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Abstract. In this article, we focus on computing the quantiles of a random variable f(X), where X is
a [0, 1]d-valued random variable, d ∈ N∗, and f : [0, 1]d → R is a deterministic Lipschitz function. We
are particularly interested in scenarios where the cost of a single function evaluation is high, while the
law of X is assumed to be known. In this context, we propose a deterministic algorithm to compute
deterministic lower and upper bounds for the quantile of f(X) at a given level α ∈ (0, 1). With a fixed
budget of N function calls, we demonstrate that our algorithm achieves an exponential deterministic
convergence rate for d = 1 (O(ρN ) with ρ ∈ (0, 1)) and a polynomial deterministic convergence rate for
d > 1 (O(N− 1

d−1 )) and show the optimality of those rates. Furthermore, we design two algorithms,
depending on whether the Lipschitz constant of f is known or unknown.
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1. Introduction

In this article, we consider a Ω := [0, 1]d-valued (d ∈ N∗) random variable X and a Lipschitz function
f : [0, 1]d → R. We are interested in scenarios where the law of X is known and our focus lies on the
number of calls to f . This approach is relevant in situations where f incurs high computational cost,
while X is a random variable with well-known distribution, such as the uniform distribution. We propose
an algorithm that uses N ∈ N∗ calls to f in order to compute an approximation of the α-order quantile
of f(X), α ∈ (0, 1), defined by

qα(f, X) := inf{l ∈ R,P(f(X) ⩽ l) ⩾ α}.(1.1)

Our contribution is to provide, for any N ∈ N∗, a deterministic approximation qN
α (f, X) for qα(f, X)

and to demonstrate that (see Theorem 2.1 and Theorem 3.1), the approximation error converges to zero
as N tends to infinity. More generally, we derive a deterministic rate of convergence for any sufficiently
large N . This rate has exponential nature for d = 1 (|qN

α (f, X) − qα(f, X)| ⩽ CρN with ρ ∈ (0, 1) and
C > 0) and has polynomial nature when d > 1 (|qN

α (f, X) − qα(f, X)| ⩽ CN− 1
d−1 with C > 0).

Quantile computation has a wide range of applications across various domains, including banking [?],
database optimization [?], sociology [?], binary classification [?] or sensor networks [?]. Additionally,
related challenges such as multivariate quantiles [?] or estimating the difference of quantiles at two given
levels [?] also warrant attention. It is worth mentioning that, many existing quantile estimation methods
are derived from the equivalent problems of minimizing loss functions [?],

qα(f, X) = argmin
y∈R

{αE[(f(X) − y)+] + (1 − α)E[(f(X) − y)−]},
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in which we denote a+ := max{a, 0} and a− := max{−a, 0} for a ∈ R. For some applications, we refer
e.g., to quantile estimation methods designed in [?] or [?].

When computing quantity of interest related to the law of f(X), a common approach, when possible,
is to use the simulation based Monte Carlo methods. These techniques involve generating a large sample
of simulations (usually independent) of f(X) to approximate our quantity of interest. In our context,
an extensive literature is dedicated to performing quantile computation through Monte Carlo methods.
Under mild conditions, the Monte Carlo estimator of qα(f, X) typically satisfies a central limit theorem
with a weak convergence rate given by CN− 1

2 . Many endeavours aim to reduce the variance of these
estimators, represented by the constant C. The importance sampling approach, initially showcased in
[?], has since been developed further in subsequent works such as [?], [?], and [?]. Similarly, the design
of control variates can be adapted, as demonstrated in [?], [?], and [?]. Additionally, multi-level splitting
methods, as described in [?], [?], and [?], have been applied to quantile computation in [?].

Considering not only the nature or the value of the rate of convergence, our algorithm differs from a
standard Monte Carlo approach in the following way: Our algorithm is deterministic, meaning it does
not rely on simulations of random variables with form f(X). It simply calls the function f at some
specific points which are selected sequentially according to the law of X and to previous calls to f .
We thus manage to derive deterministic rates of convergence, whereas Monte Carlo methods provide
weak rates due to the convergence in law of the central limit theorem. Hence, we provide deterministic
upper and lower bounds for qα(f, X) while a Monte Carlo approach provides lower and upper bounds
by the way of a confidence interval. In particular, with Monte Carlo methods, there is a small, albeit
nonzero, probability that qα(f, X) lies outside the computed confidence interval. Moreover, with Monte
Carlo methods, the confidence interval is asymptotic in the limit N → +∞, whereas our deterministic
intervals are given for any finite N larger than an explicit constant.

We design a first algorithm that requires evaluating f at specific points, as well as knowing its Lipschitz
constant for implementation, while a Monte Carlo approach only requires the ability to simulate f(X).
However, we also introduce a second algorithm, which requires that f is Lipschitz but does not need
to have access to the Lipschitz constant. These algorithms are inspired by the methodologies outlined
in [?], originally developed to approximate the minimum of a Lipschitz function. In this context, as in
our case, the rate of convergence depends on the dimension of Ω, with exponential convergence when
d = 1 and polynomial convergence when d > 1. It is worth noting that these algorithms were further
adapted in [?] for the computation of failure probabilities, i.e., for calculating P(f(X) > c) for a given
c ∈ R, when the Lipschitz constant of f is known. In this case, similar convergence regimes are observed
depending on the value of d.

Our approach employs a dichotomous strategy, leveraging the Lipschitz property of f to systematically
exclude certain regions R within [0, 1]d where we know qα(f, X) /∈ f(R). By avoiding the evaluation
of f in these regions, we achieve convergence with the expected rate. When the Lipschitz constant
is unknown, we adopt similar but parallel computations. Each of them mimics the known Lipschitz
constant algorithm, but using exponentially increasing Lipschitz constant candidates. The number of
calls to f allocated to each candidate decreases as the candidate’s value increases. Remarkably, this
yields convergence rates of comparable order to the scenarios where the Lipschitz constants are known.

Furthermore, we establish the optimality of the deterministic rates achieved by the algorithms we
develop. In essence, under our framework, we show that any algorithm providing an approximation
q̃N

α (f, X) for qα(f, X) (i.e., q̃N
α (f, X) is built by calling the function f at N points) converges, for

at least one triplet (f, X, α) in our framework, with deterministic rate not faster than exponential,
|q̃N

α (f, X) − qα(f, X)| ⩾ C̃ρ̃N , ρ̃ ∈ (0, 1), when d = 1, and polynomial, |q̃N
α (f, X) − qα(f, X)| ⩾ C̃N

1
d−1 ,

C̃ > 0, when d > 1.

The article is presented in the following way. The algorithm for the computation of the approximation
qN

α (f, X) for the quantile of order α of f(X) when the Lipschitz constant of f is known is exposed in
Section 2, Algorithm 2.1. Its convergence, along with expected rates, is addressed in Theorem 2.1. In the
case of unknown Lipschitz constant, the algorithm is presented in Section 3, Algorithm 3.1 and the related
convergence result is presented in Theorem 3.1.The optimality of the rates of convergence achieved by
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Algorithms 2.1 and 3.1 is proved in Section 4., Propositions 4.1 and 4.2. A numerical illustration of the
convergence of both algorithms is given in Section 5.

2. Computation of quantile with known Lipschitz constant

In this section, we design an algorithm for the computation of qα(f, X) when the Lipschitz constant of
f is known. We also prove convergence of this algorithm towards qα(f, X) with explicit rate (polynomial
or exponential regarding the value of d) in Theorem 2.1. This convergence is established under the
following assumptions concerning f, X and α. Notice that the exact same assumptions will be used in
the next Section when the Lipschitz constant is unknown.

(1) f : Rd → R is a Lipschitz function: There exists Lf > 0 such that

∀x, y ∈ [0, 1]d, |f(x) − f(y)| ⩽ Lf |x − y|Rd ,

where | · |Rd is the usual Euclidean norm in Rd.

(2) Level set assumption : There exists M > 0 such that

∀δ > 0, λLeb(x ∈ [0, 1]d, f(x) ∈ [qα(f, X) − δ, qα(f, X) + δ]) ⩽ Mδ,

where λLeb is the usual Lebesgue measure.

2.1. Preliminaries. We begin by introducing standard elements and results that will be involved in the
definition and the proof of convergence of our algorithm. Our first step is to subdivide the set [0, 1]d.
We begin by introducing the center points of our subdivisions. For k ∈ N, the level of the subdivision,
and i ∈ {0, . . . , 3k − 1}, we define

dk
i = 2i + 1

2 × 3k
,

and for β ∈ {0, . . . , 3k − 1}d, we focus on the following subdivision,

Dk
β = {x ∈ [0, 1]d, xj ∈ [dk

βj
− 1

2 × 3k
, dk

βj
+ 1

2 × 3k
) ∪ {1}1βj =3k−1},

with notation {1}0 = ∅ and {1}1 = {1}. Notice that the subdivisions are distinct and ∪β∈{0,...,3k−1}dDk
β =

[0, 1]d. We also define δk
β := supx∈Dk

β
|x − dk

β | (dk
β = (dk

β1
, . . . , dk

βd
)) and remark that δk

β does not depend
on β, so we simply denote δk in the sequel. In particular, we have

δk =(
d∑

i=1
(dk

βi
− (dk

βi
+ 1

2 × 3k
))2) 1

2 = d
1
2

2
1
3k

.

We are now in a position to introduce our approximation for qα(f, X). For k ∈ N, we introduce

qk
α(f, X) = sup{f(dk

β), β ∈ {0, . . . , 3k − 1}d,
∑

γ∈{0,...,3k−1}d,f(dk
γ )⩾f(dk

β
)

P(X ∈ Dk
γ) ⩾ 1 − α},(2.1)

with sup ∅ := infβ∈{0,...,3k−1}d f(dk
β). It happens that qk

α(f, X) is the value returned by our algorithm
if it has enough budget to reach level of subdivision k (and not higher). When we want to emphasize
that the computation depends on the Lipschitz constant considered, we will denote qk

Lf ,α(f, X) instead
of qk

α(f, X).

In definition (2.1), the computation is made on all β ∈ {0, . . . , 3k−1}d, which implies high computational
cost if qk

α(f, X) is used naively as an approximation for q(f, X). We tackle this issue by introducing
a sequence Πk ⊂ {0, . . . , 3k − 1}d, k ∈ N, which is built recursively and such that, at step k, new
computations of f(dk

β) are only made for β ∈ Πk. Exploiting the Lipschitz property, we will show in
Lemma 2.1 that, we can replace {0, . . . , 3k − 1}d by Πk and f(dk

γ) by a well choosen value when γ /∈ Πk

in (2.1), without changing the definition of qk
α(f, X). We now introduce this alternative way of defining

qk
α(f, X).

Let us define Π0 = {(0, . . . , 0)} = {{0}d}, and q̃0
α(f, X) = f(d0

{0}d). Let us assume that for k ∈ N,
we have access to Πk. We compute fk

β := f(dk
β), β ∈ Πk ⊂ {0, . . . , 3k − 1}d and if β /∈ Πk, no

new computation is done and we choose fk
β ∈ {f(dk

β)} ∪ {f(dk−l
β−[l]), l ∈ {1, . . . , k}, β−[l−1] /∈ Πk−l+1}

where for β ∈ {0, . . . , 3k − 1}d, β−[0] = β and for k ∈ N∗, β−[1] = γ ∈ {0, . . . , 3k−1 − 1}d such that
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γi = ⌊ βi

3 ⌋, i ∈ {1, . . . , d}, and β−[l+1] = (β−[l])−[1], l ∈ N, l ⩽ k.

We define recursively

q̃k
α(f, X) = sup{f(dk

β), β ∈ Πk,
∑

γ∈{0,...,3k−1}d,fk
γ ⩾f(dk

β
)

P(X ∈ Dk
γ) ⩾ 1 − α},(2.2)

and

Πk+1 = {3β + {0, 1, 2}d, β ∈ Πk, f(dk
β) ∈ [q̃k

α − 2Lf δk, q̃k
α + 2Lf δk]}.(2.3)

We will sometimes denote Πk
Lf

:= Πk and q̃k
Lf ,α(f, X) := q̃k

α(f, X) to emphasize the fact that Πk is
computed in (2.3) using Lf as a Lipschitz constant. In particular such a notation may be relevant when
we use an upper bound for Lf instead of its true value. Notice that is if we choose L ⩾ L′ ⩾ Lf , we
have Πk

Lf
⊂ Πk

L′ ⊂ Πk
L.

Due to the flexibility in the choice of fk
γ , one might argue that q̃k

α(f, X) may differ w.r.t. the value
chosen for fk

γ . In the following result, we show that all the definitions are actually equivalent. We also
prove that q̃k

L,α(f, X) = q̃k
Lf ,α(f, X) for L ⩾ Lf .

Lemma 2.1. For every k ∈ N, the following assertions hold true.
A. The quantity qk

α(f, X) defined in (2.1) satisfies

qk
α(f, X) = inf{f(dk

β), β ∈ {0, . . . , 3k − 1}d,
∑

γ∈{0,...,3k−1}d,f(dk
γ )⩽f(dk

β
)

P(X ∈ Dk
γ) ⩾ α}.(2.4)

B. The quantity q̃k
α(f, X) defined in (2.2) satisfies

q̃k
α(f, X) = inf{f(dk

β), β ∈ Πk,
∑

γ∈{0,...,3k−1}d,fk
γ ⩽f(dk

β
)

P(X ∈ Dk
γ) ⩾ α}.

C. Moreover,

qk
α(f, X) = q̃k

α(f, X).

Proof. Let us prove A.. The result is immediate for k = 0. We fix k ∈ N∗ and introduce

pk
α := inf{f(dk

β), β ∈ {0, . . . , 3k − 1}d,
∑

γ∈{0,...,3k−1}d,f(dk
γ )⩽f(dk

β
)

P(X ∈ Dk
γ) ⩾ α}.

We remark that (denoting shortly qk
α := qk

α(f, X)),

P(X ∈
⋃

γ∈{0,...,3k−1}d,f(dk
γ )<qk

α

Dk
γ) < α.

Thus, since the subdivisions Dk
γ , γ ∈ {0, . . . , 3k −1}d, are distinct, then pk

α ⩾ qk
α. Moreover, by definition

of qk
α,

P(X ∈
⋃

γ∈{0,...,3k−1}d,f(dk
γ )>qk

α

Dk
γ) < 1 − α,

and it follows that

P(X ∈
⋃

γ∈{0,...,3k−1}d,f(dk
γ )⩽qk

α

Dk
γ) ⩾ α.

Since there exists β∗ ∈ {0, . . . , 3k − 1}d, such that f(dk
β∗) = qk

α, we conclude that qk
α ⩾ pk

α, and the proof
of A. is completed.

Now let us prove C.. The result is true for k = 0 and let us prove it for k ∈ N∗. Using definition
(2.1), we have qα(f, X) ⩾ qk

α − Lf δk, and using the relationship (2.4), we have qα(f, X) ⩽ qk
α + Lf δk.

Assume that there exists β0 /∈ Πk such that qk
α = f(dk

β0
). Using that β0 /∈ Πk, we have

|qk−1
α − f(dk−1

β
−[1]
0

)| > 2Lf δk−1.
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Hence,
|qα(f, X) − f(dk

β0
)| ⩾|qk−1

α − f(dk−1
β

−[1]
0

)| − |f(dk−1
β

−[1]
0

) − f(dk
β0

)| − |qk−1
α − qα(f, X)|

>2Lf δk−1 − 2Lf δk − Lf δk−1

=Lf δk−1 − 2Lf δk = Lf δk,

which is impossible due to the previous observation. In particular, we can replace the condition β ∈
{0, . . . , 3k − 1}d by β ∈ Πk in (2.1). It remains to observe that f(dk

γ) may be replaced by fk
γ as soon as

γ /∈ Πk. Indeed, for such γ, using the same calculus as above, f(dk−1
γ−[1]) −qk−1

α and f(dk
γ) −qk

α necessarily
have the same sign, and the proof of C. is completed. Using similar arguments, we obtain the proof of
B.. □

Furthermore, we can obtain an upper bound for the error between qα(f, X) and our estimator,
regarding that our algorithm reaches level k (and not higher), i.e., returns qk

α.
Lemma 2.2. For any k ∈ N, we have

|qα(f, X) − qk
α| ⩽ Lf δk.(2.5)

Proof. This result follows directly from Lemma 2.1 A.. By applying (2.1), and noting that the subdivisions
Dk

β , β ∈ {0, . . . , 3k−1}d, are distinct, we obtain qα(f, X) ⩾ qk
α−Lf δk. Additionally, using the relationship

(2.4), we have qα(f, X) ⩽ qk
α + Lf δk.

□

2.2. Algorithm and Main result. In this section, we introduce Algorithm 2.1 which is applicable when
the Lipschitz constant Lf is known and establish its convergence in Theorem 2.1. To build Algorithm
2.1, we leverage Lemma 2.1 and return qk

α(f, X) for k, the highest subdivision level achievable with a
global budget N . It is important to note that the knowledge of the constant M , which appears in the
level-set assumption (2), is not necessary to implement the algorithm.
Algorithm 2.1.
Fix N ∈ N∗ the maximum number of calls to f
Π0 = {(0, . . . , 0)}.
k = 0.
Ncall = 1.
While Ncall ⩽ N

Compute f(dk
β), β ∈ Πk (When dk

β = dk−1
β−[1] , the computation was already done before step k).

Set fk
β = f(dk

β), for every β ∈ Πk and fk
β = fk−1

β−[1] , for every β /∈ Πk .

Set

qN
α (f, X) = sup{f(dk

β), β ∈ Πk,
∑

γ∈{0,...,3k−1}d,fk
γ ⩾f(dk

β
)

P(X ∈ Dk
γ) ⩾ 1 − α}

= inf{f(dk
β), β ∈ Πk,

∑
γ∈{0,...,3k−1}d,fk

γ ⩽f(dk
β

)

P(X ∈ Dk
γ) ⩾ α},

and qN
α

(f, X) = qN
α (f, X) − Lf δk,qN

α (f, X) = qN
α (f, X) + Lf δk.

Set

Πk+1 = {3β + {0, 1, 2}d, β ∈ Πk, f(dk
β) ∈ [qN

α
− Lf δk, qN

α + Lf δk]},

and Ncall = Ncall + 3d−1
3d Card(Πk+1).

Set k = k + 1.

End While
Return qN

α (f, X), qN
α

(f, X), qN
α (f, X).

We observe that to apply this algorithm, we need to have access to the law of X, or more specifically
to P(X ∈ Dk

γ), which is why this law is supposed to be known. When the probabilities P(X ∈ Dk
γ) are

unknown but X may be simulated easily, one can use a Monte Carlo approach for their computation,
which can be done once for all independently from the function f . We do not discuss further this
approach in this paper.
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The following result establishes the convergence of Algorithm 2.1 with explicit upper bounds for the
errors exhibiting two regimes, exponential or polynomial, regarding that d = 1 or d > 1.

Theorem 2.1. Let N ∈ N∗, and let qN
α (f, X), qN

α
and qN

α be defined as in Algorithm 2.1. Assume that
(1) and (2) hold. Then

qα(f, X) ∈ [qN
α

(f, X), qN
α (f, X)].(2.6)

Moreover, if d = 1, then
|qα(f, X) − qN

α (f, X)| ⩽ CρN ,(2.7)

with C = 1
2 Lf 31+ 1

4MLf and ρ = 3− 1
4MLf .

If d > 1 and N > 1, then

|qα(f, X) − qN
α (f, X)| ⩽ C(N − 1)− 1

d−1 ,(2.8)

with C = 3
2 Lf d

1
2 (3dMLf d

1
2 )

1
d−1 .

Remark 2.2. The above result can be extended to the case where the support of f is not restricted to [0, 1]d
but to a Cartesian product of bounded intervals Ω̃ := [a1, b1] × . . . × [ad, bd], bi > ai for i ∈ {1, . . . , d}.
Indeed, if X ∈ Ω̃, a rescaling can be used with the application of Algorithm 2.1 to approximate qα(f, X),
the quantile of order α of f(X), for a Lipschitz function f defined on Ω̃. In particular, for every x ∈ Ω̃,
we can write f(x) = g(h(x)), with h(x)i = xi−ai

bi−ai
, by defining, for every y ∈ [0, 1]d, g(y) = f(v(y))

with v(y)i = ai + (bi − ai)yi. Consequently, the function g is defined on [0, 1]d and is Lipschitz with
Lipschitz constant Lg ⩽ c1Lf , with c1 = sup{bi − ai, i ∈ {1, . . . , d}}. Moreover, if f satisfies the level set
assumption,

∀δ > 0, λLeb(x ∈ Ω̃, f(x) ∈ [qα(f, X) − δ, qα(f, X) + δ]) ⩽ Mδ, M > 0,

then, using the change of variables formula, for every δ > 0, we have
λLeb(x ∈ [0, 1]d, g(x) ∈[qα(g, h(X)) − δ, qα(g, h(X)) + δ])

=c2λLeb(x ∈ Ω̃, g(h(x)) ∈ [qα(f, X) − δ, qα(f, X) + δ])
⩽c2Mδ,

with c2 =
∏d

i=1(bi − ai). In conclusion g, h(X) and α satisfy assumptions (1) and (2) and we can
apply Algorithm 2.1 with the random variable h(X) instead of X and the function g instead of f to
produce approximations for qα(f, X). In particular

qα(f, X) = qα(g, h(X)) ∈ [qN
α

(g, h(X)), qN
α (g, h(X))],

and similar results as the those established in Theorem 2.1 hold with Lf replaced by c1Lf and M replaced
by c2M in the upper bounds.

2.3. Proof of convergence of the algorithm. Our strategy consists in identifying the maximum level
k(N) such that Algorithm 2.1 is sure to compute q

k(N)
α given an initial budget of N calls to f . Then we

can use Lemma 2.2 with k = k(N) and obtain the expected bounds.

To begin, for k ∈ N, we introduce Nk the number of calls to the function f satisfying (1), in order to
compute qk

α. Since each new subdivision of a set with form Dl
β yields 3d − 1 new calls to the function f ,

we have

Nk =1 + (3d − 1)
k−1∑
l=0

∑
γ∈{0,...,3l−1}d

1f(dl
γ )∈[ql

α−2Lf δl,ql
α+2Lf δl].

In addition, we thus define k(N) := sup{k ∈ N, Nk ⩽ N}. Notice that k(N) depends on Lf . When
necessary, we will emphasize this dependence denoting k(N, Lf ) instead of k(N).

The next result establishes some upper bounds for Nk with explicit dependence w.r.t. k.

Lemma 2.3. Let k ∈ N. Assume that (1) and (2) hold.

If d = 1, then
Nk ⩽ 1 + 4MLf k.
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If d > 1, then

Nk ⩽ 1 + 3d2MLf d
1
2

3k(d−1) − 1
3d−1 − 1 .

Proof. First we remark that

Nk =1 + (3d − 1)
k−1∑
l=0

∑
γ∈{0,...,3l−1}d

1f(dl
γ )∈[ql

α−2Lf δl,ql
α+2Lf δl]

=1 + (3d − 1)
k−1∑
l=0

∑
γ∈{0,...,3l−1}d

3ldλLeb(Dl
γ)1f(dl

γ )∈[ql
α−2Lf δl,ql

α+2Lf δl]

⩽1 + (3d − 1)
k−1∑
l=0

3ldλLeb(x ∈ [0, 1]d, f(x) ∈ [ql
α − 3Lf δl, ql

α + 3Lf δl]).

Now, we introduce rl
α = 4Lf δl. Then, using the level set assumption (2) and that [ql

α − 3Lf δl, ql
α +

3Lf δl] ⊂ [qα(f, X) − rl
α, qα(f, X) + rl

α]) as a consequence of Lemma 2.2, we obtain

λLeb(x ∈ [0, 1]d, f(x) ∈ [ql
α − 3Lf δk, ql

α + 3Lf δl]) ⩽Mrl
α,

and then

Nk ⩽1 + (3d − 1)
k−1∑
l=0

M3ldrl
α

⩽1 + (3d − 1)2MLf d
1
2

k−1∑
l=0

3l(d−1).

We thus conclude easily depending on the value of d.
□

We are now in a position to derive a lower bound for k(N) that depends explicitly on N .

Lemma 2.4. Let N ∈ N∗. Assume that (1) and (2) hold.

If d = 1, then

k(N) ⩾ ⌊ N − 1
4MLf

⌋,

and

|qα(f, X) − qk(N)
α | ⩽ 3

2Lf 3− N−1
4MLf .(2.9)

If d > 1, then

k(N) ⩾ ⌊ ln(N − 1) − ln(3dMLf d
1
2 )

(d − 1) ln(3) ⌋,

and

|qα(f, X) − qk(N)
α | ⩽ 3

2Lf d
1
2 ( N − 1

3dMLf d
1
2

)− 1
d−1 .(2.10)

Proof. The proof of the lower bound on k(N) is a straightforward application of Lemma 2.3 together
with δk = d

1
2

2
1

3k . Then (2.9) and (2.10) are derived as direct applications of Lemma 2.2. □

Proof of Theorem 2.1. . We remark that qN
α (f, X) = qk

α, qN
α

(f, X) = qk
α − Lf δk and that qN

α (f, X) =
qk

α + Lf δk for k ⩾ k(N). Then the proof of (2.6) is a consequence of Lemma 2.2. The proof 2.7 and 2.8
follows directly from Lemma 2.4 (see (2.9) and (2.10)). □
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3. Computation of quantile with unknown Lipschitz constant

In this Section, we design Algorithm 3.1 which is adapted to the computation of qα(f, X) when the
Lipschitz constant of f is unknown and prove its convergence in Theorem 3.1. Similarly as when the
Lipischitz constant is known, we observe two regimes (exponential or polynomial) for the error rate
regarding the value of d.

3.1. Preliminaries. We suppose in this section that Lf is unknown and for j ∈ N we introduce

Lf (j) = 3j ,

as the candidates for the unknown Lipischitz constant Lf of f . Let us consider a given global budget N ∈
N, N ⩾ π2

6 , and introduce Nmax(j, N) := ⌊ 6N
π2(j+1)2 ⌋ the respective budgets allocated for computations

that mimic Algorithm 2.1 in the case the true Lipschitz constant is Lf (j). We also denote jmax(N) =
sup{j ∈ N, Nmax(j, N) ⩾ 1} = sup{j ∈ N, j ⩽

√
6N
π − 1} = ⌊

√
6N
π ⌋ − 1.

Let us define Π⋄,0(j) = {(0, . . . , 0)} = {0d}, and q̃0
α(f, X) = f(d0

{0}d). Assume that for k ∈ N, we
compute (if necessary) fk

β := f(dk
β), β ∈ ∪jmax

j=1 Π⋄,k(j) and if β /∈ ∪jmax

j=1 Π⋄,k(j), no new computation is
done and we choose fk

β = fk−1
β−[1] .

We now define recursively

q⋄,k
α (f, X) = sup{f(dk

β), β ∈ ∪jmax(N)
j=1 Π⋄,k(j),

∑
γ∈{0,...,3k−1}d,fk

γ ⩾f(dk
β

)

P(X ∈ Dk
γ) ⩾ 1 − α},(3.1)

and
Π⋄,k+1(j) = {3β + {0, 1, 2}d, β ∈ Π⋄,k(j), f(dk

β) ∈ [q⋄,k
α − 2Lf (j)δk, q⋄,k

α + 2Lf (j)δk]},

when k + 1 ⩽ ℓ(j, N), and

Π⋄,k+1(j) = 3Π⋄,k(j) + (1, . . . , 1),
otherwise.

Notice that similarly to the known Lipischitz constant case, we have

q⋄,k
α (f, X) = inf{f(dk

β), β ∈ ∪jmax(N)
j=1 Π⋄,k(j),

∑
γ∈{0,...,3k−1}d,fk

γ ⩽f(dk
β

)

P(X ∈ Dk
γ) ⩾ α},(3.2)

and q⋄,k
α (f, X) is the value returned by our algorithm if it has enough budget to reach level of subdivision

k for, at least, one candidate j ∈ {1, . . . , jmax(N)}.

3.2. Algorithm and Main result. We now introduce our algorithm designed for the case where the
Lipschitz constant Lf of f is unknown. In line with the approach used when the Lipschitz constant is
known, the algorithm aims to compute q⋄,k

α (f, X) for the highest possible attainable subdivision level k.

Algorithm 3.1.
Fix N ∈ N∗ the maximum number of calls to f
Π0 = {(0, . . . , 0)}.
k = 0
J = {1, . . . , jmax(N)}.
Set Ncall(j) = 1 for all j ∈ J .
While J ̸= ∅

Compute f(dk
β), β ∈ ∪jmax(N)

j=1 Π⋄,k(j) (When dk
β = dk−1

β−[1] , the computation was already done before

step k).
Set fk

β = f(dk
β), for every β ∈ ∪jmax

j=1 Π⋄,k(j) and fk
β = fk−1

β−[1] , for every β /∈ ∪jmax

j=1 Π⋄,k(j) .

Set

q⋄,N
α (f, X) = sup{f(dk

β), β ∈ ∪jmax(N)
j=1 Π⋄,k(j),

∑
γ∈{0,...,3k−1}d,fk

γ ⩾f(dk
β

)

P(X ∈ Dk
γ) ⩾ 1 − α}

= inf{f(dk
β), β ∈ ∪jmax(N)

j=1 Π⋄,k(j),
∑

γ∈{0,...,3k−1}d,fk
γ ⩽f(dk

β
)

P(X ∈ Dk
γ) ⩾ α}.
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For j ∈ J

Set Π⋄,k+1(j) = {3β + {0, 1, 2}d, β ∈ Π⋄,k(j), f(dk
β) ∈ [q⋄,N

α − 2Lf (j)δk, q⋄,N
α + 2Lf (j)δk]}.

Ncall(j) = Ncall(j) + 3d−1
3d Card(Π⋄,k+1(j)).

Set If Ncall(j) > Nmax(j, N).

J = J \ {j}.

For j ∈ {1, . . . , jmax(N)} \ J

Π⋄,k+1(j) = 3Π⋄,k(j) + (1, . . . , 1).

Set k = k + 1.

End While
Return q⋄,N

α (f, X).

The following result establishes the convergence of Algorithm 3.1 with explicit upper bound for the
error. We still exhibit exponential or polynomial regimes regarding that d = 1 or d > 1. Nevertheless, as
expected, the constants obtained (denoted ρ and C in Theorem 2.1 and Theorem 3.1) provide a faster
convergence to zero for the error bound when the Lipschitz constant is known.

Theorem 3.1. Let N ∈ N∗, and let q⋄,N
α (f, X) be defined as in Algorithm 3.1. Assume that (1) and

(2) hold with Lf ⩾ 1.

If d = 1, then

|qα(f, X) − q⋄,N
α (f, X)| ⩽ CρN ,

with C = 18Lf 3
1

2MLf and ρ = 3
− 1

(
ln(Lf )

ln(3) +2)22π2MLf .

If d > 1, and N > π2

3 ( ln(Lf )
ln(3) + 2)2, then

|qα(f, X) − q⋄,N
α (f, X)| ⩽ C(N − π2

3 ( ln(Lf )
ln(3) + 2)2)− 1

d−1 ,

with C = 18Lf d
1
2 (3dMLf d

1
2 π2

2 ( ln(Lf )
ln(3) + 2)2)

1
d−1 .

3.3. Proof of convergence of the algorithm. In this section, we focus on the proof of Theorem
3.1. Our strategy involves selecting the Lipschitz constant candidate which is the closest to the true
Lipschitz constant from above. By leveraging the budget allocated to this candidate and the fact that
computations for other candidates do not affect convergence, we derive the expected result.

Recalling that Lf (j) = 3j , j ∈ N, we define the (unknown) quantity j∗ ∈ N, such that Lf (j∗ − 1) <

Lf ⩽ Lf (j∗) with convention Lf (−1) = 0. In particular, ln(Lf )
ln(3) ⩽ j∗ <

ln(3Lf )
ln(3) since Lf ⩾ 1.

The proof of Theorem 3.1 is a consequence of Lemma 3.1 thereafter, combined with the fact that
Lf (j∗) ∈ [Lf , 3Lf ). Indeed, let us introduce ℓ(j, N) := k(Nmax(j, N), Lf (j)) when j ∈ {0, . . . , jmax(N)}
(ℓ(j, N) := 0 for j > jmax(N)). Then, given a budget of Nmax(j, N) for the Lipschitz constant candidate
Lf (j), it follows from Lemma 2.4 that the highest level k attained for subdivision of the space satisfies k ⩾
ℓ(j, N). Assuming this highest level is exactly ℓ(j, N), the proof of Theorem 3.1 is a direct consequence
of Lemma 3.1. When this level is higher, the proof is similar and left to the reader.

Lemma 3.1. Assume that (1) holds. Then, for every k ∈ N, we have
|qα(f, X) − q⋄,k

α | ⩽ 4Lf (j∗)δmin(k,ℓ(j∗,N)).(3.3)

Proof. First, let us consider the case j∗ > jmax(N). In this case, q⋄,k
α ∈ f([0, 1]d) and the result follows

from the Lipschitz property of f since ℓ(j∗, N) = 0.
Now let us assume that j∗ ∈ {0, . . . , jmax(N)}. Let us first consider the case k ⩽ ℓ(j∗, N). We remark
that (using notation from (2.3)), Πk

Lf
⊂ Πk

Lf (j∗) = Πk(j∗) ⊂ ∪jmax

j=0 Πk(j). In particular, it follows that
q⋄,k

α (f, X) = qk
Lf (j∗),α(f, X) = qk

Lf ,α(f, X) = qk
α(f, X), and the result is a direct consequence of Lemma

2.2.
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We now consider k > ℓ(j∗, N). We first notice that if j > j∗, ℓ(j∗, N) ⩾ ℓ(j, N) and it is impossible that
q

⋄,ℓ(j∗,N)
α (f, X) = f(dℓ(j∗,l)

γ ) for γ ∈ Π⋄,ℓ(j∗,N)(j) \ Π⋄,ℓ(j∗,N)(j∗). Let us now show that for k > ℓ(j∗, N),
it is impossible that q⋄,k

α (f, X) = f(dℓ(j∗,l)
γ∗ ) for γ∗ ∈ Π⋄,ℓ(j∗,N)(j) \ Π⋄,ℓ(j∗,N)(j∗). Indeed, since γ∗ /∈

Π⋄,ℓ(j∗,N)(j∗), we have

|q⋄,ℓ(j∗,l)−1
α (f, X) − f(dℓ(j∗,l)−1

γ
−[1]
∗

)| > 2Lf (j∗)δℓ(j∗,l)−1.

Moreover, let us notice that (qk
Lf (j∗),α − Lf (j∗)δk)k∈N∗ is increasing while (qk

Lf (j∗),α + Lf (j∗)δk)k∈N∗ is
decreasing. In particular, we have

|q⋄,ℓ(j∗,l)
α (f, X) − q⋄,ℓ(j∗,N)−1

α (f, X)| ⩽ 2Lf (j∗)δℓ(j∗,N).

Using the Lipischitz property of f yields

|f(dℓ(j∗,l)−1
γ

−[1]
∗

) − f(dℓ(j∗,l)
γ∗

)| ⩽ 2Lf (j∗)δℓ(j∗,N),

so, using the triangle inequality, we conclude that
|q⋄,ℓ(j∗,l)

α (f, X) − f(dℓ(j∗,l)
γ∗

)| > 2Lf δℓ(j∗,N).

We now assume that q
⋄,ℓ(j∗,l)
α (f, X) ⩽ f(dℓ(j∗,l)

γ∗ ). It follows that∑
γ∈{0,...,3k−1}d,fk

γ ⩾f(d
ℓ(j∗,l)
γ∗ )

P(X ∈ Dk
γ) ⩽

∑
γ∈{0,...,3k−1}d,f

ℓ(j∗,N)
γ−[k−ℓ(j∗,l)] +Lf (j∗)δℓ(j∗,l)⩾f(d

ℓ(j∗,l)
γ∗ )

P(X ∈ Dk
γ)

⩽
∑

γ∈{0,...,3k−1}d,f
ℓ(j∗,N)
γ−[k−ℓ(j∗,l)]xt

⩾f(d
ℓ(j∗,l)
γ∗ )−Lf (j∗)δℓ(j∗,l)

P(X ∈ Dk
γ)

⩽
∑

γ∈{0,...,3k−1}d,f
ℓ(j∗,N)
γ−[k−ℓ(j∗,l)] >q

⋄,ℓ(j∗,l)
α (f,X)

P(X ∈ Dk
γ)

=
∑

γ∈{0,...,3ℓ(j∗,N)−1}d,f
ℓ(j∗,N)
γ >q

⋄,ℓ(j∗,l)
α (f,X)

P(X ∈ Dk
γ)

<1 − α,

where the last inequality is a direct consequence of definition (3.1), and we conclude that q⋄,k
α (f, X) ̸=

f(dℓ(j∗,l)
γ∗ ). When q

⋄,ℓ(j∗,l)
α (f, X) ⩾ f(dℓ(j∗,l)

γ∗ ), we use the same approach, but apply definition (3.2)
instead of (3.1). Now, we remark that for every j ∈ {0, . . . , j∗}, we have Π⋄,ℓ(j∗)(j) ⊂ Π⋄,ℓ(j∗)(j∗). It
follows from the previous observation that for every k ⩾ ℓ(j∗, N),

q⋄,k
α (f, X) ∈ f(∪β∈Πℓ(j∗,N)D

ℓ(j∗,N)
β ),

and
|q⋄,k

α (f, X) − q⋄,ℓ(j∗,N)
α (f, X)| ⩽ sup

β∈Πℓ(j∗,N)
|f(dℓ(j∗,N)

β ) − q⋄,ℓ(j∗,N)
α (f, X)|

+ sup
β∈Πℓ(j∗,N)

sup
x∈D

ℓ(j∗,N)
β

|f(dℓ(j∗,N)
β ) − f(x)|

⩽3Lf (j∗)δℓ(j∗,N).

Hence, (3.3) is obtained by applying the triangle inequality and Lemma 2.2 with k = ℓ(j∗, N) (remember
that q

⋄,ℓ(j∗,N)
α (f, X) = q

ℓ(j∗,N)
Lf (j∗),α(f, X)). □

4. Optimality

In this section, we aim to demonstrate the optimality of our algorithms. Specifically, we demonstrate
that, within our framework where (1) and (2) are assumed, it is impossible to construct lower and upper
deterministic bounds for qα(f, X) using N evaluation of f , such that the error (essentially the difference
between upper and lower bounds), converges faster than exponential or polynomial rate (given the value
of d) w.r.t. N .

Our approach consists in considering a generic algorithm which evaluates N ∈ N∗ times the function
f : Rd → R at some points (x1, . . . , xN ) ∈ ([0, 1]d)N and which returns a measurable function of those
evaluations to compute qα(f, X), α ∈ (0, 1) with f , X and α satisfying (1) and (2). We then propose a
function f̄ , a random variable X and α ∈ (0, 1) satisfying (1) and (2), and for any choice of (x1, . . . , xN ),
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we build f̃ such that f̃ , X and α satisfies (1) and (2), but also f̄(xi) = f̃(xi) for every i ∈ {1, . . . , N},
and |qα(f, X) − qα(f̃ , X)| ⩾ CρN (ρ ∈ (0, 1) and d = 1) or CN− 1

d−1 (when d>1), C > 0. This property
is combined with the following observation: For any measurable g : RN → R,

|g(f̄(x1), . . . , f̄(xN )) − qα(f, X)| =|g(f̃(x1), . . . , f̃(xN )) − qα(f̄ , X)|
⩾|qα(f̃ , X) − qα(f̄ , X)| − |g(f̃(x1), . . . , f̃(xN )) − qα(f̃ , X)|.

It then follows that

max(|g(f̄(x1), . . . , f̄(xN )) − qα(f̄ , X)|, |g(f̃(x1), . . . , f̃(xN )) − qα(f̃ , X)|) ⩾1
2 |qα(f̃ , X) − qα(f̄ , X)|.

In other words, for any choice of measurable function g (referred to as an algorithm), based on N
evaluations, we can construct two triplets (f̄ , X, α) and (f̃ , X, α) satisfying both (1) and (2) and such
that, the error bounds studied in Theorems 2.1 and 3.1 (with qN

α (f, X) or q⋄,N
α (f, X) replaced by

g(f(x1), . . . , f(xN )) for f ∈ {f̄ , f̃}), for at least one triplet, are lower bounded by CρN (ρ ∈ (0, 1)) or
CN− 1

d−1 , depending on the value of d. Thus, the exponential or polynomial convergence rates established
in these theorems cannot be improved within our framework.

4.1. Case d > 1. In this section, we are interested in the optimality of the polynomial convergence
obtained in Theorems 2.1 and 3.1 for the case d > 1.

Proposition 4.1. Let d > 1. There exists C > 0 such that for every N ∈ N∗, every g : RN → R
measurable and every (x1, . . . , xN ) ∈ ([0, 1]d)N , there exists f, X, α such that (1) and (2) hold and that

|g(f(x1), . . . , f(xN )) − qα(f, X)| ⩾ CN
1

d−1 .

Remark 4.1. This result shows that the rate of convergence obtained in Theorems 2.1 and 3.1 in the
case d > 1 is optimal. In other words, any algorithm other than ours can only improve (lower in this
case) the constant C obtained in our deterministic upper bound of the error, but not the polynomial rate
N

1
d−1 . We notice that it remains compatible with the rate of convergence N

1
2 of Monte Carlo, because

the latter is a weak rate of convergence.

Proof. As explained at the beginning of this section, to prove this result, it is sufficient to build f̄ , f̃ :
[0, 1]d → R, X and α such that (f̄ , X, α) and (f̃ , X, α) both satisfy (1) and (2) and that f(xi) = f̃(xi)
for every i ∈ {1, . . . , N} and |qα(f, X) − qα(f̃ , X)| ⩾ CN− 1

d−1 , C > 0.
Let X ∼ U[0,1]d be a uniform random variable on [0, 1]d, let α = 1

2 and let us introduce f̄ : [0, 1]d → R
such that f̄(x) = x1 for every x = (x1, . . . , xd) ∈ [0, 1]d. In this case qα(f̄ , X) = α = 1

2 .
To begin, it is straightforward to verify that f̄ satisfies assumption (1) with Lf̄ = 1. Let us verify

assumption (2): Let δ > 0. Since qα(f̄ , X) = 1
2 , we have

λLeb(x ∈ [0, 1]d, f̄(x) ∈ [qα(f̄ , X) − δ, qα(f̄ , X) + δ]) =λLeb(x ∈ [0, 1]d, x1 ∈ [ 12 − δ,
1
2 + δ]) = 2δ,

and (2) holds for f̄ , X and α = 1
2 with M = 2.

We now propose a construction for f̃ . We introduce

C := {x ∈ [0, 1]d, f̄(x) = 1
2} = {x ∈ [0, 1]d, x1 = 1

2}.

We focus on the case N = 3j(d−1)

3 , the proof being similar otherwise. Let us define

D̂j := {Dj
β , Dj

β ∩ C ̸= ∅, β ∈ {0, . . . , 3j − 1}d},

and

D̃j := {Dj
β , Dj

β ∩ C ̸= ∅,

N⋂
i=1

xi /∈ Dj
β , β ∈ {0, . . . , 3j − 1}d}.

In particular, j is defined in a way such that Card(D̂j) = 3j(d−1) = 3N and then Card(D̃j) ⩾ 2N . We
are now in a position to introduce f̃ . Let L > 1. For every x ∈ [0, 1]d, let us define

f̃(x) = f̄(x) + L
∑

Dj
β

∈D̃j

inf
y /∈Dj

β

|x − y|∞,

with |x − y|∞ := supi∈{1,...,d} |xi − yi|.
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We remark that the piecewise affine function h : x 7→
∑

Dj
β

∈D̃j infy /∈Dj
β

|x − y|∞ and f̄ are both 1-
Lipschitz so that (1) holds for f̃ with Lf̃ = L + 1. Let us now show that (2) holds for f̃ , X and α = 1

2
with M < +∞. First, decomposing our computation on D̃j and its complementary space, we obtain

λLeb(f̃(x) ∈[q 1
2
(f̃ , X) − δ, q 1

2
(f̃ , X) + δ]) =

∑
Dj

β
/∈D̃j

λLeb(x ∈ Dj
β , f̃(x) ∈ [q 1

2
(f̃ , X) − δ, q 1

2
(f̃ , X) + δ])

+
∑

Dj
β

∈D̃j

λLeb(x ∈ Dj
β , f̃(x) ∈ [q 1

2
(f̃ , X) − δ, q 1

2
(f̃ , X) + δ])

=λLeb(x ∈ ∪Dj
β

/∈D̃j Dj
β , x1 ∈ [q 1

2
(f̃ , X) − δ, q 1

2
(f̃ , X) + δ])

+
∑

Dj
β

∈D̃j

λLeb(, f̃(x) ∈ [q 1
2
(f̃ , X) − δ, q 1

2
(f̃ , X) + δ])

⩽2δ +
∑

Dj
β

∈D̃j

λLeb(x ∈ Dj
β , x1 + L inf

y /∈Dj
β

|x − y|∞ ∈ [q 1
2
(f̃ , X) − δ, q 1

2
(f̃ , X) + δ]).

Now, for Dj
β ∈ D̃j , we remark that x 7→ x1 + L infy /∈Dj

β
|x − y|∞ defined on D̃j

β is a rescaled version

of the function f∗ : x 7→ x1 + L infy /∈[0,1]d |x − y|∞, x ∈ [0, 1]d. More particularly, for every x ∈ Dj
β ,

f̃(x) = 1
2 − 3−j

2 + 3−jf∗(3j(x − dj
β + 3−j

2 (1, . . . , 1))). We also observe that f∗ is a.e differentiable, has
a piecewise constant gradient and satisfies |∇f∗(x)|Rd ⩾ L−1√

d
for a.e. x ∈ [0, 1]d. In addition, it follows

from the coarea formula (see Theorem 3.11 in [?]) that for every a ⩾ 0 and δ > 0,

λLeb(x ∈ [0, 1]d, f∗(x) ∈ [a − δ, a + δ]) =
∫ a+δ

a−δ

∫
f−1

∗ ({y})∩[0,1]d

1
|∇f∗(z)|H

d−1(dz)dy,

where Hd−1 stands for the (d − 1)-dimensional Hausdorff measure on Rd. Moreover, f∗ is equal to
q 1

2
(f̃ , X) on a polyhedral shaped set (i.e., f−1

∗ ({q 1
2
(f̃ , X)}) with finite (d − 1)-dimensional Hausdorff

measure that we denote H. Hence, taking a = q 1
2
(f̃ , X) and δ small enough in the coarea formula yields

λLeb(x ∈ [0, 1]d, f∗(x) ∈ [q 1
2
(f̃ , X) − δ, q 1

2
(f̃ , X) + δ]) ⩽ 2δ(H + 1)

√
d

L − 1 .

Therefore, there exists M∗ such that for every δ > 0, we have

λLeb(x ∈ [0, 1]d, f∗(x) ∈ [q 1
2
(f̃ , X) − δ, q 1

2
(f̃ , X) + δ]) ⩽ M∗δ.

Recalling that f̃ is a rescaled version of f∗ and using the change of variables formula, it follows that for
Dj

β ∈ D̃j ,

λLeb(x ∈ Dj
β , f̃(x) ∈ [q 1

2
(f̃ , X) − δ, q 1

2
(f̃ , X) + δ])

=λLeb(x ∈ Dj
β , 3−jf∗(3j(x − dj

β + 3−j

2 (1, . . . , 1))) ∈ [3−jq 1
2
(f̃ , X) − δ, 3−jq 1

2
(f̃ , X) + δ])

=3−jdλLeb(x ∈ [0, 1]d, 3−jf∗(x) ∈ [3−jq 1
2
(f̃ , X) − δ, 3−jq 1

2
(f̃ , X) + δ])

=M∗δ3−j(d−1).

Summing over all Dj
β ∈ D̃j , we obtain∑

Dj
β

∈D̃j

λLeb(x1 + L inf
y /∈Dj

β

|x − y|∞ ∈ [q 1
2
(f̃ , X) − δ, q 1

2
(f̃ , X) + δ], x ∈ Dj

β) ⩽ M∗δ,

and (2) holds for f̃ , X and α = 1
2 with M = M∗ + 2 < +∞.

Moreover, for every i ∈ {1, . . . , N}, we have xi /∈ Dj
β when Dj

β ∈ D̃j , so that f̄(xi) = f̃(xi). In order
to conclude the proof, we are left to show that |qα(f, X) − qα(f̃ , X)| ⩾ CN− 1

d−1 for C > 0. We thus aim
to prove that there exists C > 0 and L which does not depend on N and such that

P(f̃(X) ⩽ 1
2 + CN− 1

d−1 ) <
1
2 .

This implies that q 1
2
(f̃ , X) > 1

2 + CN− 1
d−1 = q 1

2
(f̄ , X) + CN− 1

d−1 , which is the expected conclusion.
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From now, let us consider the fixed value C = 1
12(3d−1−1)3

1
d−1

. We begin by noticing that

P(f̃(X) ⩽ 1
2 + CN− 1

d−1 ) =
∑

β∈{0,...,3j−1}d

P(f̃(X) ⩽ 1
2 + CN− 1

d−1 |X ∈ Dj
β)P(X ∈ Dj

β)

⩽
∑

Dj
β

/∈D̃j

P(X1 ⩽
1
2 + CN− 1

d−1 |X ∈ Dj
β)P(X ∈ Dj

β)

+
∑

Dj
β

∈D̃j

P(X1 + L inf
y /∈Dj

β

|X − y|∞ ⩽
1
2 + CN− 1

d−1 |X ∈ Dj
β)P(X ∈ Dj

β).

We now study these two terms in the r.h.s. above. On the one hand, we observe that, when Dj
β /∈ D̂j ,

we have |dj
β1

− 1
2 | ⩾ 3−j , and since CN− 1

d−1 ⩽ 3−j

2 , we obtain

P(X1 ⩽
1
2 + CN− 1

d−1 |X ∈ Dj
β) = 1dj

β1
< 1

2
,

and ∑
Dj

β
/∈D̂j

P(X1 ⩽
1
2 + CN− 1

d−1 |X ∈ Dj
β)P(X ∈ Dj

β) = P(X1 ⩽
1
2 − 3−j

2 ) = 1 − 3−j

2 .

It follows that

∑
Dj

β
/∈D̃j

P(X1 ⩽
1
2 + CN− 1

d−1 |X ∈ Dj
β)P(X ∈ Dj

β) ⩽1 − 3−j

2 + N3−jd3j(CN− 1
d−1 + 3−j

2 )

=1 − 3−j

2 + 3−j

3 = 1
2 − 3−j

6 .

On the other hand, we are going to show that∑
Dj

β
∈D̃j

P(X1 + L inf
y /∈Dj

β

|X − y|∞ ⩽
1
2 + CN− 1

d−1 |X ∈ Dj
β)P(X ∈ Dj

β) ⩽ 3−j

6 ,

and the proof will be completed. For u ∈ (0, 3−j

2 ), β ∈ {0, . . . , 3j − 1}d, let us denote Dj
β,u = [dj

β1
−

u, dj
β1

+ u] × . . . × [dj
βd

− u, dj
βd

+ u]. We remark that, when Dj
β ∈ D̃j , then for every x ∈ Dj

β,u, we have
f̃(x) ⩽ x1 + L( 3−j

2 − u) and dj
β1

= 1
2 . Using the independence of the components of X, it follows that

for Dj
β ∈ D̃j ,

P(X1+L inf
y /∈Dj

β

|X − y|∞ ⩽
1
2 + CN− 1

d−1 |X ∈ Dj
β)

⩽P(X1 ⩽
1
2 + CN− 1

d−1 , X /∈ Dj
β,u|X ∈ Dj

β)

+ P(X1 ⩽
1
2 + CN− 1

d−1 − L(3−j

2 − u), X ∈ Dj
β,u|X ∈ Dj

β)

=P(X1 ⩽
1
2 + CN− 1

d−1 , X1 ∈ [ 12 − u,
1
2 + u]|X ∈ Dj

β)P(
d⋃

i=2
Xi /∈ [dj

βi
− u, dj

βi
+ u]|X ∈ Dj

β)

+ P(X1 ⩽
1
2 + CN− 1

d−1 , X1 /∈ [ 12 − u,
1
2 + u]|X ∈ Dj

β)

+ P(X1 ⩽
1
2 + CN− 1

d−1 − L(3−j

2 − u), X ∈ Dj
β,u|X ∈ Dj

β)

⩽
1
2 − 1

2(2u3j)d + 3j min(u, CN− 1
d−1 )(1 − (2u3j)d−1)

+ 3j(CN− 1
d−1 − L(3−j

2 − u) + u)+ + 3j(CN− 1
d−1 − u)+.



14 Gu, Y. and Rey, C.

Since CN− 1
d−1 ⩽ 3−j

12(3d−1−1) , we choose u = L
2(L+1) 3−j and L > 5

1
d

6
1
d −5

1
d

, so we obtain, when Dj
β ∈ D̃j ,

P(X1 + L inf
y /∈Dj

β

|X − y|∞ ⩽
1
2 + CN− 1

d−1 |X ∈ Dj
β) <

1
6 .

Gathering all the terms together yields

∑
Dj

β
∈D̃j

P(X1 + L inf
y /∈Dj

β

|X − y|∞ ⩽
1
2 + CN− 1

d−1 |X ∈ Dj
β)P(X ∈ Dj

β) < 3N3−jd 1
6 = 3−j

6 ,

and

P(f̃(X) ⩽ 1
2 + CN− 1

d−1 ) <
1
2 .

This implies that q 1
2
(f̃ , X) > 1

2 + CN− 1
d−1 (with C = 1

12(3d−1−1)3
1

d−1
) and the proof is completed. □

4.2. Case d = 1. In this Section, we are interested in the optimality of the exponential convergence
obtained in Theorems 2.1 and 3.1 in the case d = 1.

Proposition 4.2. Let d = 1. There exists C > 0 and ρ ∈ (0, 1) such that for every N ∈ N∗, every
g : RN → R measurable and every (x1, . . . , xN ) ∈ [0, 1]N , there exists f, X, α such that (1) and (2) hold
and that

|g(f(x1), . . . , f(xN )) − qα(f, X)| ⩾ CρN .

Remark 4.2. This result shows that the exponential convergence obtained for the upper bound of the
error studied in Theorems 2.1 and 3.1 in the case d = 1 is optimal in the sense that Proposition 4.2
provides a minorant for this error bound which also converges with exponential rate.

Proof. To prove this result, we adopt a similar strategy to the proof of Proposition 4.1 in the case d > 1.
We aim to build f̄ , f̃ : [0, 1]d → R, X and α such that (f̄ , X, α) and (f̃ , X, α) both satisfy (1) and (2)
and that f(xi) = f̃(xi) for every i ∈ {1, . . . , N} and |qα(f, X) − qα(f̃ , X)| ⩾ CρN , C > 0, ρ ∈ (0, 1).

We consider X ∼ U[0,1], a uniform random variable on [0, 1] and introduce f̄ : [0, 1] → R such that
f̄(x) = x. We choose α = 1

2 so that qα(f̄ , X) = 1
2 . We can easily verify that assumptions (1) with Lf̄ = 1

and (2) with M = 2 are satisfied by f̄ , X and α = 1
2 .

We now propose a construction for f̃ . For ρ ∈ (0, 1), let us define IN+1 := [ 1
2 (1−ρN ), 1

2 (1+ρN )], and
for j ∈ {1, . . . , N}, Ij,− := [ 1

2 (1 − ρj−1), 1
2 (1 − ρj)], Ij,+ := [ 1

2 (1 + ρj), 1
2 (1 + ρj−1)] and Ij := Ij,− ∪ Ij,+.

We also define

D̂N := {Ij , j ∈ {1, . . . , N + 1}},

and

D̃N := {I ∈ D̂N ,

N⋂
i=1

xi /∈ I}.

We observe that Card(D̂N ) = N + 1 and then Card(D̃j) ⩾ 1. We are now in a position to introduce f̃ .
Let us consider an arbitrary I0 ∈ D̃N and let L > 1 and define, for every x ∈ [0, 1]d,

f̃(x) = f̄(x) + L inf
y /∈I0

|x − y|.

We now show that (1) and (2) are satisfied by f̃ ,X and α = 1
2 . We first remark that, the functions f̄ and

x 7→ infy /∈I0 |x − y| are 1-Lipischitz so that (1) holds with Lf̃ = L + 1. Moreover, f̃ is a.e. differentiable
with piecewise constant derivatives and since L > 1, we have | d

dx
f̃(x)| ⩾ 1

L−1 > 0 for a.e. x ∈ [0, 1].
Since f̃−1(q 1

2
(f̃ , X)}) is finite, it follows from the coarea formula that (2) holds for f̃ , X and α = 1

2 with
M < +∞.

We also observe that we have f̄(xi) = f̃(xi) for every i ∈ {1, . . . , N}. In order to conclude the proof,
we show that, we can find C > 0, ρ ∈ (0, 1) and L ∈ ( 1+ρ

1−ρ , +∞) (which do not depend on N) such that
|qα(f̄ , X) − qα(f̃ , X)| ⩾ CρN . To this end, we prove that,

P(f̃(X) ⩽ 1
2 + CρN ) <

1
2 .
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First, we observe that, since f̃ is L + 1-Lipschitz, we have, for I0 ∈ {I1, . . . IN },

P(f̃(X) ⩽ 1
2 + CρN ) =P(X ⩽

1
2 + CρN , X /∈ I0)

+ P(X + L inf
y /∈I0

|X − y| ⩽ 1
2 + CρN , X ∈ I0)

⩽P(X ⩽
1
2 + CρN , X /∈ I0)

+ P(f̃(cI0,−) − (L + 1)|X − cI0,− | ⩽ 1
2 + CρN , X ∈ I0,−)

+ P(f̃(cI0,+) − (L + 1)|X − cI0,+ | ⩽ 1
2 + CρN , X ∈ I0,+),

where cI0,− = inf{x∈I0,−}+sup{x∈I0,−}
2 (and similarly for cI0,+) is the center point of I0,−. When

I0 = IN+1, we have similarly

P(f̃(X) ⩽ 1
2 + CρN ) ⩽P(X ⩽

1
2 + CρN , X /∈ IN+1)

+ P(f̃(cIN+1) − (L + 1)|X − cIN+1 | ⩽ 1
2 + CρN , X ∈ IN+1).

Now, we study each terms appearing in the upper bounds of P(f̃(X) ⩽ 1
2 +CρN ) above. For Ij ∈ D̃N ,

we have,

P(X ⩽
1
2 + CρN , X /∈ Ij) =P(X ⩽

1
2 + CρN ) − P(X ⩽

1
2 + CρN , X ∈ Ij)

⩽
1
2 + CρN − P(X ∈ [ 12(1 − ρN ), 1

2(1 + min(ρN , 2CρN ))])1j=N+1

− P(X ∈ Ij,−)1j ̸=ρN+1

=1
2 + CρN − 1

2(min(ρN , 2CρN ) + ρN )1j=N+1 − ρj−1 1 − ρ

2 1j ̸=ρN+1.

Moreover, for I0 = Ij ∈ {I1, . . . IN }

f̃(cIj,−) =cIj,− + L inf
y /∈ Ij,−

|cIj,− − y| = 1
2 − ρj−1 1 + ρ

4 + Lρj−1 1 − ρ

4 = 1
2 + ρj−1 L(1 − ρ) − 1 − ρ

4 ,

and similarly f̃(cIj,+) = 1
2 + ρj−1 L(1−ρ)+1+ρ

4 . In addition, when I0 = IN+1, we also compute (recall that
cIN+1 = 1

2 )

f̃(cIN+1) =1
2 + L inf

y /∈IN+1
|12 − y| = 1

2 + L1
2ρN .

Exploiting those computations, it follows that for I0 = Ij ∈ {I1, . . . , IN },

P(f̃(cIj,−) − (L + 1)|X − cIj,− |Rd ⩽
1
2+CρN |X ∈ Ij,−)

⩽P(|X − cIj,− |Rd ⩾
1

L + 1(ρj−1 L(1 − ρ) − 1 − ρ

4 − CρN )|X ∈ Ij,−)

=(1 − 2
ρj−1(1 − ρ)

2
L + 1(ρj−1 L(1 − ρ) − 1 − ρ

4 − CρN )+)+.

Then, using the Bayes formula yields,

P(f̃(cIj,−)−(L + 1)|X − cIj,− |Rd ⩽
1
2 + CρN , X ∈ Ij,−)

⩽
1
2ρj−1(1 − ρ)(1 − 2

ρj−1(1 − ρ)
2

L + 1(L(1 − ρ) − 1 − ρ

4 ρj−1 − CρN )+)+

⩽
1
2ρj−1(1 − ρ)(1 − L(1 − ρ) − 1 − ρ

(1 − ρ)(L + 1) + 4CρN

(1 − ρ)(L + 1)ρ−j+1)

=ρj−1(1 + 2CρN ρ−j+1

L + 1 ).
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By a similar approach, we also derive

P(f̃(cIj,+)−(L + 1)|X − cIj,+ |Rd ⩽
1
2 + CρN , X ∈ Ij,+)

⩽
1
2ρj−1(1 − ρ)(1 − 2

ρj−1(1 − ρ)
2

L + 1(L(1 − ρ) + 1 + ρ

4 ρj−1 − CρN )+)+

⩽ρj−1(−ρ + 2CρN ρ−j+1

L + 1 )+.

In the same way, when I0 = IN+1,

P(f̃(cIN+1) − (L + 1)|X−cIN+1 |Rd ⩽
1
2 + CρN , X ∈ IN+1)

⩽P(|X − cIN+1 |Rd ⩾
1

L + 1(L
2 ρN − CρN ), X ∈ IN+1)

=(ρN − 2
L + 1(L

2 ρN − CρN )+)+

⩽
1

L + 1ρN + 2
L + 1CρN .

We conclude that for I0 = Ij ∈ {I1, . . . , IN },

P(f̃(X) ⩽ 1
2 + CρN ) ⩽1

2 + CρN − ρj−1 1 − ρ

2 + ρj−1 1
L + 1 + 4

L + 1CρN

⩽
1
2 + L + 5

L + 1CρN − ρj−1 (L + 1)(1 − ρ) − 2
2(L + 1) ,

and for I0 = IN+1,

P(f̃(X) ⩽ 1
2 + CρN ) ⩽1

2 + CρN − 1
2ρN + 1

L + 1ρN + 2
L + 1CρN

=1
2 + L + 3

L + 1CρN − L − 1
2(L + 1)ρN .

It now remains to guarantee that both upper bounds we just derived are strictly lower than 1
2 . We

fix ρ ∈ (0, 1) and L ∈ ( 1+ρ
1−ρ , +∞) so that L−1

2(L+1) > 0 and (L + 1)(1 − ρ) − 2 > 0. Therefore, if C satisfies

C < min((L + 1)(1 − ρ) − 2
2ρ(L + 5) ,

L − 1
2(L + 3)),

and ρ ⩽ ρ, then

P(f̃(X) ⩽ 1
2 + CρN ) <

1
2 ,

which is the expected conclusion (choose for instance L = 4, ρ = ρ = 1
2 and C < 1

18 ).
□

5. Numerical illustration

To conclude this article, we propose a numerical illustration of Theorem 2.1 and Theorem 3.1. In both
cases, we propose an application for d = 1 and d = 2. When d = 1, we expect to observe an exponential
convergence and when d = 2, we expect a polynomial convergence of order 1

N . Let us present our
examples.

5.1. Exponential convergence. First for d = 1, we consider X ∼ N ( 1
5 , 1

25 )1[0,1] a Gaussian distribution
with mean 1

5 , variance 1
25 and restricted to the interval [0, 1]. The function f is defined on x ∈ [0, 1] by

f(x) = 0.8x − 0.3 + exp(−11.534x1.95) + exp(−2(x − 0.9)2).
This function is studied in [?] for the approximation of failure probabilities. In particular, we have
Lf ≈ 1.61. We fix α = 0.999. In this case q(f, X) ≈ 1.3503.

In Figures 1 (A) and (B), we represent respectively
ln(|qα(f, X) − qN

α (f, X)|),(5.1)
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and
ln(|qα(f, X) − q⋄,N

α (f, X)|),(5.2)
resulting from Algorithm 2.1 and 3.1 w.r.t. N . Those quantities appear in blue while the red line
represents the linear approximation with slope respectively given by ln(0.8453) for Figure 1 (A) and
by ln(0.9988) for Figure 1 (B). In particular, we can infer the numerical approximation for ρ given by
ρ ≈ 0.8453 for Algorithm 2.1 and ρ ≈ 0.9988 for Algorithm 3.1

(a) (b)

Figure 1. Logarithm of the error of estimation of Algorithm 2.1 (see Figure (A)) and
3.1 (see Figure (B)) w.r.t. the number of observations.

The drawings are consistent with the results from Theorem 2.1 and Theorem 3.1, as both exhibit a
linearly decreasing behavior. This confirms the exponential nature of convergence for both algorithms.
However, in this practical case, Algorithm 2.1 shows faster numerical convergence, i.e., it has a smaller
ρ. This is expected, as in the unknown Lipschitz case, Algorithm 3.1 tests multiple Lipschitz constant
candidates and apply a similar implementation to Algorithm 2.1 for each candidate. The budget allocated
for each candidate is only a fraction of the total global budget, N , allocated across all candidates.
Additionally, the piecewise constant behavior of the error w.r.t. N for both algorithms is also expected.
This occurs because our algorithms require a certain budget to subdivide more deeply the space [0, 1]
i.e., to progress from subdivision with depth k ∈ N to depth k + 1. Until that budget is reached, the
algorithms will continue returning the same result.

5.2. Polynomial convergence. In a second step, we propose an example when d = 2. In this case,
we consider X = (X1, X2) where X1 and X2 are independent and identically distributed under U[0,1],
the uniform distribution on [0, 1]. The function f is defined on x ∈ [0, 1]2 by f(x) = x1 + x2. In this
toy example, f is Lipschitz with Lipschitz constant Lf =

√
2, f(X) follows the Irwin Hall distribution

of degree 2 and we know that qα(f, X) = 2 −
√

2(1 − α). As before, we fix α = 0.999 and we have
qα(f, X) ≈ 1.9553.

In Figures 2 (A) and (B), we represent respectively the quantities (5.1) and (5.2) resulting from
Algorithm 2.1 and 3.1 w.r.t. ln(N). Those quantities appear in blue while the red line represents the
linear approximation with slope respectively given by -1.4781 for Figure 2 (A) and by -0.7440 for Figure
2 (B).

The expected linear decreasing behavior with slope 1 = 1
d−1 is thus observed (to some extent) aligning

with the result from Theorem 2.1 and Theorem 3.1. Similarly to the case when d = 1, we find that
while both algorithms exhibit similar convergence behavior, the numerical approximations converge more
quickly when the Lipschitz constant of f is known, i.e. when Algorithm 2.1 is used.
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