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Abstract

In this paper, we study how discretization a�ects the Functional Central Limit Theorem (FCLT)
established by Bhattachatya for stationnary and ergodic Markov processes (Xt)t>0 with unique
invariant measure µ and in�nitesimal generator A [2] that states: n1/2 1

n

∫ n
0 Af(Xt)dt converges

in Law towards the centered Wiener distribution with variance −2〈f,Af〉ν . In this article we
propose a discretization method for any order q ∈ N∗ of that integral. In particular we show
that standard method such as Riemman, Trapezoïd or Simpsons (respectively of order q = 1, 2
and 3) can be used as approximation and still obtain a FCLT. The rate of convergence of
the FCLT we obtain is not n1/2 but nq/(2q+1). Moreover, our results remain valid when X is
replaced by a q-weak order approximation (not necessarily stationnary) as soon as X admits
a unique invariant distribution. We propose applications concerning �rst order FCLT for the
approximation of Markov Brownian di�usion stationary regimes with Euler scheme (where
we recover existing results from literature) and second order FCLT for the approximation of
Brownian di�usion stationary regimes using Talay [24] scheme of weak order two.
Keywords : Ergodic theory, Markov processes, Invariant measures, Central Limit Theorem,
Stochastic approximation.
AMS MSC 2010: 60G10, 47A35, 60F05, 60J25, 60J35, 65C20.

1 Introduction

In this paper, we study the rate of convergence fo the FCLT satis�ed by a random weighted
empirical measure built using a recursive algorithm introduced in [18] and inspired by [10] for
the approximation of the invariant distribution (denoted ν) of a Feller processes (Xt)t>0. In
particular, we establish discretizatized versions of the FCLT presented in [2] where the time
integral is replaced by (weighted)-empirical measures of the Markov process or of one of its
weak-order approximation. The weights applied to compute empirical measures and the weak-
order of the approximation of the Markov process are both crucial to derive our FCLT, also
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monitoring its rate.

Invariant distributions are crucial in the study of the long term behavior of stochastic di�eren-
tial systems (see [9] and [5] for an overview of the subject.) and their computatio has already
been widely explored in the literature. In [23], explicit exact expressions of the invariant density
distribution for some solutions of Stochastic Di�erential Equations are given.

However, in many cases there is no explicit formula for ν. A �rst approach consists in
studying the convergence, as t tends to in�nity, of the semigroup (Pt)t>0 of the Markov process
(Xt)t>0 with in�nitesimal generator A towards the invariant measure ν. This is done e.g. in [7]
for the total variation topology which is thus adapted when the simulation of PT is possible for
T large enough.

As soon as (Xt)t>0 can be simulated, we can device Monte Carlo method to estimate (Pt)t>0,
i.e. E[f(Xt)], t > 0, injecting a second term in the error analysis. When (Xt)t>0 cannot be
simulated at a reasonable cost, a solution is to simulate an approximation of (Xt)t>0 i.e. numer-
ical scheme (X

γ
Γn)n∈N built with transition functions (Qγn)n∈N∗ (given a step sequence (γn)n∈N,

Γ0 = 0 and Γn = γ1 + .. + γn). If the process (X
γ
Γn)n∈N weakly converges towards (Xt)t>0, a

construction relies on numerical homogeneous schemes ((γn)n∈N is constant, γn = γ1 > 0, for
every n ∈ N∗). This approach induces two more terms to control in the approximation of ν in
addition to the error between PT and ν for a large enough �xed T > 0, such that there exists
n(T ) ∈ N∗,with T = n(T )γ1: The �rst one is due to the weak approximation of E[f(XT )] by
E[f(X

γ1

T )] and the second one is due to the Monte Carlo error resulting from the computation
of E[f(X

γ1

T ].

Such an approach does not bene�t from the ergodic feature of (Xt)t>0. In fact, as investigated
in [24] for Brownian di�usions, the ergodic (or positive recurrence) property of (Xt)t>0 is also
satis�ed by its approximation (X

γ
Γn)n∈N at least for small enough time steps γn = γ1, n ∈ N∗.

Then (X
γ1

Γn)n∈N has an invariant distribution νγ1 (supposed to be unique for simplicity) and
the sequence of empirical measures

νγ1
n (dx) =

1

Γn

n∑
k=1

γ1δXγ1
Γk−1

(dx), Γn = nγ1.

almost surely weakly converges to νγ1 . With this last result makes it is possible to compute
by simulation, arbitrarily accurate approximations of νγ1(f) using only one simulated path of
(X

γ
Γn)n∈N. It is an ergodic - or Langevin - simulation of νγ1(f). At this point, it remains to

establish at least that νγ1(f) converges to ν(f) when γ1 converges to zero and, if possible, at
which rate. In [24] this rate was shown to depend closely on the weak order of the scheme.
Notice that the rate of convergence of (νγ1

n )n∈N∗ to ν
γ1 is not established in this paper. An-

other approach was proposed in [1], still for Brownian di�usions, which avoids the asymptotic
analysis between νγ1 and ν. The authors directly prove that the discrete time Markov process
(X

γ
Γn)n∈N, with step sequence γ = (γn)n∈N vanishing to 0, weakly converges toward ν. There-

fore, the resulting error is made of two terms. The �rst one is due to this weak convergence
and the second one to the Monte Carlo error involved in the computation of the law of X

γ
Γn ,

for n large enough. The reader may notice that in mentioned approaches, strong ergodicity
assumptions are required for the process with in�nitesimal generator A.

In [10], these two ideas are combined to design a Langevin Euler Monte Carlo recursive algorithm
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with decreasing steps which a.s. weakly converges to the right target ν. This paper treats the
case where (X

γ
Γn)n∈N is a (inhomogeneous) Euler scheme with decreasing steps associated to

a strongly mean reverting Brownian di�usion process. The sequence (νγn)n∈N∗ is de�ned as
the weighted empirical measures of the path of (X

γ
Γn)n∈N (which is the procedure that is used

in every work we mention from now on and which is also the one we use in this paper). In
particular, the a.s. weak convergence of

νγn(dx) =
1

Γn

n∑
k=1

γkδXγ
Γk−1

(dx), Γn =

n∑
k=1

γk, (1)

toward the (non-empty) set V of the invariant distributions of the underlying Brownian di�usion
is established. Notice also that, this approach does not require that the invariant measure ν is
unique by contrast with the results obtained in [24] and [1] or in [4] where the authors study of
the total variation convergence for the Euler scheme with decreasing steps of the over-damped
Langevin di�usion under strong ergodicity assumptions. Moreover, when the invariant measure
ν is unique, it is proved that lim

n→+∞
νγnf = νf a.s. for a larger class of test functions than C0

which contains ν − a.s. continuous functions with polynomial growth i.e. convergence for the
Wasserstein distance.

In the spirit of [2], which states that n1/2 1
n

∫ n
0 Af(Xt)dt converges in distribution towards

the centered Wiener distribution with variance −2〈f,Af〉ν (where (Xt)t>0 is supposed to be
stationnary and ergodic), a FCLT with given rate (referred to as �rst one) is also established for
the empirical measures of the Euler scheme. More speci�caly, it is shown that the convergence
in distribution of (νγn(fA))n∈N∗ to zero for test functions f which can be written fA = Af hap-
pens with rate n1/3 for a well choosen step sequence. This whole study is made under strongly
mean reverting setting and the extension to the weakly mean reverting setting has been realized
�rst in [20].

Concerning the study of the almost sure convergence, this �rst paper gave rise to many
generalizations and extensions. In [11], the initial result is extended to the case of Euler scheme
of Brownian di�usions with weakly mean reverting properties. Thereafter, in [12], the class
of test functions for which we have lim

n→+∞
νγnf = νf a.s. (when the invariant distribution is

unique) is extended to include functions with exponential growth. Finally, in [21], the results
concerning the polynomial case are shown to hold for the computation of invariant measures
for weakly mean reverting Levy driven di�usion processes, still using the algorithm from [10].
For a more complete overview of the studies concerning (1) for the Euler scheme, the reader
can also refer to [15], [13], [20], [16], [17] or [14].

Those results are extended in [18] and generalized to the case where (Qγ)γ>0 is not speci-
�ed explicitly, to approximate invariant, not necessarily unique, distributions for general Feller
processes. In [18], an abstract framework, that can be used to prove every mentioned exist-
ing result, is developed which suggests various applications beyond the Euler scheme of Levy
processes. See for instance [19]

In this paper, we extend the abstract framework introduced in [18] in order to study rate of
convergence of empirical measures (νn)n∈N∗ to ν, supposed to be unique, in the FCLT for test
functions with form fA = Af and under weakly mean-reverting framework. In particular we
establish an abstract q-order FCLT (see Theorem 3.2) which enables to obtain a discretized
version of [2] and recover every existing results concerning rates of convergence which always
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concern the case q = 1 (see [10], [12], [20] or [14]). Convergence and rate of convergence
results for the Euler scheme are given as example in the end of Section 3. The proof of
Theorem 3.2 relies both on the q-weak order of the stochastic approximation (X

γ
Γn)n∈N and on

a generalization of (1), considering

ν
ηq
n (dx) =

1

Hn

n∑
k=1

ηq,kδXγ
Γk−1

(dx), Hn =

n∑
k=1

ηk, (2)

with (ηq,n)n∈N∗ a well chosen weight sequence given in (36). Notice that the weights for q = 1, 2
or 3 appears as extension of the standards the Riemann, Trapezoïdal or Simpson's homogeneous
approximations of integrals. Up to our knowledge no second or higher order FCLT had been
derived in any situation so far in the litterature.

Then, we apply those results to the second weak order scheme of Talay for Brownian di�usion
processes introduced in [24]. In particular in Theorem 4.1, we establish the convergence of the
empirical measures for some Lp-Wasserstein distances, p > 0. We also establish a �rst order
FCLT for (νγn)n∈N∗ . In this case the convergence has the same rate as for the Euler (i.e. n1/3)
scheme. Finally we establish the second order FCLT for (νη2

n )n∈N∗ . This last result can not be
obtained for the Euler scheme as it is simply a �rst weak order scheme.

2 Convergence to invariant distributions - A general

approach

In this section, we present the abstract framework from [18] to show the convergence of weighted
empirical measures de�ned in a similar way as in (2) and built from an approximation (X

γ
Γn)n∈N

of a Feller process (Xt)t>0 (which are not speci�ed explicitly). Given that the step sequence
(γn)n∈N∗ →

n→+∞
0, it a.s. weakly converges to the set V, of the invariant distributions of (Xt)t>0.

This framework is based on as weak as possible mean reverting assumptions on the pseudo-
generator of (X

γ
Γn)n∈N on the one hand and appropriate rate conditions on the step sequence

(γn)n∈N∗ on the other hand.

2.1 Presentation of the abstract framework

2.1.1 Notations

Let (E, |.|) be a locally compact separable metric space, we denote C(E) the set of continuous
functions on E and C0(E) the set of continuous functions that vanish a in�nity. We equip this
space with the sup norm ‖f‖∞ = supx∈E |f(x)| so that (C0(E), ‖.‖∞) is a Banach space. We
will denote B(E) the σ-algebra of Borel subsets of E and P(E) the family of Borel probability
measures on E. We will denote by KE the set of compact subsets of E.
Finally, for every Borel function f : E → R, and every l∞ ∈ R∪ {−∞,+∞}, lim

x→∞
f(x) = l∞ if

and only if for every ε > 0, there exists a compact Kε ⊂ KE such that supx∈Kc
ε
|f(x)− l∞| < ε

if l∞ ∈ R, infx∈Kc
ε
f(x) > 1/ε if l∞ = +∞, and sup

x∈Kc
ε

f(x) < −1/ε if l∞ = −∞ withKc
ε = E\Kε.

2.1.2 Construction of the random measures

Let (Ω,G,P) be a probability space. We consider a Feller process (Xt)t>0 (see [6] for details)
on (Ω,G,P) taking values in a locally compact and separable metric space E. We denote by
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(Pt)t>0 the Feller semigroup (see [22]) of this process. We recall that (Pt)t>0 is a family of
linear operators from C0(E) to itself such that P0f = f , Pt+sf = PtPsf , t, s > 0 (semigroup
property) and lim

t→0
‖Ptf − f‖∞ = 0 (Feller property). Using this semigroup, we can introduce

the in�nitesimal generator of (Xt)t>0 as a linear operator A de�ned on a subspace D(A) of
C0(E), satisfying: For every f ∈ D(A),

Af = lim
t→0

Ptf − f
t

exists for the ‖.‖∞-norm. The operator A : D(A) → C0(E) is thus well de�ned and D(A) is
called the domain of A. As a consequence of the Echeverria Weiss theorem, the set of invariant
distributions for (Xt)t>0 can be characterized in the following way:

V = {ν ∈ P(E),∀t > 0, Ptν = ν} = {ν ∈ P(E), ∀f ∈ D(A), ν(Af) = 0}.

The starting point of our reasoning is thus to consider an approximation of A. First, we
introduce the family of transition kernels (Qγ)γ>0 from C0(E) to itself. Now, let us de�ne the

family of linear operators Ã := (Ãγ)γ>0 from C0(E) into itself, as follows

∀f ∈ C0(E), γ > 0, Ãγf =
Qγf − f

γ
.

The family Ã is usually called the pseudo-generator of the transition kernels (Qγ)γ>0 and is an
approximation of A as γ tends to zero. From a practical viewpoint, the main interest of our
approach is that it is reasonnable to assume that there exists γ > 0 such that for every x ∈ E
and every γ ∈ [0, γ], Qγ(x, dy) is simulable at a reasonable computational cost. The family
(Qγ)γ>0 is used to build (XΓn)n∈N (this notation replaces (X

γ
Γn)n∈N from now for clarity in

the writing) as the non-homogeneous Markov approximation of the Feller process (Xt)t>0. It

is de�ned on the time grid {Γn =
n∑
k=1

γk, n ∈ N} with the time-step sequence γ := (γn)n∈N∗

satisfying

∀n ∈ N∗, 0 < γn 6 γ := sup
n∈N∗

γn < +∞, lim
n→+∞

γn = 0 and lim
n→+∞

Γn = +∞.

Notice that we will sometimes use the notation γ−m for m ∈ N. In this case we will always
use the convention γ−m = 0. The transition probability distributions of (XΓn)n∈N are given by
Qγn(x, dy), n ∈ N∗, x ∈ E, i.e. :

P(XΓn+1 ∈ dy|XΓn) = Qγn+1(XΓn , dy), n ∈ N.

We can canonically extend (XΓn)n∈N into a càdlàg process by setting X(t, ω) = XΓn(t)
(ω) with

n(t) = inf{n ∈ N,Γn+1 > t}. Then (XΓn)n∈N is a simulable (as soon asX0 is) non-homogeneous
Markov chain with transitions

∀m 6 n, PΓm,Γn(x, dy) = Qγm+1 ◦ · · · ◦ Qγn(x, dy),

and law

L(XΓn |X0 = x) = PΓn(x, dy) = Qγ1 ◦ · · · ◦ Qγn(x, dy).

We use (XΓn)n∈N to design a Langevin Monte Carlo algorithm. Notice that this approach is
generic since the approximation transition kernels (Qγ)γ>0 are not explicitly speci�ed and then,
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it can be used in many di�erent con�gurations including among others, weak numerical schemes
or exact simulation i.e. (XΓn)n∈N = (XΓn)n∈N. This is of main interest in this paper as we show
later that using high weak order schemes of (Xt)t>0 leads to higher rates of convergence in the
FCLT satis�ed by the weighted empirical measures. Notice that weighted empirical measures
are built in a quite more general way than in (1) as we consider some general weights which
are not necessarily equal to the time steps. We de�ne this weight sequence. Let η := (ηn)n∈N∗

be such that

∀n ∈ N∗, ηn > 0, lim
n→+∞

Hn = +∞, with Hn := Hη,n =

n∑
k=1

ηk. (3)

Now we present our algorithm introduced in [18] and adapted from the one introduced in [10]
designed with a Euler scheme with decreasing steps (XΓn)n∈N of a Brownian di�usion process
(Xt)t>0. For x ∈ E, let δx denote the Dirac mass at point x. For every n ∈ N∗, we de�ne the
random weighted empirical random measures as follows

νηn(dx) =
1

Hn

n∑
k=1

ηkδXΓk−1
(dx). (4)

This section of the paper is dedicated to present how to prove that a.s. every weak limiting
distribution of (νηn)n∈N∗ belongs to V. In particular when the invariant measure of (Xt)t>0 is
unique, i.e. V = {ν}, then P − a.s. lim

n→+∞
νηnf = νf , for a generic class of continuous test

functions f . The approach consists in two steps. First, we establish a tightness property to
obtain existence of at least one weak limiting distribution for (νηn)n∈N∗ . Then, in a second step,
we identify everyone of these limiting distributions with an invariant distributions of the Feller
process (Xt)t>0.

2.1.3 Assumptions on the random measures

In this part, we present the necessary assumptions on the pseudo-generator Ã = (Ãγ)γ>0 in
order to prove the convergence of the empirical measures (νηn)n∈N∗ .

Mean reverting recursive control
In this framework, we introduce a well suited assumption, referred to as the mean reverting

recursive control of the pseudo-generator Ã. This assumption leads to a tightness property on
(νηn)n∈N∗ from which follows the existence (in weak sense) of a limiting distribution for (νηn)n∈N∗ .
A supplementary interest of this approach is that it is designed to obtain the a.s. convergence
of (νηn(f))n∈N∗ for a generic class of continuous test functions f which is larger then Cb(E).
To do so, we introduce a Lyapunov function V related to (XΓn)n∈N. Assume that V a Borel
function such that

LV ≡ V : (E → [v∗,+∞), v∗ > 0 and lim
x→∞

V (x) = +∞. (5)

We now relate V to (XΓn)n∈N introducing its mean reversion Lyapunov property. Let ψ, φ :
[v∗,∞) → (0,+∞) some Borel functions such that Ãγψ ◦ V exists for every γ ∈ (0, γ]. Let
α > 0 and β ∈ R. We assume

RCQ,V (ψ, φ, α, β) ≡{
(i) ∃n0 ∈ N∗,∀n > n0, x ∈ E, Ãγnψ ◦ V (x) 6 ψ◦V (x)

V (x) (β − αφ ◦ V (x)).

(ii) lim inf
y→+∞

φ(y) > β/α.
(6)
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RCQ,V (ψ, φ, α, β) is called the weakly mean reverting recursive control assumption of the
pseudo generator for Lyapunov function V .

Lyapunov functions are usually used to show the existence and sometimes the unique-
ness of the invariant measure of Feller processes. In particular, when p = 1, the condition
RCQ,V (Id, Id, α, β)(i) appears as the discrete version of AV 6 β − αV , which is used in that
interest for instance in [9], [5], [1] or[15].

The condition RCQ,V (V p, Id, α, β)(i), p > 1, is studied in the seminal paper [10] (and then
in [11] with φ(y) = ya, a ∈ (0, 1],y ∈ [v∗,∞)) concerning the Wasserstein convergence of the
weighted empirical measures of the Euler scheme with decreasing steps of a Brownian di�usions.
When φ = Id, the Euler scheme is also studied for markov switching Brownian di�usions in [14].
Notice also that RCQ,V (Id, φ, α, β)(i) with φ concave appears in [3] to prove sub-geometrical
ergodicity of Markov chains. In [12], a similar hypothesis to RCQ,V (Id, φ, α, β)(i) (with φ not

necessarily concave and Ãγn replaced by A), is also used to study the Wasserstein but also expo-
nential convergence of the weighted empirical measures (4) for the Euler scheme of a Brownian
di�usions. Finally in [21] similar properties as RCQ,V (V p, V a, α, β)(i), a ∈ (0, 1], p > 0, are
developped in the study of the Euler scheme for Levy processes.

On the one hand, the function φ controls the mean reverting property. In particular, we
call strongly mean reverting property when φ = Id and weakly mean reverting property when

lim
y→+∞

φ(y)/y = 0, for instance φ(y) = ya, a ∈ (0, 1) for every y ∈ [v∗,∞). On the other hand,

the function ψ is closely related to the identi�cation of the set of test functions f for which
we have lim

n→+∞
νηn(f) = ν(f) a.s., when ν is the unique invariant distribution of the underlying

Feller process.

To this end, for s > 1, which is related to step weight assumption, we introduce the sets of
test functions for which we will show the a.s. convergence of the weighted empirical measures
(4):

CṼψ,φ,s(E) =
{
f ∈ C(E), |f(x)| = o

x→∞
(Ṽψ,φ,s(x))

}
, (7)

with Ṽψ,φ,s : E → R+, x 7→ Ṽψ,φ,s(x) :=
φ ◦ V (x)ψ ◦ V (x)1/s

V (x)
.

Notice that our approach bene�ts from providing generic results because we consider general
Feller processes and approximations but also because the functions φ and ψ are not speci�ed
explicitly.

In�nitesimal generator approximation
This section presents the assumption that enables to characterize the limiting distributions

of the a.s. tight sequence (νηn(dx, ω))n∈N∗ . We aim to estimate the distance between V and νηn
(see (4)) for n large enough. We thus introduce an hypothesis concerning the distance between
(Ãγ)γ>0, the pseudo-generator of (Qγ)γ>0, and A, the in�nitesimal generator of (Pt)t>0. We
assume that there exists D(A)0 ⊂ D(A) with D(A)0 dense in C0(E) such that:

E(Ã, A,D(A)0) ≡ ∀γ ∈ (0, γ],∀f ∈ D(A)0, ∀x ∈ E,

|Ãγf(x)−Af(x)| 6 Λf (x, γ), (8)



2 CONVERGENCE TO INVARIANT DISTRIBUTIONS - A GENERAL APPROACH 8

where Λf : E × R+ → R+ can be represented in the following way: Let (Ω̃, G̃, P̃) be a prob-
ability space. Let g : E → Rq+, q ∈ N, be a locally bounded Borel measurable function

and let Λ̃f : (E × R+ × Ω̃,B(E) ⊗ B(R+) ⊗ G̃) → Rq+ be a measurable function such that

supi∈{1,...,q} Ẽ[supx∈E supγ∈(0,γ] Λ̃f,i(x, γ, ω̃)] < +∞ and that we have the representation

∀x ∈ E,∀γ ∈ (0, γ], Λf (x, γ) = 〈g(x), Ẽ[Λ̃f (x, γ, ω̃)]〉Rq

Moreover, we assume that for every i ∈ {1, . . . , q}, supn∈N∗ ν
η
n(gi, ω) < +∞, P(dω)− a.s., and

that Λ̃f,i satis�es one of the following two properties:
There exists a measurable function γ : (Ω̃, G̃)→ ((0, γ],B((0, γ])) such that:

I) P̃(dω̃)− a.s


(i) ∀K ∈ KE , lim

γ→0
sup
x∈K

Λ̃f,i(x, γ, ω̃) = 0,

(ii) lim
x→∞

sup
γ∈(0,γ(ω̃)]

Λ̃f,i(x, γ, ω̃) = 0,
(9) or

II) P̃(dω̃)− a.s lim
γ→0

sup
x∈E

Λ̃f,i(x, γ, ω̃)gi(x) = 0. (10)

Remark 2.1. Let (F,F , λ) be a measurable space. Using the exact same approach, the results
we obtain hold when we replace the probability space (Ω̃, G̃, P̃) by the product measurable space
(Ω̃×F, G̃ ⊗F , P̃⊗λ) in the representation of Λf and in (9) and (10) but we restrict to that case
for sake of clarity in the writing. This observation can be useful when we study jump process
where λ can stand for the jump intensity.

This representation assumption bene�ts from the fact that the transition functions (Qγ(x, dy))γ∈(0,γ],
x ∈ E, can be represented using distributions of random variables which are involved in the
computation of (XΓn)n∈N∗ . In particular, this approach is well adapted to stochastic approxi-
mations associated to a time grid such as numerical schemes for stochastic di�erential equations
with a Brownian part or/and a jump part.

Growth control and Step Weight assumptions
We conclude with hypothesis concerning the control of the martingale part of one step of our

approximation. Let ρ ∈ [1, 2] and let εI : R+ → R+ an increasing function. For F ⊂ {f, f :
(E,B(E))→ (R,B(R))} and g : E → R+ a Borel function, we assume that, for every n ∈ N,

GCQ(F, g, ρ, εI) ≡ P− a.s. ∀f ∈ F,
E[|f(XΓn+1)− Qγn+1f(XΓn)|ρ|XΓn ] 6 Cf εI(γn+1)g(XΓn), (11)

with Cf > 0 a �nite constant which may depend on f .

Remark 2.2. The reader may notice that GCQ(F, g, ρ, εI) holds as soon as (11) is satis�ed

with Qγn+1f(XΓn), n ∈ N∗, replaced by a FXn := σ(XΓk , k 6 n)- progressively measur-
able process (Xn)n∈N∗ since we have Qγn+1f(XΓn) = E[f(XΓn+1)|XΓn ] and E[|f(XΓn+1) −
Qγn+1f(XΓn)|ρ|XΓn ] 6 2ρE[|f(XΓn+1)− Xn|ρ|XΓn ] for every Xn ∈ L2(FXn ).

We will combine this �rst assumption with the following step weight related ones:

SWI,γ,η(g, ρ, εI) ≡ P− a.s.
∞∑
n=1

∣∣∣ ηn
Hnγn

∣∣∣ρεI(γn)g(XΓn) < +∞, (12)
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and

SWII,γ,η(F ) ≡ P− a.s. ∀f ∈ F,
∞∑
n=0

(ηn+1/γn+1 − ηn/γn)+

Hn+1
|f(XΓn)| < +∞, (13)

with the convention η0/γ0 = 1. Notice that this last assumption holds as soon as the sequence
(ηn/γn)n∈N∗ is non-increasing.

At this point we can focus now on the main results concerning this general approach.

2.1.4 Almost sure tightness

From the recursive control assumption, Theorem 2.1 establishes the a.s. tightness of the se-
quence (νηn)n∈N∗ and also provides a uniform control of (νηn)n∈N∗ on a generic class of test
functions.

Theorem 2.1. Let s > 1, ρ ∈ [1, 2], v∗ > 0, and let us consider the Borel functions V : E →
[v∗,∞), g : E → R+, ψ : [v∗,∞) → R+ and εI : R+ → R+ an increasing function. We have
the following properties:

A. Assume that Ãγn(ψ ◦V )1/s exists for every n ∈ N∗, and that GCQ((ψ ◦V )1/s, g, ρ, εI) (see
(11)), SWI,γ,η(g, ρ, εI) (see (12)) and SWII,γ,η((ψ ◦ V )1/s) (see (13) hold. Then

P-a.s. sup
n∈N∗

− 1

Hn

n∑
k=1

ηkÃγk(ψ ◦ V )1/s(XΓk−1
) < +∞. (14)

B. Let α > 0 and β ∈ R. Let φ : [v∗,∞) → R∗+ be a continuous function such that Cφ :=
supy∈[v∗,∞) φ(y)/y <∞. Assume that (14) holds and

i. RCQ,V (ψ, φ, α, β) (see (6)) holds.

ii. LV (see (5)) holds and lim
y→+∞

φ(y)ψ(y)1/s

y = +∞.

Then,
P-a.s. sup

n∈N∗
νηn(Ṽψ,φ,s) < +∞. (15)

with Ṽψ,φ,s de�ned in (7). Therefore, the sequence (νηn)n∈N∗ is P− a.s. tight.

2.1.5 Identi�cation of the limit

In Theorem 2.1, the tightness - and then existenve of a weak limiting distribution - of (νηn)n∈N∗

is established. From Theorem 2.2, it follows that every limiting point of this sequence is an
invariant distribution of the Feller process with in�nitesimal generator A.

Theorem 2.2. Let ρ ∈ [1, 2]. We have the following properties:

A. Let D(A)0 ⊂ D(A), with D(A)0 dense in C0(E). We assume that Ãγnf exists for every
f ∈ D(A)0 and every n ∈ N∗. Also assume that there exists g : E → R+ a Borel function
and εI : R+ → R+ an increasing function such that GCQ(D(A)0, g, ρ, εI) (see (11)) and
SWI,γ,η(g, ρ, εI) (see (12)) hold and that

lim
n→+∞

1

Hn

n∑
k=1

|ηk+1/γk+1 − ηk/γk| = 0. (16)
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Then

P-a.s. ∀f ∈ D(A)0, lim
n→+∞

1

Hn

n∑
k=1

ηkÃγkf(XΓk−1
) = 0. (17)

B. We assume that (17) and E(Ã, A,D(A)0) (see (8)) hold. Then

P-a.s. ∀f ∈ D(A)0, lim
n→+∞

νηn(Af) = 0.

It follows that, P − a.s., every weak limiting distribution νη∞ of the sequence (νηn)n∈N∗

belongs to V, the set of the invariant distributions of (Xt)t>0. Finally, if the hypothesis
from Theorem 2.1 point B. hold and (Xt)t>0 has a unique invariant distribution, i.e.
V = {ν}, then

P-a.s. ∀f ∈ CṼψ,φ,s(E), lim
n→+∞

νηn(f) = ν(f), (18)

with CṼψ,φ,s(E) de�ned in (7).

In the particular case where the function ψ is polynomial, (18) also reads as the a.s. conver-
gence of the empirical measures for some Lp-Wasserstein distances, p > 0, that we will study
further in this paper for some numerical schemes of some di�usion processes. From the liberty
granted by the choice of ψ in this abstract framework, where only a recursive control with
mean reverting is required, we will also propose an application for functions ψ with exponential
growth.

2.2 About Growth control and Step Weight assumptions

The following Lemma presents a L1-�niteness property that we can obtain under recursive
control hypothesis and strongly mean reverting assumptions (φ = Id). This result is thus useful
to prove SWI,γ,η(g, ρ, εI) (see (12)) or SWII,γ,η(F ) (see (13)) for well chosen F and g in this
speci�c situation.

Lemma 2.1. Let v∗ > 0, V : E → [v∗,∞), ψ : [v∗,∞) → R+, such that Ãγnψ ◦ V exists for
every n ∈ N∗. Let α > 0 and β ∈ R. We assume that RCQ,V (ψ, Id, α, β) (see (6)) holds and
that E[ψ ◦ V (XΓn0

)] < +∞ for every n0 ∈ N∗. Then

sup
n∈N

E[ψ ◦ V (XΓn)] < +∞ (19)

In particular, let ρ ∈ [1, 2] and εI : R+ → R+, an increasing function. It follows that if∑∞
n=1

∣∣∣ ηn
Hnγn

∣∣∣ρεI(γn) < +∞, then SWI,γ,η(ψ ◦ V, ρ, εI) holds and if
∑∞

n=0
(ηn+1/γn+1−ηn/γn)+

Hn+1
<

+∞, then SWII,γ,η(ψ ◦ V ) is satis�ed

Now, we provide a general way to obtain SWI,γ,η(g, ρ, εI) and SWII,γ,η(F ) for some speci�c
g and F as soon as a recursive control with weakly mean reversion assumption holds.

Lemma 2.2. Let v∗ > 0, V : E → [v∗,∞), ψ, φ : [v∗,∞) → R+, such that Ãγnψ ◦ V exists
for every n ∈ N∗. Let α > 0 and β ∈ R. We also introduce the non-increasing sequence
(θn)n∈N∗ such that

∑
n>1 θnγn < +∞. We assume that RCQ,V (ψ, φ, α, β) (see (6)) holds and

that E[ψ ◦ V (XΓn0
)] < +∞ for every n0 ∈ N∗. Then

∞∑
n=1

θnγnE[Ṽψ,φ,1(XΓn−1)] < +∞
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with Ṽψ,φ,1 de�ned in (7). In particular, let ρ ∈ [1, 2] and εI : R+ → R+, an increasing function.
If we also assume

SWI,γ,η(ρ, εI) ≡
(
γ−1
n εI(γn)

( ηn
Hnγn

)ρ)
n∈N∗

is non-increasing and

∞∑
n=1

( ηn
Hnγn

)ρ
εI(γn) < +∞, (20)

then we have SWI,γ,η(Ṽψ,φ,1, ρ, εI) (see (12)). Finally,if

SWII,γ,η ≡
( ηn+1

(γn+1
− ηn

γn
)+

γnHn

)
n∈N∗

is non-increasing and

∞∑
n=1

(ηn+1/γn+1 − ηn/γn)+

Hn
< +∞, (21)

then we have SWII,γ,η(Ṽψ,φ,1) (see (13)).

3 Rate of convergence - A general approach

In this section, we extend the abstract framework from Section 2 to establish the rate of
convergence of the empirical measures (4) to ν supposed to be unique. The approach we
propose consists in two part. First we give appropriate weak error estimations and on the other
hand we give suitable step weight assumptions to control the martingale part of the empirical
measures. Notice that, together with the choice of weights, the weak error estimation is the
crucial tool to obtain high rate of convergence of the weighted empirical measures.

3.1 Assumption on the random measures

Weak approximation assumption
Let F ⊂ {f, f : (E,B(E))→ (R,B(R))}. Let q ∈ N be the weak order of the approximation.

We consider the linear operator Mq de�ned on F . Let η̃q : R+ × {0, 1} → R+ such that the
weight sequence (η̃q,n)n∈N∗ = (η̃q(γn, n mod (q − 1)))n∈N∗ is decreasing and satis�es (3) and

such that P − a.s., limn→∞ ν
η̃q
n (Mqf) = ν(Mqf) for every f ∈ F . For p, q ∈ N∗, we introduce

ζq,p ∈ Rp wich satis�es ζq,qu = (q!)−1 for every u ∈ {0, . . . , q − 1}, and for p ∈ {3, . . . , q},

ζq,p−1 = ((M q,p)TM q,p)−1(M q,p)TN q,p(ζq,p)

where N q,p : Rp → Rq, ζ → ( 1
(p−1)!1j<q−1 + ζj+p−q1j≥q−p + ζj1j<p)j∈{0,...,q−1} and M

q,p ∈
Rq×(p−1) de�ned by M q,p

j,u =
∑(j−u)∧(q−p+1)

l=0 cq−p+2
l with

cq0 =1− ζq,20 1q>2 (22)

cq1 =1q>2 − ζq,21 1q>2 + ζq,20 1q=3

cqj =1, 1 < j < q − 2

cqq−2 =1 + ζq,20 1q>2 − ζq,21 1q=3

cqq−1 =ζq,21 1q>2 + ζq,20 1q=3.

We suppose that
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Eq(F, Ã, A,M, η̃q) ≡ ∀f ∈ F,∀x ∈ E,∀γ ∈ (0, γ], ∀e ∈ {0, . . . , q − 1}, (23)∣∣∣Rqf(x, γ, e)− η̃q(γ, e)Mqf(x)
∣∣∣ 6 η̃q(γ, e)Λf,q(x, γ),

with

R1f(x, γ, e) :=R1f(x, γ) := −R̃1f(x, γ)

Rqf(x, γ, e) :=− R̃qf(x, γ)−
q−2∑
l=1

γq−l−1

e∧(q−l−1)∑
u=0

ζq,q−lu

(e−u)∧(l−1)∑
v=0

Rl+1A
q−l−1f(x, γ, v)

where, for every m ∈ {0, . . . , q − 1}, the measurable functions de�ned by

R̃mf : E × R+ → R
(x, γ) 7→ γÃγf(x)−

∑m
i=1

γi

i! A
if(x),

are supposed to be well de�ned for every f ∈ F . In addition, we also assume that Λf,q :
E × R+ → R+ can be represented in the following way: Let (Ω̃, G̃, P̃) be a probability space.
Let g : E → Rl+, l ∈ N∗, be a locally bounded Borel measurable function and let Λ̃f,q :

(E × R+ × Ω̃,B(E)⊗ B(R+)⊗ G̃)→ Rl+ be a measurable function such that

sup
i∈{1,...,l}

Ẽ[sup
x∈E

sup
γ∈(0,γ]

Λ̃f,q,i(x, γ, ω̃)] < +∞ (24)

and that the following representation assumption holds

∀x ∈ E,∀γ ∈ (0, γ], Λf,q(x, γ) = 〈g(x), Ẽ[Λ̃f,q(x, γ, ω̃)]〉Rl .

Moreover, we assume that for every i ∈ {1, . . . , l}, supn∈N∗ ν
η̃q
n (gi, ω) < +∞, P − a.s., and

that Λ̃f,q,i satis�es one of the two following properties.
There exists a measurable function γ : (Ω̃, G̃)→ ((0, γ],B((0, γ])) such that:

I) P̃(dω̃)−a.s


(i) ∀K ∈ KE , lim

γ→0
sup
x∈K

Λ̃f,q,i(x, γ, ω̃) = 0,

(ii) lim
|x|→∞

sup
γ∈(0,γ(ω̃)]

Λ̃f,q,i(x, γ, ω̃) = 0,
(25)

or

II) P̃(dω̃)−a.s lim
γ→0

sup
x∈E

Λ̃f,q,i(x, γ, ω̃)gi(x) = 0. (26)

Remark 3.1. Let (F,F , λ) be a measurable space. Using the exact same approach, the results
we obtain hold when we replace the probability space (Ω̃, G̃, P̃) by the product measurable space
(Ω̃×F, G̃⊗F , P̃⊗λ) in the representation of Λf,q and in (25) and (26). It is a similar observation
as in the study of the convergence as pointed out in Remark 2.1.

Growth assumption
We denote by PX,2 the set of FXn := σ(XΓk , k 6 n)- progressively measurable processes

(Xn)n∈N∗ with Xn+1 ∈ L2(FXn ) and E[Xn+1|XΓn ] = 0 for every n ∈ N. Let ρ ∈ [1, 2] and let
εX, εGC : R+ → R+ be two increasing functions such that the weight sequence (εX,n)n∈N∗ =
(εX(γn))n∈N∗ satis�es (3). Let F ⊂ {f, f : (E,B(E))→ (R,B(R))} and g : E → R+ be a Borel
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measurable function. We consider the linear operator V de�ned on F and we assume that Amf
is well de�ned for every m ∈ {0, . . . , q − 1} and every f ∈ F and that

GCQ,q(F, g, ρ, εX, εGC ,V) ≡ P− a.s. ∀f ∈ F,∃Xf ∈ PX,2
E
[∣∣∣Bqf(XΓn , XΓn+1 , γn+1, n mod (q − 1))− Xf,n+1

∣∣∣ρ∣∣∣XΓn

]
6 Cf εGC(γn+1)g(XΓn).

(27)

with, for every x, y ∈ E, γ > 0, e ∈ {0, q ∨ 1− 1},

B1f(x, y, γ, e) :=B1f(x, y, γ) := Qγf(x)− f(y),

Bqf(x, y, γ, e) :=B1f(x, y, γ)−
q−2∑
l=0

γq−l−1

e∧(q−l−1)∑
u=0

ζq,q−lu

(e−u)∧(l−1)∑
v=0

Bl+1A
q−l−1f(x, y, γ, v).

and also E[|Xf,n+1|2|XΓn ] = εX(γn+1)Vf(XΓn) with for every f ∈ F , limn∈N∗ ν
εX
n (Vf, ω) =

ν(Vf), P− a.s., and

∀E > 0, lim
n→∞

1

HεX,n

n−1∑
k=0

E[|Xf,k+1|21|Xf,k+1|>
√
HεX,nE

|XΓk ]
P
= 0. (28)

Remark 3.2. The reader may notice that GCQ,q(F, q, ρ, εX, εGC ,V) holds as soon as (11) is

satis�ed with Qγn+1A
mf(XΓn), n ∈ N∗, m ∈ N∗ replaced by a FXn := σ(XΓk , k 6 n)- pro-

gressively measurable process (Xm,n)n∈N∗ , since ρ ∈ [1, 2] and we have Qγn+1A
mf(XΓn) =

E[Amf(XΓn+1)|XΓn ] and E[Xf,n+1|XΓn ] = 0.

In the following we will combine this assumption with

SWGC,γ(g, ρ, εX, εGC) ≡ P− a.s.
∞∑
n=1

εGC(γn)

H
ρ/2
εX,n

g(XΓn) < +∞. (29)

Notice that, as a consequence of Lemma 2.2, if we suppose that RCQ,V (ψ, φ, α, β) (see (6))
holds, that E[ψ ◦ V (XΓn0

)] < +∞ for every n0 ∈ N∗ and that

SWGC,γ(ρ, εX, εGC) ≡
( εGC(γn)

γnH
ρ/2
εX,n

)
n∈N∗

is nonincreasing and
∞∑
n=1

εGC(γn)

H
ρ/2
εX,n

< +∞, (30)

holds, then we have SWGC,γ(Ṽψ,φ,1, ρ, εX, εGC) (see (29)) with Ṽψ,φ,1 de�ned in (7).

3.2 Convergence rate results

We begin with some preliminary results.

Lemma 3.1. (Kronecker). Let (an)n∈N∗ and (bn)n∈N∗ be two sequences of real numbers. If
(bn)n∈N∗ is non-decreasing, strictly positive, with lim

n→+∞
bn = +∞ and

∑
n>1

an/bn converges in

R, then

lim
n→+∞

1

bn

n∑
k=1

ak = 0.
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Theorem 3.1. (Chow (see [8], Theorem 2.17)). Let (Mn)n∈N∗ be a real valued martingale
with respect to some �ltration F = (Fn)n∈N. Then

lim
n→+∞

Mn = M∞ ∈ R a.s. on the event⋃
r∈[0,1]

{ ∞∑
n=1

E[|Mn −Mn−1|1+r|Fn−1] < +∞
}
.

Now, we give a general CLT result from [8] (Corollary 3.1) which applies to martingale
arrays.

Proposition 3.1. Let (M̃k,n)k∈{1,..,n},n∈N be a R-valued martingale array and de�ne FM̃k,n =

σ(M̃i,n, i ∈ {0, . . . , k}).We assume that (M̃n)n∈N satis�es the Lindeberg condition:

∀E > 0, lim
n→∞

n−1∑
k=0

E[|M̃k+1,n − M̃k,n|21|M̃k+1,n−M̃k,n|>E|F
M̃
k,n]

P
= 0 (31)

and that

lim
n→∞

n−1∑
k=0

E[|M̃k+1,n − M̃k,n|2|FM̃k,n]
P
= ζ2

M̃
(32)

with ζ2
M̃

an almost sure �nite random variable. Then

lim
n→∞

M̃n,n
law
= Ñ (ζ2

M̃
), (33)

where Ñ (ζ2
M̃

) is a random variable with Laplace transform E[exp(vÑ (ζ2
M̃

)] = E[exp(v2ζ2
M̃
/2))]

for every v ∈ R.

3.2.1 The q-order FCLT

When we consider the q-order weak approximation (XΓn)n∈N of a Feller process (Xt)t>0, it is
possible to obtain convergence of some weighted empirical measures at a better rate using the
following result. A crucial point to obtain this result is to consider a speci�c weight sequence
when we build the weighted empirical measures (4). We begin by a alternative result which is
crucial in our proof of the q- order FCLT given in Theorem 3.2.

Proposition 3.2. Let q ∈ N∗, and nq ∈ N such that γnq+j = γnq+1 for j ∈ {1, . . . , q}.
Considering (cqe)e∈{0,...,q−1} de�ned in (22), then

γnq+1

q−1∑
e=0

cqeAf(XΓnq+e) =

q∨2−2∑
e=0

f(XΓnq+e+1)− f(XΓnq+e) (34)

+Bqf(XΓnq+e , XΓnq+j+1 , γnq+1, e)

+Rqf(XΓnq+e , γnq+1, e).

with Bqf de�ned in (27) and Rqf de�ned in (23).
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Proof. The case q = 1 follows directly from the de�nitions of B1f and R1f given that c0
1 = 1.

Assume that q > 2.

Step 1. We write

γnq+1

q−2∑
e=0

Af(XΓnq+e)

=

q−2∑
j=0

f(XΓnq+e+1)− f(XΓnq+e) +B1f(XΓnq+e+1 , XΓnq+e , γnq+1)

−
q∑
i=2

γinq+1

i!
Aif(XΓnq+e)− R̃qf(XΓnq+e , γnq+1)

Step 2. Let us prove that for p ∈ {2, . . . , q}

q−2∑
j=0

q∑
i=p

γinq+1

i!
Aif(XΓnq+j ) = γpnq+1

p−1∑
u=0

ζq,pu (

q−p∑
j=0

cq−p+1
j Apf(XΓnq+j+u)) +Dq,q−p (35)

with

Dq,q−p =

q−p∑
l=0

γq−l−1
nq+1

q−l−1∑
u=0

ζq,q−lu

l−1∑
e=0

Bl+1A
q−l−1f(XΓnq+e+u+1 , XΓnq+e+u), γnq+1, e)

+ γq−l−1
nq+1

q−l−1∑
u=0

ζq,q−lu

l−1∑
e=0

Rl+1A
q−l−1f(XΓnq+e+u , γnq+1, e)

Assume that (35) is true for some p ∈ {3, . . . , q}
q−2∑
e=0

q∑
i=p

γinq+1

i!
Aif(XΓnq+e)

=γp−1
nq+1

p−1∑
u=0

ζq,pu (Ap−1f(XΓnq+q−p+u)−Ap−1f(XΓnq+u))

+ γp−1
nq+1

p−1∑
u=0

ζq,pu

q−p−1∑
e=0

Bq−p+1A
p−1f(XΓnq+e+u+1 , XΓnq+e+u), γnq+1, e)

+ γp−1
nq+1

p−1∑
u=0

ζq,pu

q−p−1∑
e=0

Rq−p+1A
p−1f(XΓnq+e+u , γnq+1, e)) +Dq,q−p

We observe that for p > 2

p−1∑
u=0

ζq,pu (Ap−1f(XΓn(q−1)+q−p+u)−Ap−1f(XΓn(q−1)+u
)) +

q−2∑
e=0

cq−1
e

1

(p− 1)!
Ap−1f(XΓn(q−1)+e

)

=

q−1∑
e=0

(
1

(p− 1)!
1e<q−1 + ζq,pe+p−q1e≥p−q + ζq,pe 1e<p

)
Ap−1f(XΓn(q−1)+e

)



3 RATE OF CONVERGENCE - A GENERAL APPROACH 16

and

p−2∑
u=0

ζq,p−1
u (

q−p+1∑
e=0

cq−p+2
e Ap−1f(XΓn(q−1)+e+u

))

=

q−1∑
e=0

p−2∑
u=0

ζq,p−1
u

(e−u)∧(q−p+1)∑
l=0

cq−p+2
l

Ap−1f(XΓn(q−1)+e
).

Since M q,pζq,p−1 = N q,p(ζq,p), we deduce that

q−2∑
e=0

q∑
i=p−1

γi(n+1)(q−1)

i!
Aif(XΓn(q−1)+e

)

=γp−1
(n+1)(q−1)

p−2∑
u=0

ζq,p−1
u

q−p+1∑
e=0

cq−p+2
e Ap−1f(XΓnq+e+u)

+ γp−1
(n+1)(q−1)

p−1∑
u=0

ζq,pu

q−p−1∑
e=0

Bq−p+1A
p−1f(XΓnq+e+u , XΓnq+e+u+1 , γ(n+1)(q−1), e)

+ γp−1
(n+1)(q−1)

p−1∑
u=0

ζq,pu

q−p−1∑
e=0

Rq−p+1A
p−1f(XΓnq+e+u , γnq+1, e) +Dq,q−p

=γp−1
(n+1)(q−1)

p−2∑
u=0

ζq,p−1
u

q−p+1∑
e=1

cq−p+2
e Ap−1f(XΓnq+e+u) +Dq,q−p−1

Step 3. It follows that

γnq+1

q−2∑
e=0

Af(XΓnq+e) +
1∑

u=0

ζq,2u (Af(XΓnq+q+u−2) +Af(XΓnq+u))

=

q−2∑
e=0

f(XΓnq+e+1)− f(XΓnq+e)

+

q−2∑
e=0

B1f(XΓnq+e+1 , XΓnq+e , γnq+1)−
1∑

u=0

ζq,2u Bq−1Af(XΓnq+e+u , XΓnq+e+u+1 , γnq+1, u)

−
q−2∑
e=0

R̃qAf(XΓnq+e , γnq+1)−
1∑

u=0

ζq,2u Rq−1Af(XΓnq+e+u , γnq+1, u)−Dq,q−2

Recalling the de�nition of (cqj)j∈{0,...,q−1} (see (22)), the proof is completed.

We are now in a position to state the q-order FCLT. Before that, we introduce the the
weight sequences. In particular, we assume that

∀n ∈ N, e ∈ {0, . . . , q − 2},
γ(q−1)n+1+e =γ(q−1)n+1, (36)

η(q−1)n+1+e =Cγ,η

(
cqeγ(q−1)n+1 + 1e=0c

q
q−1γ(q−1)(n−1)+1

)
,

with Cγ,η ∈ R∗ and the convention γ−l = 0 for l ∈ N∗.
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Theorem 3.2. Let q ∈ N∗, F ⊂ {f, f : (E,B(E)) → (R,B(R)), Af ∈ Cb(E)}, g : E → R+ a
Borel function, η̃q, εX, εGC : R+ → R+ be three increasing functions and let Mq and V be two
linear operators de�ned on F . Finally let γn and ηn, n ∈ N, be the time step and the weight
sequences satisfying (36).

Assume that Eq(F, Ã, A,Mq, η̃q) (see (23)), GCQ,q(F, g, ρ, εX, εGC ,V) (see (11) and (31)) and
SWGC,γ(g, ρ, εX, εGC) (see (29)) hold.

Then, for every f ∈ F , we have the following properties:

A. If limn→∞
√
HεX,n/Hη̃q ,n = +∞, then

lim
n→∞

Hn

Cγ,η
√
HεX,n

νηn(Af)
law
= N (0, ν(Vf)). (37)

B. If limn→∞
√
HεX,n/Hη̃q ,n = l̂ ∈ R∗+, then

lim
n→∞

Hn

Cγ,η
√
HεX,n

νηn(Af)
law
= N (l̂−1ν(Mqf), ν(Vf)). (38)

C. If limn→∞
√
HεX,n/Hη̃q ,n = 0, then

lim
n→∞

Hn

Cγ,ηHη̃q ,n
νηn(Af)

P
= ν(Mqf) (39)

Moreover, when V = 0 this convergence is almost sure.

Remark 3.3. Notice that if we take γn = 1/nξ, ξ ∈ (0, 1/(q + 1)), the mentioned step weight
assumptions of Theorem 4.1 point B. are satis�ed (take ρ ∈ (1/(1−ξ), 2] and ρ̃q ∈ (2/(1+ξ), 2]).
Then, if we de�ne by

∀n ∈ N∗, rq,n =


√

Γn if limn→∞
√

Γn/Hη̃q ,n = +∞,√
Γn if limn→∞

√
Γn/Hη̃q ,n = l̂,

Hn
Hη̃q,n

if limn→∞
√

Γn/Hη̃q ,n = 0,

the rate of convergence of (ν
ηq
n (Af))n∈N∗, we have

rq,n ∼
n→+∞

Cn(qξ)∧(1/2−ξ/2).

The highest rate of convergence is thus achieved for ξ = 1/(2q + 1) and is given by rq,n ∼
n→+∞

Cnq/(2q+1).

Proof. We assume q > 2. The case q = 1 is similar but simpler so we leave it out.

Step 1. Let n ∈ N. We begin by noticing that the following decomposition holds
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νηn(Af) =
1

Hn

n∑
k=1

ηkAf(XΓk−1
)

=
Cγ,η
Hn

Nq,n∑
k=0

γ(q−1)k+1

q−1∑
e=0

cqeAf(XΓ(q−1)k+e
)

+
1

Hn

n∑
k=(q−1)Nq,n+1

ηkAf(XΓk)

+
η(q−1)Nq,n − Cγ,ηγ(q−1)k+1c

q
q−1

Hn
Af(XΓ(q−1)(k+1)

)

with the notation Nq,n = b(n− 1)/(q− 1)c − 1. Since Af is a bounded function, the second
and thirdof the r.h.s. of the above equation mulyiplied by Hn

Cγ,η
√
HεX,n

or Hn
Cγ,ηHη̃3,n

converge to

zero. We study the �rst term of the r.h.s. of the above equation. By Porpoisition 3.2 (with
nq = (q − 1)k),

γ(q−1)k+1

q−1∑
e=0

cqeAf(XΓ(q−1)k+e
) =

q∨2−2∑
e=0

f(XΓ(q−1)k+e+1
)− f(XΓ(q−1)k+e

)

+Bqf(XΓ(q−1)k+e
, XΓ(q−1)k+e+1

, γ(q−1)k+1, e)

+Rqf(XΓ(q−1)k+e
, γ(q−1)k+1, e).

Step 2. In this part, we prove that

lim
n→∞

1√
HεX,n

Nq,n∑
k=0

q−2∑
e=0

Bqf(XΓ(q−1)k+e
, XΓ(q−1)k+e+1

, γ(q−1)k+1, e)
law
= N (0, ν(Vf)).

From Proposition 3.1, since (28) holds and limn∈N∗ ν
εX
n (Vf, ω) = ν(Vf), P− a.s., we have

lim
n→∞

1√
HεX,n

n∑
k=1

Xf,k
law
= N (0, ν(Vf))

Notice that when V = 0 the l.h.s. of the above equation is P− a.s. equal to zero for every
f ∈ F . Now, to obtain the convergence in law, we are going to show that P − a.s, for every
f ∈ F ,

. lim
n→+∞

1√
HεX,n

Nq,n∑
k=0

q−2∑
e=0

Bqf(XΓ(q−1)k+e
, XΓ(q−1)k+e+1

, γ(q−1)k+1, e)− Xf,(q−1)k+1+e = 0.

This last result is a consequence of Kronecker's Lemma as soon as we prove the a.s. con-
vergence of the martingale (Mn)n∈N∗ de�ned by M0 := 0 and

Mn :=

Nq,n∑
k=0

q−2∑
e=0

Bqf(XΓ(q−1)k+e
, XΓ(q−1)k+e+1

, γ(q−1)k+1, e)− Xf,(q−1)k+1+e√
HεX,(q−1)k+e

.
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From the Chow's theorem (see Theorem 3.1), this a.s. convergence is a direct consequence
of the a.s. �niteness of the series

n∑
k=1

E[|Mk −Mk−1|ρ|XΓk−1
],

which follows from GCQ,2(F, g, ρ, εX, εGC ,V) (see (11)) together with SWGC,γ(g, ρ, εX, εGC) (see
(29))).

Step 3. To complete the proof, let us show now that

P− a.s. ∀f ∈ F lim
n→∞

1

Hε̃q ,n

Nq,n∑
k=0

q−2∑
e=0

Rqf(XΓ(q−1)k+e
γ(q−1)k+1, e) = ν(Mqf).

As a direct consequence of Eq(F, Ã, A,Mq, η̃q) (see (23)), since P−a.s., limn→∞ ν
η̃q
n (Mqf) =

ν(Mqf) for every f ∈ F , we only have to prove that

P− a.s. ∀f ∈ F

lim
n→∞

1

Hε̃2,n

Nq,n∑
k=0

q−2∑
e=0

Rqf(XΓ(q−1)k+e
, γ(q−1)k+1, e)− η̃q,(q−1)k+1+eMqf(XΓ(q−1)k+e

) = 0.

which holds as soon as

P− a.s. ∀f ∈ F lim
n→∞

1

Hη̃q ,n

n∑
k=1

η̃q,kΛf,q(XΓk−1
, γk) = 0, (40)

We recall that we have the following decomposition

∀f ∈ F,∀x ∈ E,∀γ ∈ [0, γ], Λf,q(x, γ) = 〈g(x), Ẽ[Λ̃f,2(x, γ)]〉Rl

with g : (E,B(E))→ Rl+, l ∈ N∗, a locally bounded Borel measurable function and Λ̃f,w : (E×
R+×Ω̃,B(E)⊗B(R+)⊗G̃)→ Rl+ a measurable function such that supi∈{1,...,l},x∈E,γ∈(0,γ] Ẽ[Λ̃f,2,i(x, γ)] <

+∞. Since for every i ∈ {1, . . . , l}, supn∈N∗ ν
η̃2
n (gi, ω) < +∞, P(dω) − a.s., (40) follows from

the following result:

Let (xn)n∈N ∈ E⊗N. Assume that supi∈{1,...,l} supn∈N∗
1

Hη̃2,n

∑n
k=1 η̃q,kgi(xk−1

) < +∞, then,

for every f ∈ F ,

lim
n→∞

1

Hη̃q ,n

n∑
k=1

η̃q,kΛf,q(xk−1
, γk) = 0.

In order to obtain this result, we are going to show that, for every f ∈ F , every i ∈ {1, . . . , l},
and every (xn)n∈N ∈ E⊗N, then

P̃(dω̃)− a.s. lim
n→∞

1

Hη̃q ,n

n∑
k=1

η̃q,kΛ̃f,q,i(xk−1, γk, ω̃)gi(xk−1) = 0,

and the result will follow from the Dominated Convergence theorem since for every n ∈ N∗,
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1

Hη̃q ,n

n∑
k=1

η̃q,kΛ̃f,q,i(xk−1, γk, ω)gi(xk−1)

6 sup
x∈E

sup
γ∈(0,γ]

Λ̃f,2,i(x, γ, ω̃) sup
n∈N∗

1

Hη̃q ,n

n∑
k=1

η̃2,kgi(xk−1) < +∞.

with Ẽ[supx∈E supγ∈(0,γ] Λ̃f,q,i(x, γ, ω̃)] < +∞ and supn∈N∗
1

Hη̃q,n

∑n
k=1 η̃q,kgi(xk−1) < +∞. We

�x f ∈ F , i ∈ {1, . . . , N} and (xn)N∈N ∈ E⊗N and we assume that Eq(Ã, A,Mq, η̃q) I) (see
(25)) holds for Λ̃f,q,i. If instead Eq(Ã, A,Mq) II) (see (26)) is satis�ed, the proof is similar but
simpler so we leave it to the reader.

Let n(ω̃) := inf{n ∈ N∗, supk>n γk 6 γ(ω̃)}. By assumption Eq(F, Ã, A,Mq, η̃q) I) (ii)(see

(26)), P̃(dω̃)− a.s, for every R > 0, there exists KR(ω̃) ∈ KE such that

sup
x∈Kc

R(ω̃)
sup

γ∈(0,γ(ω̃)]
Λ̃f,q,i(x, γ, ω̃) < 1/R.

Moreover,

sup
n>n(ω̃)

1

Hη̃q ,n

n∑
k=n(ω̃)

η̃q,kΛ̃f,2,i(xk−1, γk, ω̃)g(xk−1)1Kc
R(ω̃)(xk−1)

6 sup
x∈Kc

R(ω̃)
sup

γ∈(0,γ(ω̃)]
Λ̃f,q,i(x, γ, ω̃) sup

n∈N∗

1

Hη̃q ,n

n∑
k=1

η̃q,kgi(xk−1).

We let R tends to in�nity and since supn∈N∗
1

Hη̃q,n

∑n
k=1 η̃q,kgi(xk−1) < +∞, the l.h.s. of the

above equation converges P̃(dω̃) − a.s. to 0. Finally, since n(ω̃) is P̃(dω̃) − a.s. �nite, we also
have

P̃(dω̃)− a.s. ∀R > 0, lim
n→∞

1

Hη̃q ,n

n(ω̃)−1∑
k=1

η̃q,kΛ̃f,2,i(xk−1, γk, ω̃)g(xk−1)1Kc
R(ω̃)(xk−1) = 0.

Moreover, from Eq(F, Ã, A,Mq, η̃q) I) (i)(see (25)), we derive that, P̃(dω̃) − a.s., for every
R > 0, lim

n→∞
Λ̃f,q,i(xn−1, γn, ω̃)1KR(ω̃)(xk−1

) = 0, Then, since gi is a locally bounded function,

as an immediate consequence of the Cesaro's lemma, we obtain

P̃(dω̃) ∀R > 0, lim
n→∞

1

Hη̃q ,n

n∑
k=1

η̃q,kΛ̃f,q,i(xk−1, γk, ω̃)gi(xk−1)1KR(ω̃)(xk−1) = 0

Applying the same approach for every i ∈ {1, . . . , q}, the Dominated Convergence Theorem
yields:

∀(xn)n∈N ∈ E⊗N,∀f ∈ F, lim
n→∞

1

Hη̃q ,n

n∑
k=1

Λf,q(xk−1, γk) = 0.

Finally, since for every i ∈ {1, . . . , l}, supn∈N∗ ν
η̃q
n (gi, ω) < +∞, P− a.s., then (40) follows.

We gather all the terms together and the proof is completed.
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3.3 Example - The Euler scheme

Using this abstract approach, we recover the results obtained in [10] or [20] concerning the
study of the Euler scheme of a d-dimensional Brownian di�usion under weakly mean reverting
properties. We consider a N -dimensional Brownian motion (Wt)t>0. We are interested in the
strong solution - assumed to exist and to be unique - of the d-dimensional stochastic equation

Xt = x+

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs (41)

where b : Rd → Rd, σ : Rd → Rd×N . Let V : R → [1,+∞), the Lyapunov function of this
system such that LV (see (5)) holds with E = Rd, and

|∇V |2 6 CV V, ‖D2V ‖∞ < +∞.

Moreover, we assume that for every x ∈ R, |b(x)|2 + Tr[σσ∗(x)] 6 V a(x) for some a ∈ (0, 1].
Finally, for p > 1, we introduce the following Lp-mean reverting property of V ,

∃α > 0, β ∈ R,∀x ∈ R,

〈∇V (x), b(x)〉+
1

2
‖λp‖∞2(2p−3)+Tr[σσ∗(x)] 6 β − αV a(x)

with for every x ∈ Rd, λp(x) := sup{λp,1(x), . . . , λp,d(x), 0}, with λp,i(x) the i-th eigenvalue of
the matrix D2V (x) + 2(p− 1)∇V (x)⊗2/V (x). We now introduce the Euler scheme of (Xt)t>0.
Let ρ ∈ [1, 2] and εI(γ) = γρ/2 and assume that (16), SWI,γ,η(ρ, εI) (see (20)) and SWII,γ,η
(see (21)) hold. Let (Un)n be a sequence of RN -valued centered independent and identically
distributed random variables with covariance identity and bounded moments of order 2p. We
de�ne the Euler scheme with decreasing steps (γn)n∈N∗ , (XΓn)n∈N of (Xt)t>0 (41) on the time
grid {Γn =

∑n
k=1 γk, n ∈ N} by

∀n ∈ N, XΓn+1 =XΓn + γn+1b(XΓn) +
√
γn+1σ(XΓn)Un+1, X0 = x.

We consider (νηn(dx, ω))n∈N∗ de�ned as in (4) with (XΓn)n∈N de�ned above. Now,we specify
the measurable functions ψ, φ : [1,+∞) → [1,+∞) as ψp(y) = yp and φ(y) = ya. Moreover,
let s > 1 such that a pρ/s 6 p + a − 1, p/s + a − 1 > 0 and Tr[σσ∗] 6 CV p/s+a−1. Then, it
follows from Theorem 2.2 that there exists an invariant distribution ν for (Xt)t>0. Moreover,
(νηn(dx, ω))n∈N∗ a.s. weakly converges toward V, the set of invariant distributions of (Xt)t>0

and when it is unique i.e. V = {ν}, we have

P− a.s. lim
n→+∞

νηn(f) = ν(f),

for every ν − a.s. continuous function f ∈ CṼψp,φ,s(R
d) de�ned in (7).

In addition to that P − a.s. Wasserstein converge result we can also establish a �rst order
CLT. Let ρ̃1 ∈ [1, 2], let Cγ,η > 0 and let us de�ne η1,n = Cγ,ηγn, n ∈ N∗ and

F1 = {f ∈ C4(Rd;R), ∀l ∈ {2, . . . , 4}, Dlf ∈ C0(Rd;R)},

and the linear operator M1 de�ned on C4(Rd;R) such that for every f ∈ C4(Rd;R),

M1f(x) =− 1

2

(
D2f(x); b(x)⊗2

)
− E

[1

2

(
D3f(x); (σ(x)U)⊗2 ⊗ b(x)

)
+

1

4!

(
D4f(x); (σ(x)U)⊗4

)]
.
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Let η̃1(γ) = γ2. Assume that (3), (16), SWI,γ,η(ρ, εI) (see (20)) and SWII,γ,η (see (21)) hold
with η replaced by η̃1 and by γ. Assume that the sequence (Un)n∈N∗ satis�es MN ,3(U) (see
(47))) and M2(U) (see (48)) and that SWGC,γ(ρ̃1, γ, γ) (see (30)) holds.
Also assume that gσ,1 6 CV p/s+a−1, with gσ,1 = Tr[σσ∗]4+|b|2, that Tr[σσ∗] = o|x|→+∞(V p/s+a−1)

and that ν is unique. Finally assume that for every f ∈ F1, |σ∗Df |2 ∈ CṼψp,φ,s(R
d) and

M1f ∈ CṼψp,φ,s(R
d).

Then, for every f ∈ F1,

i. If limn→∞
√

Γn/Hη̃1,n = +∞,

lim
n→∞

√
Γnν

η1
n (Af)

law
= N (0, ν(|σ∗Df |2)). (42)

ii. If limn→∞
√

Γn/Hη̃1,n = l̂ ∈ R∗+,

lim
n→∞

√
Γnν

η1
n (Af)

law
= N (l̂−1ν(M1f), ν(|σ∗Df |2)). (43)

iii. If limn→∞
√

Γn/Hη̃1,n = 0,

lim
n→∞

Hn

Hη̃1,n
νη1
n (Af)

P
= ν(M1f). (44)

This result was initially obtained in [10] but under strongly mean reverting assumption i.e.
a = 1. The extension of this result to the weak mean reverting setting was developed in [20].

Remark 3.4. Notice that if we take γn = 1/nξ, ξ ∈ (0, 1/2) and η = γ, the mentioned step
weight assumptions are satis�ed (take ρ ∈ (1/(1 − ξ), 2] and ρ̃1 ∈ (2/(1 + ξ), 2]). Then, if we
de�ne by

∀n ∈ N∗, rn =


√

Γn if limn→∞
√

Γn/Hη̃1,n = +∞,√
Γn if limn→∞

√
Γn/Hη̃1,n = l̂,

Hn
Hη̃1,n

if limn→∞
√

Γn/Hη̃1,n = 0,

the rate of convergence of (νη1
n (Af))n∈N∗ , we have

rn ∼
n→+∞

Cnξ∧(1/2−ξ/2).

The highest rate of convergence is thus achieved for ξ = 1/3 and is given by rn ∼
n→+∞

Cn1/3.

4 Application - The Talay second weak order scheme

Notations.
In the sequel we will use the following notations. First, for α ∈ (0, 1] and f an α-Hölder

function we denote [f ]α = supx6=y |f(y)− f(x)|/|y − x|α.
Now, let d ∈ N. For any Rd×d-valued symmetric matrix S, we de�ne λS := sup{λS,1, . . . , λS,d, 0},
with λS,i the i-th eigenvalue of S.
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Presentation of the main result.
In this section we study the second order convergence of the weighted empirical measures

of a scheme designed in [24] and adapted to the case of decreasing time steps. We consider a
N -dimensional Brownian motion (Wt)t>0. We are interested in the solution - assumed to exist
and to be unique - of the d-dimensional stochastic equation

Xt = x+

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs, (45)

where b : Rd → Rd and σ : Rd → Rd×N , are locally bounded functions. The in�nitesimal
generator of this process is given by

Af(x) =〈b(x),∇f(x)〉+
1

2

d∑
i,j=1

(σσ∗)i,j(x)
∂2f

∂xi∂xj
(x) (46)

and its domain D(A) contains D(A)0 = C2
K(Rd). Notice that D(A)0 is dense in C0(E). Now,

we present the Talay scheme, introduced in [24], of (Xt)t>0 adapted to the case of decreasing
time steps. First, we introduce the random variables that are used to build this scheme. Let
q ∈ N∗, p > 0. Now let (Un)n∈N∗ be a sequence of RN -valued independent and identically
distributed random variables such that

MN ,q(U) ≡ ∀n ∈ N∗, ∀q̃ ∈ {1, . . . , q}, E[(Un)⊗q̃] = E[(N (0, Id))
⊗q̃], (47)

and

Mp(U) sup
n∈N∗

E[|Un|2p] < +∞. (48)

Morever, let (κn)n∈N∗ be a sequence of RN×N -valued independent and identically distributed
random variables such that for every n ∈ N∗, κn is made of N × N independent components
and for every (i, j) ∈ {1, . . . , N}2, P(κi,jn = −1/2) = P(κi,jn = 1/2) = 1/2. At this point we
de�ne the sequence (Wn)n∈N∗ of RN×N -valued random variables such that for every n ∈ N∗,

∀i, j ∈ {1, . . . , N}, W i,i
n = |U in|2 − 1 and W i,j

n = U inU
j
n − κi∧j,i∨jn for i 6= j. (49)

For every n ∈ N, the Talay scheme with decreasing steps is de�ned by

XΓn+1 =XΓn +
√
γn+1σ(XΓn)Un+1 + γn+1

(
b(XΓn) + (Dσ(XΓn);σ(XΓn)W∗n+1)

)
(50)

+ γ
3/2
n+1σ̃(XΓn)Un+1 + γ2

n+1Ab(XΓn),

with, for every i ∈ {1, . . . , N}, and j ∈ {1, . . . , d}, σ̃j,i = (σ̃i)j where

σ̃i : Rd → Rd

x 7→
d∑
l=1

(
∂xlb(x)σl,i(x) + ∂xlσl,i(x)b(x) +

d∑
j=1

(σσ∗)l,j(x) ∂2σi
∂xl∂xj

(x)
)
.

with, for every i ∈ {1, . . . , N}, σi : Rd → Rd, x 7→ σi(x) = (σ1,i(x), . . . , σd,i(x))
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We will also denote ∆Xn+1 = XΓn+1 −XΓn and

∆X
1
n+1 = γ

1/2
n+1σ(XΓn)Un+1 = γ

1/2
n+1

N∑
i=1

σi(XΓn)U in+1, ∆X
2
n+1 = γn+1b(XΓn), (51)

∆X
3
n+1 = (Dσ(XΓn);σ(XΓn)W∗n+1) = γn+1

N∑
i,j=1

d∑
l=1

∂xlσi(XΓn)σl,j(XΓn)W i,j
n+1,

∆X
4
n+1 = γ

3/2
n+1σ̃(XΓn)Un+1 = γ

3/2
n+1

N∑
i=1

σ̃i(XΓn)U in+1

∆X
5
n+1 = γ2

n+1Ab(XΓn)

and X
i
Γn+1

= XΓn +
∑i

j=1 ∆X
i
n+1. Now, we assume the existence of a Lyapunov function

V : Rd → [v∗,∞), v∗ > 0, satisfying LV (see (5)) and which is essentially quadratic:

|∇V |2 6 CV V, sup
x∈Rd

|D2V (x)| < +∞ (52)

It remains to introudce the mean-reverting property of V . We de�ne

∀x ∈ Rd, λψ(x) := λD2V (x)+2∇V (x)⊗2ψ′′◦V (x)ψ′◦V (x)−1 . (53)

When ψ(y) = ψp(y) = yp, we will also use the notation λp instead of λψ. Now, let φ :
[v∗,+∞)→ R+, and assume that for every x ∈ Rd,

B(φ) ≡ |b(x)|2 + Tr[σσ∗(x)] + |Dσ(x)|2 Tr[σσ∗(x)] + |σ̃(x)|2 + |Ab(x)|2 6 Cφ ◦ V (x).
(54)

We are now able to introduce the Lp mean-reverting property of V . Let p > 0. Let β ∈ R,
α > 0. We assume that lim inf

y→∞
φ(y) > β/α and

Rp(α, β, φ, V ) ≡ ∀x ∈ Rd, 〈∇V (x), b(x)〉+
1

2
χp(x) 6 β − αφ ◦ V (x), (55)

with

χp(x) =

{
‖λ1‖∞Tr[σσ∗(x)] if p 6 1

‖λp‖∞2(2p−3)+Tr[σσ∗(x)] if p > 1.
(56)

Finally we consider the linear operator M1 de�ned on C4(Rd;R) such that for every f ∈
C4(Rd;R),

M1f(x) =−
(
Df(x);Ab(x)

)
(57)

− E
[1

2

(
D2f(x); b(x)⊗2 + 2b(x)⊗ (Dσ(x);σ(x)W ∗) + (Dσ(x);σ(x)W ∗)⊗2

)
+

1

2

(
D3f(x); (σ(x)U)⊗2 ⊗ (b(x) + (Dσ(x);σ(x)W ∗)) + (σ(x)U)⊗ (σ̃(x)U)

)
+

1

4!

(
D4f(x); (σ(x)U)⊗4

)]
.
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We also consider the linear operator M2 de�ned on C6(Rd;R) such that for every f ∈
C6(Rd;R), M2f = M̃2f − 1

2M1Af with

M̃2f(x) =− E
[(
D2f(x);

1

2
(σ̃(x)U)⊗2) + b(x)⊗Ab(x)

)
(58)

+
1

2

(
D3f(x);

1

3
(Dσ(x);σ(x)W ∗)⊗3 + b(x)⊗2 ⊗ (Dσ(x);σ(x)W ∗) + (σ(x)U)⊗2 ⊗Ab(x)

+ (σ(x)U)⊗ (b(x) + (Dσ(x);σ(x)W ∗))⊗ (σ̃(x)U) +
1

3
b(x)⊗3

)
+

1

2

(
D4f(x);

1

2
(σ(x)U)⊗2 ⊗ (b(x)⊗2 + 2b(x)⊗ (Dσ(x);σ(x)W ∗) + (Dσ(x);σ(x)W ∗)⊗2)

+
1

3
(σ(x)U)⊗3 ⊗ (σ̃(x)U)

)
+

1

4!

(
D5f(x); (σ(x)U)⊗4 ⊗ (b(x) + (Dσ(x);σ(x)W ∗))

)
+

1

6!

(
D6f(x); (σ(x)U)⊗6

)]
.

We are now in a position to provide our main result concerning convergence of weighted
empirical measures of the Talay scheme. This �rst part of this result concerns the P − a.s.
Wasserstein convergence while the second part establishes �rst and second order CLT.

Theorem 4.1. Let p > 0, a ∈ (0, 1], s > 1, ρ ∈ [1, 2] and, ψp(y) = yp, φ(y) = ya and
εI(γ) = γρ/2. Let α > 0 and β ∈ R.
A. Assume that the sequence (Un)n∈N∗ satis�es MN ,2(U) (see (47)) and M(2p)∨(2pρ/s)∨2(U)

(see (48)). Also assume that (52), B(φ) (see (54)), Rp(α, β, φ, V ) (see (55)), LV (see
(5), SWI,γ,η(ρ, εI) (see (20)), SWII,γ,η(V p/s) (see (13)) and (16) also hold and that
apρ/s 6 p+ a− 1.

Then, if p/s+ a− 1 > 0, (νηn)n∈N∗ is P− a.s. tight and

P-a.s. sup
n∈N∗

νηn(V p/s+a−1) < +∞. (59)

Moreover, assume also that b, σ, |Dσ|Tr[σσ∗]1/2, σ̃ and Ab have sublinear growth and
that gσ 6 CV p/s+a−1, with gσ = Tr[σσ∗] + |Dσ|Tr[σσ∗]1/2 + Tr[σ̃σ̃∗]1/2. Then, every
weak limiting distribution ν of (νηn)n∈N∗ is an invariant distribution of (Xt)t>0 and when
ν is unique, we have

P-a.s. ∀f ∈ CṼψp,φ,s(R
d), lim

n→+∞
νηn(f) = ν(f), (60)

with CṼψp,φ,s(R
d) de�ned in (7). Notice that when p/s 6 p ∨ 1 + a − 1, the assumption

SWII,γ,η(V p/s) (see (13)) can be replaced by SWII,γ,η (see (21)).

B. Let q ∈ {1, 2}, let ρ̃q ∈ [1, 2], let Cγ,η > 0 and let us de�ne η1,n = Cγ,ηγn, η2,n+1 =
Cγ,η(γn + γn+1)/2, n ∈ N∗ (with γ0 = 0) and

Fq = {f ∈ C2(q+1)(Rd;R), ∀l ∈ {1, . . . , 2(q + 1)}, Dlf ∈ C0(Rd;R), Af ∈ F1 if q = 2}.

Finally let η̃q(γ) = γq+1.
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Assume that the sequence (Un)n∈N∗ satis�es MN ,2q+1(U) (see (47))) and Mq+1(U) (see
(48)) and that SWGC,γ(ρ̃q, γ, γ) (see (30)) holds.
Also assume that gσ,q 6 CV p/s+a−1, with gσ,q = Tr[σσ∗]2(q+1)+|b|q+1+|Dσ|q+1 Tr[σσ∗](q+1)/2+
Tr[σ̃σ̃∗] + |Ab|q, that Tr[σσ∗] = o|x|→+∞(V p/s+a−1), that ν is unique and that (3) and the
hypothesis from point A. hold with η replaced by η̃q and by γ. Finally assume that for
every f ∈ Fq, |σ∗Df |2 ∈ CṼψp,φ,s(R

d) and Mqf ∈ CṼψp,φ,s(R
d).

Then, for every f ∈ Fq, we have

i. If limn→∞
√

Γn/Hη̃q ,n = +∞, ,

lim
n→∞

√
Γnν

ηq
n (Af)

law
= N (0, ν(|σ∗Df |2)). (61)

ii. If limn→∞
√

Γn/Hη̃q ,n = l̂ ∈ R∗+,

lim
n→∞

√
Γnν

ηq
n (Af)

law
= N (l̂−1ν(Mqf), ν(|σ∗Df |2)). (62)

iii. If limn→∞
√

Γn/Hη̃q ,n = 0,

lim
n→∞

Hn

Hη̃q ,n
ν
ηq
n (Af)

P
= ν(Mqf) (63)

Remark 4.1. Notice that if we take γn = 1/nξ, ξ ∈ (0, 1/(q + 1)), the mentioned step weight
assumptions of Theorem 4.1 point B. are satis�ed (take ρ ∈ (1/(1−ξ), 2] and ρ̃q ∈ (2/(1+ξ), 2]).
Then, if we de�ne by

∀n ∈ N∗, rq,n =


√

Γn if limn→∞
√

Γn/Hη̃q ,n = +∞,√
Γn if limn→∞

√
Γn/Hη̃q ,n = l̂,

Hn
Hη̃q,n

if limn→∞
√

Γn/Hη̃q ,n = 0,

the rate of convergence of (ν
ηq
n (Af))n∈N∗, we have

rq,n ∼
n→+∞

Cn(qξ)∧(1/2−ξ/2).

The highest rate of convergence is thus achieved for ξ = 1/(2q + 1) and is given by rq,n ∼
n→+∞

Cnq/(2q+1). In particular in the �rst order case (q = 1) we have r1,n ∼
n→+∞

Cn1/3 which is,

as expected, the same rate as for the Euler scheme (see Remark 3.4). However, for the second
order case (q = 2) we obtain a faster rate of convergence since r2,n ∼

n→+∞
Cn2/5. This rate can

be achieved because (XΓn)n∈N is a second weak order scheme but also because the step sequence
(η2,n)n∈N∗ is well chosen.

The next part of this Section is dedicated to the proof of Theorem 4.1.

4.1 Recursive control

Proposition 4.1. Let v∗ > 0, and let φ : [v∗,∞) → R+ be a continuous function such that
Cφ := supy∈[v∗,∞) φ(y)/y < +∞. Now let p > 0 and de�ne ψp(y) = yp. Let α > 0 and β ∈ R.
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Assume that (Un)n∈N∗ is a sequence of independent random variables such that U satis�es
MN ,2(U) (see (47)) and M(2p)∨2(U) (see (48)).
Also assume that (52), B(φ) (see (54)), Rp(α, β, φ, V ) (see (55)), are satis�ed.

Then, for every α̃ ∈ (0, α), there exists n0 ∈ N∗, such that

∀n > n0,∀x ∈ Rd, Ãγnψ ◦ V (x) 6
ψp ◦ V (x)

V (x)
p(β − α̃φ ◦ V (x)). (64)

Then RCQ,V (ψ, φ, pα̃, pβ) (see (6)) holds for every α̃ ∈ (0, α) such that lim inf
y→+∞

φ(y) > β/α̃.

Moreover, when φ = Id we have

sup
n∈N

E[V p(XΓn)] < +∞. (65)

Proof. We distinguish the cases p > 1 and p ∈ (0, 1).

Case p > 1. First ,we focus on the case p > 1. From the Taylor's formula and the de�nition
of λψp = λp (see (53)), we have

ψp ◦ V (XΓn+1) =ψp ◦ V (XΓn) + 〈XΓn+1 −XΓn ,∇V (XΓn)〉ψ′p ◦ V (XΓn)

+
1

2

(
D2V (Υn+1)ψ′p ◦ V (Υn+1) +∇V (Υn+1)⊗2ψ′′p ◦ V (Υn+1); (XΓn+1 −XΓn)⊗2

)
6ψp ◦ V (XΓn) + 〈XΓn+1 −XΓn ,∇V (XΓn)〉ψ′p ◦ V (XΓn)

+
1

2
λp(Υn+1)ψ′p ◦ V (Υn+1)|XΓn+1 −XΓn |2. (66)

with Υn+1 ∈ (XΓn , XΓn+1). First, from (52), we have supx∈Rd λp(x) < +∞.
Since U andW are made of centered random variables, we deduce from MN ,2(U) (see (47))

and M4(U) (see (48)) that

E[XΓn+1 −XΓn |XΓn ] = γn+1b(XΓn) + γ2
n+1Ab(XΓn)

E[|XΓn+1 −XΓn |2|XΓn ] 6 γn+1Tr[σσ
∗(XΓn)] + γ

3/2
n+1C

(
Tr[σσ∗(XΓn)] + |b(XΓn)|2

+ |Dσ(XΓn)|2 Tr[σσ∗(XΓn)] + |σ̃(x)|2 + |Ab(x)|2
)

with C a positive constant. Assume �rst that p = 1. Using B(φ) (see (54)), for every
α̃ ∈ (0, α), there exists n0(α̃) such that for every n > n0(α̃),

γ2
n+1Ab(XΓn)+

1

2
‖λ1‖∞γ3/2

n+1C
(
Tr[σσ∗(XΓn)] + |b(XΓn)|2 (67)

+ |Dσ(XΓn)|2 Tr[σσ∗(XΓn)] + |σ̃(x)|2 + |Ab(x)|2
)
6 γn+1(α− α̃)φ ◦ V (XΓn).

From assumption Rp(α, β, φ, V ) (see (55) and (56)), we conclude that

Ãγnψ1 ◦ V (x) 6 β − α̃φ ◦ V (x)
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Assume now that p > 1.Since |∇V | 6 CV V (see (52)), then
√
V is Lipschitz. Now, we use the

following inequality: Let l ∈ N∗. We have

∀α > 0, ∀ui ∈ Rd, i = 1, . . . , l,
∣∣ l∑
i=1

ui
∣∣α 6 l(α−1)+

l∑
i=1

|ui|α. (68)

V p−1(Υn+1) 6
(√
V (XΓn) + [

√
V ]1|XΓn+1 −XΓn |

)2p−2

62(2p−3)+(V p−1(XΓn) + [
√
V ]2p−2

1 |XΓn+1 −XΓn |2p−2)

To study the `remainder' of (66), we multiply the above inequality by |XΓn+1 −XΓn |2. First,
we study the second term which appears in the r.h.s. and using B(φ) (see (54)), for everyy
p > 1,

|XΓn+1 −XΓn |2p 6 Cγpn+1φ ◦ V (XΓn)p(1 + |Un+1|4p).

Let α̂ ∈ (0, α). Then, we deduce from M2p(U) (see (48)) that there exists n0(α̂) ∈ N such
that for any n > n0(α̂), we have

E[|XΓn+1 −XΓn |2p|XΓn ] 6 γn+1φ ◦ V (XΓn)p
α− α̂

‖φ/Id‖p−1
∞ ‖λp‖∞2(2p−3)+ [

√
V ]2p−2

1

To treat the other term of the `remainder' of (66) we proceed as in (67) with ‖λ1‖∞ replaced
by ‖λp‖∞22p−3[

√
V ]2p−2

1 , α replace by α̂ and α̃ ∈ (0, α̂). We gather all the terms together and
using (56), for every n > n0(α̃) ∨ n0(α̂), we obtain

E[V p(XΓn+1)− V p(XΓn)|XΓn ] 6γn+1pV
p−1(XΓn)(β − αφ ◦ V (XΓn))

+γn+1pV
p−1(XΓn)

(
φ ◦ V (XΓn)(α̂− α̃)

+ (α− α̂)
V 1−p(XΓn)φ ◦ V (XΓn)p

‖φ/Id‖p−1
∞

)
6γn+1V

p−1(XΓn)(βp− α̃pφ ◦ V (XΓn)).

which is exactly the recursive control for p > 1.

Case p ∈ (0, 1). Now, let p ∈ (0, 1) so that x 7→ xp is concave. it follows that

V p(XΓn+1)− V p(XΓn) 6 pV p−1(XΓn)(V (XΓn+1)− V (XΓn))

We have just proved that we have the recursive control RCQ,V (ψ, φ, α, β) holds for ψ = Id (with
α replaced by α̃ > 0), and since V takes positive values, we obtain

E[V p(XΓn+1)− V p(XΓn)|XΓn ] 6pV p−1(XΓn)E[V (XΓn+1)− V (XΓn)|XΓn ]

6V p−1(XΓn)(pβ − pα̃φ ◦ V (XΓn)),

which completes the proof of (64). The proof of (65) is an immediate application of Lemma 2.1
as soon as we notice that the increments of the Talay scheme have �nite polynomial moments
which implies (19).
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4.2 In�nitesimal approximation

Proposition 4.2. Assume that b, σ, |Dσ|Tr[σσ∗]1/2, σ̃ and Ab have sublinear growth. We
have the following properties:

A. Assume that the sequence (Un)n∈N∗ satis�esMN ,2(U) (see (47)) and that supn∈N∗ ν
η
n(Tr[σσ∗]) <

+∞, supn∈N∗ ν
η
n(|Dσ|Tr[σσ∗]1/2) < +∞ and supn∈N∗ ν

η
n(Tr[σ̃σ̃∗]1/2) < +∞.

Then, E(Ã, A,D(A)0) (see (8)) is satis�ed.

B. Let F1 = {f ∈ C4(Rd;R),∀q ∈ {1, . . . , 4}, Dqf ∈ C0(Rd;R)}, let M1 de�ned in (57) and
let η̃1(γ) = γ2.

Assume that the sequence (Un)n∈N∗ satis�es MN ,3(U) (see (47))) and M2(U) (see (48))

and that supn∈N∗ ν
η̃1
n (g1) < +∞, with g1 : Rd → R such that for every x ∈ Rd, g1(x) =

Tr[σσ∗(x)]2 + |b(x)|2 + |Dσ(x)|2 Tr[σσ∗(x)] + Tr[σ̃σ̃∗(x)] + |Ab(x)|. Finally assume that
P− a.s., for every f ∈ F1, limn→∞ ν

η̃1,n
n (M1f) = ν(M1f).

Then E1(F1, Ã, A,M1, η̃1) (see (23)) is satis�ed.

C. Let F2 = {f ∈ C6(Rd;R),∀q ∈ {2, . . . , 6}, Dqf ∈ C0(Rd;R), Af ∈ F1}, let M2 de�ned in
(58) and let η̃2(γ) = γ3.

Assume that the sequence (Un)n∈N∗ satis�es MN ,5(U) (see (47))) and M3(U) (see (48))

and that supn∈N∗ ν
η̃2
n (g2) < +∞ with g2 : Rd → R such that for every x ∈ Rd, g2(x) =

Tr[σσ∗(x)]3 + |b(x)|3 + |Dσ(x)|3 Tr[σ̃σ̃∗(x)]3/2 + Tr[σ̃σ̃∗(x)] + |Ab(x)|2. Finally assume
that P− a.s., for every f ∈ F2, limn→∞ ν

η̃2,n
n (M2f) = ν(M2f).

Then E2(F2, Ã, A,M2, η̃2) (see (23)) is satis�ed.

Proof. The proof of point A. is very similar to the proof of point B. and point C. but simpler
and thus left to the reader. The proof of point B. and point C. is a direct consequence of the
following Lemma.

Lemma 4.1. Assume that b, σ, |Dσ|Tr[σσ∗]1/2, σ̃ and Ab have sublinear growth. We have the
following properties:

A. Assume that the sequence (Un)n∈N∗ satis�es MN ,3(U) (see (47)) and M2(U) (see (48)).

Then, for every f ∈ C4(Rd;R) such that Dqf ∈ C0(Rd;R) for q ∈ {1, . . . , 4}, then

∣∣∣E[f(XΓn+1)− f(XΓn)|XΓn ]− γn+1Af(XΓn)+γ2
n+1M1f(XΓn)

∣∣∣
6γ2

n+1Λf,1(XΓn , γn+1),

with, given l ∈ N∗ and a probability space (Ω̃, G̃, P̃),

∀x ∈ Rd, ∀γ ∈ (0, γ], Λf,1(x, γ) = 〈g1(x), Ẽ[Λ̃f,1(x, γ, ω̃)]〉Rl ,

with Λ̃f,1 satisfying (24) and (25), M1 de�ned in (57) and g1 : Rd → Rl, such that for every
x ∈ Rd, |g1(x)| 6 1 + Tr[σσ∗(x)]2 + |b(x)|2 + |Dσ(x)|2 Tr[σσ∗(x)] + Tr[σ̃σ̃∗(x)] + |Ab(x)|.
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B. Assume that the sequence (Un)n∈N∗ satis�es MN ,5(U) (see (47)) and M3(U) (see (48)).

Then, for every f ∈ C6(Rd;R) such that Dqf ∈ C0(Rd;R) for q ∈ {2, . . . , 6}, then

∣∣∣E[f(XΓn+1)− f(XΓn)|XΓn ]− γn+1Af(XΓn)−
γ2
n+1

2
A2f(XΓn)+γ3

n+1M̃2f(XΓn)
∣∣∣

6γ3
n+1Λf,2(XΓn , γn+1),

with, given l ∈ N∗ and a probability space (Ω̃, G̃, P̃),

∀x ∈ Rd, ∀γ ∈ (0, γ], Λf,2(x, γ) = 〈g2(x), Ẽ[Λ̃f,2(x, γ, ω̃)]〉Rl ,

with Λ̃f,2 satisfying (24) and (25) and M̃2 de�ned in (58) and g2 : Rd → Rl, such that for
every x ∈ Rd, |g2(x)| 6 1 + Tr[σσ∗(x)]3 + |b(x)|3 + |Dσ(x)|3 Tr[σσ∗(x)]3/2 + Tr[σ̃σ̃∗(x)] +
|Ab(x)|2.

Notice that to obtain Proposition 4.2 point B., we use Lemma 4.1 point A. and to obtain
Proposition 4.2 point C., we combine Lemma 4.1 point A. (with f replaced by Af) and Lemma
4.1 point B.

Proof of Lemma 4.1. We simply prove point point B.. The proof of point point A. is similar
but simpler. The �rst step consists in writing the following decomposition

f(XΓn+1)− f(XΓn) =
4∑
j=0

f(X
j
Γn)− f(X

j−1
Γn )

with notations (51) and X
0
Γn = XΓn . At this point it remains to study each term of the sum of

the r.h.s. of the above equation. For j = 1, we use Taylor expansion at order 6 and it follows
that

|E[f(X
1
Γn)|XΓn ]− f(XΓn)| 6

6∑
i=1

γ
i/2
n+1(Dif(XΓn);E[(σ(XΓn)Un+1)⊗i)|XΓn ])

i!

+ γ3
n+1Λf,2,1(XΓn , γn+1)

with Λf,2,1(x, γ) = g2,1(x)Ẽ[Λ̃f,2,1(x, z, γ)] where Λ̃f,2,1(x, γ) = R̃f,2,1(x, z, γ, U,Θ) with U ∼
PU , Θ ∼ U[0,1] under P̃, g2,1(x) = Tr[σσ∗(x)]3 and

R̃f,2,1 : Rd × R+ × RN × [0, 1] → R+

(x, γ, u, θ) 7→ R̃f,2,1(x, γ, u, θ),

with

R̃f,2,1(x, γ, u, θ) =
|u|6

5!
(1− θ)5|D6f(x+ θ

√
γσ(x)u)−D6f(x)|.

We are going to prove that Λ̃f,2,1 satis�es (25). We �x u ∈ RN and θ ∈ [0, 1]. Now, since
the function σ has sublinear growth, there exists Cσ > 0 such that |σ(x)| 6 Cσ(1 + |x|) for
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every x ∈ Rd. Therefore, since f has compact support, there exists γ(u, θ) > 0 and R > 0 such
that

sup
|x|>R

sup
γ6γ(u,θ)

R̃f,2,1(x, γ, u, θ) = 0.

It follows that (25) (ii) holds. Moreover since D6f is bounded, and M3(U) (see (48)) holds,
Λ̃f,2 also satis�es (24).

The rest of the proof is completely similar and involves heavy calculus so we just give the
sketch to follow for j = 2 and invite the reader to follow the same line for j ∈ {3, 4, 5}. For
j = 2, we use Taylor expansion at order 3 and it follows that

|E[f(X
2
Γn)|XΓn ]− f(X

1
Γn)| 6

3∑
i=1

γin+1E[(Dif(X
1
Γn); (b(XΓn))⊗i)|XΓn ]

i!

+
γ3
n+1

2
(D3f(XΓn); b(XΓn)⊗3) + γ3

n+1Λf,2,2(XΓn , γn+1)

with Λf,2,2(x, γ) = g2,2(x)Ẽ[Λ̃f,2,2(x, z, γ)] where Λ̃f,2,2(x, γ) = R̃f,2,2(x, z, γ, U,Θ) with
U ∼ PU , Θ ∼ U[0,1] under P̃, g2,2(x) = |b(x)|3 and

R̃f,2,1 : Rd × R+ × RN × [0, 1] → R+

(x, γ, u, θ) 7→ R̃f,2,1(x, γ, u, θ),

with

R̃f,2,2(x, γ, u, θ) =
1

2
(1− θ)2|D3f(x+

√
γσ(x)u+ θγb(x))−D3f(x)|.

Following the same approach as for the case j = 1 we can show that Λ̃f,2,2 satis�es (25) and
(24).

To complete the study for j = 1, we replace Dif(X
1
Γn , i ∈ {1, 2} by an upper bound of their

Taylor expansion at order 2(3− i) and at point X
j−1
Γn = XΓn , that is

|E[Dif(X
1
Γn)|XΓn ]−Dif(XΓn)| 6

2(3−i)∑
ī=1

γ
ī/2
n+1(Dī+if(XΓn);E[(σ(XΓn)Un+1)⊗ī)|XΓn ])

ī!

+ γ3−i
n+1ΛDif,2,1(XΓn , γn+1)

with ΛDif,2,2(x, γ) = Tr[σσ∗(x)]3−iẼ[Λ̃Dif,2,2(x, z, γ)] where Λ̃Dif,2,2(x, γ) = R̃Dif,2,2(x, z, γ, U,Θ)

with U ∼ PU , Θ ∼ U[0,1] under P̃, and

R̃Dif,2,2 : Rd × R+ × RN × [0, 1] → R+

(x, γ, u, θ) 7→ R̃Dif,2,2(x, γ, u, θ),

with

R̃Dif,2,2(x, γ, u, θ) =
|u|2(3−i)

(5− 2i)!
(1− θ)5−2i|D3−if(x+ θ

√
γσ(x)u)−D3−if(x)|.

Following the same approach as for the case j = 1 we can show that Λ̃Dif,2,2 satis�es (25)
and (24). We do not detail the rest of the proof which is similar but simply describe the
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approach we use. For j = {3, 4, 5} we apply the same method as for j = 2: We �rst use the

Taylor expansion at point X
j−1
Γn such that the remainder has the form γ3

n+1Λf,2,j . Then we

develop each term of this expansion at point X
j−2
Γn at a well chosen order such that the global

remainder is still of the form γ3
n+1Λf,2,j (Λf,2,j is obviously changed). We iterate the method

until we use the Taylor expansion at pointXΓn . Then, the �nal remainder Λf,2 has the expected
form and the term which appears in the expansion can be identi�ed with γn+1Af(XΓn) +
γ2
n+1

2 A2f(XΓn) + γ3
n+1M̃2f(XΓn). To complete the proof we notice that for every f ∈ C6(Rd)

and every j ∈ {1, . . . , 5}, R̃f,2,j = R̃−f,2,j .

4.3 Growth control

Lemma 4.2. Let p > 0, a ∈ (0, 1], s > 1, ρ ∈ [1, 2] and, ψ(y) = yp and φ(y) = ya. We suppose
that the sequence (Un)n∈N∗ satis�es Mρ∨(2pρ/s)(U) (see (48)). Then, for every n ∈ N and every
f ∈ D(A)0,

E[|f(XΓn+1)−f(XΓn + γn+1b(XΓn) + γ2
n+1Ab(XΓn))|ρ|XΓn ] (69)

6Cfγ
ρ/2
n+1 Tr[σσ∗(XΓn)]ρ/2 + Cfγ

ρ
n+1|Dσ|

ρ Tr[σσ∗]ρ/2 + Cfγ
ρ3/2
n+1 Tr[σ̃σ̃∗(XΓn)]ρ/2.

with D(A)0 = C2
K(Rd). In other words, we have GCQ(D(A)0, gσ, ρ, εI) (see (11)) with gσ =

Tr[σσ∗]ρ/2 + |Dσ|ρ Tr[σσ∗]ρ/2 + Tr[σ̃σ̃∗(XΓn)]ρ/2 and εI(γ) = γρ/2 for every γ ∈ R+.

Moreover, if (52) and B(φ) (see (54)) hold and

SWpol(p, a, s, ρ) apρ/s 6 p+ a− 1. (70)

Then, for every n ∈ N, we have

E[|V p/s(XΓn+1)− V p/s(XΓn)|ρ|XΓn ] 6 Cγ
ρ/2
n+1V

p+a−1(XΓn). (71)

In other words, we have GCQ(V p/s, V p+a−1, ρ, εI) (see (11)) with and εI(γ) = γρ/2 for every
γ ∈ R+.

Proof. We begin by noticing that

|XΓn+1−(XΓn + γn+1b(XΓn) + γ2
n+1Ab(XΓn))|

6Cγ1/2
n+1 Tr[σσ∗(XΓn)]1/2|Un+1|+ Cγn+1|Dσ|Tr[σσ∗]1/2|Wn+1|+ γ

3/2
n+1 Tr[σ̃σ̃∗(XΓn)]1/2|Un+1|.

Let f ∈ D(A). Then f is Lipschitz and the previous inequality gives (73).

We focus now on the proof of (71). We �rst notice that B(φ) (see (54))implies that for any
n ∈ N,

|XΓn+1 −XΓn | 6 Cγ
1/2
n+1

√
φ ◦ V (XΓn)(1 + |Un+1|+ |Wn+1||)
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Case 2p 6 s. We notice that V p/s is α-Hölder for any α ∈ [2p/s, 1] (see Lemma 3. in [21])
and then V p/s is 2p/s-Hölder. We deduce that

E[|V p/s(XΓn+1)−V p/s(XΓn)|ρ|XΓn ] 6 C[V p/s]ρ2p/sγ
ρ/2
n+1V

aρ/2(XΓn).

In order to obtain (71), it remains to use apρ/s 6 a+ p− 1.

Case 2p > s. Using the following inequality

∀u, v ∈ R+,∀α > 1, |uα − vα| 6α2α−1(vα−1|u− v|+ |u− v|α), (72)

with α = 2p/s, and since
√
V is Lipschitz, we have

∣∣V p/s(XΓn+1)− V p/s(XΓn)
∣∣ 622p/sp/s(V p/s−1/2(XΓn)|

√
V (XΓn+1)−

√
V (XΓn)|

+ |
√
V (XΓn+1)−

√
V (XΓn)|2p/s)

622p/sp/s([
√
V ]1V

p/s−1/2(XΓn)|XΓn+1 −XΓn |

+ [
√
V ]

2p/s
1 |XΓn+1 −XΓn |2p/s).

In order to obtain (71), it remains to use the assumptions B(φ) (see (54)) and then apρ/s 6
p+ a− 1.

Lemma 4.3. Let ρ ∈ [1, 2] and, ψ(y) = yp and φ(y) = ya. We suppose that the sequence
(Un)n∈N∗ satis�es Mρ(U) (see (48)). Then, for every n ∈ N, we have: for every f ∈ F = {f ∈
C2(Rd;R), Dqf ∈ Cb(Rd;R), ∀q ∈ {1, 2}}.

E[|f(XΓn+1)−f(XΓn)−√γn+1(Df(XΓn);σ(XΓn)Un+1)|ρ|XΓn ] (73)

6Cfγ
ρ
n+1 Tr[σσ∗(XΓn)]ρ + Cfγ

ρ
n+1|b(Xn)|+ Cfγ

ρ
n+1|Dσ(XΓn)|ρ Tr[σσ∗(XΓn)]ρ/2

+ Cfγ
ρ3/2
n+1 Tr[σ̃σ̃∗(XΓn)]ρ/2 + Cfγ

2ρ
n+1|Ab(XΓn)|ρ.

In particular for q ∈ {1, 2}, assume that P − a.s., limn→+∞ ν
γ
n(|σ∗Df |2) = ν(|σ∗Df |2) for

every f ∈ F satisfying Af ∈ Cb(Rd;R) when q = 2 and that Tr[σσ∗] = o|x|→+∞(W ) with
supn∈N∗ ν

γ
n(W ) < +∞.

Then GCQ,q(F, g, ρ, εX, εGC ,V) (see (27)) is satis�ed with g = Tr[σσ∗]ρ+|b|ρ+|Dσ|ρ Tr[σσ∗]ρ/2+
Tr[σ̃σ̃∗]ρ/2 + |Ab|ρ, εX(γ) = γ and εGC(γ) = γρ for every γ ∈ R+ and Vf = |σ∗Df |2 for every
f ∈ C1(Rd;R).

Proof. The �rst step consists in writing

f(XΓn+1)− f(XΓn) =f(XΓn +
√
γn+1σ(XΓn)Un+1)− f(XΓn) (74)

+ f(XΓn+1)− f(XΓn +
√
γn+1σ(XΓn)Un+1).

We study the �rst term of the r.h.s. of the above equation. Using Taylor expansion at order
two and the fact that Df ∈ Cb(Rd) yields∣∣f(XΓn +

√
γn+1σ(XΓn)Un+1)− f(XΓn)−√γn+1(Df(XΓn);σ(XΓn)Un+1)

∣∣
6

1

2
‖D2f‖∞|

√
γn+1σ(XΓn)Un+1|2.
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Now we study the second term of the r.h.s. of (74). From Taylor expansion at order one

|f(XΓn+1)− f(XΓn +
√
γn+1σ(XΓn)Un+1)| 6‖Df‖∞

∣∣∣γn+1

(
b(XΓn) + (Dσ(XΓn);σ(XΓn)W∗n+1)

)
+ γ

3/2
n+1σ̃(XΓn)Un+1 + γ2

n+1Ab(XΓn)
∣∣∣.

Gathering both terms of (74), raising to the power ρ and taking conditional expectancy thus
yields (73). To obtain GCQ,q(F, g, ρ, εX, εGC ,V) (see (27)), we observe that Af is bounded when
q = 2 and it remains to show that (28) holds with Xf,n =

√
γn+1(Df(XΓn);σ(XΓn)Un+1),

n ∈ N. This is already done in the seminal paper [10] (see Proposition 2.) and we invite the
reader to refer to this result.

4.4 Proof of Theorem 4.1

Proof of Theorem 4.1 point A.
This result follows from Theorem 2.1 and Theorem 2.2. The proof consists in showing that

the assumptions from those theorems are satis�ed.

Step 1. Mean reverting recursive control First, we show that RCQ,V (ψp, φ, pα̃, pβ)
and RCQ,V (ψ1, φ, α̃, β) (see (6)) is satis�ed for every α̃ ∈ (0, α).

Since (52), B(φ) (see (54)) and Rp(α, β, φ, V ) (see (55)) hold, it follows from Proposition
4.1 that RCQ,V (ψp, φ, pα̃, pβ) (see (6)) is satis�ed for every α̃ ∈ (0, α) since lim infy→+∞ φ(y) >
β/α̃. Moreover let us notice that for every p 6 1 then Rp(α, β, φ, V ) (see (55)) is similar to
R1(α, β, φ, V ) and then RCQ,V (ψ1, φ, α̃, β) (see (6)) is satis�ed for every α̃ ∈ (0, α)

Step 2. Step weight assumption Now, we show that SWI,γ,η(V p∨1+a−1, ρ, εI) (see
(12)) and SWII,γ,η(V p∨1+a−1) (see (13)) hold.

First we noticel that from Step1. the assumption RCQ,V (ψp∨1, φ, (p ∨ 1)α̃, (p ∨ 1)β) (see
(6)) is satis�ed for every α̃ ∈ (0, α). Then, using SWI,γ,η(ρ, εI) (see (20)) with Lemma 2.2
gives SWI,γ,η(V p∨1+a−1, ρ, εI) (see (12)). Similarly, SWII,γ,η(V p∨1+a−1) (see (13) follows from
SWII,γ,η (see (21)) and Lemma 2.2.

Step 3. Growth control assumption Now, we prove GCQ(F, V p∨1+a−1, ρ, εI) (see (11))
for F = D(A)0 and F = {V p/s} .

This is a consequence of Lemma 4.2. We recall that ρ‘ ∈ [1, 2]. Consequently Mρ∨(2pρ/s)(U)

(see (48)) holds. Now, we notice that fromB(φ) (see (54)), we have Tr[σσ∗]ρ/2+|Dσ|ρ Tr[σσ∗]ρ/2+
Tr[σ̃σ̃∗]ρ/2 6 CV ρa/2 with aρ/2 6 p+a−1 since SWpol(p, a, s, ρ) (see (70)) holds. Then Lemma
4.2 implies that for F = D(A)0 and F = {V p/s}, then GCQ(F, V p∨1+a−1, ρ, εI) (see (11)) holds

Step 4. Conclusion

i. The �rst part of Theorem 4.1 (see (59)) is a consequence of Theorem 2.1. Let us observe
that assumptions from Theorem 2.1 indeed hold.

On the one hand, we observe that from Step 2. and Step 3. the assumptions GCQ(V p/s, V p∨1+a−1, ρ, εI)
(see (11)), SWI,γ,η(V p∨1+a−1, ρ, εI) (see (12)) and SWII,γ,η(V p∨1+a−1) (see (13)) hold
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which are the hypothesis from Theorem 2.1 point A. with g = V p∨1+a−1.

On the other hand, form Step 1. the assumptionRCQ,V (ψp, φ, pα̃, pβ) (see (6)) is satis�ed
for every α̃ ∈ (0, α). Moreover, since LV (see (5)) holds and that p/s + a − 1 > 0, then
the hypothesis from Theorem 2.1 point B. are satis�ed.

We thus conclude from Theorem 2.1 that (νηn)n∈N∗ is P− a.s. tight and (59) holds which
concludes the proof of the �rst part of Theorem 4.1 point A..

ii. Let us now prove the second part of Theorem 4.1 (see (60)) which is a consequence of
Theorem 2.2.

On the one hand,we observe that from Step 2. and Step 3. the assumptions GCQ(D(A)0, V
p∨1+a−1, ρ, εI)

(see (11)) and SWI,γ,η(V p∨1+a−1, ρ, εI) (see (12)) hold which are the hypothesis from The-
orem 2.2 point A. with g = V p∨1+a−1.

On the other hand, since b, σ, |Dσ|Tr[σσ∗]1/2, σ̃ and Ab have sublinear growth and that
gσ 6 CV p/s+a−1, with gσ = Tr[σσ∗]+|Dσ|Tr[σσ∗]1/2+Tr[σ̃σ̃∗]1/2, so that P-a.s. supn∈N∗ ν

η
n(gσ) <

+∞, it follows from Proposition 4.2 that E(Ã, A,D(A)0) (see (8)) is satis�ed. Then, the
hypothesis from Theorem 2.2 point B. hold and (60) follows from (18).

Proof of Theorem 4.1 point B.
First we notice that using Theorem 4.1 pointA., then for every f ∈ Fq, |σ∗Df |2 ∈ CṼψp,φ,s(R

d),

Mqf ∈ CṼψp,φ,s(R
d) and

P− a.s. lim
n→∞

νγn(|σ∗Df |2) = ν(|σ∗Df |2) and lim
n→∞

ν
η̃q
n (Mqf) = ν(Mqf).

Now, we notice that using Proposition 4.2, point B. and point C., gives Eq(Fq, Ã, A,Mq, η̃q)
(see (23)).

Moreover, Lemma 4.3 gives GCQ,q(Fq, g, ρ, εX, εGC ,V) (see (27)) with g = Tr[σσ∗]ρ + |b|ρ +
|Dσ|ρ Tr[σσ∗]ρ/2 + Tr[σ̃σ̃∗]ρ/2 + |Ab|ρ, εX(γ) = γ and εGC(γ) = γρ for every γ ∈ R+, every
ρ ∈ [1, 2], and with Vf = |σ∗Df |2. Since B(φ) (see (54)) holds, then g 6 CV ρa/2 and it follows
that GCQ,q(Fq, V p∨1+a−1, ρ̃q, εX, εGC ,V) (see (27)) is satis�ed.

Observing that SWGC,γ(ρ̃q, γ, γ) (see (30)) holds, the proof of Theorem 4.1 point B. is thus
a direct consequence of Theorem 3.2 taking q = 1 and q = 2.
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