X, ]
+ CE[exp(\of/sV? (X)) [ X, VB[ X, ., — X, [/ 0D Xy, |07,

for every 6 > 1. From and since p < s, we take 6 € (1, p/s] and we get
E [ eXp()\pQ/sV]"(an+l )|an] <Cexp(Np/sVP(Xt,)).
Rearranging the terms and since p < s, we conclude from B(¢) (see (24)) that

<CAP $oV(Xr.) exp(AVP(XT,)),

[ exp(\/sV7 (X, ,,)) = exp(V/sV? (R, ) X N

n+1]

and the proof is completed.

3.2.5 Proof of Theorem [3.1]

The proof of Theorem [3.1] follows directly from Theorem [2.1] Theorem The hypothesis of those theorems
are given by Proposition [3.I] Proposition [3.3] Lemma [3.2] and Proposition [3.4] which is given below.

18
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Proposition 3.4. Let p > 0,a € (0,1], s > 1,p € [1,2] and let ¢¥(y) = 37, ¢(y) = y* and ez(y) = y*/%. Let
a >0 and 8 € R. We assume that there exists & € (0, «), such that we have iminf ¢(y) > 5/&. We suppose
Y—00

that (Un)nen- is a sequence of independent random variables such that U satisfies My 2(U) (see (23)) and
My (pp/syvi(U) (see ). Moreover, we assume that (W, )nen+ is a sequence of independent and centered
random variables such that My, «1 (W) (see @) holds.

We also assume that , B(p) (see ) and Ry(a, 8,6, V) (see ) hold. We also suppose that
SWr ym(piez) (see (18)) holds.

Then SWL%T,(V”VH“_l, p,€7) (see ) holds and we have the following properties

A. If SWrz..0(VP/®) (see (12)) and SWyoi(p, a, s, p) (see ) hold, then

1 &~ - —
P-a.s. sup —— anA% (Yo V) (Xrp,_,) < 400, (46)
neN* Hn
€ k=1
and we also have,
P-a.s. sup v(VP/*te=1) < oo, (47)
neEN*

Moreover, when p/s < pV 1+ a—1, the assumption SWII,%U(VP/S) (see ) can be replaced by
SWriz~m (see @)) Besides, if we also suppose that Ly (see ) holds and that p/s+a—1> 0, then
(VM) nen~ is P — a.s. tight

B. If holds, then

n—oo H

R B
P-a.s. VfeD(A)p lm — E MeAy, f(Xr, ;) =0 (48)
" k=1

Proof. The result is an immediate consequence of Theorem and Theorem It remains to check the
assumption of this Theorems. First, we show SWz ., (VPV1+27L p 1) (see (L1)). From B(¢) (see (24), it
will directly follow that SWz . (g0, psez) (see (1)) with g, = Tr[oo*]7/2 + S0 S| 805004/ holds.
We begin by noticing that for any p < 1 then R,(«, 3,6, V) (see (27)) implies R1 (e, 5, ¢, V). Since (22),
B(¢) (see (24)) and Ry(a, 8,9,V (see (27)) hold, it follows from Proposition [3.1] and since & € (0,a) and
li?,llggf o(y) > B/a, that RCQ7V(1/~J,¢,64,6) (see 1' is satisfied with the function o : [vs,00) — R4 defined

by 9(y) = y*V1. Then, using SWrz -, (p,ez) (see (18)) with Lemma gives SWz ., ,(VPVITa=1 pler) (see
([11)). In the same way, for p/s < a+pV1—1, we deduce from SWrz -, (see (19)) and Lemma [2.2] that
SW1z,4,n(VP/%) (see ) holds.

Now,we are going to prove GCq(F, Ve+PV1=1 p e1) (see (10)) for F = D(A)y and F = {V?/} and the proof
of (46) and will be completed. Notice that will follow from RCq v (¢, ¢, &, B) (see ) and Theorem
The proof is a consequence of Lemma, We notice indeed that $B(¢) (see (24)) gives Tr[oc*]?/? +
i Zle 0.,04(x)014]? < CVP*/2. This observation combined with implies that for FF = D(A) and
F = {V?/s} then GCo(f, VO+PV1=1 p ez) (see ) holds and the proof is completed. O

3.2.6 Proof of Theorem [3.2]

The proof of Theorem [3.2] follows directly from Theorem [2.I] Theorem [2.2] The hypothesis of those theorems

are given by Proposition [3.2] Proposition [3.3] Lemma [3.2] Lemma [3.3] and Proposition [3.5 which is given

below.

Proposition 3.5. Let p € [0,1/2],A > 0, s > 1, p € [1,2] and let ¢ : [v,,00) — Ry be a continuous

function such that Cy := sup,c(,. o) #(y)/y < oo and lig_&nf o(y) = +oo, let Y(y) = exp(AyP), y € Ry and
; P

let ez(y) = v*/? and éz(y) = vP*. We assume that , B(9) (see ) and Rp (o, 8,0, V) (see )
hold and that p < s. We also suppose that SWx -, »(p, €z) (see @) and hold. Then SWz ~ (V¢ o

Vexp(AVP), p,éz) (see ) hold and we have the following properties
A. If SWrz .y (see (19)) holds, then we have SWrz ~ y(exp(N/sV?P)) (see (19)) and

1 &~ s -
P-a.s. sup —— ZWA% (Yo V) (Xr,_,) < +o0, (49)
neN* Hn 1
and we also have,
P-a.s.  sup v!(V 'poVexp(N\/sVP)) < +oo. (50)
neN*

Besides, when Ly (see ({{))) holds, then (v!)nen- is P — a.s. tight.

19



3 APPLICATIONS 20

B. If (T§) and SWz . 4(p,€x) (see (18))hold, then

P-a.s. YfeD(A) lim 7277,@14%]0()(” )=0 (51)

n—oo

Proof. The result is an immediate consequence of Theorem [2.I] and Theorem [2.2] It remains to check the
assumption of this Theorems. First we show SWrz ., (V" 1¢o Vexp(A/sV?P),p, €z) (see ) We begin by
noticing that Rp (o, 8,¢,V) (see ) implies R, 5(c, B) for every A < A Since (see ),

s, 8,0, V) (see . ) and ( . old, it follows from Proposition |3.1] with hmy_H_OQ ¢( ) = 400, that
there exists @ € (0,a) and B € Ry such that RCq, v(Y, ¢, a,B) (see 5)) is satisfied for every function
e [v4,00) = R such that 1/1( ) = exp()\Vp) with A < \. At this point, we notice that this property and the
fact that ¢ has sublinear growth imply . Then, using SWz . (p, éz) (see (18)) with Lemma gives
SWz4.0(V7r o Vexp(AVP), p,éz) (see (11)). In the same way, we deduce from SWrz ., (see (19)) and
Lemma [2.2| that SWzz (V" 1¢ o Vexp(A/sVP)) (see ) holds.

Now,we are going to prove GCq (D (A) V=poV exp(AVP), p,ez) and GCq(exp(A/sVP), V ~LpoV exp(AV?), p, €z)
(see 1.} and the proof of 1.} and will be completed. Notice that 1| will follow from RCq,v (¢, ¢, & ,B)
(see (b)) and Theorem [2.1] The proof is a consequence of Lemma (3.2 (see (48)) and Lemma which is
given below. We notice indeed that B(¢) (see |b gives Tr[oo*]?/? + Z?:l Yoty 10n,04(z) 04|17 < (po V)P
Moreover, we have already shown that is satisfied. These observations combined with (45)) imply that
GCQ(D(A)o, V¢ o Vexp(AVP), p,ez) and GCq(exp(A/sVP),V1¢p o Vexp(AV?P), p,éz) (see hold and
the proof is completed. O

3.3 Application to censored jump processes

In this section, applying results from Section [2] we build invariant distributions for censored jump processes
which are not necessarily Levy processes. Our approach extends the one made in [23], and inspired by [12],
for Levy processes in a weakly mean reverting setting, namely ¢(y) = y%, a € (0,1] for every y € [vs,00).
Like in [23], we consider polynomial test functions, i.e. ¥,(y) = y?, with p > 0 for every y € [v,, 00).

Now, we present the censored jump process, its decreasing step Euler approximation and the hypothesis
necessary to obtain the convergence of (v1),en-. We consider a Poisson point process p with state space
(F; B(F)) where F' = F x R, with F an open set. We refer to [II] for more details. We denote by N the
counting measure associated to p. We have N([0,t) x A) = #{0 < s < t;p, € A} for t > 0 and A € B(F).
We assume that the associated intensity measure is given by N(dt, dz,dv) = dt x w(dz) x ﬂ[oyoo)(v)dv where
(z,v) € F = FxR, and 7 is a positive measure with 7(F) € Ry U{+00}. We will use the notation N = N —
N. We also consider a d-dimension Brownian motion (Wi)i>0 independent from N. We are interested in the
strong solution - assumed to exist and to be unique - of the d dimensional stochastic equation

t ¢
X, =z + / b(X,-)ds + / / e(z, Xsf)]lvgg(z’Xsf)N(ds, dz,dv).
0 0o JF

where b : R? — R? and ¢(z,.) : R = R% 2z € F are locally bounded functions and ¢ : F x RY — R, is
bounded. The infinitesimal generator of this process reads

Af(z) = (b(x), V[ (x)) +/F (f(z+c(z,2)) = f(2))C¢(z,2)7(d2). (52)

and its domain D(A) contains D(A)y = C%(RY). Notice that D(A)g is dense in Co(E). In this paper, we
do not discuss existence or unicity of such processes. The main difference with Levy processes is that the
intensity of jump ((x,z)m(dz) may depend on the position of the process. The studies concerning these
processes were initiated in [7] where the focus is made on the existence of an absolutely continuous (with
respect to the Lebesgue measure) density. In the PhD thesis [25], the author extends existence and unique-
ness results for SDE with non zero Brownian component and establish ergodicity properties. Notice that our
results can be easily extended to the case of a non null Brownian part using the same approach as the one
we present now. Notice that in this case, we can recover the results from [23] as a particular case of our study.

We now introduce an Euler scheme for this process. Since w(F') may take an infinite value, we introduce the
family (F),>0, with Fy C F, C Fy = F for every ¥ > v > 0 and such that U,~F, = F'. When 7(F) < 400,
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we suppose that F, = F for every v > 0. First, let ¢ > 0 and define Bq(x) = b(x) + Kkq(x) with

Vo e R, ky(z) = (Lyer/2.1) + Ln(r)=to0 Lge(1,400)) /FC(ZJ)C(Z,HJ)W(dZ)- (53)

Now, for z € R? and v > 0, we introduce the following quantities - supposed to be well defined cadlag
processes: For every t > 0,

¢
M/ (z) ::/ /C(Z,x)]lv<<(z7r)]lp,y (z)N(ds,dz,dv), and the local martingale
o JE

t
M (x) ::/ / c(z,2)1y<c(zo)LE, (2)N(ds, dz, dv).
o JF
Moreover, for every € > 0, we assume that

VK € Kga, lim sup M7(z,w) =0,
=0t peK
F0,e(w) > 0,97 € (0,70, (w)], Y € RY, sup [M(z,w)| < e(1 + [z]).
t€f0,7]

P(dw) — a.s. (54)

with M, (z) = Lge(0,1/21M{ (%) + Lge(1/2,+00) (Ln(F)=+00M{ (2) + La(r)< oo M (2)), £ > 0.

Remark 3.1. Assume that there exists co : F — Ry such that for every x € R* and z € F, |c(z,z)| < C(1+
|2[)co(2) with [} co(2)m(dz) < +o00. Since |M](x)| < M, (x) := C(1+]z|) Jo [ co(2)N(ds, dz, [0, [|€]|sc]) with

(M~ (z))y>0 a cadlag process starting from zero, then holds when M (x) = M] (x), t > 0. Moreover,

since | M (z)| < M (2) + C(L+ [2])||€]l oo [ co(2)m(dz), then (54) holds when M;"(x) = NI (z), t > 0.

21

We now introduce the sequences of independent random variables (M (z,,))nen=, (respectively (M? (zy,))nen),

- In Tn
(Zr)nen+ € (RHEN with M2 (zy) (vesp. M} (x,)) distributed under the the same law as MJ"(z,) (resp.

M7 (zy,)). For every n € N, we define the Euler scheme by

Xor = Xqr, +¥me1bg(Xqr,)+(Lge,1/2) + Lu(py<toolge(t,400) ML (Xqr,) (55)
F(Lge(r/2,1] + Ln(r)=+oo Lge(1,+00)) ML (X 1,)-

We denote by ﬁq = (;LM)PDO the pseudo-generator and (V:Z’QneN* the sequence of empirical distributions,
of (X4.¢)t>0 respectively defined as in and as in with (X¢)i>0 replaced by (X4.¢)i0-

Remark 3.2. When w(F) = 400, we can assume that the family (F) >0 satisfies m(Fy) < 400 for every
v > 0. In this case we can simulate the Euler genuine scheme in the following way: Let (J})i>o0 be the Poisson

process with intensity ||C||com(Fy). We introduce the sequences of independent random variables (independent
from J7)

Zy ~w(Fy,) M, (2)n(dz),  and Vi~ [IK1S o g (v) o

For everyn € N and every t € [I',, Ty, can be rewritten (in the continuous case) as the Euler genuine
scheme:

qut = Yq;l—‘n—i_(t - Fn) (b<Y‘I:Fn) + 1q€(1/21+00) /
F\F,

(2, X1, )¢ (2, X, )m(d2)).

n+1
J’Yn+1

t
+1 ¥
+ Z c(Zy; ’Xq,l‘n)]lvkgg(z,j“,fq,pn)'
k=1

Notice that when w(F') < 400, since F, = F for every v > 0, we can use this simulation method.

In order to simplify the writing, we will use the notations:

71 ~ —
AXq,n+1 :'Vn-&-lbq(Xq,Fn)a (56)

72 n =y NTL
AX i1 =(Lge(0,1/2) + Ln(m)<toolge(1,400) ) M (Xgr,) + (Lge1/2,1) + L) =toolge(1,400)) M (X g r,),
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— — i —k

and XQ7F7L+1 = XQ7Fn + Z;’C:l AXq,n+1'

Now we introduce some hypothesis concerning the parameters. We begin with the jump component. Let
p = 0. In the sequel, we will denote

Tp,(T) ::/F le(z, 2)|?P¢(2, 2)m(dz)  and Tp(2) == 7 0(2),

~

Assume that the following finiteness hypothesis holds
HP = Vo € RY, 7,(x) < 4oo, (57)
and that

le(z,2)|

Vz € F, lim sup
|z| =400 |‘T|

Finally, assume the existence of a Lyapunov function V : RY — [v,,0), v, > 0, which satisfies Ly (see (4))
with F = R?, and

IVV|? < CvV, D2V ||oo < +o00. (59)

We now consider the mean-reverting property of V for polynomial test functions, i.e. when 9 (y) = ¥, (y) = y?,
y2>20,p>0. Let

Vo € R Ap(@) = Ap2v(2)+29V(2)®247 0V (2)u/oV (z) 1 (60)
We also use the notation ), instead of A,,. Now let ¢ : [v.,+00) — R. We suppose that
HP(p,V) = Vz eRY, 71,(z) < CooV(x)?, (61)
and, when p > 1, we also introduce
HP (6, V) & HP and HP (6,V),¥p' € [1,p). (62)
Moreover, assume that
B,(p) = VreRL |h|? < CopoV(x), (63)

Let 8 € R and a > 0. We assume that V satisfies the following mean-reverting property:

(2, 2)0 (2 2)7(d2) ) + 3xpa() < B — a0 V (@), (64)

Rpalc,B,6,V) = VaeR% <VV(x),b(x)+/ 3

F
with
207 VTP (2)Xp 4 (@) ifp<1
v e RL ypg(z) = 4 [illoem (2) fp=1  (63)
Pplloc2®= 24 (r1 (2) + WV 2V P (@) Rymp(2) i p> 1,

with XP,Q(‘,I") = (1q<1/2[vp]2q + ]lq€(1/2,+oo)0q/\1[Vp_1VV]2(qA1),1)Tq/\1(m), and, for every p > 1,

ko
8y = Lr(py<too + ]lrr(F):+oop22p2p/(2_217k0)_kOCp H Cp21*’°7 ko = inf{k, 2* > p} = [logy(p)], (66)
k=1

with C)., r > 1, the constant from the BDG inequality defined in ([20).
For p > 0,a € (0,1],s > 1,p € [1, 2], we consider the following assumption

(67)

N
»

SWpol(p7 a, s,p) = app/s sa +p- 1a and 4

Finally, consider also the hypothesis
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SWJump(pa q,a, 57p) (68)

Assume that ¢ > (p/2) V p and let us define ez(y) = Loy 2@V1/2) 4 y@AQ/DIPe/s and
ér(y) = yNP/(2D) and let ¢(y) = y*, y € [0, +00). Assume that H9(¢, V) (see ) holds and
that when 7(F) = 400 and ¢ > 1 we have H%(¢,V) (see (62)).

Finally, assume that SWz ., ,(p, €z) (see ) and SWr ., (1 v riMPIRD) e (see ), with
X replaced by X, hold.

Notice that when a(q V (p/2)) < p + a — 1, the assumption SWy (1 v 74" ?/CD) 5 &1) (see
(11)) can be replaced by SWx ., (p, éz) (see (18)) and H(¢, V) (see (61)).

Theorem 3.3. Let p >0, a € (0,1], s > 1,p € [1,2] and let ¥,(y) = y*, ¢(y) = y*. Let g, € [p,1] if p< 1
and g, =pifp>1. Leta >0 and § € R. Assume that Ly (see ) holds and that p/s+a—1 > 0. Assume
also that By, (p) (see @) and Ry q, (o, B,0,V) hold and that:
i. Case p>1 (g, =p). If 7(F) < +o0 assume that HP(¢,V) and H' (¢, V) (see ) are satisfied. If
m(F) = 400 assume that H" (¢, V) (see (63)) holds.
ii. Case p < 1. Assume that H?% (see (57)) holds.
Finally assume that SWJump(p, dp, @, S, p) (see @)), SWIL,M(VP/s) (see ) with X replaced by qu’

SWpoi(p, a, s, p) (see @) and are satisfied. Then (vi'")pen- is P — a.s. tight and

P-a.s. sup v (VP/5Te1) < 4oo,
neN*
Moreover, assume also that b+ 1 (p)—iokq, has sublinear growth and that, when w(F) = +o0, there erists
r € [0,1/2] such that H M lape/zt00/2 (gee ), @) and hold and that 7,41, (5 4 .y/2 S cyr/sta=l,

Then, every weak limiting distribution v of (vn ™ )nen- is an invariant distribution of (X;)i>0 and when v is
unique, we have

P-a.s. VfeC(y (R, lim )% (f) =v(f),

Vip.o,s n—-+o0o

with Cy, (R?) defined in (6)). Notice that when p/s < p+a— 1, the assumption SWrz (V') (see )
pr®,s

can be replaced by SWrzz ~ ., (see @))
Remark 3.3. Actually, we show that this Theorem holds when SWJump(p, dp, @, S, p) (see @ is replaced
by the following weaker assumption (avoided for sake of clarity in the presentation):

SW]ump(p7 q,a,s, p)

Let us consider Gi > p/2, G2 = p, Gz > 0 and let us define ez(7y) = lgpsy?/ P@VI/2) 4
@A/ @)pels gnd E7(y) = yNP/R8) gnd let ¢(y) = y*, y € [0, +00). Assume that HI (o, V)
(see ) when 2p > s (respectively H32 (¢, V), H® (see ) when p > 0) holds and that when
7(F) = +oo and 1 > 1 (resp. G2 > 1,Gs > 1), we have H" (¢, V) (see ) (resp. H?(p,V),
HE (o, V).

Finally, assume that SWr ~ ,(p,ez) (see @) and SWz (1 V ng/\(p/@%)),p, €r) (see ),
with X replaced by Yq, hold.

Notice that when a(gs V (p/2)) < p+a — 1, the assumption SWz , ,(1V 7_(71/\(/)/(2@3))7 p,€z) (see

) can be replaced by SWz -, »(p, éz) (see (@) and H%(p,V) (see )
3.3.1 Proof of the recursive mean reverting control

Before we establish the recursive mean reverting control, we provide some useful results concerning the jump
component.

Lemma 3.4. Let t,y > 0. We have the following properties:
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A. Letp>0. Assume that 7(F) < oo, Fy = F,\Yy >0, and that H? (see (57)) holds. Then, there eists a
locally bounded function € : Ry — R such that for every t > 0 we have €(t) < Ct,Vt € [0,t] with C > 0,
and such that for every n € N,

E[[M] (2)] ] < 1 + €(t))mp 5 (2) = H(1 + () (). (69)

B. Let p > 1 and assume that HP(¢,V) (see @) holds. Then, there exists £ > 1 and a finite constant
¢, >0, such that

E[|M] (2)|*] < Rytrp (@) + ' ho V(a)?, (70)

where R, is the constant defined in
C. Let p € (0,1] and assume that H? (see (57)) holds. Then

E[|M] (2)[*] < trp, (@) if pe(0,1/2] (71)
E[|M] (2)[*] < Cptry,q () if [1/2,1) (72)
E[|M] ()] = tri, () ifp=1, (73)

with C), the constant which appears in the BDG inequality (see (@)

Moreover, those results remain true when we replace 7, , by 7.

Proof. We prove point [A]Let (J;);>0, a Poisson process with intensity 7 := t||(|co7(F). We introduce the
sequences of independent random variables (and independent from J)

Zy ~m(F) n(dz),  and Vi~ [ICI5 (0) Ly do-

Now, we rewrite M, (z) = Zg;l c(Zr, )y, <¢(z,,2)- Therefore, we study

E[’ Zc(Zk,x)]lvk«(zk,m)}gp} :E{Z - Zc(z“x)]lvl«(zl*z)fp}
1 k>1 =1
A 1)k
*ZEUZC Zi ) vicn| }
k>1

We put a = 2p in the inequality and it follows that

k
B[]l menf”] <6 SB[ Azl ] = )
1=1
Moreover,

~ Nk ~\k
o7t Z El+2p—1)4 (7:') _ efﬁ'tﬁtZ(k + 1)(2p*1)+ (7:')
k>1 ’ k>0 ’

Now we are going to use the following result

Lemma 3.5. Let 0 >0, a € N and 0 € [0,0]. Then

08 [exp®)(1+0),  ifa
go(kH) o S { exp(0)(1+¢€(f)  ifa

where the function € : R, — R satisfies €(8) < OO for every 0 € [0,0).
Proof. When a < 1 we use the following inequality

Yu,v € Ry, Yo € (0,1],  (u+v)* <u® + 02, (74)
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with o = a and derive

Z(k+1) o < exp(6 +Zka = exp(f +Zk“k| =exp(f +Zk“ ! _1

k>0 ! k>0 ! E>1 k>1

<exp(f +Z

k>1
=exp(f) + 0 exp(é‘).
Assume now that a > 1, we apply the inequality [43] with u = k + 1, v = 1 and « = a, and it follows that

ok a— a 0k a— a ak
Z(k—l—l) T < exp(0) + a2 1Z(k—|—k )ﬁzexp(ﬁ)—kcﬂ 12 (k+ k%)
k>0 k>0 k21
-1 oy O
=exp(f) +a2°"' > (1+k )(k—l)!
k=1
1 -1 0"
=exp(f) + a2 O exp(0) + a2 HZ (k+1) o
k>0
and a recursive approach yields the result O

We apply this Lemma with § = 7t and a = (2p — 1) and (69) follows.
We now focus on the proof of pom For any k € N* M7 e Do <t \AM |2 —t7ok-1 (2), t > 0,is a

martingale (with notation AM, = M, — t,,Vt > 0). Using (34) for (Mft )t>0, it follows that
B[| 3 1AM PP <E[M + e o ()2

s<Y
gz(p/2’“_1*1)+E[|]\’/7t%k|p/2"'_l] +2(p/2’“_1*1)+|t7-2k7177(z)|p/2’“_1
<2®/2 00y B[S IAMY P ] 4 20/ T D gy ()P

s<t
Now, let ko = inf{k € N*; 2 > p}. Using , and HP, we have
E[| 3 IAM 7 P ] SB[ 1AM ) = i1, ().

s<t s<t

2k1

Since 2% < p for every k < ko, it follows that

— £, o _
{317 < 52t (o) +CZ rracs o ()P < Sty (a) + O sup e (@)
ke{l,....ko}

with 8, the constant defined in (66). Since we have H?' (¢, V) for every p’ € [1,p), it follows that there exists
§>1and €, > 0, such that

E[|M 7] < (@) + Cpttpo V()P

22P

that is . Finally, we consider the proof of point |C.| . First we treat the case p = 1. In this case, the process
(M7)t>0 such that M} = |M]|? — tr; (), for every t > 0, is a martingale and then, for every ¢t > 0, we
have

E[|M] ] = tr s ().
Let p € (0,1/2]. We apply the inequality and the compensation formula, and follows from
E[|M; (2)*7] SB[ |AM ()] = try,5(2).

s<t
Finally, let p € [1/2,1). Using the BDG inequality (see (20))), and the compensation formula, we derive
E[|M] ] < GE[| Y IAMIPP] SCE[Y |AMIPP] = Cptry s (2),
s<t s<t

and the proof is completed. O
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Lemma 3.6. Let'y 0,z €RYpe€ (0,1 and q € [p,1]. We assume that HI (see ) and (@) hold. Then,
for every xo € R%, we have

— 1 B
E[VP (20 + Lge0,1/2 M7 (x) + Loe /221 M7 (2)) = VP (20)] <15 Xp.a(@)

where Xp 4 @5 defined in @

Proof. Assume first that ¢ < 1/2. Since we have (59)), the function V? is a-Holder for every « € [2p, 1] (see
[23], Lemma 3). If follows from Lemma [3.4] point [C.] (see (71))) that for ¢ € [p,1/2] we have

[V (zo + MJ(x)) = VP(20)[] [VP]2qE[IM] ()] < [VP]2gy7g(2).

Assume now that ¢ € (1/2,1]. Since we have , the function x — VP~1(2)VV () is 2¢ — 1-Holder in this
case (see [23], Lemma 3) and since M) (z) is centered, it follows from Lemma point (see and
(73)), that

B[V (zo + MJ () = V(o)) SE[VP~H(20) VV (20) M (2) + [VP 'YV ] a1 M ()]

<
<Cq [Vpil VV] 2q—17Tq (),

which concludes the proof. O

Now, we are able to present the weakly mean reverting recursive control result for test functions with
polynomial growth.

Proposition 3.6. Let v. > 0,p > 0 and let ¢ : [vi,00) — Ry be a continuous function such that
Cy 1= SUDPye[y, 00) P(Y)/y < +00 and let Y,(y) = yP. Let g, € [p,1] if p < 1 and qp = p if p > 1. Let
a>0and g €R.
Assume that B4, (¢) (see @)} and Ry q, (o, 3,0,V (.) hold and that the followmg assumptwns are satisfied
i. Casep>1 (¢, =p). If m(F) < +o0 assume that HP (¢, V) and H' (¢, V) (see ) are satisfied. If
7(F) = +o0o assume that H" (¢, V) (see (69)) holds.
it. Case p < 1. Assume that H? (see (57)) holds.
Then, for every & € (0,«), there exists ng € N*, such that

p o V(x)

Vn > ng, Vo € RY, Agyyntbp o Vi(z) < Vi)

p(B—agoV(x)). (75)

Then RCq,v (¢¥p, ¢, p&, pB) (see (E})) holds for every a € (0,a) such that lig}}_nf #(y) > B/a&. Moreover, when
Yy [eS)

¢ = Id’

sup E[yp, o V(X,
neN

r,)] < +oo. (76)

pa
Proof. From the second order Taylor expansion and the definition of Ay, = A, (see (60)), we derive

w o V( qu n+1) :w © V( Qp7 ) + <qu;Fn+1 - qu v V( qP; )>¢ o V( qu )
+ i(DQV(TnJrl)w;; © V(TnJrl) + VV(TnJrl)@ng © V(TnJrl))(yqp,Fnﬂ - qu’rn)@;g
<1/)p © V(YQPaFn) + <YQp;Fn+1 - Y‘szrn ? vv(yqparn)>¢l/) © V(qul‘n)

1 — —
() 0 V(Tnsn) Xy, — Xy (77)

with Tp1 € (X, 1, X g, r0ry)- First, from , we have sup,cra Ap(z) < +00. With notation , we
compute

E[X g, i — XapTul X g0l = s (b(yqp,rn) +/

PR gpra + e X)) = S X)) (2 Xopor,)7(d2))

— — =2
E[X g, 10 i = X Xy r] = BIAX, i1 X, 0] + 9241100, (K )P + nt1 (b, (K1 ): AX g i)-
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3 APPLICATIONS 27
Case p=1. Let p=1so that ¢, = 1. Since H! (see ) holds, we derive from Lemma point (see
(73)) that

—9 — .
E[AXT 1P X1, < (X1,

Using B1(¢) (see (63), for every & € (0, a), there exists ng(&) such that for every n > no(a),

M lloovmra b1 (X 10,) P < Ynga(a = @)¢ o V(X r,). (78)
We gather all the terms of together and using R1 1(e, 8,¢,V) (see (64)), the proof is completed when

p=1.

Case p > 1. Assume now that p > 1 so that g, = p and ¢;,(y) = py?~'. Since |[VV|> < CyV (see (59)),
then v/V is Lipschitz. Using , it follows that
_ — - - 2p—2
Vp 1(’rn+1) <(\/V(qugr ) + [\/7]1‘Xq;u7rn+l - qu’FnD !
<2(2p 3)4 (VP 1( Fn) + [\/‘7ﬁp72|y . yqpyrn‘Qp—Q)

dp; ap:T'nt1

To study the ‘remainder’ of , we multiply the above inequality by [X, r,., — Xg,r,|? First, we study
the second term which appears in the r.h.s. and using B,(¢) (see (63)), for every p > 1, we have

1
|Aqu,n+1|2p n+1¢OV( qp,I )p7

with notations introduced in 1} Now we study IEHAXq n+1|2p|X T, |- We distinguish two cases:
m(F) < +oo and w(F) = +oo. First, let 7(F) < 4o00. Using Lemmat 3.4 point [A] (see (69)), H% (¢, V)
(see (61))) and g, = p, we deduce that

2 —
HAXq n+1‘ p|qu, } <’Yn+17'qp(qu, D+ €(ynt1)) <’7n+17p(qu, )+C’Yn+1¢ov< qp,Fn)p

Now let 7(F') = +oo. Using Lemma point [B.| (see ) since HP (¢, V') (see (62)) holds, and ¢, = p, we
derive that there exists £ > 1 and €, > 0 such that

—2 Y yp—
E[|Aqu,n+1| p‘qu,Fn} ’Yn+1§p7p( qp,T TL)+€p’Yn+1¢°V< qva-,L)p

It follows that in both cases (7(F) < +o00 and 7(F') = 400), there exists £ > 1 and C > 0 such that

HAXq n+1|2p‘qu, } ’7n+1ﬁp7—p( qp,T )+C'Yn+1¢OV( qp,T )p

Now, let p’ := 1 —1/(2p). Using the Jensen’s inequality, and HP(¢, V) (see (61)), we have

-2 1= —2 — ’
E[|Aqu,n+1|2p 1|qu,Fn,] gE[|Aqu,n+l|2p|X(Ip7Fn]p <’Yn+1ﬁ Tp( ap.T r.)? +07n+1¢ov( qp,T )
<Oy 6 0V (Xyyr, )72
psl n

Applying the inequality with v = |AY;p,n+1 + AY;NLH\, v = |AYZML+1\ and o = 2p and also |u —
v] < |AY;JL+1|, it follows that

B[ X g, rir = X0, X g, 1] o187 (X, r,) + Ch160 V(X 1,7
+2p22p 1(C%+1¢O V( .l )1/2 % Ovp 1/2¢>0V( T n)lfl/(Qp)
+ Ot do V(X))
Let & € (0, ). We deduce that there exists ng(&) € N such that for any n > ng(&), we have
a—da

— — Pp— — —
EllX g0 = Xgp 1,171 X g, 0] S V011875 (Xg, 1) + Ynp19 0 V(Xg, r,)" C’” 1||)\ [| 0227~ 3”[\/‘7]?72.

To treat the other term of the ‘remainder’ of (77) when m(F) = +oo, we proceed as in with || A1[|scbs
replaced by || Ay]l0022?3[V/V]3"2b,, a replaced by @ and & € (0,&). When n(F) < 400, the approach is
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similar using Lemma (see ) for ¢ = 1 since H!( (see ) holds. We gather all the terms of (77| .
together and using R, 4, (o, 8,9, V) (see (64)), for every n > no(&) \/ o(&), we obtain

E[Vp (Y Vp( QPaFn ) |Yq;u7rn]
S,Yn{-]pv Pl (qufn ) (B - a(b © V(qufn ))

qu n+1)

)Vl P(Xg,r,)¢0V(Xg,r )p>

31V Ky, ) (60 V(g r, )@ = 8) + (@ = a =
@

<Vn+1 yr-t (yqp,l‘n) (517 —apg o V(yqp,Fn )) s

which is exactly the recursive control for p > 1, that is (75). The proof of (76) is an immediate application of
Lemma as soon as we notice that the increments of the Euler scheme (55) have finite polynomial moments

which implies .

Case p € (0,1]. Let p € (0,1] so that the function defined on [v.,00) by y — yP is concave. Using then
the Taylor expansion at order 2 of the function V, for every x,y € R%, there exists & € [0, 1] such that

_ _ 1
VP(y) = V(@) <pV?P (@) (VI(y) = V(@) = pVP (@) ((VV(2),y — @) + 5 TD*V(€x + (1 = )y — 2)7%])
and then,

_ 1

VP(y) = VP(@) <pVP @) ((VV @),y — ) + 51DV lacly — o).
We apply this inequality, and with the notation , it follows that
1 — _ —

gp.Tn] <PV? 1( ap,T r,) (41 (VV(X 49T )1 0g, (X g,1,))

E[Vp(yqp,l—‘"+1)
1
+ 31DV B[,

-vr (yqp,l“n)

Qp7Fn+1 - Y‘11071_‘n |2 |qu71“nl)-

As in the proof of the case p > 1, it follows from B, (¢) (see (63)), that there exists @ € (0, «) and ng(@) € N*
such that for every n > ng(a), we have

71 JR— J—
ElXg, 10 = Xapr [ Xq,r,] < Crmi160V(Xy, 1) < Ynsi(a — @)oo V(Xy,r,)

Finally, since quypn+l = Y;PFHH +Afip’n+1, we use Lemmatogether with H9 (see ) and we obtain

_ 1 1. S d
E[V?(Xg,r.0) = VP(Xy 1,00 Xg, 1] Snt+15Xp.ay (X g1 )-

Gathering all the terms together and using R, 4, («, 3, ¢7 V) (see (64)) yields the recursive control ( . The
proof of is an immediate application of Lemma as soon as we notice that the increments of the Euler
scheme have finite polynomial moments which implies (1 O

3.3.2 Proof of the infinitesimal estimation

Proposition 3.7. Let ¢ > 0. Assume that b+ 1 (p)—yockq has sublinear growth, and that and
hold. Moreover, when m(F') = +00, assume that there exists r € [0,1/2] such that HrHlac/2. 400 (see 5
holds and that sup,,cy- v, (Trt14e o o0y /2) < 00, a.s. Then, S(Aq,A C% (RY)) (see (@)) is fulﬁlled wlth
A defined in .

Proof. Let f€ C%(R?). In this proof we will use the function wj 4~ : R? — R? such that wp 4~ (z,v) = 2 +
Y(b(x) + 11 (p)=4ookq(x)). Focusing on the jump component, we study

VT EL @oig (@) + MID] = fwhgq(2)) < Aof () + Ry, (2,7) + B, (2,7)

with M"(x) = T4e0,1/2M; (2) + Lge1/2,400) (Ln(r oM (z) + Lr(py<tooM; (z), t > 0, and using the
following representation (which follows from Remark [2.1),

Asf() = /F (& + e(2,2)) — F(2) — La(r)—soe Lyet/2.100) (V@) ez 2)))C (2 2)(d2)
R, (2,7) =gq(2) / BIAY, (x. 7w, 2)]7(dz),

zeF
R, (z,7) =gq(x AA2 v, z)m(dz)
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where g4(7) = Lr(F)<ioo + La(r)y=to00(1 V Trit,c (10400, (T)) and 11}42 (x,t,w, z) = 7@}42 (z,7, Mg(w)v(x,&)), 2)
with M{"?(z,@), t > 0, following the same law under P as M;"%(x,©), t > 0, under P, © ~ Ujo 1) under P,

RY, RIXRyxRIxF — R,
(@rwz) o D (@) utelz @) - flun (@) +w)

*(f(1?+0(2 z)) — f(z))
~ L (Fy=tooLge(1/2,400) (V f(wp, 4 () = V f(2), c(2,2))|¢(2,2),

and

A ‘RIXRLxF — Ry
1p(z)—1 z
(@,7,2) = %wa(z 2)) = () = Ln(p)=ooLge(1/2.400) (VF (), ¢z, 2) [ (2, 2).

We show that £(Ay, 4,C%(R?)) [[)| holds for (Al ,g,). First we notice that from , for every € > 0, we
have 7o (@) := 1 Asup{y > 0,Vz € R?  SUPte(0,] | M ( @) < e(1+|z])} > 0,P(dd) — a.s. (with convention
sup() = —o0). Wefix z € F, 6 € [0, 1] and since b+1 ()= oo kg has sublinear growth and (5§ . ) holds, it follows
that P(d@)—a.s., there exists vo(z, 0 w) such that hrr_~1_ SUD~ ¢ (0,0 (2,0,8)] RA2 (2,7, My (z,@), z) = 0, which

|z|—
yields € (Aq, A, C3 (R9)) . Moreover, we recall that f is continuous with compact support, so it
is uniformly contlnuous and 1 D holds Therefore, for every compact subset K of R?, we have

V(z,0) € F x [0,1], hn% sup Ry, (z, v, M3 (x),2) =0 P(d@) — a.s.
rzeK

Consequently & (gq,A,C%((]Rd)) i) (see @) holds. Moreover, using a similar approach, it follows from
, UysoF, = F, and the fact that f has a compact support, that £(A,, 4,C%(R?)) (see Eb) holds for
(A%,,9q) Finally, using Taylor expansions at order one and two, for every r € [0,1/2], we derive that for
every z,y € RY 2 € F,
fy+c(z,2)) = F(y)=Lar)=toclge(1/2,4.00) (VI (y), ¢z, 2))
Lr(ry<to02| flloo
+ La(r)=tooLge(0,1/2 (2l flloc) V (IIV fllscle(2, @)|)
1
+ Lo (p)=+oo Lge(1/2,100) IV fllssle(z, 2)[) V (*|\D2f||oo\0(z )?)

SC(Lr(py<too + La(r)=+oo (Lge(0,1/2)]c(2, z)[*" + 1ge1/2,400)lc(2, )P,

Applying this estimation together with H"tlac/2.42)/2 (see (57)), it follows that

/E[sup sup /~\1142(:E,’y,cb,z)]7r(dz)+/ sup sup /~\1242(a:,'y,z)7r(dz) < 400.
F  xeRdyeERL F xeRe yeR

To complete the proof, it remains to study: ! (f(ws,q.~(z)— f(x)). This proof appears as a simplified version
of the proof of Proposition [3.3] so we invite the reader to refer to this part of the paper for more details. O

3.3.3 Proof of Growth control and Step Weight assumptions

Lemma 3.7. Let ¢,¢,p > 0,a € (0,1], s > 1, p € [1,2] and let ¥p(y) = y? and ¢(y) = y*. We suppose that
(@) holds. We have the following propertzes
A. Assume that H1 (see ) is satisfied and that, when 7(F) = +oo and § > 1, HI(p,V) (see (@)

holds. Then, for every n € N we have: for every f € D(A)o,

J— —1 J— =) —
Ellf(Xgron) = fXyr, )1 X ar,] SCrmiY D (1v ) PTCON X b ) 4 Ly —y oo Lm0 V(X
(7

T
9)
with D(A)g = C%(RY) and notations . In other words, we have GCqo(D(A)o,1V T Nel@D) €7)
(see (@) with ez (y) = y"NP/CD) for every v € R

29
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B. Let § > p. Assume that SWpoi(p, a, s,p) (see (67), (59 and By(¢p) (see @)} hold Assume also
that Hi(¢, V) (see (ﬂ)} is satisfied and that, when w(F) = +oo and G > 1, HY(p, V) (see @) holds.
Moreover when 2p > s assume also that § > p/2, that H(¢,V) (see (ﬂ))) is satisfied and that, when
m(F) =400 and § > 1, HY(p,V) (see ) holds. Then, for every n € N, we have

E[[VP* (X gros) = VP (Xgr)P X gr,] < c<]12p>sv:;i<f<‘”“2”+v£iﬁ<”@”””/5>v““1<Xq,rn>(, |
80

In other words, we have GCo(VP/5, VP+a=1 p er) (see (@) with ez(7y) = Lops P/ (2(@V1/2) 4 CAA/D)pr/s
for every v € Ry,

Proof. We prove point |A.[Let f € D(A). We study AXq ni1- We distinguish two cases: p/2 G and
G < p/2. First, let p/2 < q. Usmg the Cauchy Schwartz inequality and Lemmaﬂpomt . (see ) point

(see 1) and pomt .| (see (72) and . since we have H? and when 7(F) = +o0 and § > 1, we have
H(p, V) (see , it follows that

UAan+1|p|Xan] E[|AX, 1 [217/CD < CylGP (72/CD (X yr,) + La(ry=sooLgs16 0 V(X gr, )?/?),

and the result follows from the fact that f is Lipschitz.
Now if ¢ < p/2, then since f is Lipschitz and defined on a compact set, it is also 2¢/p-Holder, and then for

every xg € R%, it follows from Lemma [3.4| point [C.| (see , and ) (since we have H7) that
2 - —2 o —
Ellf (w0 + AX 1) = fzo)l* [ Xqr,] < /155, BIAX 1 X o] < Crymias(Xgr,),
and gathering all the terms together yields (79).
We focus now on the proof of point |B.| (see (80).

Case 2p < s. First, we assume that 2p/s < 1 and we notice that Vp/S is a-Holder for any « € [2p/s, 1]
(see Lemma 3. in m) and then V?/¢ is 2p/s-Hélder. We deduce from , the Cauchy-Schwartz inequality

(since p < s from SW,0(p, a, s, p) (see and p < §), Lemma point point [B] and point [C/] (since
we have H9 and when 7(F) = 400 and § > 1, H(¢, V) (see ) holds) and B,(¢) (see (63)), that

E[V?*(Xgr,) V(X" Xqr,]
o— s -2 evd <1 S|
<2Bre/s= D ye/ ]Sp/s(]EUAX PP X gr, ] + EIAX [ |Xqun)])

—2 PN —
C(BIAX, 1P K g, P/ + EAX, a7 X r,)])

ORI (2P0 (R 1 ) 4 1y oo Lo d 0 V(X g r, )PP/ + Y22V arels (X, ).

q

In order to obtain , it remains to use H4(¢,V) (see ) and app/s <a+p—1.

Case 2p>s. Assuming now that 2p > s and using with a = 2p/s, it follows that
VP (X grn) = VP (X, )| <220p/s(VP 2 (X e, )WV (X gr,n) = VV(Xgr,)|
+ VV(Xgr,) = VV(Xqr,) )

<22p/sp/s([\ﬁ] yp/s— 1/2( )‘Xq s _Yq,l“n|+ [\F}QP/S\X ) _Y%Fn'Qp/S).

n+

Now, we study AXq nt1- We recall that p < s from SW,u(p,a,s,p) (see 1) and 2¢ > p. Using once
again the Cauchy Schwartz inequality and Lemma point [A.| point . B.|and point (since we have HI
(respectively H?) and when 7(F) = +oco and § > 1 (resp. ¢ > 1), Hi(¢,V) (see (62)) (resp. H(¢p,V))
holds), we derive

—2 — —
E|AX i1l Xy r,] < CoE? (727 (X r,) 4+ Lagrym oo Lam16 0 V(X g, )P7/),  and
=2 s s s v s
]E[|AXq7n+1|2pp/ X,r,] < C,ypp/(q )( pp/(d )(X )+ L)oo lgn16 0 V(Xq,rn)pp/ )
Using B,(¢) (see (63)), H(4,V) and Hi(4,V) (see (61)), we obtain

E[[Xyr.. — Xor. | Xer, =] < O30 2 yae2(g) and
E[X g, — Xor, 2P0/ Xor, = a] < Oy Dweloyavels ),

In order to obtain (80), we observe that app/s < a+p— 1. O
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3.3.4 Proof of Theorem [3.3

The proof of Theorem [3.3] follows directly from Theorem [2.I] Theorem [2.2] The hypothesis of those theorems
are given by Proposition [3.6] Proposition [3.7, Lemma [3.7] and by Proposition [3.§ together with Remark [3.4]
which are given below.

Proposition 3.8. Let p > 0,a € (0,1], s > 1,p € [1,2] and, ¥,(y) = y*, ¢(y) = y*. Let g, € [p,1] if p< 1
and g, =p if p> 1. Let a >0 and 8 € R. Then we have the following properties,
A. Assume that By, (p) (see @)} and Ry q,(a, 8,0,V ' hold. Assume also that:
i. Case p > 1 (qp =p). If n(F) < +oo assume that HP (¢, V) and H' (¢, V) (see ) are satisfied.
If 7(F) = 400 assume that H” (¢, V) (see (64)).
it. Case p < 1. Assume that H? (see (57)) holds.
Now let §1 > p/2, Go = p and ez(7y) = Lops v/ F@VL/2) 4 CAQA/@)IPe/s - Assume SWr ., (p, ez) (see
@) and that HT (¢, V) (see (61) when 2p > s (respectively H= (¢, V) for every p > 0) holds and that
when 7(F) = 400 and ¢ > 1 (resp. qg > 1), we have HT (¢, V) (see ) (resp. HZ(¢p,V)).
Then SWz (VP71 p e1) (see ) holds with X replaced by X, q, ond we have the following prop-
erties:
If, in addition, SWII,%U(VP/S) (see ) with X replaced by qu and SWyei(p, a, s, p) (see @)) are
satisfied, then

P-a.s. Sulg I anqu (Yo V) (X gpTi1) < 00, (81)
neN*
and we also have,
P-a.s. sup v/ (VP/5Te71) < 4oo, (82)
neN*

Moreover, when p/s < p+a—1, the assumption SWrz -, n(Vp/ ) (see (ﬂ)} can be replaced by SWzz 4 p
(see (@) Finally, if we also suppose that Ly (see (.)) holds and that p/s +a—1> 0, then (V!)nen-
is P — a.s. tight.

B. Let g5 > 0 and let éz(vy ) Ne/(233)) . Assume that and HE (see ) hold and that when

AL
w(F) = 400 and g3 > 1, (f V) (see (@)} holds. Assume also that SWz (1 V Tq}SA(p/(Qqs))m’ ér)
X,

(see (’)) with X replaced by Xg, holds, then
B B —
P-as. VfeD(4),  lim o- ;nkAqu(qu,rk,n =0 (83)

Remark 3.4. The reader may notice that remains true if we replace H% by H% (¢, V) and if we also re-
place SWz 77(1\/7_1/\p/(2q3)7 p,€x) by SWr ., , (VU @BANP/2) 5 &7). A solution to obtain SWr ., (VU BNP/2) g,
when a(gs A (p/2)) < a+p—1 is provided by point | that is SWx . ,(VPTa=1 p &1) which follows as soon as
we suppose that SWr ., (p,éz) (see (18)) holds. When a(gs A (p/2)) > a+p—1, a possible solution consists
in replacing p by po in - A .| with po satisfying a(Gs A (p/2)) < a+po — 1.

Proof. The result is an immediate consequence of Theorem [2:1] and Theorem It remains to check the
assumptions of those Theorems. We focus on the proof of and (82). First, we show SWI,A,,,,(V”“*, 0, €T)
(see (11)). Since (59), By, (¢) (see (63)) and Ry, 4, (c, 3,9, V) (see (64)) hold, it follows (using the hypothesis
from point from Proposition that RCq.v (¥p, ¢, p&, pB) (see () is satisfied since & € (0,«) and
lq}Qinf é(y) > p/a&. Then, using SWz - ,(p, €z) (see ) with Lemma [2.2| gives SWxz , ,(VPT471 p e7) (see

(11)). In the same way, for p/s < a+p— 1, we deduce from SWrz ., (see (19)) and Lemma that
SWzz 4n(VP/%) (see i holds.

Now,we are going to prove QCQ(VP/S Vatr=l 5 er) (see . and the proof of will be completed. Notice
that (82) will follow from RCq v (¥p, ¢, p&, pB) (see (5)) and Theorem The proof is a consequence of
Lemm We notice indeed that Lemma (see (80)) implies assumption GCo(VP/s Vatr=1 p er) (see

(10)) and the proof of and is completed.
We complete the proof of the Proposition by noticing that follows directly from Lemma (3.7|(see (79)). O

References

[1] G.K. Basak, I. Hu, and C-Z Wei. Weak convergence of recursions. Stochastic Processes and their
Applications, 68(1):65 — 82, 1997.

M2

31



REFERENCES

2]

13]
[4]
[5]

[6]
7]
18]
[9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]
22]

23]
[24]
[25]
[26]

[27]

R. N. Bhattacharya. On the functional central limit theorem and the law of the iterated logarithm
for markov processes. Zeitschrift fir Wahrscheinlichkeitstheorie und Verwandte Gebiete, 60(2):185-201,
1982.

R. Douc, G. Fort, E. Moulines, and P. Soulier. Practical drift conditions for subgeometric rates of
convergence. Ann. Appl. Probab., 14(3):1353-1377, 08 2004.

A. Durmus and E. Moulines. Non-asymptotic convergence analysis for the Unadjusted Langevin Algo-
rithm. ArXiv e-prints, July 2015.

S. N. Ethier and T. G. Kurtz. Markov processes. Wiley Series in Probability and Mathematical Statistics:
Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. Characterization
and convergence.

W. Feller. The parabolic differential equations and the associated semi-groups of transformations. Annals
of Mathematics, 55(3):468-519, 1952.

N. Fournier. Jumping sdes: absolute continuity using monotonicity. Stochastic Processes and their
Applications, 98(2):317-330, 2002.

H. Ganidis, B. Roynette, and F. Simonot. Convergence rate of some semi-groups to their invariant
probability. Stochastic Processes and their Applications, 79(2):243-263, 1999.

M. B. Giles and L. Szpruch. Antithetic multilevel monte carlo estimation for multi-dimensional sdes
without lévy area simulation. Ann. Appl. Probab., 24(4):1585-1620, 08 2014.

R.J. Has’minskii. Stochastic stability of differential equations, volume 7 of Monographs and Textbooks on
Mechanics of Solids and Fluids : Mechanics and Analysis. Sijthoff & Noordhoff, Alphen aan den Rijn,
1980.

N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion processes. Kodansha scientific
books. North-Holland, 1989.

D. Lamberton and G. Pagés. Recursive computation of the invariant distribution of a diffusion. Bernoulli,
8(3):367-405, 04 2002.

D. Lamberton and G. Pagés. Recursive computation of the invariant distrbution of a diffusion: The case
of a weakly mean reverting drift. Stochastics and Dynamics, 03(04):435-451, 2003.

V. Lemaire. Estimation récursive de la mesure invariante d’un processus de diffusion. PhD thesis, 2005.
Thése de doctorat dirigée par Lamberton, Damien et Pages, Gilles Mathématiques appliquées Université
de Marne-la-Vallée 2005.

Vincent Lemaire. An adaptive scheme for the approximation of dissipative systems. Stochastic Processes
and their Applications, 117(10):1491 — 1518, 2007.

H. Mei and G. Yin. Convergence and convergence rates for approximating ergodic means of functions
of solutions to stochastic differential equations with markov switching. Stochastic Processes and their
Applications, 125(8):3104 — 3125, 2015.

G.N. Milstein. Weak approximation of solutions of systems of stochastic differential equations. In Nu-
merical Integration of Stochastic Differential Equations, volume 313 of Mathematics and Its Applications,
pages 101-134. Springer Netherlands, 1995.

G. Pageés. Sur quelques algorithmes récursifs pour les probabilités numériques. ESAIM Probab. Statist.,
5:141-170 (electronic), 2001.

G. Pagés and F. Panloup. Approximation of the distribution of a stationary markov process with
application to option pricing. Bernoulli, 15(1):146-177, 02 2009.

G. Pagés and F. Panloup. Ergodic approximation of the distribution of a stationary diffusion: Rate of
convergence. Ann. Appl. Probab., 22(3):1059-1100, 06 2012.

G. Pageés and C. Rey. Recursive computation of invariant distributions of feller processes. 2017.

F. Panloup. Computation of the invariant measure for a lévy driven sde: Rate of convergence. Stochastic
Processes and their Applications, 118(8):1351 — 1384, 2008.

F. Panloup. Recursive computation of the invariant measure of a stochastic differential equation driven
by a lévy process. Ann. Appl. Probab., 18(2):379-426, 04 2008.

A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied
Mathematical Sciences. Springer New York, 1992.

V. Rabiet. A stochastic equation with censored jumps related to multi-scale Piecewise Deterministic
Markov Processes. PhD thesis, Université Paris Est, Marne-la-Vallée, 2015.

C. Soize. The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State
Solutions. Advanced Series on Fluid Mechanics. World Scientific, 1994.

D. Talay. Second-order discretization schemes of stochastic differential systems for the computation of
the invariant law. Stochastics and Stochastic Reports, 29(1):13-36, 1990.

32



	Introduction
	Convergence to invariant distributions - A general approach
	Presentation of the abstract framework
	Notations
	Construction of the random measures
	Assumptions on the random measures

	Convergence
	Almost sure tightness
	Identification of the limit

	About Growth control and Step Weight assumptions

	Applications
	Notations
	The Milstein scheme
	Presentation and main result
	Recursive control
	Proof of the infinitesimal estimation
	Proof of Growth control and Step Weight assumptions
	Proof of Theorem 3.1
	Proof of Theorem 3.2

	Application to censored jump processes
	Proof of the recursive mean reverting control
	Proof of the infinitesimal estimation
	Proof of Growth control and Step Weight assumptions
	Proof of Theorem 3.3



