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ABSTRACT. We present an abstract framework for establishing smoothing properties within a specific
class of inhomogeneous discrete-time Markov processes. These properties, in turn, serve as a basis
for demonstrating the existence of density functions for our processes or more precisely for regularized
versions of them. We also use them to show the total variation convergence towards the solution
of a Stochastic Differential Equation as the time step between two observations of the discrete time
Markov processes tends to zero. The distinctive feature of our methodology lies in the exploration of
smoothing properties under some local weak Hérmander type conditions satisfied by the discrete-time
Markov processes. Our Hormander properties are demonstrated to align with the standard local weak
Hormander properties satisfied by the coefficients of the Stochastic Differential Equations which are the
total variation limits of our discrete time Markov processes.
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1. INTRODUCTION

1.1. Context. In this work, for § € (0,1] and d, N € N*, we consider a sequence of independent random
variables Z) € RN, t € ©%* (we use the notations 7° := §N and 7%* := §N*), which are supposed
to be centered with covariance matrix identity and Lebesgue lower bounded distribution (see ([2.8) for
definition). Then, our focus lies on the R%-valued discrete time Markov process (X7 );crs defined as
follows:

(1.1) X5 = (X7, 1,002, 5,0), ten’, X§=x}eR

where ¢ : (z,t,2,y) = ¥(z,t,2,9) € C°(R? x Ry x RY x [0,1];R?). Our primary challenge is to
demonstrate that, under suitable properties on 1, we can construct a process (X, );cns that is arbitrarily
close to (X7?),cqs in total variation distance (for any fixed t € 7°). Additionally, this process satisfies the
smoothing/regularization property: For every «, 8 € N%, there exists C' : R? x 7%* — R, (which does

not depend on d) such that for every T' € 7%*, X € R? and every f € C*°(R% R), bounded,
o -0
(1.2) OYE[0” f(X7)| X3 = X]| < C(X, T f oo

A refined version of this result is exposed in Theorem[2.1] Relying on those regularization properties,

we can infer that Yf, t € 7%, admits a smooth density (see Corollary . A main application of those
results is provided in Theorem m where we identify a total variation limit (along with explicit rate of
convergence) for X2, t € 7%, as § tends to zero. This weak limit random variable is given by the solution,
at time ¢, of the Stochastic Differential Equation (SDE),

t N t
(1.3) Xt:xg—i-/ Vo(Xs,s)ds+Z/ Vi( X, 8)dWE,
0 i1 70
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where (W})i>0,% € {1,...,N}) are N independent R-valued standard Brownian motions and Vj :=
By (., 0,0) + 1N 9%4(.,.,0,0), Vi = 8.9(.,.,0,0), i € {1,...,N}.
More particularly, we show that, for € > 0, for T € 7%, T > 26, if Xg = X = x € R?,

1
dry (Law(X7), Law(X5)) =3 sup IE[f(X1) — F(X)]|
fRI—[—1,1],f measurable
1, 14 x5
1.4 <62 B Cexp(CT),
(1.4) DAL p(CT)

where ¢, C,n are positive constants and V., (X) € (0, 1] under a local weak Hormander type property
(of order L, see (2.5)) for details and definititon of V) at initial point X. It is noteworthy that, the rate
§27¢ can be replaced by §'~¢ if the third order moment of Z?, t € 7%*, are supposed to be equal to
zero. In addition € can be set to 0 when the Héormander property is uniform. Consequently, X; admits a
density which can be approximated (uniformly on compact sets) by the one of X,. Similar estimates also
hold for the derivatives of the density. Those results are derived under polynomial type upper bounds
on the derivatives of ¢ in conjunction with the aforementioned local weak Hérmander type property.

Processes such as (Xf )iers commonly appear in weak approximation problems where the perspective
differs from the introduction of the earlier results. The problematic is to consider a process (X¢)i>o0
solution to a given SDE similar to . Subsequently, the aim is to build the weak approximation process
(X?)1ers and then compute an approximation for E[f(X;)] by means of E[f(X?)]. Two interconnected
questions naturally arise. First, what is the rate of convergence of the approximation as ¢ tends to
zero? Second, for which class of functions f does this rate hold? Among others, this paper addresses
those questions by providing an upper bound for the total variation distance (that is when f is bounded
and measurable) with rate §2—¢. It’s worth noting that this rate could be improved to §'~¢ or even
§™~¢, m € N, regarding some conditions on Z?, t € 7%* and ¢. Considering smooth f bounded with
bounded derivatives up to some given order, it is well established that the weak convergence of the
Euler scheme (¢(z,t,2,y) = Vo(z, t)y + va:l V;i(x,t)2%) occurs with rate & (see [?]), but various higher
order methods (see e.g. [?], [?], [?]) propose better rates (that are referred to as weak smooth rates in
this paper). An intriguing question emerges: do these weak smooth rates still apply to total variation
convergence? In the case of the Euler scheme with Gaussian increments, the total variation convergence
with order ¢ is established in [?] in a homogeneous uniform weak Hérmander setting. For higher order
methods, a solution combining the use of existing results concerning weak smooth rates and regularization
properties similar to is provided in [?]. In this article, it is shown that for (X?),c.s defined as in
7 the total variation rate aligns with the weak smooth rate under the restriction that 1) has smooth
derivatives and satisfies a uniform elliptic property (i.e. uniform Hormander property of order 0): For
every (z,t) € R x Ry, span(V;,i € {1,...,N})(x,t) = RY,

The results [?] and [?] offer first insights for establishing total variation convergence under Hérmander
type conditions for processes satisfying . The complexity of our approach relies both in the abstract
definition and in the weak Hérmander properties at any order L considered in a local setting. To
provide clarity on our intentions, let’s delve into specifics. To begin, we give an alternative formulation
of by employing the Stratonovich integral:

t N t
(1.5) thxg+/ %(Xs,s)ds+2/ Vi(Xs,s) o dWY,
0 i—1 70

with Vp =V, —% vail V. ViVi. In this article, Vp, Vi,i € {1,..., N}) and its derivatives are supposed
to have polynomial growth in the space variable except for the order one derivatives in space which are
simply bounded so that the existence of an a.s. unique solution to is guaranteed. The infinitesimal
generator of the Markov process (X;);>0 expresses as A = Vo + % Z¢1(‘/i)2 where for a test function f,
we use the abuse of notation Vo f = (Vp, Vf)ra and similarly for V;f. As demonstrated in the seminal
work [?], the hypoellipticity of A+ J; and then the existence of a smooth density for X; is closely related
the dimension of some Lie algebras generated with the vector fields Vp, Vi,i € {1,..., N}). This type of
properties are referred to as Hérmander conditions, which we now introduce.

We consider, for fixed ¢ > 0, the vector fields on R? given by, = +— Vy(z,t) and z = Vi(x,t), i €
{1,..., N}. Subsequently, we introduce the extended vector fields on R? x R denoted by Vi : (z,t) —
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(Vo(z,t),1) and V* i (z,t) = (Vi(z,t),0), ¢ € {1,...,N}. In particular, the following relationship on
Lie bracket holds: For V, W, two vector fields in {Vj, Vl, ..., Vn}and (z,t) e REXR,, 5 € {1,...,d+1},

Vi, Wo|(z, 1) =(V WV (2,t) — Vo VW (2, 1)) + 9, WIVI (2, t) — 0, VIWIt (2, 1)
[ ]( 7t)J + athV*d—i_l(x?t) - atv%jWg-i_l(xvt)‘

It’s worth noting that @ — [V, W](z,t) is a vector field on R? and we use convention [V, W]9+! = 0. We
are now in a position to present the Hormander properties which mainly consists in assuming that the
vector fields generated by the Lie brackets is full in R?. Various versions of Hérmander properties appear
in the literature serving to prove hypoellipticity. We try to give a brief overview. Let us introduce

Vwﬂgvmuﬂ*m HKMWJGQVWN}VGVML neN.

Similarly, we define V,,, n € N, in the same way but with 1_/*’0 (respectively Vi 1,..., Vi n) replaced
by Vo (resp. Vi,...,Vn). The weak local Hérmander assumption (at initial point (Xo = X,0)) in
inhomogeneous setting (i.e. when Vp,...,Vy depend on time), which is the one we use in this paper,
consists in assuming that

span(Up2o V., U(0,...,0,1))(x,0) = R

In the homogeneous setting (i.e. Vp, Vi, ...,V do not depend on the time component), it consists
in assuming that: span(U2®,V,)(X,0) = R? (sco e.g. [?]).Obviously, if coefficients Vg, Vi,...,Vx do
not depend on the time component, this last condition is equivalent to assume that span(U32 oV, , U
(0,...,0,1))(x,0) = RI+L,

Notice that, when span(V., ) = R we are in the elliptic setting. The hypothesis is termed "local"
Hormander because V, ,, is considered at the initial point (Xo = z,0). In the case where, for every
(y,t) € R x Ry, we have span(U® V., ,,)(y,t) = R¥TL we refer to it as "uniform" Hérmander property.
The term "weak" Hormander pertains to the definition of V., (or V,). Specifically, the "strong"
Ho6rmander property corresponds to the case where f/*,o is replaced by 0 in the computation of V, .
The investigation of Hérmander properties in inhomogeneous setting is, for example, conducted to prove
existence of smooth density in [?] or [?] for the weak uniform setting, in [?] for the strong local setting
or in [?] or [?] for the weak local setting. For the homogeneous case, refer e.g. to [?], [?], [?] or [?] for
applications of local weak Hormander properties. We finally point out that, following the observation
made [?] in the uniform Hérmander setting for SDE with inhomogeneous coefficient, hypoellipticity may
not hold if only span(U®_,V,,) = R4

The results presented in this paper offer, among others, the opportunity to extend the abstract framework
from [?] so that, it can be applied to the total variation approximation of inhomogeneous SDE having
polynomial bounds on their coefficients and their derivatives and satisfying the ususal weak local Hérmander
property. In terms of the function 1, it simply consists in supposing a weak local Hormander type
property (see (2.5))) and assuming polynomial growth properties on the derivatives of 1 (see and
(2.3)). In the homogeneous case, those assumptions are similar to the ones made in [?] concerning the
coefficients of (1.5)). We also highlight that the regularization properties established in this current paper
(see Theorem [2.1]), enables to demonstrate that the total variation rate of convergence in the local weak
hypoelliptic setting, aligns with the weak smooth rate. (see Remark . Total variation convergence
with high rates of convergence can thus be obtained for the methods presented e.g. in [?], [?] or [?].

Similar results have previously been explored but only restricted to the case where (Z?),c,s.« is made
of standard Gaussian variables and for some specific 1) (see e.g. [?] when ¢ is the Euler scheme of
a homogeneous SDE satisfying weak uniform Hormander property). In particular standard Malliavin
calculus can be applied to derive total variation convergence. It is worth mentioning that analogous
results are also investigated under a different (and weaker) condition from the Hérmander one, called
the UFG condition, but we do not discuss this type of hypothesis in this paper (see e.g. [?] for an order
two rate scheme still in the homogeneous setting). In [?], the methodology differs from ours in the sense
that the estimates are obtained relying on the proximity (in the LP-sense for Sobolev norms built with
Malliavin derivatives) between a well chosen coupling of the scheme (X{);c,s and the limit (X¢)i>o
which satisfies standard regularization results under suitable propertie see e.g. [?]). More particularly,
a continuous time version of (X?),crs which satisfies a similar SDE as (but with freezed coefficient)
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can be built. In this SDE context, specific to the Euler scheme, the Malliavin calculus techniques are well
known and used by the authors to bound the Sobolev norms. Conversely, our approach is self contained

and regularization properties for (Yf )tens are derived without using the ones satisfied by (X;);>0. Our
techniques draw inspiration from Malliavin calculus but is adapted to our discrete setting and also to
not only Gaussian random variables because the law of (Z?9),c.s.- may be arbitrary. Due to the liberty
granted to the choice of ¢ and to the law of (Z?),c s+, our result may be seen as an invariance principle.
Moreover, the law of X; depends on ¢ only through his first order derivative in y and first and second
order derivatives in z evaluated at some points (z,t,0,0), with « € R ¢ > 0. Hence a similar limit is
reached for a large class of function v and random variables (Z?);c .-

1.2. Organization of the paper. Section [2| introduces the key technical result of this paper, focusing
on regularization properties of discrete time Markov process with form , namely Theorem
Additionally, the hypoellipticity result, meaning existence of smooth density for solution of
exposed in Theorem as well as a slightly more general version of approximation and a density
estimate result. Then, in Section [3] we delve into the development of a Malliavin inspired discrete
differential calculus in order to prove the smoothing properties of Theorem [2.I] Finally, Section [ is
dedicated to prove some estimates on Malliavin weights as well as on Sobolev norms and Malliavin
covariance matrix moments. These estimates collectively contribute to the recovery of the regularization
properties detailed in Theorem [2.1

1.3. Notations. For E and E° two sets, we denote by EE° the set of funtions from E° to E, and for
d € N*, we use the standard notation E? := E{1--@} We denote by M(R?) (respectively M;(R?)), the
set of measurable (resp. measurable and bounded) functions defined on R?. C4(R9), ¢ € NU {+oc}, is
the set of functions admitting derivatives up to order ¢ and such that all those derivatives (including

order 0) are continuous and C{(R?) (resp. Ck(R?), Cgol(Rd)), g € NU {400}, is the set of functions

belonging to C?(R?) such that all the derivatives (of order 0 to q) are bounded (resp. have compact
support, have polynomial growth).

We will also denotes M(R?; R) for measurable function on R? taking values in R (and similarly for other
set of functions defined above).

When dealing with functions defined and taking values on Hilbert spaces, we introduce some notations:
Let H,H® be two Hilbert spaces. For f : H — H® and u € H, the directional derivative D, f
of f along w is given by (when it exists) D, f(z) = lime_mw for every x € H. When
f is Frechet differentiable, we recall that v — D, f(x) is a linear application from H to H® that
we simply denote Df(z). When H® = R, we denote aF f(z) (which is uniquely defined by Riesz

theorem) such that for every u € H, D, f(z) = <de(:z:),u>H. For f € My(R%:RY), we introduce

the supremum norm ||f|lec = Sup,cpa |f(2)|gee with |.|gee the norm induced by the scalar product
(F, F)mae = X35, £7£°9. When £ takes values in B%°*?", we denote ||f]lpe = supgcsee e, o -1 | F€lze-
For a multi-index a = (a',--- ,a%) € N? we denote |a| = a® + ... + a?, |la|| = d and if f € Cl*/(R?),

we define 9 f = (9y)*" ...(8d)“df =0%f(x) = gll didf(ac) Also, for B € N we define (o, ) =
(ab,--- a8t ... ,ﬁdo). In addition, we also denote V. f = (0,3 fi)(i,j)ef1,....d°} x {1,...,d} for the Jacobian
matrix of f and H,f = ((5;;8mzfi)(l7j)e{1“_,d}X{L“.’d})ie{l’_”do} for the Hessian matrix of f. In
particular, for v € R, vTH,f € R >4 and (wTH, )" = Zle 0,0, fiv'. We include the multi-
index @ = (0,...,0) and in this case 90“f = f.

In addition, unless it is stated otherwise, C' stands for a universal constant which can change from line
to line, and given some parameter ¥4, C(¢) is a constant depending on ¥.

Also, 1, stands for the Kronecker symbol, meaning 1, = 1 if a = b and is zero otherwise.

Finally, for a discrete time process (Y;);cxs, we denote by FY := o(Yy,w € 7, w < t) the sigma algebra
generated by Y until time ¢.

2. MAIN RESULTS

In this section, we present our main result about the regularization properties of (X?),crs. Once the
regularization results are established (Theorem [2.1]), we infer the existence of a total variation limit for
X7, for fixed t € 79, in terms of a solution to a specific SDE (Theorem [2.2)).
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2.1. A Class of Markov Semigroups.
Definition of the semigroups. We work on a probability space (2, F,P). For § € (0,1] and N € N*,
we consider a sequence Qf independent random variables Zf € RN, t € 7%*, and we assume that Zf , are
centered with E[ZZ207] = 1;; for every i,j € N := {1,..., N} and every ¢t € 7%*. We construct the
R9-valued Markov process (X?);c.s in the following way:
(2.1) X2 s =0(XP,1,63 20, 5,8), ten’, X§=x)eRY,

where

P € C®(RYx Ry x RY x [0,1;R?) and V(z,t) € R? x %, 4)(x,t,0,0) = z.

Let us now define the discrete time semigroup associated to (X?);cns. For every measurable function
f from R? to R, and every = € R,

veer' Qi) = [ fu)Qiw.dy) = BLFCE)IG = al.

We will obtain regularization properties for modifications of this discrete semigroup. Our approach relies
on some hypothesis on ¥ and Z? we now present.

Hypothesis on ©. Polynomial growth and Hormander property. We first consider a polynomial
growth assumption concerning the derivatives of ¢: For r € N*,

A(r).  There exists ®,D, > 1,p,p, € N such that D > Do, p > po and for every (z,t, z,y) € R x R x

RN x [0, 1],
v r—la®|—af] .
ax ,t # ,y i — =L T
(2.2) > > 1080 02708 Wlpa(at, z,y) < Dp(1+ |ofB 4+ 077 2[R0,
ot [+]at|=0 |a* |+]av| =1
and

d N N
(23) {Z |8wlay7/}‘Rd + Z |8wlaz”/}|Rd + Z |6a:laziazj¢|]Rd}(‘r5 tv 2, y) < 9(1 + 57% |Z|]%N)
1=1 i=1 ij=1
Without loss of generality, we assume that the sequences (D, ),en+ and (p,)ren+ are non decreasing.
We denote AJ(+00) when AJ(r) is satisfied for every r € N*.
Notice also that, we obtain exactly the same results if we add D5~ !|y| in the r.h.s. of , or if we
add ©,671|y| in the r.h.s. of . This is due to the fact that the function v is only used for y = ¢
(or y = C6, C < 1) so the assumptions above are then satisfied replacing © (respectively ©,.) by 29
(respectively 29,.). Also, we do not give explicit dependence of the r.h.s of or w.r.t. the
variable ¢ because in our results, ¢ is taken in a compact interval with form [0, T7.

At this point, let us observe that we can rely this assumption with the one in [?] where the authors
directly study the existence of density of the solution of by means of standard Malliavin calculus
but when coefficients do not depend on time. Taking 1 linear in its third and fourth variable, and
homogeneous, i.e. ¥ : (z,t,2,y) — x + Vo(z)y + ZZ]\LI Vi(z)2" then, exactly AJ(+o0) is the regularity
assumption made on Vj, ..., Vy in [?] (combined with a weak local Hérmander property) to derive similar

estimates as (2.1)) in Corollary

The second hypothesis we need on 1 is local weak Héormander property on some vector fields we now
introduce. We denote the Lie bracket of two C! vector fields in RY, [,] : (C'(R4,R%))? — CO(R?4, R?),
f1, fa = [f1, fa] == Vafafi = Vi fifo.

We denote Vo = 9,1(.,.,0,0)+1 SN 8%4(.,.,0,0), V; = 0,:9(.,.,0,0),i € N, Vo = Vo— 3 =N | V,V;V.
For a multi-index a € {0,..., N}”a“ and V : R4 x R, — R%, we define also VI[® using the recurrence
relation VI@O) = [V viel] 4 g, viel 4+ 25N v, [v;, VIel]] and VIl = [v;, VI if j € {1,...,N}
with the convention V% = V. We are now in a position to introduce our Hérmander hypothesis on 1)
For L € N, the order of our Hérmander condition, let us define for every (z,t) € R? x Ry,

N
= i [o] 2
(2.4) Vi(z,t) '*Mbewfﬁf\wl > Z(Vi (z,1),b)2..
a€{0,...,N}lel; i=1
lell <L

We introduce, for x € R%:
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A, (X,L). Our local weak Hérmander property of order L € N,
(2.5) V5 (x,0) > 0.

Especially, this hypothesis is used at initial point for X = Xg. We will sometimes consider a
uniform weak Hormander property of order L,

(2.6) Vi = inf inf Vp(z,t) > 0.

teRy xeRd

In this case, we denote A3°(L) instead of As(X,L). Also, we usually denote Vp(z) := V(x,0).

It is worth noticing that, with the notations introduced in the Introduction, is satisfied for some
L € N if and only if span(US2 (V.. ,)(x3,0) = R?, which is why, we refer to it as local weak Hérmander
property. A similar observation holds for in the uniform setting. The case L. = 0 corresponds to
the elliptic case.

Hypothesis on Z°. Lebesgue lower bounded distributions. A first assumption concerns the
finiteness of the moment of Z%: For p =0,

Aj(p).

(2.7) M,(Z2°) =1V sup E[|Z]|Py] < cc.

temd*

We denote Aj(+00) the assumption such that A3(p) is satisfied for every p > 0.

A second assumption is made on the distribution of Z°. We suppose that the distribution of Z° is
Lebesgue lower bounded:

Aﬁi. There exists z, = (2.¢)ers+ taking its values in RY and e,,r, > 0 such that for every Borel set
A C RY and every t € 7%,

(2.8) P(Z) € A) > e Moh (AN By (2:4)),

where Ay .}, is the Lebesgue measure on RY.

Let us comment assumption A$. First, notice that holds if and only if there exists some non
negative measures p with total mass u(RYV) < 1 and a lower semi-continuous function ¢ > 0 such that
P(Z) € dz) = pl(dz) + (2 — zx4)dz for every t € n%*. We also point out that the random variables
(Z))ieno~ are not assumed to be identically distributed. However, the fact that 7, > 0 and e, > 0 are
the same for all k represents a mild substitute of this property. In order to construct ¢ we introduce the
following function: For v > 0, set ¢, : RY — R defined by

2

(29) SDU(Z) = 1|Z\RN <w +exp (1 - 2)1v<\z\RN <2v-

v? = (|z[ry =)

Then ¢, € C;° (RM;R), 0 < ¢, < 1 and we have the following crucial property: For every p,q € N,
every z € RN

. » C(q,p)N%
(2.10) Y 0 ()P lEe(e) < SRV

vPa
azeNN
|a®]e{1,..., q+1}

with the convention In ¢, (z) = 0 for |z| > 2v.
As an immediate consequence of (2.8)), for every non negative function f : RY — R, and t € 7°, t > 0,

E[f(Z0)] > e / v 2 2 — 200 ) F(2)de.
RN
We denote

my = s*/ or, j2(2)dz = E*/ Or, j2(2 = 24 4)dz > 0.
RN RN
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We consider a sequence of independent random variables ¢ € {0,1}, U2,V € RV, t € %, with
laws given by

P(x! =1) =m., PH$=0)=1-m.,,
B(5~3U} € d2) =—p,. oz — 2)d,

IP’((S_%V;S edz) = (P(Z¢ € dz) — pra(z — 24¢)d2),

1—m.
where pr. satisfies || with v = 5. Notice that P(V? € dz) > 0 and a direct computation shows
that

POCUY + (1= OV € dz) =P(62 20 € dz).

This is the splitting procedure for Z?. Now on we will work with this representation of the law of
Zf. Consequently, we always use the decomposition

8520 = U7 + (1 — X))V,

The above splitting procedure has already been widely used in the literature and is usually referred to as
the Nummelin splitting. In [?] and [?], it is used in order to prove convergence to equilibrium of Markov
processes. In [?], [?] and [?], it is used to study the Central Limit Theorem. Also, in [?], the above
splitting method (with 1p,_ (., ,) instead of ¢, ;2(z — 24¢)) is used in a framework which is similar to
the one in this paper. Finally in [?], it is used to prove regularization properties of Markov semigroup
under the uniform ellipticity property: inf , ;)crayx~s Vo(z,t) > 0.

We introduce a final structural assumption specifying that the time step d needs to be small enough.
For 6 € (0,1], when (2.3]) holds, we define

eqaa 1 d13(E=1
(2.11) M (0) =075 (lr=o + Tr>0 25(1V T3)% ) and

1 1 1 1 1
12(0) :=min(6” 2. (8) 77, 568D ¥+T),

with p given in (2.3). For T € 7%*, X € R?, we introduce the following assumption:
Ad(x,T). Assume that (2.3) and Ay(x, L) (see (2.5))) hold and that ¢ € (0, 1] is small enough so that

L(L+1)

(40(L+1)N 2 y1s”
’ TVL(X)m*

Nl

(2.12) 71(9) >2max((§)

b

L(L—1)

1;- +| dig15 (98 _
L=0 l>0(m ) (4%2(‘2 (] \/T))143Nf)d13l‘ 1)
72(6) >1.
6

Similarly as the assumption A (X, L), this hypothesis is used at initial point for X = X§.
Considering the lower bound of #;(d) in (2.12), it becomes apparent that while it remains independent
of §, it may assume excessively large values. This minimum could potentially be decreased with
modifications to the proof structure, but at the expense of possibly higher upper bounds on the semigroup’s
derivatives. In this paper, we tailor our proof to minimize the reliance of C'(z,T) in ([L.2)) with respect

to ﬁ(ﬂ and % Specifically, our proofs are designed so that the constant 7 appearing in Theorem
Corollary [2.1] and Theorem [2.2] are as small as possible. Explicit values for n are given in the proof of

those results.

2.2. An alternative regularization property. In this section we provide the regularization property
for a modified version of X°. We consider a d-dimensional standard (centered with covariance identity)
Gaussian random variable ¢ which is independent from (Z7);cys.-, and for 6 > 0,

(2.13) Q' f(a) = / JW)Qy" (w,dy) = Ef (X7 +6°9)|X] =a], Ter’

It can be seen as a regularization by convolution of the semigroup @°. From a practical viewpoint, the
modified version X% + 6°¢ is easily computable and then well adapted to simulation based approaches
such as Monte Carlo methods.
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Theorem 2.1. Let T € 7%, X € R, L € N and f € ggl(Rd;R) satisfying: there ewxists Dy > 0 and
ps € N such that for every x € RY,

(@) < Dp(1+ |lgh).

Then we have the following properties:

A. Let ¢ € N and a, 8 € N¢ such that |a| + |8] < q. Assume that AS(max(q+3,2L +5)) (see (2.2
and ), Ay (X, L) (see ), Aj(+00) (see ), AS (see ) and A(x,T) (see
hold. Then,

(1 + |X[ga)C exp(CT)

(VL (x)T)" ’

where 1 > 0 depends on d,L,q and ¢ and ¢,C > 0 depend on d, N, L, q,D,D nax(q+3,2L+5)s Ps

Pmax(q+3,2L+5)s P f> m%‘, %,9 and on the moment of Z° and which may tend to infinity if one of

those quantities tends to infinity.

(2.14) 10°QY’0° f(x)| <Dy

B. Assume that hypothesis fmm are satisfied with AS(max(q+3,2L+5)) replaced by A§(2L+5).

Then,
5 5.0 o~ (14 [x]54)Cexp(CT)
(2.15) QTI() = Qr S (9| <00y

where n > 0 depends on d,L and 6 and c¢,C > 0 depend on d,N,L,q,D,Dor5,p, Par+5,9¢,
mi*, %79 and on the moment of Z° and which may tend to infinity if one of those quantities

tends to infinity.

Remark 2.1. We point out that, in the case where py = p, = 0 for every r € N*, then c = 0

in and . This remark remains valid in Corollary [2.1] (see (2.16)) and Theorem [2.3 (see
]

ut not ) stated later in this Section. Assuming further that AS°(L) holds, the upper bounds
established in Theroem [2.1] thus become uniform w.r.t. X.

A consequence of Theorem [2.1] concerns the existence of a bounded density with bounded derivatives for
X2 + 6. The proof of this result is given in Section Notice that an explicit value is given for 7.
This type of result is usually referred to as hypoellipticity property of the operator Q%°.

Corollary 2.1. Let T € %%, x €¢ R and L € N. Let q € N, let o, 3 € N? such that |a| + 8| < q.

Assume that AS(max(q+d+3,2L+5)) (see and ), As(x,L) (see ), Aj(+00) (see ),
Aj§ (see @) and AY(x,T) (see ) hold.

Then, for every y € R?, gl‘g(x, dy) = q%g(x, y)dy and q%g € C1(RY x RY) satisfies, for every p > 0,
(14 |X|ga)C exp(CT)
(Ve(X)T)"(1 + [ylga) '

where ) > 0 depends on d,L,q and 6 and c,C > 0 depends on d, N, L,q, ®, Dnax(q+d+3,20+5)» P
Pmax(q+d+3,2L+5); mi*, %,G,p and on the moment of Z° and which may tend to infinity if one of those
quantities tends to infinity.

Moreover, if po = 0 (see hypothesis AS) and there exists z° > 1 such that a.s. Sup;cs.«
z%°, then,

(2.16) 1020545 (x, )| <

Zl|pn <

Cexp(CT) exp(— ly — X[3a )
VL(x)T)n c(T v 620)”

where 1 is the same as in , c > 0 depends ond, ®1 and z*°, and C > 0 depends ond, N, L, q,9,
Dmax(q+d+3,2L+5)s P mi*, %, 0 and z*° and which may tend to infinity if one of those quantities tends to
infinity.

(2.17) 1020543 (x,y)| <

2.3. An invariance principle. Let us consider (X;);>0 the Ré-valued Itd process solution to the SDE
. In the following results, we show that, for a fixed T > 0, X% converges in total variation towards
Xr.

Notably, our result is stronger than the total variation convergence since we consider measurable test
functions with polynomial growth. Moreover, X is endowed with a density which can be approximated
by the one of X% +6%¢. In an ideal situation, we would like to approximate the density of X7 using
the one of X%. However, due to the absence of regularization properties for the random variable X%, we
cannot offer any assurance regarding the existence of its density. Actually, since the random variables
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(Z?)1ens» do not necessarily have a density, we can easily build an example such that X% does not have
a density, for instance by considering X9 = D tembt<T Z?. In contrast, since X9 + 0?9 satisfies the
regularization property, we can guarantee the existence of its density together with an upper bound on
this density.

Exploiting Theorem and Corollary we can deduce the convergence of the law of X% towards the
one of X7 as ¢ tends to zero. We are, among others, interested by obtaining an upper bound for

ELf(X7) — £(X7)|Xo = X3 = a],

which writes C(z)0™ sup,ega | f(2)| when f € My(R?) (and similarly when f has polynomial
growth). One main technical point is that the upper bound does not depend on the derivatives of

I

This result may be seen as an invariance principle under two aspects. First, the law of the limit
X7 only depends on derivatives (of order one and two) of 1 evaluated at some points (z,%,0,0) with
(z,t) € R? x R,. As a consequence, if we replace ¢ by any function ¢ giving the same evaluations of
those derivatives, the limit of X2 remains X7. Another aspect is that the law of (Z;);eqs.+ is not specified
explicitly and can be chosen in a large set of probability measures. In particular, in the following result,
we show that only Aj(+00) (see ) and Aj (see (2.8))) are assumed concerning the law of (Z;),cps.-.

Theorem 2.2. Let T € 7, with T > 26, x € R?, L € N and m > 0. We have the following properties:
A. Let f € M(R%R) satisfying: there exists D >0 and py € N such that for every x € R,

(@) < Dp(1+|algh).
Assume that AS(max(6,2L+5)) (s and ), As(x,L) (see ), AJ(+00) (see ),
)

A§ (see @) and AS(x,T) (see hold. Then, for every e > 0,

1 1+ [x]5a
2.18 E[f(X1) — f(X3)] X0 = X = X]| 62D ;———EL Cexp(CT
(2.18) [BLF(Xr) — F(X3)|X0 = X] = ] g O e ),
where n > O depends on d, L and < and c,C = 0 depend on d, N, L,D,sup,.cy- Dr, P, SUP,.cn+ Pr

pfwi s Tl ;¢ and on the moment of Z°% and which may tend to infinity if one of those quantities

tends to infinity.

B. Assume that hypothesis from[A] are satisfied.
Then, Xt starting at point X has a density y € R4 pp(X,y) with pr € C°(R? x RY).
Moreover, for every 6 > , g €N, a,8 € N with |a| + 8] < q, p=0, e >0 and every y € R?,

(1 + |X|ga)Cexp(CT)

VL(x)T)1(1 + |ylza)

where n = 0 depends on d L,q,0 and L and ¢,C > 0 depend on d, N,L,q,9D,5up,.cn- Dr, P,

Sup,.cn+ Prs Pr, m*, - L gp L c L and on the moment of Z5 and which may tend to infinity if one of
those quantities tends to infinity.

(2.19) 050 pr(x,y) — 0205 47" (x,y)| <6% ¢

Remark 2.2. (1) Let us recall that for p and v two probability measure on Borel o-algebra of R?,
the total variation distance between p and v is given by

1
drv(pv) = s [p(A) = ()= s Sl —v(f)
AeB(R) FEMERER), [ flle<1
1

= s hup-ul

FeCE (RER), | flloo <1
where (i(f) = [pa f(@)p(dx) and similarly for v(f). The last equality above is a direct consequence
of the Lusin’s Theorem.

In particular, provides a bound on the total variation distance between the law of
Xt starting from X € Rd (denoted Pr(x,.)) and the one of X% also starting from X (denoted
Qr(X,.)). In particular, under the hypotheszs from- mn Theorem then

(2.20) A (Pr(x,.), Op(x, )) <o T Xl

oy et



10 C. Rey

(2) If we suppose in addition that > 2 and for every t € n%*, i € N, E[(Z})?] = 0 and we replace
Aﬁ(max(G, 2L +5)) by A§(max(7,2L +5)) in then Theorem (and also ) holds with
627¢ replaced by 6' ¢ and (Dmax(6,2L+5)s Pmax(6,20+5)) Teplaced by (Dmax(7,20+5)> Pmax(7,2L+5))
in the r.h.s. of and .

(8) More generally, let us suppose that, in addition to hypothesis from Theorem the assumption
Aj(+00) hold and, given m > 0, 8 = m + 1 and there exists g(m) € N such that: For every

fe€Coo (R4, R) such that for every a € N% and every x € RY,

10 f(2)] < Dg.a(l+ [2P),

with D¢ > 1 and p(a) > 0, then, for every t € 7,

(2.21) EIf(X0s) = f(Xess)| Xe = X = 2] <™ Y7 DpaC(l+ [2l),

lal<q(m)

where C' and p do not depend on D¢ o ord. Then, Theorem holds with §3 ¢ replaced by §™ €
nd (Dmax(6,2L+5)s Pmax(6,2045)) Teplaced by (sup,.cy« Dy, SUp,.en- Pr) in the r.h.s. of and
(and also ). In this case n, ¢ and C may depend on m.

When assuming simply that for every t € m*, i € N, E[(Z})3] = 0, we have automatically that
holds with m = 1, which leads to the previous remark.

(4) By a straightforward application of Corollary and Theorem under the hypothesis from
Theorem [2.9 point [Bl], we derive easily the following estimate of the density of Xr: Let q € N,
let o, B € N such that |a| + || < q and let p > 0. Then, for every y € R,

(14 |X|ga)Cexp(CT)
Ve()T)" (L + |ylga)
(5) When uniform weak Hormander property holds, that is AP (L) (see ), then 82 can be

replaced by 82 in or (but not in ) When we assume holds, similar

conclusions hold but with §2¢ (respectively 5%) replaced by 6™~ (resp. 6™).

1030, pr(x,y)| <Dj

Example 2.1. (1) Let us consider X = (X', X?), the solution of the 2-dimensional system of R

valued SDE, starting at point X = (x',x2) € R? and given by

dX} =b(X} t)dt + o(X},t)dW,

dX? =X/dt,
where (Wy)i>0 is a one dimensional standard Brownian motion, b and o are smooth with bounded
derivatives of order one and polynomial bounds for higher orders. In the setting from ,
we have Vo : (x,t) — (b(xl,t),2') and Vi : (x,t) — (o(x',t),0). In this example local
ellipticity holds for X' as long as o(x',t) # 0. However ellipticity does not hold for X since
dim(span((0,0)))(x,0) < 1. Nevertheless, let us compute the Lie brackets. In particular

[Vovvl] : (va = (3I10(x1,t)b(xl,t) - ax1b(:61,t)0'($1,t), *U(Ilat))v
and, for o(x',0) # 0, span((c,0),(0p10b — dpibo + 00, —0)(X,0) = R? so that local weak

Hérmander condition holds. Now, let us consider the Fuler scheme of X, given by (Xg’l, Xg’Q) =
X and fort € 7°,

X0 =X b(X) 06 + o (X)L OVEZ]
X)5 =X07+ X,
where Zf € R, t € m*, are centered with variance one and Lebesque lower bounded distribution
and moment of order three equal to zero. With notations introduced in , for o(x§,0) #0,
Vi (X)

1
=1A inf <V1(Xa O)a b>]12§d + <[Vb - *V$‘/1‘/1, ‘/i](X7 0) + at‘/l(xv O)a b>]§d
beR?,|bla=1 2

. 1
=1A bGRd1,|r]lf)f‘Rd:1<(o-7 0),b)2a + ((9p10b — Dpibo + 502@%10 + 0yo, —0),b)a(x",0)

>0,
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and for every f € M(R%R) statisfying hypothesis from Theorem we have, for T € 70,
T >25, €€ (0,1],

1+ |X|]§d

Bl (Xr) = PR <Dy 5

Cexp(CT),
where 1, C, c can explode if € tends to zero.

(2) In a similar but simpler way, we can give an extension of the central limit theorem in total
variation distance, including the iterated time integrals of the Brownian motion.
We consider Z, € R, n € N*, which are centered with variance one and Lebesgue lower
bounded distribution and we define Sl(o) =n32 22:1 Zi, n,l € N, and for h € N*, Sl(h) =
n-! 22:1 Sl(ch_l)'
Then (Séo),...,s,ﬁh)), h € N, converges in total variation distance, as n tends to infinity,
toward the random variable (W, fol Wyds, ..., fol ... 052 Wi, ds1 ... dsy) where (Wy)i>0 is a one
dimensional standard Brownian motion.

3. A MALLIAVIN-INSPIRED APPROACH TO PROVE SMOOTHING PROPERTIES

Our strategy to obtain regularization properties is to establish some integration by parts formulas
(Theorem ) and then to bound the Malliavin weights appearing in those formulas (Theorem
(4.4)). These bounds on Malliavin weights are derived by bounding the Sobolev norms depending
on the Malliavin derivatives (Theorem and by bounding the moments of the inverse Malliavin
covariance matrix (Theorem . In this section, we present the discrete Malliavin calculus tailored to
our framework, and subsequently present our key regularization property results. Integration by parts
formulas and estimates on the Malliavin weights will be derived in the next section.

3.1. A generic discrete time Malliavin calculus. Since we are interested in random variables with
form , where the laws of random variables Z° are arbitrary (and thus not only Gaussian) the standard
Malliavin calculus is not adapted anymore. Therefore, we remain inspired by Malliavin calculus but we
whether develop a discrete time differential calculus which happens to be well suited to our framework
as soon as Z° involves a regular part i.e. is Lebesgue lower bounded. In this section, we always assume
that AS (see ) holds true.

In the following, we will denote x° = (x2)icnss, U = (U)seps» and VO = (V),cps» and given a
separable Hilbert space (H, (., .}#) equipped with an orthonormal base $ := (b, )nen+, we will consider
the class of random variables:

SU(H) = {F = f(°, U, V%) :¥(x,v) € {0,1}7"" x R™"*N,
ws fx,u,v) € CFoo RN 9q),

+00 .
Do, SO, U VO) € (LP(Q), Yur, ..., u € R™ N 1 € N},
p=1

In the previous definition, we have denoted by CF’OO(R’TS'* *N-71), the set of functions defined on the
vector space R XN “that take values in H and which admit Fréchet directional derivatives of any order.
When H = R, we simply denote S?. Our applications will be limited to cases where H = R >¥XIm with
Iy X ... X l;n,m € N*. However, considering H as a general Hilbert space does not introduce additional
difficulties. Therefore, we choose to work in the more general setting where H is simply assumed to be
a Hilbert space.

We now construct a differential calculus based on the laws of the random variables U° which mimics the
Malliavin calculus, following the ideas from [?], [?], [?] or [?]. We begin by introducing the basic element
of our differential calculus.

Derivative operator and Malliavin covariance matrix. We consider the set of {0, 1}”5'*XN—valued
vectors (uf)iyensxxN sSuch that for every ¢,s € 7% and every i,j € N, (ul)s; = 1;51;;. For F €

S°(H), we define the Malliavin derivatives DOF := (D?t’i)F)(m)eﬂa,*XN € Sé(H)ﬂs’*XN by

D?t’i)F = XfDu;f(Xé’ Ué’ V6)7 (t7l) € 7'f'6’>!< x N.
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For T C 7%*, we define D®TF = (D?t,i)F)(t,i)eTxN € SO(H)T*N. When T = n%* or when it is explicit
enough, we simply denote D°F. For s € (t — 4,t], with t € T we define also
6 N oY)
Dis oy F = Dg ) F,
and D?9 0 = 0 otherwise. The higher order derivatives are defined by iterating D°. Let o =

(ab,...,a™) € (7%* x N)™, m € N. In the sequel, we will use the notation ||a|| = m. We define
D)F=D% ...DS,.F

when m > 0 and D) F = DgF = F if m = 0. We also introduce
DT E = (DYF) ae(TxN)m-

The Malliavin covariance matrix of F' € S?(H) on T, is the matrix defined for every b, h° € $ by
b0, %] = 6(D*T(F, b2, DT (F,5°)3)zmo

N
(3.1) =0 DY,y (F, 02 DYy ) (F,h%)x

teT I=1
If T = (0,T)N7° with T € 7%* then

T
o8l 5] = /0 DB, (F, ) D%, 1) (F,5°) s,

It is worth noticing that a%T can be seen as a linear operator on H such that for every h € H,
a%’Th = Zh,hOeﬁ a‘sp’T[f),ho](h, h°)nbh. When H has finite dimension, this is the standard matrix
product.

Now, we define, when it is possible, the inverse Malliavin covariance matrix. We consider the trace class
norm of a bounded linear operator £ on the Hilbert space H given by |L|: := Zh cn(VL*Lh, b)g, where
L* is the adjoint operator of L for the scalar product (,)s;. We say that an operator is trace class if it
is bounded, linear and |£|. < +o0.

When O'%VT — Iy (with Iy[h, §°] = Ly=go, b, h® € $) is a trace class operator on H, and the Fredholm
determinant det 0%, . of 0§, 1 (which is the standard determinant when # has finite dimension) is not

zero, we define 7}5;713 = (UfpyT)_l, the inverse Malliavin covariance matrix of F'.

Divergence and Ornstein Uhlenbeck operators. Let G° = (Gf) with G¢ € SO(H)N.The

divergence operator is given by

temd*

ARGE =5 Z Gy DYy T4 + DY, GY' € S°(M),

teT i=1
with, for t € w%*,
Y =1In @T*/Q(éféUf — 2,4) € S°(R).
In particular, for i € N,
DY T8 =672 x)0. Ing, 207207 — 2.4) € S°(R).
Finally, we define the Ornstein Uhlenbeck operator, for F € S°(H),

N
LyF = —AYD°F = =63 Y D.oyDieoyF + Doy FD, 5T} € S°(H).
teT i=1
Notice that, if T = (0,7] N 7° with T' € 7%*, then (denoting t(s) =t for s € (t — §,t], t € %),

SF = — / ZD“ D(“)Fds—ézZD“)FD(“ I e S (H).

teT i=1

Remark 3.1. The basic random variables in our calculus are Zf, t € % so we precise the way in which

the differential operators act on them. Since 5%Zf =x0U) + (1 —x)V?, it follows that for w,t € 7w,
T Cn% i,jeN,

(3.2) 02Dy Z07 =x0LuiLig,
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and
(3.3) L%‘Zf’i :)(fazi In <,0T*/2(57%Ut‘s — zt)Lier.

3.2. Regularization properties for approximations of the semigroup. In the following, we will
not work under P, but under a localized measure which we define now. The technique consists in
localizing the random variables Z° and the Malliavin covariance matrix o$.. For the first one, we aim to
control that the norm is not too high while for the latter, we aim to control that it is not too low. We
first introduce a regularized version of the indicator function. For v > 1, we consider ¥, € C;°(R; [0, 1])
such that W, () = 1 if |2| < v — 3 and 0 if |z[ > v and that the function z € R — W, (|z|g~) belongs
to C;°(RY;10,1]) (e.g. for |z] € (v — 3,v), ¥y(z) = exp(l —
Given T C 7%*, we introduce, for n = (11,72),

17(42|a:|£2v+17)2)>'

(3.4) OranT = Ox3s Gy, 7O 1 With

@X%,G,m,T = ‘Ijm (Gdet 7%,T)7 and @7727T7t = H an2(|Z’li|]RN)? te 776a
we((0,6])NT)

where ©,, T = O, T.00. In the following, for T = (0, 7)N7°, T € 7°, we will employ the localization
random variable

[ .
(3.5) OT « = OX5 det(X5)2,(11(8).12(8)). T
where n = (11(0) and 75(d)) are defined in (2.11])

3.2.1. The reqularization pmperty for a modified measure. We still fix § > 0 and we consider the Markov
process (Xt )iers, defined in . In order to state our results, we first introduce the tangent flow
process (X;)eqs defined by XO = Igxq and

(3.6) Xy o= Oxs X7,

the Jacobian matrix of derivatives of X° w.r.t. the initial value Xg, which appears in our Malliavin
weights.

5,05,
We introduce (Q; 7" ),enrs such that,

(.7 Ve, @y () = B[O} (X)X = a].

with @g« . deﬁned in

Notice that (Qt Ok« )iens, is N0t a semigroup. We will not be able to prove the smoothing property for Q°

but for Q% ©%... The proof uses result established in Section |4 Our approach consists in demonstrating
an integration by part formula in Theorem built upon our finite disrete time Malliavin calculus,
and then bounding the moments of the weights appearing in those formulas exploiting Theorem and
Theorem

Theorem 3.1. Let T € m%*, T = (0,T|N7%, x € R? and f € Cool (R%R) satisfying: there exists Dy > 0
and p; € N such that for every x € RY,

(@) S Dp(1+ |z[ph)-
Then we have the following properties:

A. Let g €N and «, 3 € N such that |a| + 18| < q. Assume that AS(max(q+3,2L +5)) (see ,
(.)) As(x, L) (see (W) AJ(+00) (see (E/) Aj (see (@) and AY(X,T) (see (2.13)) hold.

Then,

L+1 xI¢
“Q O B Pmax(q+3,2L45) TP >0 R
(38) |a 6 f( )| f (VL(X)T)lgLSd(q2+3q+1)

X :Dg]ax(q-‘,-3 ar+5) €xp(C(1 + T)Mc(2°)DY),

with C = C(d, N, L, q,, Pmax(q+4,2L+5)> s> m*, - LY > 0 which may tend to infinity if one of
the arguments tends to infinity.
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B. Let h > 0. Assume that hypothesis from . are satisfied with AS(max(q + 3,2L + 5)) replaced
by A$(2L +5). Then,

C
1+ 1P2L+5+Pf>O|X|]Rd
89h

5 5,07 . h
(3'9) |QTf(X) - QT f(X)l <6 :Df VL(X)13L3dmaX(4744d

x chgL+5mC(Z6)C exp(CTMc(Z2°)D%),

with C = C(d,N,L,p,p,par+5,07, %*7 h) = 0 which may tend to infinity if one of the arguments
tends to infinity.

Remark 3.2. (1) In the case of uniform Hérmander hypothesis A3 (L) (see (2.5)), if we consider
5
§ < 6o for some 6y small enough, then for any x € R?, gieT’*f(z) can be replaced by the
localized probability measure mE[@%*f(X%ﬂXg = z] and the conclusion of Theorem
T, 10— ’

still hold. In case of non uniform Hormander property, oy would depend on x so it is not
uniform anymore and we can not obtain the same result.

(2) Using our approach we can easily show that under uniform Hérmander hypothesis AS°(L) (see
) (Vr(x —13%3d(q*+3¢+1) (g e replaced by (V&°T)~ 18%da(a+3) jn, the r.h.s. of (3 l and

VL( ) can be replaced by 1 in the r.h.s. of
Proof. The first step of our proof consists in estimating the Sobolev norm of 8 @T , for a multi index

v € N%. We begin with a usefull lemma establishing bounds on the derivatives of the inverse covariance
matrix.

Lemma 3.1. Let m € N, a € (T x N)™ and v € N¢. Then
9 5 m _
|D ol det(’yX%’T” gc(da N,m, |7|)1 VT =t

« X‘S
s F) S ) 2d +
x 1V |det ’YX%’T‘mH’yHl(l 5 > Do, O3 X7l .
oo €a:TXN |, |||

where we denote o :: T x N := {a, € (T x N), 1 € {1,...,]al] +1},0 € {a!,...,all},j =

S1=1}

Proof. We write |Dg@;(5 det(’yg(%v,rﬂ = |Di&;5m. In partiicular, using the Faa di Bruno
s,

formula for the inverse function, yields the following estimate

m+|vl
|Di§;(g deth{%TN sUm, |’7| | Z de t k+1 Z H |D % ? det(axé T)|7
(0o, 76) €Sk (ay) =1

where

(310) yk(aa’}/) = {(a<>7A/<>)7a<> € ykl(a)v’)/o € yl?(’)/)av.] € {la e k}7 ”O‘o,j” + |70,j| > O}
with

@) ={ato = (o1, o) Q0 € (Tx NIl o = or(al el ol i )
where o is the notation for the permutation acting on the components of as 1, ..., a0 % and
k
F(0,7) ={V6 = (Yo1s -1 Yok ) Yo €N 705 =17}
j=1

Notice that we allow the cases a, ; = 0 and Yo,; =0 € N¢. Remembering the definition of 0'(;(5 T
2,

and using standard estimates, we derive also

|Dio, 9l det(O'X(s T)\ < C(d,m,|v|)é Z Z |D208;’(5X5 2d

as€anTXN |y, |<|y|

Finally, gathering all the terms together and applying the Holder inequality, we obtain the announced
result. (]
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We denote shortly ©1 = O ys 4er(x2)2.m,. 7 = Um (det(’y‘)S(%7T(X%)2)), where X2 = (“)XgX% is defined
in 1) We first estimate the Sobolev norms of 8;’(591 for v € N?. Using the Faa di Bruno formula, we
0

can write

I+|v

P o P SR S L IR ING 3)

I=0  ae(TxN)! k=0

03,01

k
Z Clas,vs) H Dio,j 8;(%’3. det(7§%7T(X%)2)|2
(0to,Yo) €Sk () Jj=1
m I+

<L, 0l 120 iy Clms 7)Y 0 Z Z

=0 ae(TxN)! k=0

k
ST TLIPE 0% dettrs (X302,
(0o, 7o) ESn(ay) =1

At this point, evoking again the Fad di Bruno formula combined with Lemma [3.I] we derive, with
the notation defined in this result, the following estimate

D3, 0% det(vys p(X3)?) < C(d. Nym, [y)1 v Tl IHhes =t

<1V \det fyg(% T||\ao,j|\+|%,g|+1(1 +6 Z |Dga;<%X%|§{i(m+M+l)).
’ 0
(@,76)ES (o)

where . (a,7) = {(a6, Y6 € a : T x N x N |y, < |y] + 1, [|&| + 7| < |||l + 7| + 1}. Moreover,
since Z?=1 [Yo,;1 = |7| and Z?Zl llas ;1| = |le]|, we deduce from the Holder inequality, that

m I+

0,012 5 < Lol g Cl N, )6 33 1w 2t olD
1=0  ae(TxN)! k=0

k
X1V |detyly o0 N T e YT DA Xplpd )
a,eSL () I=1(&,70) €SI (a)y)
Shoysoll W, 120 g1V T2 HD=EC (A, N, [y])

5 jA(mt]) Yo y6 | 4dm+]) (metly|+1)
x 1V [ detv%s a+ > 0% X 2 5 Tty ooy
[vol<IyI+1

Moreover, using the the computations from Remark we derive that | W,, (|23 g~ )|r,6T,q <
Cm)||[ ¥, (| - | )loo,m» and, taking (n1,12) = (11(6),72(9)), it follows from Lemmathat

0% 0T w5 mm <o, 50l Wy (5) oo mt1711Wa0) (| &0 )lloo,m 1 V THHIDTLC(d, N, 1)

m o 2d(m m 1
(3.11) X 1V [det s o1+ YT |8§<3X%IRd(,[sE,‘yZz‘)fl‘llll:H)l)-
[vol<[yI+1
We now focus on establishing (3.8]). We remark that,
a 5O, o
(3.12) o°Qr fx) = Y Y EOVf(XP)P(XD)05;0%.1X5 = x],

1BI<vI<q 0<vo [<q =17
where P, (X2.) is a universal polynomial of 8§5X%,1 <lpl € q— v+ 1, 7,7 € N9 Using the
0,
integration by parts formula (4.3]) and the estimate (4.4) obtained in Theorem 4.1} we derive

[E[07 (X7 Py (X) 035 07...| X5 = X]| =[E[f(X7) Hy (X7, Py (X7)03307..) ]| X0 = X]|
<DSE((1 -+ XD HR (X3, Py (X3)03504 )1 X8 = X]
<O(d, N, Q)1 VT?T 1D, x Ay x Ay x Az x Ay,

where, using and and Lemma combined with the Cauchy-Schwarz inequality, we have
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Ay =1V E[| det 7§%1T|4Q<q+3>1@%*>0|xg = x|3

8dq(q+2 1 3 1
Az =1+ E[ XD 1XG = X7+ ELE XD, ¢, X0 =X
— 7 v68dq(g+1) 1
A3 =1 +E[ Z |6X8XT|Rda5yT:|’Y‘+lw\gq_M|]4.
[¥I<g—v|+1
, 1
Ay =E[(1+ | X220 Py (X | 5,11 X0 = X]7

In order to bound the first term, we use the estimates on the moments of inverse Malliavin covariance
matrix derived Theorem 3] and obtain

C

1+ 1P2L+5>0|X|Rr5
(VL(X)T)713L3d(q2+3q+1)
x exp(C(d, L, q,p22+5) (1 + T)Me(a,Lq,p.p2045)(Z°)D)).

Moreover, using the results from Theorem [£.2] we obtain

Ay x Az x Ay <(IX[za(1p, 550 + 1p;50) + Dgpa) (G 0Pars)

1
C(dv N7 77 Q7pq+37pf)

*

% exp(C(d, ¢, 9q+3, ) (T + DM (p,q,p,0415.05) (Z°)D?).

We gather all the terms together and the proof of (3.8) is completed.
Now, let us prove For every = € R%, we have We have

5,05 .
Q) f(X) — Q7 " f(X)| <E[f(X§)(1 — ©F.,)|X] =
<OGE[(1+ | X2P)2X0 = X]E[1 - 6%, |X§ = X]*
<Op2E[L + | X3 X0 = x]2P(0F,, < 11X§ = x)*.

We obtain an upper bound for IP’(@‘ST,* < 1|X§ = ) by using l} The upper bound of
E[| X7?|?P|X$ = z] is obtained using Lemma It follows that, for every a > 0 and every p > 0,

d,L,q,p2r+5)

1
A1 < Q:)CL(i?q)C(da N, L, o P, P2r+5)

)
*

N
]

)
Q5 F(X) = QY™ F(X)| < (6713 sup Ma(2°) + py P (1 4 Yy (x) 137340y
teT

x DD9DF L M(Z°) (1 + (Lpyy,s>0 + 1p,50)[X]Ga)C exp(CTM(Z2°)DY).

with C = C(d, N, L,p,p,p2r+5, Py, i) which may tend to infinity if one of the arguments tends to
infinity. We fix p = p(h) = max(0, 832 — 4) so that n,(5)~ @M+ < §"C(h)(1 + T™). Similarly we
chose a = a(h) = 2(h + 1) max(p + 1, %) so that n2(8) "M 5=t < sPC(D,p, h)(1 +TCM) and

5,05, 3
Q3 f(x)—Q7 ™ f(X)] < 6"(1 + Vi(x) 13 3d(p(h)+4))
X QfDCQgL+59:nC(Z§)(1 + (1p2L+5>0 + 1pf>0)|X|]§d)C eXP(OTmC(Zé)©4)7

with C = C(d, N, L,p,p,p2r+5,07, m%k, h), and the proof of 1} is completed.
O

From a practical viewpoint, an issue of this last result resides in the computation of Q‘s’@dTﬂ. Indeed, ©
is not simulable (at least easily) and then methods such as Monte Carlo do not seem to be applicable. A
solution is provided by Theorem [2.1, where we show that the regularization properties are also satisfied
by Q%?. In this case, Monte Carlo methods can be designed by simply simulating the sum of X% and
of an independent Gaussian variable. The proof of this result exploits the one we just established in
Theorem [B.11

Proof of Theorem[2.1} Let us prove (2.14)). As in (3.12)), we write

PP = Y B + X3P (XD)IX =,
18I<]vI<q

where P, (X)) is a universal polynomial of 8;’(ng, 1< |p| € ¢—1|yl+ 1. We decompose

E[07f(0°9 + X3)P,(X7)| X5 = X] = A1 + 4z,
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with

A —EO%,.07 S0 + X3P, (X)X =

Az =E[07 [(8°9 + X3)P-(X3)(1 - ©F,)| X3 = x],
Applying the reasoning from the proof of Theorem (with a = 0) we derive

c
< 1+ ]'pmaX(q+3,2L+5)+pf>0|X|]Rd
Lx~f (Vy,(x)T)1373d(¢> +3q+1)

X :Dxcr;ax(quS,ZLJrS) exp(C(1+T)Mc(Z2°)D),

with C'= C(d, N, L, q, 9, Pmax(q+3,2L+5)s P f mi*, %) Moreover, since G follows the standard Gauss-
ian distribution and is independent from X% and @‘sT’*7 we have

A= BPL(XE)1 - Oh) [ 0 550+ XE)om) e F i = ]
R4

Now, notice that
07 f(6%u + X3) = 67007 (f(6%u + X3)),
so that, using standard integration by parts, we have
P 5 5 0 5 B 5
Ay =07 "VEPy(X7)(1 = O7.) [ f(6"u+ X7) 5 (u)(2m) 2 e” 2 du| X = X],
Rd
where JZ, is the Hermite polynomial corresponding to the multi-index ~. Finally, using the results
from Theorem [4:2] we obtain

_ 1
|42 <671, E[1 - @6T,*|Xg = X]2(|X|ra(1p, 550 + Lp,>0) + Dyp3)C(dOParaps)

1
X C(d7 N7 77 q, pq+37 pf)
X exp(C(d, q, pq+37 pf)(T + 1)mC(p,q,p,pq+3,pf) (Z6)©2)7
with, using Theorem (see (4.13)) for every a > 0 and every p > 0,
E[l - 0%.,1X] = 2] <P(67,. < 11Xg =X)
<Oy "M (2°)

+ —(p+4) 1+ 1P2L+5>0|X|H€d
G} VL(X)13L3d(p+4)

x DYDY, M (Z°)C exp(CTMc(Z°)DY),

with C = C(d,N, L,p,p,par+5, %) We chose p = p(gf) = max((),% —4) and a = a(gl) =
2(g0 + 1) max(p + 1, %2). Therefore

1+ (1pmaX(q+3,2L+5)>0 + 1pf>0)‘X‘]1€d
(Vy,(x)T)13"3d max (%7 .a°+3q+1)

X Qrcr'lax(q+3,2L+5) exp(C(l + T)mC(Z(;)®4)7

10°QY°0° f(x)| <Dy

with C'= C(d, N, L, q, 9, Pmax(q+3,2L+5)s P i’ %, 0) and the proof of ([2.14) is completed. Remark
that with our approach, under the uniform Hérmander hypothesis A3°(L) (see (2.5)), we can show that
(Vi (x)T) 18" 3dmax(F7 +2,4°+30+1) can be replaced by (Vi°T)~13"44(a+3) in the r.h.s. above.

Let us prove (2.15)). Since f has polynomial growth, it follows that
QR (X)-QF F(X)| < [E[OF. (F(X3) — F(X} +6"9))|X¢ = x]
+DCps)(1+E[ X3 X5 = x]* + 6" E[|GIZY]

1
2

JE[l - 0%, |X] =X
<o’ Z/ B[O ,09) f(X5 + A"D)G7| X = X]|dX
j=1"9

+DC(p) (1 + [XIE)) exp(TD* Moy, (Z°)Cp1))E[L — OF | X7 = X].
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Using Theorem (see (3.8) with ¢ = 1) and the estimate of E[1 — 0%, ,|X{ = x] obtained in the
proof of with p = p(f) = max(0, 8% — 4) and a = a(f) = 2(0 + 1) max(p + 1, %) we obtain

L+ L, p5p,>0/X[g,
Q% f(x) — QY f(x)] <6'D o

f (VL (X)T)13L3d max(43%,5
x DY 45 exp(C(1+ T)Me(2°)D7),
with C = C(d, N, L,p,p,par+s, 07, m%k, 0) > 0. Notice that under the uniform Hormander hypothesis

8960

AS(L), (V(x)T)3"3dmax(553.5) can be replaced by (Vi°T)13"4 in the r.h.s. above. O

We now show the existence as well as upper bounds for the density of X%. This result is mainly a
consequence of Theorem It is noteworthy that we also propose a Gaussian type bound when relying
in a simplified framework. It is derived combining a representation formula for the density, Theorem
and the Azuma-Hoeffding inequality.

Proof of Corollary[2.1] . We first prove the existence together with a representation formula of qTe Let
f €C(RYR) and a € (—o0,0]%. Let us define g : R — R such that for every z € R,

e [ o

Then g € ggl(Rd R). Since for 79 = (1,...,1) € N? we have 97°g = f. In order to state our

representation formula, we introduce, we introduce the function T : (u,v) € (R%)2 — Hi:1(10<vi<ui —
1,i<yicg) Which plays a fundamental role in the representation formula that will be derived.

In particular, applying Theorem with the test function g, it follows from the Fubini identity
that, with similar notations as in the proof of Theorem [2.1]

Q9% f(x) = 9°Qy’ 9P g(x)
= D> B89 + X3P, (X3)6F.. X = X]
0<|v[<g+d
+E[07g(0°F + Xp)Py(X7)(1 — ©7,.)| X5 = X].
= Y E[g0°% + X)) HY(X], 07, Py (X)) IXG = X]
0<|vI<q+d
E[g(6°% + X7)5~ PP, (X2)(1 — ©%..)(9))1X = X]
- /Rd F)E[H (o, BT (6" + X7, )| X = x]dy,
where (using notation T = (0, 7] N %),
H(a,f)= ) Hy(X], 0. P (X)) +6 P, (X3)(1 - ©F.,)7(9).

o< |yI<g+d

Notice that using the Holder inequality, it follows from Lemma and standard calculus, that
50t + Xf’i € L,(Q) for any p > 1, so that H(a, B)T(6°9 + X?,-) € £1(Q2 x R, P ® dz). Hence, using
[?], Lemma 3.1, 6% + X9 has a smooth density quf’(Xg, -) with q%a € C1(R% x R%;R). Moreover, we
have the following representation formula for q%e and its derivatives:

020045 (x,9) = (~1)VIE[N(8°F + X7, y) H (0, B)| X = ],

The estimate ) then follows from the Cauchy Schwarz inequality, Lemma combined with
Markov inequality and a similar approach as in the proof of the previous result to bound the moments
of H(a, ). In particular

(1 + 1pmax(q+d+3,2L+5)>0|X‘H€d)cexp(CT)
V()T (1 + [y[ga) ’

where n = 13L3dmax(w +2,(d+¢q)?+3(d+¢q)+1) and C > 0 depends on d, N, L,q,D,
Dmax(q+d+3,2L+5)> Py Pmax(q+d+3,20+5)> Pfs %, %, 6, p and on the moment of Z% and which may tend to
infinity if one of those quantities tends to infinity.

5,0
1050, a7 (%, )| <
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Now let us prove 1D The reasonning made before still apply if we replace T' by T' X3 (u,v) €

d . d
(R Hizl(ng,i<,Ui<ui, - 1u’7<vi<Xg’i)’ We first notice that |T';(u,v)| < [];_; lluifXg”'|z|vi7X§*i\ <
Ly X8> o- X3 Using Taylor expansions of ¢ and recalling that ¥ (z,¢,0,0) = x for every (z,t) €

R? x R, and then exponential estimate on the tail probability of ¥ and the Azuma-Hoeffding inequality
yields, for |y — X|ga = 6TD2(1 + |2°°|?),

E[L x; (X7 +0°%,y)|X3 = X] <P(ly — Xlga — 8°|Glral < X7~ XIWIX(‘)S = X)

<P(ly — X|ra — 6?|Glra < 3TD2(1+ 222 + 03| > szjéa (X?,1,0,0)|ra| X3 = X)

temd t<T i=1

1 1 i
<P(5ly — X|gs = 3TDo(1 + %) < 03| D ZZ‘S W(X7,1,0,0)|ga| X§ = X)

temd t<T i=1
1__
P(|Y, |ra = 55 Oly — X|ga)

X2
’ cT|Ri ) + Cexp(—

ly — X|]%§d

<Cexp(CT — o520 )s

where ¢ > 1 depends on d, ®; and z* and C depends on d, ©s and 2°°. Finally, we observe that
when |y — X|ge < 6TD2(1 + |2°°]?), the estimate still holds by remarking that

(6TD5(1 +|2>%))

ly — Xl[%gd
T )

c(T v 629)

) = exp(—

exp(—

so that

ly — X|§gd

5 4 50 8
B[y (X7 +8°9,)|X5 = X] < exp(— ity

) exp((6Do(1 + [2°°]))2T).

Using the Cauchy-Schwarz inequality combined with the representation formula concludes the proof.
O

We end this section with the proof of the invariance principle established in Theorem Our strategy
is to decompose the error using the Lindeberg approach and semigroup properties. Our focus is then
on the short time estimate i.e. the error made on simply one time step of size . Then, we replace Q°
by Q%?. Applying Taylor expansion techniques leads to a representation of the error involving some
small variations of the process X? satisfying also regularization properties. Exploiting them leads to
the expected result. A similar strategy can be designed to prove higher order convergence.

Proof of Theorem[2.4 For x € RY, s,t € 7°, s < t, we define Q% , f(z) := E[f(X?)|X? = 2], Qﬁ:? (x) :=
E[f(X] + 099)|X? = 2],Psif(x) = E[f(X:)|Xs = 2] = E[f(X:(s,2))] (Xi(s,2), being the solution
of (1.5) at time ¢ and starting from z at time s), Af(z) := Q2 sf(x) — Piyysf(x) and A?f(z) :=
Qf’+5f( ) — Pitysf(z). We observe that the results from Theorem H remains true replacing (Qf’e)t>o

by (QS t)t>0 for any s > 0. For sake of clarity, we assume that P satisfies the same regularization property
as Q%Y. Similar ideas as in [?] can be used to conclude under the actual hypothesis of Theorem

We prove the result for f € C5, (R?). The extension to f simply measurable with polynomial growth
follows from the Lusin’s theorem. We provide the main key points avoiding heavy calculus which can be
dealt with using similar arguments as the one we already developed to derive Theorem Using the

semigroup property satisfied by @Q° and P, we have

QP f(X) = Prf(x)= > Q0Atr+sPrrsrf(X)

tend t<T

Z Qg’,?A?,tMPtM,Tf(X)

temd t<T

H(@0,(Q 145 — Qtis) + (@, — QYDQYY 5) Prvsr f(X).
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Now, as a result of Taylor expansions, Af’t 4+ (X) can be written as a finite sum of term with form
/ 0% (YA 5(x)B(x,1,6, AN, @€ N, |a| <3

where Y} 5(X) takes values in {X, X+ A(¢/(X, t,62 Zt+6,6)7X+59%) Xiyas(t,X)} and, for any p > 1,

sup  E[|B(X? t,8,\)P
temd t<T

where T = (O TINm° (we refer to (4.1

It follows that QO Y trsDi+of(X) is a finite sum of terms with form

B 5ol X07 = X] < 6% (14 |x]24)C exp(CT),

).

E[ / O Pyysr f(Ys(X)ONB(X)?, 1,6, A X§ = X].
0

At this point, we observe that a similar approach as the one developed in this paper ensures that the
results from Theorem H remains true taking 7' = t and replacing X by, ol 5(X %), It hinges on the
fact that our Malliavin derivatives of Y} 5 (Xf 9) — Xt(S % can be bounded by a term of order 8. Moreover,
Pyys7f has polynomial growth. It follows that for ¢ > 1T58 ¢ small enough, exploiting the integration
by part from Theorem (with F' = Y; Vs (X3 S, 9)) in a similar way as in the proof of Theorem [2.1| yields

1
1
E| / 0° Prpsrf (Y s(XPO)B(XPY, 1,6, A X = X] < 6"69” X oxpie).
0

Vi (x)T|
Now let t < 2T0° so that T—t—§ > T(1—40°) =8 > 27— > §T. We write Q0§ AY, s Prvs 1 f(X)
as a finite sum of term with form

1
E| / 0% (b ) Prvorr ) (VLo (X9 B(XP .5, \)AN|XE = x]

+ Qg ?At 146 (1 = by, x)) Peys,r f)(X),

where ¢y, (x) is a smooth localizing function satisfying, for every y € R?,

v (X) < ¢VL(X) (y) <1 v (X) s
4 2

1
VL (y)—Vo(X)I< Ve (y)—Ve(X)I<

and having derivatives uniformly bounded by a polynomial of Vz,(x)~!. Since T—t—§ > %T, applying
for Piysrf enables to bound the first term of the r.h.s. above. To bound the second term, we
remark that, since f has polynomial growth then so has P57 f and we can show that ®p,_ .5 <
Cexp(CT)®s where C doest not depend on f or §. Hence

(1= v, W) Prssrf(y) < Dp(1+Jylza)l

Therefore, using A¢(max(6,2L+5)) (see |i and 1) and t < %T(Sg, applications of Markov and
Doob (see (4.28) inequalities yield

\VL(y)—vL(X)|>VLf<X>C€XP(CT).

QoA 451 Cexp(CT),

: X
<otep, R
Ve ()—veo)s200) (%) S 027Dy

and the bound on the second term follows from the Cauchy-Schwarz inequality and the proof of
(2.18) is completed. If AS°(L) is assumed, the localization procedure with the function ¢y, (x) is not

necessary anymore and the achieved convergence rate § 37¢in 1' can be replaced by § 3.

Approximation (2.19)) follows from an application of Theorem 2.6 i in [?]. Notice that this application

is also a reason why the convergence happens with rate §2~¢ instead of §2 even in the uniform Hérmander
setting AS°(L). O

4. MALLIAVIN TOOLS AND ESTIMATES

In this Section we provide three main results which are crucial in the proof of regularization properties.
First, we establish an integration by part formula in Theorem The proof of regularization results
then falls down to bound the weights appearing in those formulas. As a consequence of Proposition
it can be achieved by bounding the Sobolev norms of X% in Theorem and by bounding the moments
of the inverse Malliavin covariance matrix in Theorem (.3
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4.1. The integration by parts formula. In this section, we aim to build some integration by parts
formulas in order to prove the regularization properties. This kind of formulas is widely studied in
Malliavin calculus for the Gaussian framework. In this section, we always assume that A$ (see (2.8))
holds true and consider T C 7%*. For F € S%(H) and ¢ € N, we begin by introducing the Malliavin-
Sobolev norms:

| 70
(4.1) Flsmig= Y FIDAFR.  [Fhsmg = Fh+ FRsrig
ae(TxN)J

and for p > 1

ES 1
IFllsmrar =BIFG 50007 IFlrsrar =EBIFR]? + 1F 26100

Below, we define the Malliavin weights that appear in our integration by parts formulas.
Let F € S°(H), G € 8 and h € H. We define

HY(F,G)[0] := = (G Ly F )3 — 6 > (DT (G p[h, 5°]), DT (F, b)) pren.
heen
Considering higher order integration by parts formulas, for h = (b1, ...,H?) € H? we define H§(F, G)[b]
by the recurrence
(4.2) Hy(F.G)[b] := Hp(F, Hy(F,G)[b", ..., b" 1 ])[p].
The purpose of this Section is to establish the following result which is a localized integration by
parts formula together with an estimate of the Sobolev norms of the weights. In the following result we

denote by CI])‘:;’IOO the subset of functions f in CF’OO, such that f and its Frechet derivatives of any order
have polynomial growth.

Theorem 4.1. Let T C n%*, g € N*, ¢ € Cpol (H;R) with 0 := dim(H) < oo. Let F € S°(H) and
G € 8% be such that E[| det ’V??,T‘pllGIH,a,T,pO] < 400 for every p > 1.
Then, for every b = (h',...,H9) € HY,

(4.3) E[Dy¢(F)G] = E[¢(F)Hy(F, G)[b]],
with HS(F, G)[b] defined in . Moreover, for every m € N,

(4.4) |HS(F, G)[B][&.5.1,m <C(0,9,m)c(d,q,m, T, F,G),
with

¢(2,¢,m, T, F,G) =(1 V det 73 p) 1"+
20¢(m+q+2) s
x (1+ |F|H%T 1qm+q+1 + Ly F"HSTerq 1)
First, we observe that in our framework, the duality formula eads as follows: For each F,G € S°(H),

E[(F, L3G) %] =E[(G, LY F) 3] = SE[(D*T F, D>TG)3yrxn]

(4.5) =6 ZE (D}, F. D}, G2

teT i=1

This follows immediately using the independence structure and standard integration by parts on
RY: Indeed, if f,g € C2(RY;R) and t € 7%*, then

N
> E[0u: f(U)0uig(UD)]

i=1

Ex

N
_ Z/ B ()0 g ()6~ F o n (6~ Hu — 2, )du
m i1 RN

Ex N 2 8ui<pm/2(6_%u—z*7t) N 1
= Z f(u)(95:9(u) + Duig(u) T 0% 0, (67 Fu — 24 4)du
m RN Or,2(072U — 24 1)

F(UP) Za%g UD) + 0, g(UD)6 ™20, o, o (67 U7 — 2. 1))
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Now consider F,G € S°(H), so that F = f(x°,U°, V%) and G = g(x°,U°% V?) with for every
(x,v) € {0, 1}”6’* ) R™XN gy flx,u,v) € CF"’O(R’TMXN; H) and similarly for g. Now, we introduce
the functions f, := (£, By) 3, 9n = (9, by )2, n € N*, which belong to ¥ (R™"" <N, R). Tt follows from
the calculus above that

E[(D*>TF, D*TG)3yrn] ZZZEXtD (XU, VoD yign (X, U, VO)]
n=1t€T i=1

:_ZEan Ué V§ Z ?

teT
X Za gn (U Vo) 4+ Dyign (X, U, VO30, In gy, o (072U — 24 y)]

=-E[(F ) Z D}, D}, G + Dy  GDY, 5 T4) 3]
teT i=1

=6 'E[(F, LTG)2],

which is exactly 1' We have the following standard chain rule: Let ¢ € CF’l("H; H®) with H® a
Hilbert space and F € 8°(H). Then

(4.6) D*T¢(F) = Dpsrpd(F) € S (H*)™N.
More particularly, when H® = R we have
(4.7) DYTH(F) = (d¥ p(F), DO F)y, € S5 (R)TN,
Moreover, one can prove, using and the duality relation (or direct computation), that

(4.8) Lop(F) = (d¥ ¢(F), L& F) g + 6 > DyeDy¢(F)(D*T(F,b)s, D*T(F,h°)3)prsn.
h,b°ehH

In order to prove Theorem we will combine those identities with the following result.

Proposition 4.1. Let F € S°(H) with d := dim(H) < oo, and G € S°(R). Let m,q € N, and
bh=(p',...,p") € H with1 < q. Then

|H3(F, G)[b][r.6.1.m <C(0,q,m)c(d,q,m, T, F,G),

with
¢(d,¢,m, T, F,G) =(1V det~§g)4mFerh)
X (14 [FRUmeatD) L8R o |Gl Tt
The reader can find the detailed proof of this result in [?], Theorem 3.4. (see also [?]).

Proof of Theorem[4.1 We prove the result for m = 1. Then, a recurrence yields (4.3). Using the chain
rule (4.7)), we have for every h® € $,

(D*T$(F), DY (F, %) q)mrxn = > (X G(F), ) (D> (F, B30, D*T (F,5%)30) e
heh

=0~ IZDI@ UFTh be].

hen

Using with F = ((F,5°)3,¢(F)), H = R? and ¢ : (z,y) — w, with F = ¢(F)(F,h°)%
(respectively F = G’y%’T[h,f) KF,5%) %), G = G’y%’T[b, h°] (resp. G = ¢(F)) and H =R (resp. H = R)
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and finally 1' with F' = ((F,§%)4, Gv%’T[f), h°]), H =R? and ¢ : (z,y) — zy, it follows that

E[Dyo(F) JEE;E Gpxlh, H (DT S(F), DO (F, )30 gers]
}oze:ﬁ (G [h, b1 (L (G(F)(F,5°)9) — (F) LG (F,5°) 3 — (F, 5%) 3 Ly (F))]
5 Z )(F,0°) 3 Ly (Grr [0, 5°]) — o(F) Gy e [h, ho1 LT (F,5%)
bfzu?)ﬂS (GYl0, 6°1(F, 5°)20)]
=- hoze:ﬁ F)(Gylplh, 01 L5 (B, 5%) 90 + 6(D T (G b, 5°1), DT (F, §%) 30 )germeny)],

which is exactly (4.3)) for ¢ = 1. Tterating this formula, we obtain (4.3]).

In order to obtain we simply apply Proposition and remark that HS(F,G)[h] and its
Malliavin derivatives are equal to zero as soon as G = 0. 0

In the sequel we establish an estimate of the weights H$ which appear in the integration by parts
formulas (4.3) when G is replaced by GO with © € [0, 1] the localizing random weight. The next result
provides a bound on the Sobolev norms of GO.

Lemma 4.1. Let ¢ € N. Let G € S°(H) and © € S°. Then

(4.9) |GOl,6,T,q < Z |Gla,5,1,m|OR,6,T,q—m-

m=0

Proof. We prove the result by recurrence. For ¢ € N, we define Ho = H and Hyy1 = (Hy)T*N. The
result is true for ¢ = 0. Assume it is true until some ¢ € N and let us show it still holds for ¢ + 1. We
have

q
GOBysmge1 = |GOIE + Y 8T DM(OD°G + GDO) R,
=0

with
_L
|D§,l(®D5G)|le+1 < 67z |@DSG|HTXN,5,T,I

! !
<C()o % > 18lrsma-ml D°Gla, 51.m = ey > 1Olrsmi-m|Glasram1,

m=0 m=0

where we have applied (4.9) with G replaced by D°G, ¢ =1 and H = H;. Similarly

ID*HGDO),,, = > Y IDLGDEO)EIE =| Y [DM(GDYO), |2

la|=l]8|=1 18|=1
— F) 1
< Z d Z‘GDB@&[,(S,TJP
[8]=1
l
_t 1
[)o—2 Z |Gl34,6,T,ml Z |Dg@‘%{,5,’r,l—m 2
m=0 18l=1

!
_
C(l)o~ = Z|G|H,6,T,m|@|R,5,T}l+1—m7

m=0

and the proof is completed. O

4.2. Sobolev Norms. Before we state our results, we recall that 8X3Xf, t € 7%, is the tangent flow
and is introduced in l.) In a similar Way7 for o € N¢, % Xf denotes the derivatives of Xf of order
0

|| w.r.t. X§ and is given by 0% X?. The following result provides an upper bound for the

Xé)1 o (Xé)d
Sobolev norms appearing in the upper bound of the Malliavin weights established in Theorem [:1]
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Theorem 4.2. Let T € 7%* and T = (0,T]N7°. Letq €N, ¢° € {0,1}, p = 1 and a € N a multi-index.

Assume that AS(q + |a| +2) (see and ), Aj(+00) (see ) and A (sce (@) hold. Then

) i 5 C(a,pg+a
(410) E[jgg \3§8Xt id,&T,qo,q]p g(‘XO|Rd(1pq+‘aH2>0 =+ 1q°=|o¢\=0) + ©q+|o¢|+2) (@:Pg+|al+2)

1
X C(dv N7 7‘71 q, pq+|a|+2)

X eXp(C(Qapa pq+|a\+2)(T + 1)mC(P’q’Pan+|a\+2) (ZJ)QZ)
Moreover, if we replace the assumption AS(q+ |a| +2), by the assumption Al(q+4), then

1
(411) Elsup | L2X7 o sm,g) 7 SOXGlio Lpym0 + Dia) 700000

1
X C<d7 N7 T_fa q, pq+4) eXp(C(q,p, pq+4)(T + l)mc(p,q,P’Pq+4)(Z6)©2)'

Remark 4.1. This result was obtained in [?] (see Theorem 4.2) in the case p, = 0 for r large
enough in the assumption Aj(r) (see )

4.3. Malliavin covariance matrix. In this Section, we provide an upper bound for the localized
moments of the inverse of the Malliavin covariance matrix of (X?),c.s defined in (3.1)).

Theorem 4.3. Let T € 7 and T = (0,T] N 7° and p > 0. Assume that AJ(2L + 5) (see and
), Ay(X3, L) (see ), Al (+00) (see ), Aj§ (see (@) and A3(x,T) (see ) hold. Then

5 1+1, >0|Xg|§§d’L’p’p2L+5) C(d,L,p)
2L+5 »Lsp
(412) EH det 7X%,T|p16?7*>0] < (VL (Xg)T)lngd(p+4) ©2L+5
1
X C(d7 N7 L7 m7*7p7 p2L+5) eXp(C’(d, Lap7 p2L+5)(1 + T)mC(d,L,p,p,p2L+5)(Z6)®4)7
and, for every a > 0,
(4.13) P(OF, <1) <6 'Tna(8) "Ma(2°)

51C(d,L,p,p2r+5)
1+ 1p2L+5>0|XO|Rd

—(p+4
+ 1 (6) P+ VL (0 B3+ D)

c(d,L, 1
X QC(d’L’p)©2£+§/p)mc(d,memzLJrs)(Z(S)C(CL N, L, mi b, p2L+5)

X exp(C(d, L7p’p2L+5)T9ﬁC(dyL7P7P,P2L+5)(25)94)'
Remark 4.2. We have the following observations concerning the result above.

(1) The terms 13% in the r.h.s. of both and can be replaced by (12 + a)t, a > 0, but

the miscellaneous constants C(.) may explode when a tends to zero or to infinity.
(2) When the uniform Hormander hypothesis AP (L) (see ) holds, the estimates (4.12

can be improved. In particular the term (TVL(Xg))_lgLSd(p+4) in the r.h.s. of may
be replaced by (VEOT)_l?’Ldp and VL(XS)_13L3d(p+4) may be replaced by 1 in the r.h.s. of .
In this uniform elliptic setting (L = 0) we thus recover the results from [?] Proposition 4.4.
4.4. Proof of Theorem We begin by introducing for every (z,t,z,y) € R? x 7% x RN x [0,1] and
(i,7) e {1,...,N},

1
(4.14) Al (2,8) = B.0p(x,£,0,0),  AB (2,8, 2) = / (1= N)Ds:d.s0b(x, t, Az, 0)dA
0

and

1
As(x,t,z,y)=/ Oyth(x,t, z, \y)dA.
0

We will also denote A; := (A?);en and Ay 1= (A;’j)i,jeNz. Before we treat the Sobolev norms of X°
and L$X° we establish some preliminary results. The first one gives an estimate of the Sobolev norms
of LY. Z°.

Lemma 4.2. Let T C 7%* andt € 7°, t > 0. We have the following properties.

A. For every i € N, we have

(4.15) E[L5 22 = 0.
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B. Assume that holds for v = %-. Then, for every g € N and p > 1

1

C(N,p,q)mz

§ 78
(416) HLTZt ||RN,5,T,q,p < ’I“q+1 1tET'

Proof. We prove Using the duality relation with H = R, we obtain immediatly IE[L?FZE 1] =
Z(w,j)eeTxNE[D(é )1D‘S )Z‘“] = 0. In order to prove We recall (see ) that

(w,j
_1
L%‘Ztéz _Xtaz’ In Pr. /2(6 2U755 - Z*,t)]-teTa
and

L3Z) =XV g, 502U — 2. 1) L.

For a multi-index a = (a',...,a4) with of = (t;,4;), t; € 7r57tj >0, 1; € N,

8 _ sl _1
DgLéTZt’Z = X?a “In Pr./2(0 sz - Z*,t)ltGTlﬁgzl{t:tj}v
with a¥ := ((e)?)jen, ()? = 1,—; + i, 1;,—;. In particular,

. u _1
Z 6J|DiL’(IS[‘Zf|]?§N :Xg Z |83 ln(Pr*/2(6 QUE _Z*,t)|2]—t€T-

a€(TxN)JI a*eNN
Ji<q la¥|e{1,...,q+1}

Since the function ¢,._/» is constant on B, 5(0) and on R\ B, (0), using (2.10), we obtain

El Y. Dal%Z]fin]?]
a€(TxN)I
Ji<q

e E [|x717]

*

=l

~tiere. | S 10 e ()23 e (w)du
7 /25 |u| <y aveNN
la¥|e{1,..., q+1}

< C(vav q)§g5*|7r%r*|N 1
= pPlatD) tetT

In order to derive 1’ we observe that m. > €. A[,q(B(0, 5 )) so that E*|7T2

N < Cm,. O

Now, we establish a bound on the moments of (X} );cys-

Lemma 4.3. Let T > 0, T = [0,7] N 7% and p > 1. Assume that Al(2) (see (2.9 (m and (.)) and
AS((p+1)(pV2)) (see (2.7) hold. Then

(4.17) Efsup |X7Ig]? <1+ [ l) xp(C)TDF My 1) vy (2°)7).
S

Proof. Consider t € 7%*. Using the Taylor expansion yields

d
—2 8i (0 y
X[ =1X 0 slRa + PIXT 5157 D X (X = X))

+ZX6 t61®J

i,j=1
1
p / (1= N)|XP 5 + A7 — X?_5>|P*21i:j
0

+(p = 2)(1 = NIXTs + AXT = X7 )| (X + AXT = XP_5))imgdN,
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with notation x;g; = x'x’ for x € R%, 4,j € {1,...,d} and, with notations from (4.14)),

N

X=X} ;+467 Z‘“/ Op(XP 5t — 6,062 20, 0)dN + 6A5(X0 5.t — 6,62 20 ,6)
i=1
N

=X} ;407 Z)ANX] 5.t —6,0,0)+6 Z Z0ZMI AR (X st —6,677Z0,0)
i=1 1,j=1

+6A3(X) 5t —6,6220.0).

Moreover, for every (z,t,2,7) € R? x 10 x RY x [0, 1], we have

d 1
0,0(,2,t.) =0,0(0. 2 t.9) + 30! [ 00,00, 2,8, )dN
=1 0

with similar formulas for the derivatives w.r.t. z. Moreover, it follows from assumption AJ(2), (2.2)
that

N N
{10y ¥lre + > 10ztlpa + > 102000 [pa} (0,1, 2,y) <Da(14 67 [2]33).

i=1 ij=1

Combining the previous inequality with A¢(2), (2.3) yields

N N
{|6y¢|]Rd+Z|8z”7[}‘Rd + Z |az'iazjw|Rd}(z7tvz7y) (1+6 | | )

i=1 ij=1

+Z / {10,109 | g +Z|amla i)|ga + Z 18,10,:0,50|ga (A, £, 2, y)dA

i,j=1
<Do(1+ 5 |z\ W)+ D|z|ga(1+ 573 |2[5n) =: D(, 2,0).
In particular, since ® > ®5 and p > po, for p > 2,
E(1X? B —E[X]_5[5]l < pOE[ [X7_s|8: D(X]_5,82 27, 8)(1 + | 2] 3]
+p(p— 162 B[ X7 5|82 D(X] 5,82 27, 0)* (14| Z] | )’
+OED(X] 5,62 20 8)P(1 + | Z0|an )]
<SC(P)M(p11)(pva)(Z2°)DPV2SE[L + | X7 _s[Ral,

and follows from the Gronwall lemma. For p € [1,2), it simply remains to use the Cauchy-

Schwarz inequality.
O

In order to obtain estimates of the Sobolev norms which appear in Theorem [£.2] we derive some estimates
for a generic class of processes which involves the Malliavin derivatives of 03, X % and L3 X7. We first
0

write, for ¢t € 9,

N
X2 s =X + 42 szjéAl (X2 ) +0 > 2205 AY (XD 4,62 20, 5)

i,j=1

+ Ag(Xt ,t,5§Zt+5,5),

with A, Ay, and Az defined in (4.14). We introduce the R?*9-valued process (Bi);crs such that for
5
every t € m°,

B, =63 sz;w AYXD t)+6 Z 200 20N LAY (XD 1,05 20 5) + 0V, As(X] 1,87 20, 5.,9).

1,j=1

We now consider a Hilbert space H and introduce some H%valued processes (B} );exs, (B )ens, which
are both adapted to the filtration (0(Z2,...,Z))iens and (B})ieqs which is adapted to the filtration
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o(Z8,..., 7%, ) ens and for every h € H, (BY h)y, 1 = 1,2, and (B3, h)y, all belong to (S°)%. In this
5 t+6))te
proof, we will consider a H%valued generic process (Y;),crs which satisfies,for every ¢ € 7°,

N N
(4.18) Yirs =Vi+ BY, +082 Y Z)\ Bl +62 Y LyZ) By + By,
=1 =1

Moreover ¢ € Nand p > 1, T = (0,T] N 7° with T > 0, we denote

GSyasmqp(B', B B%) =1
1,. 2,
* fgrlr)(HBtﬂsH(Hd)N,é,T,q,p + 1B sl ey~ 5.0 + Z Bi”Hd"SvTﬂm)'

wens
w<t

.....

we estimate the Sobolev norms, we recall the Burkholder inequality for Hilbert space. We consider a
separable Hilbert space H, we denote |.|3; the norm of H and, for a random variable F' € H, we denote

|E|l,p = IE[|F|177_L]% Moreover we consider a martingale M,, € H, n € N and we recall Burkholder
inequality in this framework: For each p > 2 there exists a constant b, > 1 such that

~ 1
(4.19) VneN, | sup  Mullap S OED IMi — Miaf5)5]7.
ke{0,...,n} =1
As an immediate consequence

1
(4.20) I sup Millap < bpl D My = Myl |2
ke{0,...,n} k=1

This first result gives an estimate of the Sobolev norms of (X?)ier, (Y;)teT w.r.t. the quatity above.

Proposition 4.2. Let T >0, T = (0,T7]N7°. Let ¢ € N and p > 1. Assume that Aj(q +2) (see

and ), Aj(+00) (see ) and AS (see (@) hold. Then

1
(4.21) ]E[fg}r) |Xf|§d,1,q]p (X0 |Rap, 050 + Dgya) 1P+
X C(d) eXp(C(Q7p7 pq+2)(T + 1)mC(p,q,p,pq+2)(Z6)®2)a
when q = 1. Moreover, for (Y;)icrs satisfying , if we assume that AS(q+ 2) holds, then

1
E[sup|Y;|? B
[teT| t|7—£d,6,T,q]

q 1
g(EHYOﬁ[f@T’q] 20r + GHJ,B,T,q,qu(Blv B2a BB))(|X3‘R‘11PL1+3>O + ©q+3)0(q,pq+3)

1
(422) X C(d’ Na sy 7) q, pq+3) eXp(C(Na q,DP, pq+3)(T + 1)9ﬁC(p,q,p,pq+3) (26)92)
Proof. Step 1. Let ¢ = 0. We first prove that

1 1 1 1
Blsup [Yiff,a] 7 <(EIYolf]? +0pMMy(2°) T3 S0 5m.0,(B',0,0)
€

C(N,p)m?

+ by d T%GHd,é,T,O,p(Oa B?,0) + G4 51,0,(0,0, B%))

Tx

(4.23) x exp(C(p)(T + )My i) (2°) 7 D).

We study the terms which appear in the right hand side of (4.18). We consider 7,57 € N. Notice
that for every t € 7, E[LéTijé] =0 (see 1) and B is FZ -measurable. It follows from 1D
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(with H replaced by H?) and (4.16)) that

sup|5 Z Z Ly

teT i=1 wend
w<t

Sl

)

8,1
Zw+5

In the same way,

Sup|52 Z Z Zi}:_éBl e
t€T i1 weT
w<t

Using A9 (see (2.3)) together with (4.20) (

Baup 5} 3" Y 251, 43X )Y,
teT P i
w<t

C. Rey

<b 5Z]E|Z L5200 BYE ]
ii’;

’pm*5ZE|Z|BQZ|Hd|

temd =1
t<T

2
3

<f12

7.

“lgt |(7{d)N

2
P,

<b? Qﬁp(Z )PT sup E[|Bt |(7—Ld N

temd
t<T

P

with H replaced by H?) yields
<620 ) EHZZ“W YHO ERN AL

2

‘ﬁ

tend i=1
t<T
<020, (2°)2 D% Y E[|Vif5]7.
temd
t<T

Applying A9 (see (2.3)) with the triangle inequality also gives
7 7 1
Elsupld > Zut 5204 s Vo Ay (X0, w, 03 25, 5)Yulhya]?

teT

wems
w<t
8,0 70 i, 1
<0 Z E[| Zt+5Zt+j5V A j(XE L, 5% Zt+6) t‘%d]p
tens
t<T
<2My(42)(2°)700 Y E[Yif3]7,
temd
t<T

and similarly

bup|5ZVA3X6 w, 8278

teT wend

w<t

We gather all the terms and using

S O Yulh)r <63 B[V, A5(X] 1,65 2], 5,0)Y:[4)7

tend
t<T
1 1
<2y (Z2°)7 D8 > E[|Vil8,u]7.
tems
t<T

the Cauchy-Schwarz inequality, we obtain

D=

11
5)pT2 sugE[ | |(7—1d ~J

Elsup [¥il5,u] ¥ <E[[¥o[f,]7 + b,90,(Z
tens temw
t<T t<T
C(N,p)m: 1
0, QDM s g + s B 3 1Bl
' o wen
l 2.1
)? 52 |Yt|7{dp)é

+ (4T% + bp)My(p42) (£

tems
t<T

Hence, using the Gronwall lemma yields (4.23]).
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Step 2. Let us prove (4.21). For ¢ € N, we define Rg = R and Ry41 = (Ry)T*N and we have

[sup|X6 % =F sup Z | D% X ¢ %do]%'
q

q°1

|Rd6T1q

First, we focus on the case ¢ = 1 and prove that

1 1 L p.1
§*Efsup |[D°X0|% )7 =4° Efsup| 3 Z\Dw 0 X7 12al5]7
teT ! weT i=1
(4.24) <D3(1+ [x31P3) exp(T + 1)D2M,, (11 (pyv2) (2°)2C (p, p3)).

We remark that for every t € 7%, w € T, and every i € N,
1 1
62 D0y X7y 5 =(Iaxca + Bi)62 D{yy iy X7P + (BY )i

with, for (w,) € T x N,

(B} i =Xi s Lumt+s(0F AL(X] 1) +5ZZt5f5 1L+ 1) AY (XD, 1,62 20, 5)
j=1
N

+0% Y Z)0 20 0. AV (XD 1,03 20 5) + 630, As(X] 1,02 2] 5, 0)).

Jil=1

In particular, 62 D5X5 §2D% X9 wieTxN 1s a Ré%valued random variable and, for ¢t € 79,
(w,i)<*t N(wi)e 1

we have

§2D°X}, 5 =(Lixa + B1)02 D’ X} + B},

Then, (4.24) follows from Lemma (see (4.17)) and (4.23) with Y = §2D°X% H = R4, and B?
thus defined since the assumption AJ(3) (see (2.2))) implies that

6Rf,6,T,0,p(07 0, B%,)

1 1
_1+SupE| Z Bled]p :1+SupE| Z Z| Blw w+5l|Rd| ]p

T wen < werti=l
1
SLHE[ S 1B o Paa 517
tens
t<T

<1+T25 3 5111; E[|(B1t)t+5 |(Rd)N]E
tem
t<T

1 1 1
<1+ 5T2D3(Myy)(2°)7 + My, (Z2°) 7 E [sup|Xt s ER217 + My, 1) (2°)7).

Now let us focus on the case q € N, ¢ > 2. Similarly as in the case ¢ = 1, 53 D% ’IX‘S isa Rd valued

random variable and, for ¢ € 7°, we have

§2D%IX], s =(Igxa + B:)§2DMIX] + 63 225;5 ol + B2,

i=1
with, Bi’z =0, Bio’). defined in the beginning of Step 2, and for ¢ > 2,

Byt =% (D°X))TH, AL (X)) DM X] + 65 DB,
N
B2, =0"7 (B} + B}?)D* X} + 6:D°B2_, , +48 Y B}, ,D°Z};,

=1
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with, for (w,v) € T x N,

B31 =5 Z Zél Z(S,]

16216 "’D(SX&)TH AY (XDt 5% Zt+6)

i,j=1

+ 663 DO X)) H, As (XD, 1,62 2], 5, 0)

v,j 1
(BEJ) _Xt+61w t+5(5 v AY (Xg, +5ZZt6—f5 1+1U:j)vffA2j(Xfﬂt752Zt6+6)
j=1

+63 Z 207 20000V gAY (XD 1,02 Z0,5) + 030,V A3(XP, 1,65 2], 4, 0)).

i,j=1
First, we remark that, since B1 = 0, it follows from Lemma and - ) that, for [ € N, if
assumption Af(q 414 1) (see (2 ) holds, then

6Rg,57T7l,p(B;747 07 O)

<6R3’57Tﬁl,p(5%(Déxa)THgEAl (X%, )D%11 X% 0,0) + 6R371,57T7l+17p(33*1,~’

0,0)
qg—1

< E 6R27q0+1,§,T,q°+l—1,p(5

q°=1

<1r1+1

(D’ X TH, A, (X%, )D%19° X° 0,0)

1
<C(d, q,1)D, +z+1]E[8up 1+ XNy P+ XD )

Moreover

GRg,é,T,l,p(anaBg,.) <SR ,51,1,p(0,0, 5T (33 L4+ B¥?) Do X?0)
+ 6R3_1,5,T,l+1,p(0» 0, qul,.)

i 4,
+ Sras1,1,(0,0, 52 Byt D°Z%%)
=1
q—1 o
q_2q (B3,1 4 B3,2)D5,q7qox5)

6 d
Rq_qo+l,§,T,q0+l—l,p( s Uy

Q
o

q—

1,2 § 70,1
E: RE o 0T+l 1p005§:3 )
°o=1 =1

3
673?757T7q+l—1,p<0’ 07 Bl,.)'

Using a similar approach as for the case ¢ = 1, assuming AJ(q + 1 + 2) holds (see (2.2))), then

q+i—-1
p.1
Sresgri-15(0,0,B) ) =1+ supE[ > 67| > DB} 7. |2
tend 29=0 wens q°+1
t<T w<t
N q+i-1

=1+ supE SN0 6D (B )w+5,¢|3zqo\%ﬁ

wend i=1 ¢°=0
w<t

=

1o 1 1 © °
SL+ T35 Fg+1Zsup  sup  E[§7 D (BY)is. a ]
tend ¢°€{0,...,q+1—-1} a®
t<T

1
<1+ T% C(d7 q, l)©q+l+2mp(Pq+L+2+2) (Zé) P

4 +1-1 p 1
X Elsup [+ X1 glfi!y 00y P+ XD s 5 2P
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Moreover, for ¢° € {1,...,q — 1},
5,g—q° 6
6R?—q°+1’6 Toqo+l- 1;0(0 0, 57 (33 ! 3372)D A9 X0
=1+ Sup E Z (5 B3 1 + B3 2)D5,q q X5 O—H_l]%
ten® wens 0+1aq
< w<t
3.1 pé.a—q° 510 1
<L+ Y E[l6*F B D X L
tend
t<T
1
+supE|Z§ BBzDéq qXé %d q<>+z_1]",
temd wend Ot
t<T wet

with, since A9(q+1+2) (see (2.2) holds,

1 1
[|57.B3 1D6 =1 X(s %d <>+1)q<>+l—1] P < C(d, q, l)(smtp(Pq+l+2+2)(Zé)p©q+l+2
—q

519+1 5| 1
Blsup [1+ XI5 g I+ X2,
and
32 5 5 p i
E[ Y 6% B*D™" el o,q°+l71]p
S
oo

N
a-1 p,1
=E[| Z ZMT(BEE YD1 X5|Rd ,q°+171|2]”

wend i=1
w<t

2 1
<6 Z ZE|5 (B3?)yy5:D774 X6 ovq°+z—1]p|2’

wend i=1
w<t

together with the estimate
1

—2 o 1 1
E[|6"F (B3?), D"~ X5 %g_qo,qw—l]“ < C(d, q,1)0M e, 110012)(Z2°) P Dgyi4n

-2 s|p 1
Efsup |1+ X7 IR ayaa P+ | XD Rt P

Finally, for ¢° € {1,...,q — 1}, assuming A{(q +1) (see (2.2)) yields

1,2 9,1
67211 5T7q°+l lp 0 0 623 <> D(SZ__HS)

q—q%+1’
i=1

b p,1
<L+E[ ) Z&Q\Bq oo wDlws s wié\%jiqo,qul_l\z]p

wend i=1
w<t

Pl
<L+E[] Y 5|B;_qo7w|§RZ_QQ)N,QO+I_1\z]p

wend
w<t

N
<1—|—T2su E B
sup E IZ

<1 +TiGRgiqo,é,T,qOJrlfl,p(Bq ¢,.+0,0)

1
a° t|(73d O)N,q°+l—1]p

'U\'—‘

<L+ T3C(d,q,)Dgei(1+ E[sug 11+ |Xf|§jf;;+l N L
te
More specifically, we have shown that
1
GRfl,é,T,l,p(Oa 0, BS,) gC(da q, Z)(l + T)mp(Pq+l+2+2)(Zé) P ®q+l+2

l 1
x (14 E[fleuT) 1+ IXP & oy P+ X7 B2 ] ).
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Since A9(g + 2) holds, taking I = 0 and applying (4.23) yields, for ¢ > 2,

E[i’g}? X750 5147 <O q,p)(1+T)My((p, ovp)42)(Z°) 7 D2

2

% exp(C(p)(T + 1)My(py2)(2°) 7 D?)
x Efsup [1+ [XP[%,, _ [P[1+ X7 Pat2 ]y
teT Y

Using a recursive approach combined with (4.24) yields (4.21)).
Step 3. In this last step, we prove (4.22)). For ¢ € N, we define Ho = H and Hy11 = (Hq) TN, For

Y satisfying l} ,we have (remember that D%?Y;, t € 7%, belongs to ’Hg), for every t € 7°
N
q q q 1
54 DY, 5 =6% DY, + B;63 DY, + 6% Y Z) B + 6% Z LY Z) B + B2,
=1
with
Byt =5:D°B)" |, + 03 (DO X)) TH, Al (X?,t) D171y,
2
B2} =63 D(*Bq .
N
1 q : 1 ;
B3, =62D°B5 |, +06% ) V,A{(X],1)D°(5° 2] 5)D™71Y,

i=1

‘1

2

N
1 ; . i
%5 Z Zt(SJnngjr](;v A ’J(Xgﬂf 02 Zt+§75))D6’q 1Y;£
i,j=
(6v A3(Xt67t 02 Zt_,_(;,(S)Dé’q_lY;
0, L 6,8
ZBQ 1tD5 02 Zt+5)+B§71tD6L6 (5 Zt+5)

Now, we remark that for [ € N, it follows from (4.9) that

G’Hg,é,T,l,p(B;,.v 0, O) < 6?—[d 8,T,1 p(ég (DéX(S)THIAl (X(Sv ')Dé’qily,a 0, O)

+6H§71,6,T,l+1,p( q—1,. 70 0)

q
a—q°+1 0
<> Spit_, amgerio1pd 2 (D XHTH, A, (X%, )D>9°Y? 0,0)

g°=1
+ Gyas51.g11p(B,0,0)

<&3pa,5,1,441p(B",0,0)
! . o
+C(d: ¢, )Dgip2Blsup |1+ | XPILE PP+ XD R )z

x (1 + E[sup |V |? %7
1+ Bfsup YL . )

and similarly Sy 51, (0, B2 ,0) < 6y 5 q41,,(0,B2,0).
Now, similarly as in Step 2, we denote for ¢ € 7 and (w,v) € T x N,

BY =¢ Z 200z (03 DO X)) TH, AV (XD, 1,03 7], )

3,7=1

+6(62D°X0)TH, A5 (X0, t,62 t+5, 5)

(BY Yo =XersLwmrrs (03 Vo AT (X7, 0) +5szﬁ5 (14 1) Vo A3 (X7, 1,62 77 )
7j=1

N
+ 0% Y 22050V A (XD 4,65 20, ) + 020V As(X] 1,02 2], 5,0)),

i,j=1
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and we have

Syt .5..5(0,0, Bj )
< S3,5m,1,(0,0, 5%(33’1 + B¥) DY) + Sya | s5mi41,p(0,0, 3371,.)

N
+ G 5m0,p(0,0,02 Y Byt D82 2%5) + By, DPLY(52 2°y))
=1

q<>

q
i}
2
D ILHIREIN LY

(B3,1 + B3,2)D5,q7qoy)

q N
3 i 1,5 J 1,5
+ > Spt,  omageri1p(0.0,0% > By DY(62Z°%) + Bl o DPLy (67 2°))

q°=1 i=1

+ Sya5m.4115(0,0,B%).

Moreover, for ¢° € {1,...,q},

Q*qo 3,1 372 6,q—q°
Sni o oTge+1-1p(0,0,0 =27 (B 4+ B> DM71Y)
=1 E B3 | B32)55s pha—d’y P 1
= -FSIII?S H ( w + w) w|7—ld . 41 P
temw 5 4—got1’
E<T ww€<ﬂ;
<
3,1 545 d,q— ¢ p 1
<1+ZE[|Bt o= DHae Yt‘ﬂd qo+171]p
q—q°+1’
temd
t<T
<
3,295 18,q—q°y |P 1
+sup E[| Y- B8 DM b, ],
tend s 4—q®41
t<T “”f;;

with, using (4.9) and assuming that A{(q+ 1+ 3) (see (2.2))) holds,

E[|B}'6 =" DAy,

g—qo+10°H—1

1 1
J» <C(d,q, l)5mp(pq+l+3+2) (Zd) P Dq 4143

l L 1
< Efsup |1 XPIEE, P+ X R 215 (L4 Blsup 12 ).

and

=

ol Z B325"= D‘;’q’quwI%d
q

wemnd
w<t

N
—q° 1
=E[| 3 3B wrsid T D Yl ey 18]
5 ie1 q—q
i

,qo,q0+l*1]

N
_1 a—q° g 2 1
<I0 D2 D B0 (B sl T DM Y J7[?
5 4=1
S

7qo,q°+l71 ’

together with the estimate

qfqo

_1 —q° 1 1
EH(S 2 (B’l?z;z)ﬂhé 2 ‘D(S,q ¢ Yw|€Hd <>)N7q<>_;’_l_1]p < C(daq7l)6mp(pq+l+3+2) (Zé)p®q+l+3
9—q

- 1 1
x Elsup |1 + X a1 PP 1L+ X7 [ 1PP)28 (1 4 Efsup Yil3tn 1))
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Finally, for ¢° € {1,...,q},

N
1 , 16,4
5,T,q°+l71,p(07 07 02 Z B;—qo,.Dé((sz Z.+6))

6R§7q0+1,
i=1
1
<1+70 6723qu,6,T,q°+l*1,P(B;*qov-’ 0,0)
1
<1472 GHd,é,T,q-‘rl—l,p(Bla 0, 0)
1 sig+i—1 5P =
+T2C(d,q, l>©q+l+1E[§g¥ 1+ |X; |]‘11{d717q+l_1‘2p|1 + | X3 ]Rtf;rlJrl ‘217] p
1
x (14 Elsup |V | 2 ).
(14 Elsup|¥ 2,1 o)%)
Moreover, recall that for a multi-index v = (al,...,a%) with o/ = (¢;,i;), t; € 7°,t; > 0,i; € N,

Do LY Z) = 577 25" Ing,, /2(57%U6*Z*t)1t€Tlﬂ‘? t=t; 1

with o = (a}) 4)]€Na (a ) =1;—j+> /., 1;=;. Using (4.9) with the estimate (4.16)) from Lemma
[4.2] yields, for every ¢° € {1,...,q},

GHd

q—q°+1’

K 8,4
5T.q0+1-1,(0,0, 52232 . D Ly(62 2%5))

=1

4,1 p.1
<1+]E| Z 25|Bq q° w w+61 (6 Zﬂ’+5)|7-lgiq0,q°+lfl|2]p

wend 1=1
w<t

5 1
<1+E[ Z 25|Bq q°w w-‘rM)L'I‘((S Zw16)|7-£d 40020 H= 102 ]p

wend =1
w<t

1
<1 + O( )T2 SupEHBq q°, t|(7.[d O)N,q°+l—1]2p ||L’(:S[‘Zt6”RN,§,T,q°+l,2p
a—q

1

2p

1 e
<1+T=C(N, Qap)mgﬂd,é,T,q—i-l—lzp(oa B?,0).
Tx

In particular, we have shown that
1 1
G’Hg,é,T,l,p(Oa 07 33 ) < C(d7 q, lap)(l +17> )mp(Pq+L+3+2)(Z6) P+ ©q+l+3

+1 2 L 1
5 ]E[ilel,g ‘1 + \X‘s ;}1@ :flq+z+3|2p|1 + \Xf Rﬂ'j;ill"’S)]Zp |(1 + E[ngp |n|ﬂ2§z,q+l—1]2p)

+ TG0 5.m.941-1,(B,0,0)
2p

1L My
+T2C(N,q,p) 7777 Sna6m,0+1-1,20 (0, B2,0) + &4 51,4+1,(0, 0, B).
T'x

Since AS(q + 3) (see (2.2))) holds, taking I = 0 and applying (4.23) and (4.21)) concludes the proof

of (L2

O
Now, we are in a position to prove Theorem

Proof of Theorem[].4 We do not treat the case (p,)nen+ = 0 which is similar but simpler. The result

is a consequence of the fact that we do not use Lemma [£.3] in this case. Let us focus on the case

(Pn)nen+ Z 0. We treat the Sobolev norms of 8§5Xt5. In the case || =1, 1D is a direct consequence
0

of Proposition since
5 5
Oxs X S s = = 0xs Xi + Bi0ys X,
For a = (al,...,a%) € N? with |a] € N*, we consider igp € {1,...,d} such that o € N* and

a” ={al,... a7l alo — 1, a%t . o). Then

aa s = c');ng—i—Bt 6X6+5 ZZM B+ Zt,
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with B} = B3 =0 if |a] = 1 and for |a| > 2

Blz

at*

(D3 XOTH,AL(X? 1) agxf +0xs0 B,
B}, =B}"0%, X} +0 aioB .

with

Bio =§ Z 20 20T (Do XP)TH, AY (XD, 8,63 20, 4)
,j=1
+ 6(Ox.i0 XO) THL A3 (X0 1,62 20 5, 6).

In particular, if we assume that AS(q + |3| 4+ 3) (see (2.2)) holds, for every p > 1, and every i € N,
and every multi-index 8 € N¢, using a recursive approach, we obtain

8
||3X(;B Tyq,p

+181+2 p 3|p1L
SO B)Dgppasup S ElL+ g XS g e

¢°€{0,1},a°€Nd
1-4°<[a®|<|al+|8]

L
A ||3>€g8xg»io Baz,t”Rd,&T,q,p
gc(da q, |Oé|, |B|)©q+|a\+|ﬂ|+l

1

xsup Y B[ |0g X P X7 e e
teT q°€{0,1},a®°€Nd
1-¢°<|a®|<|al+|B]

Since AY(q + |a| 4+ 2) (see (2.2)) holds, applying this estimate to the case § = () yields

HBclx,t”(]Rd)N,zs T,q,p < (d q, |a|) g+|a|+1

o 1
xsup Y B[40 XGNPI XP R
teTq°6{0,1}7a°€Nd

1-¢°<la®|<|a|

and similarly,

1
I Z Bz,wHRd,& T,qp S C(d, q,]al)(1 +T)®q+|a|+29ﬁp(pq+|a\+2+2)(ZJ)p

wend
w<t

1

xsup Y. E[|1+\a;gxf|ﬂg;'g‘moq\p|1+|X5 Patlal+2p]
tGTqOG{O,l},aoeNd
1-¢°<|a®|<|a|

Then (4.10) follows from Proposition [4.2] combined with a recursive approach. We now study the
Sobolev norms of L3 X?. We have

N
Lt ot + BIAXE 4o Y 201 68 Y Rt )

with

d
= Z 8zlamTAzl (X?7 t) <D6Xt6’ra D6X57Z>IRTXN = TI"(U}S(g,THzAZi (ng t))

l,r=1

BtZ’i :All (va t)7
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and

N
B} =6 ( (ZLS DR 2005 + ZP LR 20 + X s i) A (XD,1,02 20, 5)
ii=1

+ Zﬁz Zts,]

o5 (Tr(o%s o Ho Ay” (X7 8, 5370, 5)) + 0% ZazlAw (XP,t,63 20, 5) L5 20

t+06
I=1
‘f‘XH-fS‘SZ:anAw (XD, t+0, E t+5))

+TY(JX6 H, A3(X], 1,02 2] 5,6) + 02 ZazlAB X0 4,02 20,5, 0) L 2}
=1

+Xt+66282“43 X?at 62 t+6a6)

Moreover, for every p > 1, and every i € N, using AJ(q +4) (see (2.2)),

1
HBtL || (RN §Tq,p S C(d q)©q+3 fu%‘)E“l + |Xf|g€;)217q+1|p‘l + ‘X‘S pq+3|p]p
€

P14 | X7 |Be ),

2,1
HBt ” (RHN 5T ,q,p C(d Q)Qqul fu’II‘)EHl + |X§|]%d’1 q
€

and
1
1Y Bl llresmgp <Cd @)1+ T)DgaMap(p,, 442)(2°) %

wend
w<t

=

519+2 4
x SupE[JL 4+ X1 o I+ X7 )

X (L+sup [|IL3 27 [~ 5.m.,0,29)-
teT

We finally use (4.16) from Lemma and Proposition to complete the proof of (4.11)).

4.5. Proof of Theorem [4.3l

4.5.1. Preliminaries. Before we focus on the proof of Theorem we provide a representation formula
for the Malliavin derivatives using the variation of constant formula and some technical results we will
employ in our proof.
Representations formula. Let w,t € 7®*,i € N. Then D?w i)Xf(x) = 0 for every w > t and for
w < t,
1
Dy iy X7 = X000 (X]_ 5t — 6,67 27, 6) Lum + Vath (X]_5,t — 6, 62Zf,5)D(w 0 X7 s ().
We consider the tanget flow process (X;),crs defined by Xo = Ijxq and
Xy = Oxs X = Vorb(X{_s,t — 6,62 20, 0) X, .

We now define the inverse tangent flow. To prove the invertibility, we consider the Hilbert space
(R4 (Ypaxa), with the Frobenius scalar product defined by (M, M®)gaxa := Trace(M°M™T) = Zle(MQMT)M,
M, M° € R4, Notice that for M € R4 | M|ge < |M|gaxa < d2||M|ga. Also, for k € N*,
|MF|gaxa < ||M||ga| M* 1 |gaxa < |M|H’§{dxd (with M® = Ijxqg and M' = MM'=' 1€ {1,... k}).

Now, since V,1(x,t,0,0) = Igxq for every (z,t) € R% x 7, it follows from the Taylor expansion of V),

that
N

V(XS 5.t —6,6220,6) Idxd+52 Z‘”/ OV h(XP 5.t — 6,762 20, 0)dA.
=1

+5/ By Vob(XP 5.t — 6,62 20, A6)dA
0
and using the assumption A; (see ([2.3))) yields

(4.25) Lasa — V(X2 gt — 6,62 2, 6)|gaxa <6240 max(|Z2L",1).
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In particular, if we assume that
(4.26) 528D < 1,
we remark that, on the set {|Z?|gy < 72}, we have

|det Vo (X0 5.t — 68,6220 8)|7 > inf  |Va(X 5t — 6,62 20,6)|pa
EERY|€]pa=1

21— |[Laxa — Vatd (X _s,t — 5a5%ZE75)”]R'1

1

>1-6220(1+ 5" > 5

The matrix V(X 5.t — 6,62 Z0,6) is thus invertible on the set {|Z|gv < 72}. We are now in a
position to introduce the inverse tangent flow, namely ()Q(t)teﬁa satisfying Xo = Iyxq and which is well

defined for every t € m%* as soon as we are on the set {©,), 76« 4 > 0}. In this case

Xyi= X7 =X, sV (X0 5.t — 06,20, 6)7 L.

In particular we introduce an,t = X, 1@7 5, >0 which is well defined for every t € 7°.
ng 0%,
We conclude this introduction observing that we have the so-called variation of constant formula. On

the set {©,, rs.-; > 0}, for every (w,i) € 7%* N (0,¢] x N,
(4.27) Dy o XD = X8 X X000 (X5 w — 6,62 Z5,,6).

Before we give the proof Theorem [£.3] we start with some preliminary results which are crucial in the
study of the determinant of the inverse of the Malliavin covariance matrix.

Preliminary results. Two standard results will be used in our approach, namely the Burkholder
inequality (see ) and an exponential martigale inequality, we recall thereafter. First, let us introduce
some notations. Given a R-valued process (Y;);crs progressively measurable w.r.t. a filtration (F} )scqs,
we denote AY =672 (Yiy5 — E[Yiy5|FY]), AY = 6 'E[Y,y5 — Vil FY].

Let (My)ieqns be a R-valued local square integrable (F;);c s-martingale. We denote [M]; = |Mp|? +
8 wens |AM[2 and (M), = E[|Mo|?] + 6 3 ens E[|AM|2|FM]. Then (see [?] Corollary 3.4 or [?]), we

w<t w<t
have the following extension of the Freedman inequality [?]: For a,b > 0 and t € 79,

2
a
(4.28) P(sup |My| > a, [M]; + (M); < b) < 2exp(—=).
wend 2b
w<t
Now, let us give some additional intermediate results which are proved in the Appendix [A] The first one
is a technical result that is used to bound the probability that the determinant of a random matrix € is

under some threshold by studying IP’(fTCf <e) for € € RY

Lemma 4.4. Let ¥ be a R™%-valued random variable and e € (0, (21%) Then
2
1 1
(4.29) P(  inf  £TRE< 2e) <Od)e™® sup  P(ETSE <€) + P(||2|ge > —).
EeR|€],a=1 2 SeR|¢]pa=1 3e

The second result provides an estimate of the moments of the inverse tangent flow.

Lemma 4.5. Let T > 0, T = (0, 7] Nx°, let p > 2 and let no > 1. Assume that (.) from Aj,
Al(p(qd, vV (20 +2))) with q), :== 1+ [— 2111(772)1 (see ) and that (u) hold. Then,

(4.30) Efsup | X0 L6, x50 < C(@) exp(Cp)T Mg, vizp2y (27) D).
S

The next result is a discrete time Lie expansion satisfied by our process X° together with a control of
the remainder appearing.

Lemma 4.6 (Discrete time Lie expansion). Let V € C}(R? x Ry) and let ny > 1. Assume that 1 €
C3}(RY x Ry x RN x [0,1]). Then, for every t € m%*, we have the Lie expansion

N
Xﬂz,tV(Xt57 ) 772 t— 5V( t 5’ + 6% Z Zfﬂ)"('ﬂz,t—tsv[i] (Xt(s—éat - 5)
1=1

+5ant 5V[O](Xt éat*(s))Jert 5R V(Xt 5>t *5aZt6)'
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Moreover, let o € N% and let us introduce the R%-valued functions defined for every (w,t,z) €
R x 8% x € RN by

RV (z,t —6,2) =R’V (x,t — 6, 2) — E[R°V (x,t — 8, Z))]
R'V(z,t — 8) =E[R°V (z,t — 6, Z%)].

Assume that AS(|a®|+4) (see and ) and A$(2max(3p + (pjas|+a + 2)(max(|a”|,2) +3) +

4,8,)) (see ) hold, with g, := 2 + f—%]. Assume also that

Ve cg’l‘”(ﬂ@d xR RY) = {f € T3 (RY x R RY), 3D 045 = 1, Py a4 € N,

V(x,t) € Rd X R-‘rv |f(x7t)‘Rd < @f,lam|+3(1 + ‘ml%fd"am‘+3)}’
and that holds.

Then, for every (x,t,z) € R x m0% x RN,

IR(2,t — 0, 2)|ga <OCMpax(6p+10ps+28,5° )(Zé)

n2

4max(6p+10ps+28,30,

(4.31) « @3@153%/’3(1 + |$|D2§2nax(7p4,l)+4pv,3 + ‘Z|]RN )’

and

a5 3 T
|8w R(l‘,t - 6)|Rd <620(|04 |)9:n2max(3p+(p\az\+4+2)(max(|a’f'|,2)+3)+4,f|‘f]2)(Zé)

(4.32) x DI IIEDY (1 e BT e e

~ In(§
where q‘fh =1+ [—hl((n;)]

[N

We point out that, Lemma and Lemmawill be used in the specific situation where 1 = 12(0) < d2.
In this case, we can derive the following bound qfh(é) <2, af]z(é) < 5 and Elf]Z(&) < 3.

The last result is a Norris Lemma adapted to discrete time processes. In the continuous case, this lemma
can be found in [?], Lemma 2.3.2. Before giving this result, we introduce some notations. Let ¢ > 0 and
T C 7>*. Given a R-valued process (Y;);cs progressively measurable w.r.t. a filtration (F} );cns, We
denote,

(4.33) Ny,r(q) =1 +sup E[|Y;—5|*] + E[sup |A7 5] + Efsup E[|AY |7 F ]
teT teT teT

—~ AY ~AY
+Elsup | A2 5| + Efsup E[| AL 47| ).
teT teT

Lemma 4.7 (Discrete time Norris Lemma). Let T > 6, T = (0,T]N7’. Let (Y;)iens be a R-valued

random process progressively measurable with respect to a filtration (F) )ecqs, let 7 € (0, %) and let

and assume that

p > 0. Let us introduce q(r,p) = max(4, %)

Ny, 1(q(r,p)) < +oo.

Then, for every € € [|210(1 v T3)5|50 557, (28(1 v T))) " T177],

(31)  POY WP <ed S EIAY JPIE AT P > )
teT teT

1—12r
22

211(1\/T2))'

<eP(1v TP 2000390, 1 (q(r, p)) + 12 exp(—
4.5.2. Proof of Theorem [{.3

Proof. Step 1. For every i € N, we introduce the R%valued process (\i/i,t)teT defined for every t € T
by W, = Xy sVath 100( X0 5.t — 5,5%Z§57 J). Notice that, for every t € T,

X0,000(XP 5.t —6,6220,8) = W, ,.
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We introduce the notation 2

= o0t € R4 for a vector v € R?
formula (4.27), denoting &%

. Using the variation of constant
51 =02 (nierxn X¢ (Wie)?, on the set {©,, 1 > 0}, we have

ks =0 D (DhyX)? =06 Y X}(XrX0u(X[_gt—0,072],0))

(t,i)€eTXN (t,)€eTXN

=4 Z Xf(XT\iji,t) —XTO'X5 X;l:

(t,i)€TXN

We first show that the proof of (4.12

(V]
N

, boils down to prove that there exists € € (1 (8)"4

a,%r]
and C > 1 (which do not depend on § and will be made explicit in the sequel) such that, for ev(élzry
€ (771(5)7575)’
(4.35) sup  P(eT 0X5 16 <26,0,,6),T > 0) < CePt)
EERL[E|pa=1
and
(4.36)

~ 1
P(”J;%,T”Rd > @, (")7]2(5)7"[‘ > 0) é Ced(P+2).
In this case

E[\dewgis 16 , x>0l SC(d,p)C+ [,

where ’yg(g = X}: 7;5(5 TXT and follows from the Cauchy—Schwarz inequality together with
T’
Lemma [4.5] The result of Step 1 is mainly a consequence of Lemma [4.4 We begin by noticing that

(|det7X%,T|1@5TY*>0 Z € ) (‘detaxé T‘ X € a@T,* > )
Since | det &‘;(5 ol > m() " on {@X%
fa

m (o), > 0}, the quantity above is equal to zero as soon as
e < ny(6)~! and for every € > n;(8)71,

P(| det &§%7T| < e, 05, > 0) <P(| det &§%1T| <€,0,,5),1 > 0)

N

P inf T59 <€0 > 0).
(EGR‘Z;IEIW:1§ X418 S 6 Onyr )

Applying Lemma (with and ), for every € € (n;é,E),

P(| det &g(%,ﬂ < ed’@X%,n,T > 0) <C(d)CelP+2),

Therefore
[m]—
- (k+1)p
E[|det7()§<;,’r‘p1@x5,n:> d)C Z Tz T il
5 k=[]
(k+1)P Ca
CZ s 4P < C’(d)CQ’” + [e=41?,

and the proof of Step 1 is completed.
Step 2.

In this part, we focus on te proof of (4.35)). More particularly, we demonstrate that, if we fix
1
_1 . 22 TVy, (Xa, ) oL
€ [m(6)" 4, min(—, ° L<L+1> )
dz’ 40(L + 1)N

1 _

then, for every € € [,(6)7,%),

(4.37) sup P(ET6%s &
fERd§‘§‘Rd:1 ’

(28(1vT))~143

oL—
1r—0 + 1r>0|m. L(L—1) |L3 1))v
N~ =

< 2e, @772(5)7'1* > 0)

_13L §1C(d,L.p,
<6d(P+4)(1+V ( 6) 13 3d(p+4))(1+1p2L+5>0|X0| ( PP2L+5))

% gc(d,L,p)@ dL”’ Me(a,Lppparis) (4 6)

1
x C(d, N, L P por+5) exp(C(d, L, p, p2r+5)TMC(d, Lopop.pars) (Z°)D)).

Notice that (4.12) is obtained by taklng r=1s
Step 2.1.
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For every I € {0,..., L} and ¢ € R?, we introduce the R ;-valued process (Vg 1t)teT deﬁned for every

EE Ty Vers = Soent Sren (€ Xe VIV (XP_5,t-0))2,. Let us denote N; = (42)137' 41715~ 1H NI
Then, for every ¢ € R? with [¢] = 1 and every € € [n;(6)"7,1)

(4.38) P(é Z X3 (&, \i’i,tﬁgd < 2¢,0,,5),T > 0)
(t,i)eTxN
Lt —1 —1-1
<Y PEY Vers SN 6> Veryie > Niwae® 0,01 > 0)
I=0  teT teT

10 L(L+1> L
P(5 ) E Vers S(L+1)—N"="€% 7, 0,7 > 0)
teT 1=0 T

cd cd,
+6d(10+4)@ ()(1+1p3>0|xo| ( ppS))mC(d,p,p,pg,ﬁ)(zé)

1
m) eXp(O(d, p, pg)TﬂnC(d,p,pmg (26)94)

+2 exp(—eii).

X C(d7p7p37

First, we notice that, using the standard inequality a? > %b2 — (a — b)? with a = (¢, @i7t>R4 and
b= (¢, X, sVi(X®_5,t —8))ga for (t,i) € T x N and considering separately the cases (a — b)? < 2¢ and
(@ —b)? > 2e, yields

PG Y xR 260,61 > 0) <SP X Veor < 860,41 > 0)

(t,3)€TXN teT

+PO > (Wi — X s Vi(XD 5t — 0)Ra > 26,0051 > 0),
(t,i)eETXN

with, by decomposing again in two cases,

P xiVeor < 86,0, > 0) <POI Y (X — ma)Veoul > 26,0, > 0)

teT teT
. 10
+ P((S; va’o,t < m7*6, @772(5)7'1* > 0)

We focus on the estimate of the second term of the r.h.s. above. Our strategy is to handle this term
by combining Lemma (which accounts for the appearance of the exponent % corresponding to the
choice of the parameter r € (0, ) in the application of the lemma) for a process close to (Vg 1t)tens and
assumption Ag(x,T) (see[2. ) Recalling that No, = ——, we proceed with the following estimate.

5Z%f\ 6@,72(5)T>0)
teT

o —l—-1
Z (6 Vers < N ,52 Vet > Nipr€® 0,1 > 0)
teT teT

ﬂ 0y Veu <N 0,01 > 0).

=0 teT

. L(L+1) 10
Moreover, since supyerq,... 3 i S NoN— 2z = 7 =N"=2—

L(L+1)

—1 10 e+ qa-r
ﬂ5ZVEZt Nire' ", Oy 0,1 > 0) < 522‘/@% SLAD—=N"=27 0,01 > 0),
I=0 teT teT 1=0 MM
which is the expected bound on P(0 ), ‘O/O,t < nll—o*e, O, (5),r > 0). A bound on those terms will be
established in the next step. We now focus on the study of P(¢| ZteT(xf fm*)l(kg-7o,t| > 2¢,0,,(5),T > 0).

Our idea is to employ the exponential martingale inequality so, keeping in mind that x? follows a Bernoulli
distribution with mean m., we write
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(5|Z — M V-é()t|>26 @772(5)T>0)

teT
5' Z — M 1@772(5),T.t,5>0‘/f,0,t| > 263

teT

o 1
&2 Z(m*(l —my) + (Xf - m*)2)1®n2(6),T,t7<§>O|‘/§a07t|2 < 2¢°+ 2)
teT
o a1

P(52| Z 1@772(5),T,t—5>0“/};-707t|2 > 262+ 22 )

teT

Notice that the choice of the exponent 22 is specific to our approach in order to ensure that we
can estimate the quantity above with the expected bounds when e > () as described thereafter.

Using (4.28)), with M; = > .. S(x? — m*)]‘@ng(s),T,t—5>0f/§701t’ the first term of the r.h.s. of the

w<t
inequality above is bounded by 2exp(—e_§). In order to treat the second term, we remark that,
Veot =D ientés Xt_(;Vi(Xfié»%d and using the Markov inequality, for every a > 0,

P(5? | (€ X sVi(XD 5.t — 0))2al?Lo,, 20 550 > 2¢3)
2

teT i=1
—a4s o
<6 EDITE[sup | Xi—sgi e, r(—s>0(1 +sup | Xes[5i) ).
teT teT

. d 4)In S _ 89 _ L
In particular we chose a = _%(lflzrm)(é)()méli)(&) (remember that § < ny(8)" 34 < ny(6)"2a so that

€ (0,d(p +4)]) and apply Lemma (see ) and Lemma [£.3] to conclude this estimate.
Now, we study P(§ E(t’i)eTxN@ W, — Xt sVi(XJ) g5, — 0))2, > 2€,0,,5) 1 > 0). Recall that, on

the set {©,,(5),r > 0}, we have |Z27| < m2(6). We denote, for ny > 1, D,, = {z € RV, |2{| < 52,0 €
{1,...,N}}. We fix (z,t,2,y) € R? x T x D,, x (0,1]. Using the Taylor expansion yields
|VI¢_16Z1"(/)({IJ, t— 57 2, y) - ‘/’L(:’C7t - 5)|Rd <5%772 Z ‘8zj (Vw¢_1azi¢)(xa t— 67 Z, y)|]Rd
jJEN
+ 5|8y(vz¢_13z1¢)($7t - 57 2 y)|Rdv

with
6y(vxd)7laz”f}) = vxwilayvx@[}vaﬂ/}ilaziw + vxwilayazld)
azj (vqu_lazlw) = vzw_laz-ivzwvmw_lazi¢ + vxw_lazj,ziw-

We focus on the study of the second term above. The study of the first one is similar and left to
the reader. Remark that

S 102 (Vo102 e <IVat 20 3 102 Vatllns 3 102t Yl
i,jeN JEN ieN
+ Ve e D 100 il
i,jEN
We show that, the function ||V, ~!||ga is bounded on R? x T x D, x (0,1]. We consider the
following decomposition
wa_l(xat - 67 2 6) = Id><d - (vw,(/)(xa t— 6) 2 6) - IdXd)vzw_1($7t - 6727 (5)

Now, assumption A; (see (2.3))) implies that (4.25) holds. It follows that, under the assumption
(4.26), for every (z,t,2) € R? x T x Dy, [|[Votb(z,t — 0,2,8) — Laxallge < & and then ||V~ |ga < 2.
Moreover

d
D0 Vit lre D1 1020 tblRal?

JEN JEN =1

d
<D0 102500 za

JEN I=1
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Using similar estimates for the term 9, (V1 ~10.:1) together with A;(3) (see (2.2)) and since (|4.26))
holds for 12 = 12(6), we obtain, for every a > 1,

P(o Z <§>‘i’it Xt 5V( t—s5t 5)>]§d > 2€,0,,5),T > 0)
(t,i)eTXN
<C(a)dpa(6)*%e D3 T* (E[fug X513 Lo, 2., s>0(1 + sup | X1 slga™)]
€

+C(a)5“772(5)2"6’“]E[§uIT>||)°(t—5|| ale,, r. 5>o\5Z|Z‘SI4“ ‘.
€

teT
Moreover, the Holder inequality (since 2a > 1) yields

|5 Z |ZB|4D3 ‘2a T2a 1E 5 Z |Z(5 8aps ” < Tzam&ng (Zé)
teT teT

We chose a = max(3, [— ln(m(‘;)(f+3%r:?(;’1(253)1n(n2(5))l) (remember that § < (5)*2771(5)*% so that

a < d(p+4)) and conclude using Cauchy-Schwarz 1nequahty, Lemma [4.5) E (see (4.30)) and Lemma
Gathering all the upper bounds together, we obtain .
TVL(X?;:U)W* )13L]

Step 2.2. Let us show that, for every € € (0, ( LEin
40(L+1)N— 2z

)

10 N LU41) g3-L

™

522‘/‘5lt\ L+1)

teT =0
3d(p+d
ged(”“)VL(xg)_ﬁ (1+ 1p4+2L>0|X0|C(d L,p,p4+2L))

QC(d,L,p)QC(d,L,p)imc

;O 5),1 > 0)

é
(de,P,P»P4+2L)(Z )

1
x C(d,N,L, —,p,pator,~ )GXP(C(d,Lm, Par2r)TMC(dLopppasar) (Z°)D)

My

Vi (x)
32¢ 5 N (VE)

It is worth noting that, in case of uniform Hoérmander properties, we have a similar result but with
V1 (x3) replaced by 1 in the r.h.s. above.

+ 2exp(— ).

L(L+1) 13 L

Now let us focus on the proof of Step 2.2. Let us denote €7, = (L + 1)10m;!N— = . Let
S
S:={4,.. 5\)46;(5 16}. Since € < (—XeXo)me 118" then § ¢ T. Therefore,
( 40(L+)N~— =

522%“\ (L+ 1Ny €, 0,40 > 0) < 622%“\@, Oya(5),1 > 0)

teT I=0 teS =0

N
<]P’(%5|S| Z Z@’ ‘G[a](XS,O)>§d .

la|<L i=1

<6y Z (& XsVIU XD 5t = 6) = VI (X5, 0)gal?, O > 0)

tes |a\<L i=1

o x ] (6 2o Vi(xf)
P(sup » Z|5Xn2(5)t sVITU XD 5,1 = 8) = VI (xG, 0))ma > —H570%)

teS | G<rL i=1

6
SUPZZ|Mazt 5|2 XO ZZ|Bazt 5|

teS

\a|<LZ 1 S\al<ri=1
Vi(xg) e
Z ZP Sup|Mo¢1t 5| Sup|Ba,z,t75‘ )7
la|<L i=1 8N (") ves

with for every t € T,
1 Yo A Ya,i
Maip =67 Y A5, Baii=06 Y. AN,

weT;0<w<t weT;0<w<t
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where Y, ; o = 0 and for every t € T,
Yaﬂ}t = <€’ )0(772(5),15‘/;[&] (Xta? t) - Vi[a] (Xg’ 0)>]Rd-

Now we decompose our estimate in the following way

—L
522{/5 1t < (L+1)NLe® 7, 0,61 > 0)

teT [=0
<5 Bl > 1 00 0)
la|<L =1
Vi (xP)

+ P(SUSP | Baii—s|* > O (s),T > 0)-
te

16N ("3")
We study the second term of the r.h.s. above. Using the Markov inequality, for every a > 0, we
have

VL(X87 O) VL(Xg)
P(Sup|Ba1t 5|2 71\, 7 7977 (6)T>0 |(5 |A > NTIn ,0 (),T>O)
£ N () O % oV ()

_ N N+L

asa a Ya,ija Z

<4%0°[S[* sup E[|A, 5 ]|7N5)|2
tesS Vi (Xg)

In particular, we chose a = dl(gff) so that §*|S|* < C(a, N, L, mi*VL(Xg)_aed(p""‘).

As a consequence of Lemma M with V = Vi[a] and Cauchy-Schwarz inequality, we have

AYaija 3aryTary2a d\a

EHAt—Jl ] éC(d7 a)@ D, gn[a],3m2max(3p+5p4+14 (,Ql:ézgizs))pﬂ)(z )
2a(Tpa+2p | 1ol 5 )

X B[ X1-s]34 10, 5 2507 (1 + B[ X7 4]z %),

and we bound the 7.h.s. above using Lemma (see (4.30)) and Lemma (when 4a < 2 we also
use the Holder inequality to conclude).
Moreover, for v/ > 0,

Vi (x})
sup | Mg, 2y 0
<tep | sl 2 16N(N]J\§L) )
VL XO 5 ~ Mg ;12 13—L
sup | Mg, ; 2> ,0 EA TSl A < €2+
(t€p| tl 16N N+L tezs | t 6] | t—§ )
AMa,i2 g A Ma,i2 g
+ P((SZ]E“Atf& i—s) |At75 > e ).
tes
5
Using the Doob exponential inequality (4.28)), the first term is bounded by 2 exp(— 13‘iLL(X°)

32¢ 240" N(VET) '
In order to bound the second term we take a > 1 and using again the Markov and Hoélder inequalities
and that AYei = AMai, yields

IP’(&ZEHA

tesS

—L
PIFX AN ) > 557) < 8¢S|%e <2+v'>2a+1supE[|A

2a],

At this point, we chose a = ((21—:)3% (remark that we have a € [1,2d(p + 4)13%]) so that

L
59|S|ee =7 < C(a, N, L s, B LV (x5, 0) 7@, In order to bound the r.h.s. above we use
Lemma [£.6l Hence

a 1 a a a
E[|A,2; ") <C(a, N, L, -)2*D} "Dy, 2°)?

8 max(2a, 1) max(3p+5pa+14,[— 2 _142) (

(n2(3))
N 4 1 s 8a(7p4+2p )
E[||Xt—5||R%19r,,2(5),1~>0]2(1 +IE:H‘Xt 6‘Rd ] )a

and then use Lemma 4.5 (see (4.30])) and Lemma |4.3 Remarking that © fo] < C(la 290D and
v, 442| o

Nl

pv[a] 5 < C(lal)pato)a) and taking v’ =1 concludes the proof of Step 2.2.
Step 2.3.
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Consider the case L € N*. Let [ € {0,...,L —1}.

8 —143 .
e ()4, Do,

then

o —1 o —1—1
P(0Y Vers < Nip€'® 60> Veagae > Niae® 0,1 > 0)
teT teT

C(d,L,p,
<e (p+4)(1+1p2l+7>0‘xo| ( pp2z+7))

x DOELDPILLYgn L (Z9)C(d, N, L~ p, pars7)

LDy Py P2147, 5
*

X exp(C(d, L’p7p21+7)TmC(d,L7P7P,P2z+7)(25)94)
1

|[Nie®' |

12 ———

+12exp(= Sy

First, for « € N! and i € N, we introduce the R-valued process (Yy it)tens such that Y7, , =0

and Y7, , = (§, )0(772(5) i 5V[a] (X 5.t —6))pa, t € 7>*. In particular, on the set {©,,(5),7 > 0}, we have

Vet = Dnent Sien Y 2:.4l?, t € 7. Furthermore, it follows from Lemma@ with V' = Vi[a], that, for
t € o

N
Yo itvs—Yait = 5% Z ZE’J< 2(6) t— 5V[( ke (Xt 5t —0))pa
4606, X0 s VI OUXD 5t = 6))pe + (€ X5y 4 s ROVINXY 5,8 — 6, 20) )z

N
1 5 o o
=65 N ZPIYE, i+ OV 0y n 6 Xy s ROVIN(XD 5.t — 6, Z0))

j=1
and
° ~ ch.i _1 S, « Y:,i
Verrie = 3 O B[A™ = 573 (8, Xy ROVIUX L5, = 6, 20 )pal*| F, 75 ]
aeN!ieN
A Ycﬁ,i —1 % 719 [a] ) 2
+ |At =9 <§v an(fs),t*(SR Vz (Xt—é’ t— 5)>Rd‘ .
Therefore,
o —1—1
P Vs < Nie'® ,52 Versre > Nipre? ,0,,510 > 0)
teT teT

PO Y ST ST E PN

teT~ aeNlieN

~Y:i -1 % o « ch1.
62 Z ZEHAIS =0 2<£7X772(5),t75R6‘/7;[ ](ng&t_aa Zf)>1Rd|2|]:t7(’$]

teT aeN! ieN
—1—1

,Yo_ _ ° -5 a
A = 6THE X5y R VI (X5t —6)>Rd|2 > N )

S Z ZMCS Z |Yc<u>,i,t|2 §Nz€13 5ZE |A o

a€eNieN teT— teT

+ 3 S TPOY E(6TE(E, Xy s ROVIOUXD 5t 6,20 el

aeNlieN teT

1 —i-1
+1671E, X5y, ;R Vil x5t - )>Rd|2>*N FINe® ),

-1

1
> N N

2] AT

where T~ = T \ {sup{t,t € T}}. We bound the the first term of the r.h.s. above Since Niy1 =
4NH‘1N13 and, since N € [1, (m = 1413NW+1)] we have Nje!3 [|210(1\/T?’)6\91 36 5, (28(1vT)) 143
and the expected bound is obtained by applying Lemma with Y =Y2,, T =T, r = 1371,

e = N3 and p = 13'd(p + 4). In particular we have to bound Nyo p-(q(d,r,1,p)) (this quantity
being defined in 1) with ¢(d,r,1,p) = 13"*144d(p + 4)). We notice that AOAYa"i =, Vi[a] (x8,0))pe
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AOAYM = 0 and that, for t € 7r5**, as a consequence of Lemma
Y©Y .
AP =Y 00t T e, an(é) i—sR V[( O (X7 5.t —0)
_ o _ o —0—0 o
HE, Ko )-s RV OUXE 5t = 0))a +672(€, Koy (ayp—sBR R VIUXE 58— 0))gr,

S

N
AtA = Z ZSJYV(Z,O,]’),Z’J + 6_% <€7 )‘3(772(5),t75]§6‘/i[(a’0)] (ngéa t— 6a Zf)
j=1
+ 67120906, Koy 5y -5 ROVIDNII (X5 ¢ — 6))
+ 4 2<g Xyt s ROROVIV (XD 5t — 5, 20))pa

Applying (4.32) and (4.31]), we obtain

6
mY(jJ,T’ (q(da T, lv p)) gc(dv lvp)m4q(d77.7l7p) max(3p+6p7+16,[— 3 1?.(12(25()5)) 142) (Z )

% Qﬁq(d,r,l,p)gC(l)q(d,r,l,p)

r 1 Cc(Dq(d,rl, 1
X Bfsup [ X - 55T (14 Blsup [ X7 [ O,

Using the Markov and Cauchy-Schwarz inequalities together with Lemma gives also, for every
a >0,

P(8 Y B0 3(E, Xy (o). s ROVIVXD 5t — 6, Z0))gal?]
teT

1 i
1571 Koo VI (X gt = )l > TN T T Nt )
1

*

<65 B T T O(N, — . 1, q)

x My, max(6p+10p4+28,[ — zrnid)

(02 (8)
3a Da
x D ©2z+4

a1l 2aC l 1
x E[sup || X, (51— s124]% (1 + Efsup | X]_s|2oCDp20)]3),
teT teT

9
142)(2%)

In particular, we chose a = 7137%’;41';()”111((;7)1)(?%) gy S0 that 55613771 L dP+4) (remember that

5 <m(0)~7 soa € (0,2d(p+4)]) and then apply Lemma (see (4.30))) and Lemma to conclude
the proof of Step 2.3 (when 4a < 2 we also use the Holder inequality).

Step 2.4 We are now in a position to conclude the proof of Step 2. Gathering the estimates
obtained in Step 2.1, 2.2 and 2.3, we have proved that, for every

é TVL(X87O)m* )ISL
ds’ LE+T)

40(L +1)N

251V T) M3 oo
alL:0+1L>0|m*W‘13 ),

E[nl(d)_%,min(

then

SuPeeri;jel, =1 P T s p& < 26,057 > 0)

_ 3d(pt+4) 51C(d,L 5
ged(p+4)(1+VL(XS) 15-L )(1+1p2L+5>0|X0\ (d;Lp;p2ar+s ))

X ’DC(dyL,p)QC(d’5L7p)mC(d>L,P7P,P2L+5)(Zé)
x C(d,N, L, ap,P2L+5)

x exp(C(d, L7p7 p2L+5)TmC(d,L,p,p,ng+5)(Z6)©4))

VL(Xg) M
32613;L N(N;L) ) + Gexp(* 211(1 v T2>

L1
€ 13x22

+ C(d)(exp(—€ %) + exp(— ),

so, using standard estimate between polynomials and exponential terms completes the proof of Step
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Step 3. We now focus on the proof of (4.36)). In particular, we show that for every e € R*,
1
(4.39) P([|6%s pllre > =) <e™PF2)(|X3|palpy>0 + D3) )

6e
x exp(C(d, p,p3)(T + 1)9ﬁ0(d,p,p,p3,q§,2)(Z5)©4)-
First, we notice that, using Cauchy-Schwarz inequality, we have
H?f‘;(g,Tlle <||U§(37T||RdHXT”]12§d
<|Xf|]%§d,6,T,1,1HXTHH2{{d'

As a consequence of the Markov inequality and again the Cauchy-Schwarz inequality, we obtain

(||UX5 THRd > —, 0,1 > 0)

1
6e’
<e d(p+2) gd(p+2) ||X5

4d(p+2
PR sra, Ladr Elup 1 X || pa® )1

1
n9,T t>0} 2

To conclude the proof of Step 3, we then apply Proposition [4.2f (see (4.21)) and Lemma and
obtain (4.39).

Step 4. In order to complete the proof of Theorem [4.3] it remains to show that (4.13) holds.
Similarly as in Step 1, we have

( )

P(| det 355 ¢l > , 07, > 0) <P(|det 6%y o] < 201(6) 7", Oy sy, > 0)
T ~

<P( inf g( &€ < 25771(5)7%,@7,2(5),T > 0).

EERY[E]pa=1
Using the result from Step 2, (see D with € = 25771_ ), for p > 0, we have

~ m(o
P(|det’y§(%7T| > #7@7723 >0)

L
<771(5)—(p+4)(1+v (x 6)—13 6d(p+4))( +1p2L+5>o|XS\%d’L’p’p““))

x DOLLIDTCEPIM 4 1 oo o) (Z°)

1
X C(d N L 7p7 p2L+5) eXp(C(d, Lapa p2L+5)TmC(d,L7p7p,p2L+57qff]2) (25)94))
To conclude the proof, we simply observe that
1 1
P(0F,. < 1) <P(|det 75y pl > m(8) = 5) + Y _P(Z[ev > ma(8) - )
teT
5 171(9) 5 5 1n2(6)
<P(|det7s gl > 22, 000 > 0) + S P(Z v > () + 3 B(1Z ey > 22
teT teT
5 11(6) 5 n2(9)
<P(|det 7y ol > 757 Oa(s) 1 > 0) +2;P<|Zt I > ).

APPENDIX A. PROOF OF TECHNICAL LEMMAS

A.1. Proof of Lemma [4.4l

Proof. First notice that, since € € (0, \/E) there exists {&1,...,&n (o} With & € R? N(e) < 7d324¢=24
(see e.g. or [?] Theorem 2 or [?] Theorem 1.1 for a refined constant) such that {¢ € R?, |£|ge = 1} C
N(E){f € R, |& — £lpa < %} Moreover
1

1 1 1
P(  inf Y¢ < =€) =P( inf Tyve < 26, |2pe < =) + P(|2]|ga > —).
(ﬁeRd;lilmdzlf ¢ ) (EGRd§‘E‘Rd:1§ ¢ 2 12 e 36) (1= ]lze 35)

l\D

In particular for every ¢ € R?, |¢|ga = 1,
T8¢ =656 + (€ - &) (36 + 27¢)
2658 — 216 — ElrallSlira — 16 — ElRall€llra-
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Therefore
P(__inf _ €"SE< e Sl < o) <PUYDETE <o),
EERY|€|ga=1 2 3e =t
and the proof of (4.29)) is completed taking C(d) = 7d32¢. O

A.2. Proof of Lemma In this proof, we are going to use the Burkholder inequality (see (4.19))) on
the Hilbert space (R?*?, (,)gaxa), with the scalar product defined by (M, M®)gaxa := Trace(M°M7T) =
S (MOMTY, ., M, M® € R**?. Recall that for M € R || M||ga < |M|gaxa.

Proof. Step 1. First we show that
5 1 < 1
E[sup |Xt|§dxd1®n2,r,t>0] » <d+ E[sup| Z Twﬁdxd] ?

teT teT wensn(0,]
1
+ E[sup | E Ty [Raxal?

teT wemdN(0,t]

A

where we have introduced Y; = 1@"27T,t>0)°(t,5(1dxd—vzw— N(X?P_g,t—4, 5229.6), T, = E[Tt\ftz_éé]
and T; = Y; — Ty, t € 7%*. On the set {©,,,1,+ > 0}, we have
. 1
Xe=lIixa— Y, Xu-s(Taxa— Va0 (X _5,w = 6,62 Z5,0)).
wenN(0,t]
Now, using the triangle inequality yields
Efsup XiPucalo,, xsol? SVA+E[up| > Tylfile,, rs0l?
teT wenN(0,t]
<Vd+Efsup| > Tulhued?,
teT weniN(0,t]

and, using the triangle inequality once again, the proof of Step 1 is completed.
Step 2. Let us show that, for t € T,

|Tt|]Rd><d <5|Xt—6 |]Rd><d 1(_)7721T1t75>039@29ﬁq%2 V(2p+2) (Z(S).

We begin by noticing that, since 1o, 5,50 = lo,, x>0 (With Dy, = {z € R, |2/| <

152 Z2 €D,
52772, i € N} introduced in the proof of Theorem . for every t € w0,
|T;|gaxa :\Xt—élem,T,t,poE[Idxd Vo N(X] gt — 06,6220 ,0)1

Now, we remark that

)
5%Zf€'DT,2 “th—(s} |]Rd><d'

N
1 5.0
E[62 ZZt vx‘/l(Xf_67t_5)(15%Zf€Dn2 + 52Z5¢/D )| ]
=1

The Markov inequality, combined with (2.3]) implies that,

E[5? \ZZ‘”V Vi(XP 5.t —6)1 lrana |FZ'5] <SDE[Z0]0%].

1
522Z8¢Dyy
1=1
In particular

E[(Lixa — Vo)) (X{_gt — 6,62 20,5)1 \FZ 5 e

52 Z3eDy,
<6DE[|Z! ‘*"2} +06DE[L + | 20217,
On the other hand, using (4.25) , for every k € N, k > 2, we have
E|Taxa = Vit (X5t = 6,62 2], 0)|faral FZ]

g6%77§k—2)(P'i‘l)gjlk@kﬂi[rnax(|Zt6 |]§(15+1), 1)].

1,5
83 28Dy,

Since 62np+14© < %7 the following geometric series converge and satisfies

oo

E[Y " [axa = Vatd(X{_5,t = 6,02 2], 6)|kaxal
k=2

8
5% Z5eD,, |F 5] < 032D My(p1) (2°).
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In particular, using the Neumann series to write V¢~ ! = Zk(Idxd — Vmw)k, we have

1 é
E[|(Vatp ™" = 2Laxa+Vat))(XP_s,t — 6,62 2, 5)|Rd”15%zfepn2 | FZs]

o) i s
SE>  axa — Vah (XP_5,t — 6,62 Z, 5)|§dxd1§%256% |FZ],
k=2 '
so that
A o 9
Tolgoxs < Ximslgoxalo,, x,_y>0([BlTuxa — Vo) (XP gt = 6,63 20,0015, |F 5] gaxa
t n2
(oo}
) L o
+ E[Z |Id><d - VIT/)(Xt—(Sv t— 57 0z Zt ’ 6)|]1k§d><d15%Z£s€Dnz |J:tZ—6])
k=2
We already obtained an estimate of the second term of the r.h.s. above. To bound the other term,

we observe that from the Taylor expansion of V1,

N
Vath(XP 5.t — 0,02 2),0) = Iawa + 0% > Z)'V,Vi(X] 5, - 0)

i=1

1
+ 5/ Oy Vath(XD 5.t — 6,67 20 A6)dA
0

N 1
+6y  z)' 7! / (1= N)0,:0, V(XD 5.t — 6,062 28, 0)dA.
il=1 0
and using standard estimate we complete the proof of Step 2.
Step 3. Let us show that
~ 1 1 o 1 1
E[|T¢[Raxale,, z._s>0]7 < I2E[X; s5lRaxal? 101@29ﬁp(qg2v(2p+2))(Z6)P)-

First, we remark that

|Tt|Rdxd < | Tt |gaxa + |Yt|Rd><d.
We have already studied the second term of the r.h.s. in Step 2 so we focus on the first one.

Proceeding similarly as in Step 2, we have

: 5 1,5
|Tt‘RdXd <|Xt,5|Rdxd1@n21.r,t75>0<‘([d><d — Vw¢)(Xt75,t - 5762Zt , 6)16%Z§5€Dn2

|Rd><d

+ ;2 Laxa — Voth (X0 5.t — 6,62 20, 5)|ﬂ'3<d”15%zgep,,2)'
Using , it follows that
BlIXe s Bacalo, rs>ollaxa = Vot (Xi_ 5.t = 8,62 27,6) aalyy yo o |
SOPE[|Xi—5 P uxale,, x5 >0/ OPAP20M, 1) (2°).

Moreover, since 6275149 < 1, on the space {6229 € D,,}, we have

Z ‘Idxd - vzw(X?ﬂS?t - 65 5%21?)5)‘]1%@“1 < 63292(1 \ |Zf i(]{]ﬂrl))’
k=2
and
oo
E[|Xi—s[Baxale,, ., s>0] > axa = Vatp(X] 5.t =6, 522, 5)|J§dxd|p15%Z§€Dn2]
k=2 )
<SOPE[|X1—slBunalo,, . 5>0132° D 2N 41)(2°).

Gathering all the terms concludes the proof of Step 3.
Step 4. We are now in a position to conclude the proof. First, employing the Burkholder inequality

(4.19), we have for every p > 2,
Bpup| 3 ol <0, ToRuna)?]
teT wemriN(0,t] teT

<b, (O E[Te[2ua]7) .
teT



Hoérmander Properties of Discrete Time Markov Processes

We deduce from Step 1,2,3 that

3 =

E[supietuio} | Xtlgaxale,, «.>0]

~ 1 v 2.1
<d+Efsup| Y TulBucal? + 0,0 E[Ti[2]7)?
T ersn(0,4] teT

S 1
<d +39D%Mys v (ap12)(Z2°)E]] > 01X _slpaxaPle,, 1 ,_s>0]”
teT

1 S, 2.1
+ b L01D* My g5y (2p42)) (2°)7 (O OB K —sgnale,, 2. s>0]7)?
teT

3

1 S 1
<d+bp140©29ﬁp(q§72v(2p+2))(Z‘s)z’(Zé]E[ sup [ XulPuxale,, r.s>0]7)2.

jer  wETU{0},w<t
Therefore, as a consequence of the Gronwall lemma,

o 1 2
]E[fug 1Xelzale,, r.>0]7 < V2dexp(03140°D TN, s y(ap12))(Z2°)7),
€

with b, defined in (4.19)) and the proof of (4.30) is completed.

A.3. Proof of Lemma [4.6l

Proof. Step 1. Let us show that for every ¢t € 7%*,

N
VX))~ V(XD gt = 0) =683 2PV V(X] 5t — 6)Vi(X] gt —0)
=1
+ OV V (Xt = Vo (X[t = 8) + 60,V (X5, = )

N
1
+05 D V(X 5t = ) THLV(X] 5.t = V(X 5, )
=1
+ R (X5t =6, 2),
with for every (z,t,2) € R? x 70 x RV,
ROz, t,2) =R%V3(a,t, 2) + V,V(x, t) ROV 2 (2, t, 2)
1 o
+ 55 -lz,:l(ZZZl — 1)Vi(z, ) "HLV (2, t) Vi (z, t)
N
1
+ 242 Z V(@ ) THLV (2, t) ROV (2, ¢, 2)

=1
+ RO (a,t, 2) THLV (2, ) ROV (¢, 2),

where

1 N 1
ROV (2., 2) :5/ By(x,t,67 2, \0)dA + 6 > zizl/ (1= N\)D,:0.1(x,t, A67 2, 0)dA,
0 0

il=1

N 1
1 . 1
ROY2(2,t, 2) =03 > (22 = 1i2)0.:0.00(, £,0,0) + 52/ (1= N)0gp(x,t,6% 2, Ad)dA
il=1 0
3 1 1
+5§Zzl/ 010,10 (,t, A62 2,0)d\
1=1 0
1 & 1 ,
+63= > zizlzl/ (1= X)%0,:0.;0,10 (2, t, \6% 2,0)d)\,
2 i, l=1 0
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and
1
ROL3(2,t,2) = 52/ OV (z,t + A5)dA,
0
d 1
+Y° / Oy TV (x + ARMO (2,1, 2), t)AARM O (2, t, 2);
i=1 0
1 <& 1
+5 > R‘s’l’o(m,t,z7y)i®j®k/0 (1 = X)20,i 045 0px V(x + AROVO (2,8, 2), £)d,
i,7,k=1
with
1 X N ol
ROM0(z ¢, 2) :5/ Byw(m7t,z7)\5)d)\+5fz,z’/ (1= N)0.i9p(x,t, Az, 0)dA,
0 i—1 0
and

1 1
TV (1) = 5/ OV (2, + AN = 50,V (2, 1) + 52/ 02V (2, + AS)dA.
0 0

We begin by noticing that, using the Taylor expansion of ¢ with respect to its third and fourth
variables, we have

V(XD st —8,0520,8) =X{_s + ROVOXD_ 5.t -8, 20)

N
=XP 5400 ZPWi(X] 5t =) + ROVN(X] 5t 0, 2)),
=1

N
=XP 5402 ZPWVI(X] gt — 0) + OVo (X7t — 8) + ROVH(XTP 4, Z)).
=1

Now, using again the Taylor expansion on the function V w.r.t. its second variable,
V(X 1) = V(XD 5t = 0) =TV(X] 5t = 0)
+(TV+VIXP,t—06) = (TV + V)X 5t —90).
The Taylor expansion on the function 7V w.r.t its first variable yields

TV(X2,t—08) =TV (X 5,t—0)

d 1
+ Y RMOXD -, z)i/ i TV(XS 4+ AROVO(X2 ¢ — 6, 2), t)dA.
i=1 0

Finally, from the the Taylor expansion on the function V' w.r.t. its first variable, we have also

V(X[ t—6) =V (X5t —6)
+ VL V(X) 5.t —0)(X7 — X7 5)

1
+ §(Xt5 — X ) THL V(XD 5.t — 6)(X7 — X7_5)
d

1
+5 Y, BMUXD 5t =0, Zisjen
i3 k=1

1
X / (1= N)20,:045 0,k V(XP_s + AROVO(XPD 5.t —6,20,6))dA,
0

and gathering the terms completes the proof of Step 1.
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Step 2. Let us show that for every ¢t € m%*
0219,1 € N} introduced in the proof of Theorem , we have

N
Vb~ ( t67 _6’5%21?’5):IdXd_(S%sz’szvl(xfﬂ%t_d)

i=1

6<VV0( o 5t Zvvxt 5ot 5))

+ROAX) 5t =6, 27)
with, for every (z,t,2) € R? x ° x RV,

N
RO2(x,t,2) = RO%3(,t, 2) — RO (x,t,2) + 6 Z 21— 1,V Vi(z, )V, Vi(x, t)
il=1

N
— 52 Zzl (Vo Vilz, t) RO (x,t, 2) + RO% N (w,t, 2)V, Vi(z, 1) — RO? (2t 2)
I=1

where
1
RO21 (2. ¢, 2) :5/ vmayqﬁ(x,t,é%z,/\é)dA
0
N 1 )
+6 Z zizl/ (1 =X)V;0,:09(x,t, M52 2,0)dA
il=1 0
1 1
RO22(z ¢, 2) :62/0 = )\)vma;qp(x,t,éfz,)\é)d/\
LN
il
+ 55 IZ_ (Z = 1i:l)vmaziazlw(xat’070)
L 1
sl l 2 'y 3
+67 5 > (2 / —N)2V,0,:0,: 0,0 (x,t, 02 2, 0)d\
i,7,l=1
N 1
+5%ZZZ/ V. 0.0,0(z, t, A% 2, 0)d\,
=1 70
and

RO23(x,t,2) = (Vo ' = Iawa — (Taxa — Vath) —

(IdXd - Vx¢)2)(xat7 6%275)5
where for a matrix M € R4 M? =

MM. The proof simply boils down to notice that we have
both
V(X st — 06,0227 ,8) = Lyxa + 6% ZZ“V Vi(XP 5.t —08) + RIPNX) 5t —6,20)
1=1
and

N
Valh(XP 5.t — 0,03 2),0) = Igwa + 0% > ZP'V,Vi(X],,

=1
4 4 )
+ ROB2H(XD 5t —6,77).

t—06)+ 0V Vo(X] 5.t —0)

We gather all the terms together and the proof of Step 2 is completed
Step 3. Let us show that for every ¢t € 7%*, on the set {©,,,1,+ > 0}, we have

XtV(Xf7 ) Xt 5V(Xt it 6)

+5%sz’iit—av[i](Xf—aat—is)+5Xt sVO(XP 5t = 0))

i=1

+ X, sRV (XD 5.t —6,27)

51

, on the set {§2Z) € D,,} (with D,, = {z € RV |2/| <
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with, for every (z,t,2) € R? x m° x RN,
ROV (x,t,2) = R®Y(x,t,2) + R*%(x,t, 2) + R*®(x,t, 2),
where R%2(x,t,z) = R%%(x,t,2)V (z,t) and

R*3(x,t,2) = =0 Z 202t — 1,0V, Vi, )V, V (2, ) Vi(, 1)
i,l=1

N
+(=0(V.Vo(x,t) Z (Vo Vi(z,1))?) + R%%(x, t, 2))
=1

x (52 Z 2LV (2, V2, t) + 6V, V (2, t) Vo (z,t) + 60,V (z, 1)

=1

N
1
+ (55 Z Vi(x, ) THLV (2, ) Vi(z, t) + R¥Y(x,t, 2))

i=1

1 N :
— (62> 'V, Vi(x,1))

1=1
X 0V V(x, t)Vo(z,t) + 00,V (z,t,t) + 5% EN: Vi(x, ) TH,V (2, ) Vi (2, t) + R¥ (2, t, 2)).
=1
First, we write
X V(X0 8) — X sV (X 5.t —6)
=X gVl (XDt 8,63 20,8) (V(XP, 1) — V(X[ .t~ )
X, s (vww(xf,é,t 5,08 70, 6)71 - Idxd) V(XS 5.t —0).
Then, using Step 1 and Step 2,
Vap™ ( Dot — 0,20, 8)(V(X],t) = V(X[ 5t —0))
=52 ZZ‘”V V(X 5.t —6)Vi(XP 5.t —0)

=1
+5va(Xf—6’t_5)V0( t— 67t 6)

+ 60,V (Xf st —0)

+6 sz (X]_5.t = 6)THLV(X]_5,t — )VI(X]_5,1 — )
l 1

—5Zv VI(XD 5.t — VLV (XS 5.t —8)Vi(XP 5.t —0)
=1
+ RO3(X? 5.t —6,2%) + RON(X? 5.t —6,20).

The study of the other term was done in Step 2 and the proof of Step 3 is completed.
Step 4. Let us prove (4.32) and (4.31). In the sequel, for i € {1,2,3}, t € %%, we introduce

the functions defined for every € R? by R, (z) = E[R%(x,t — 0, Z0)1 | and for ¢ € {1,2},j €
{17 2, 3}7 Eid (‘r) = E[Ré’i’j ((E,t — 0, Zté)lg%ZEEDnz] (

since {©,, 1+ >0} ={O,, 1.5 >0} N {622 € D,,}, then ﬁ6V(x,t —0) = Zleﬁi(m) = E[R(x,t —
5, Z9)1 |+ R, (z) + R, () with

§2z5eD,,
with the notation R>?7 = R%2JV). In particular,

5%Z§ED712
N
4 1 7 8,4
1‘) =—02 ZVH(‘Tat_ 6) [Z 162Z6¢D7z2]’

R (z) = — 6V(z,t — 6)P(52 Z] ¢ D).
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We first study 92 R, for a® € N¢. We first remark that
R, =R,” +V,VR,*+R,",
with, for every x € R% and t € 7%,
8,1
E[262 Zz Vi(z,t — &) TH,V (z,t — §)R*Y (2, t — 0, Zf)1éézfe%]

E[R6’1’1($, B 5’ ZE)TchV(xa t— §)R5,1,1(;177t — 5, ZE)]'J%Z‘SG'D ]a
t n2

We begin with the study of ﬁ:’z(x). We observe that, for every t € 70*

ZN: (2220 —1,2)0,:0,0(x,t — 6,0, 0)15%236%
i,l=1 v
:i;I(ZE’iZf’llaézfeDnz B ]E[Zté’izf,ll(s%ZfeDﬂz])aziale(x’t7070)
N
. Z E[Zé 1Z6 l1

il=1

52 Z¢S¢D ]aziazl’l)[}(x,t7070),

' N 8,6 78,1
with |Zi,l=1 E[Z; th 15%2,‘5%9772”

1 (recall that we have necessarily

< 0y B[ Z¢ 2+q], for every ¢ > 0. In paritcular we take q =

31n(d) 31n(d)
|—_21n(77 ) 21n(n2)

A;(Ja®|+3) (see 1.' and A§(max(p|ae|43+3, [— 23&?((7;1)1 +2)) (see ), we obtain, for every x € R%,

109" Ry () [pe <O2CM

< 0). Using standard calculus together with hypothesis

PlaT|+3
max(pjae|+3+3,[— 2311xn((T/52))-|+2)( )©|‘”|+3(1 + |2 )-

By similar arguments, it follows from A;(|a”| 4 2) (see (2.2)), that

z—1,3 3 5
102 By (2)ls <OZCUa"DMy v olanibs), - 2n0 145 (Z°)

| |+3 Plaz+2(la”[+3)+pv,jaw |43
X D)oo 12DV ez 43(1 + 7[R )-

and, using hypothesis A;(|a®| +2) (see (2.2)) and A$(2pjae) 2 +4) (see (2.7)),
z—1,4 3
05" R, () |pa <62 C(|a”")Map o) ,+4(2°)

2P| a2 HPV, o
X©\2a*\+2©V,\aI\+2(1+ 2| Prilatitzy

We conclude that, under the assumptions A (|a®|+3) (see ) and A% (max(p|ae|+3+3, [— 2311?((7;52)) 1+
2)) (see (2.7)), then, for every x € R?,

102" Ry (2) s <03C(J0" )M sino) 1, (2°)

maX(P\al \+3(‘0‘z [+3)+4,[— 2Tn(n2)

1+2)

la®|43 Plae|+3(|a”[+3)+Pv, 0w 13
XD az|+3®V,\am\+3(1 + |x|Rd )

Now, we focus on the study of 6§z§t. We first observe that,
=2 =23 =22 24
R, =R, — R, —R,,

—24
where we have introduced the function R, defined for every z € R by
2,4

R, (z) =E[R®*Y(x,t — 8, Z )V (x,t — L3 pocp
t n2

N
+0% Y ZP Vi, t — 6RO (a,t — 6, Z0)V (,t — NMyh ysep, |
=1

N
+02 ) 2RO (.t — 6, Z]) Ve Vil, t — 0))V (.t — 5)15%256%1’
=1
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We begin with the btudy of E? 2(x) Using similar arguments as in the study of Ei 2 under the

assumptions A (Ja®|+4) (see ) and A§(max(pjgej+a+3, [— 231111((:2” +2)) (see ), then, for every
r € RY

a® 522 3 T
08" R (@)l <82 07NNy oy - ) 112 () Dl 44D o

> (1 + |£U D§|(u$|+4+pv,|am|)-

We then bound the derivatives of Rf’g(x). We first remark that

R572!3((£,t, z) :(Vzwfl — Tgxa — (Idxd - vgﬂ/}) — (Idxd - in/f)Q)(%ta 5%2’5)
= Z(Idxd - vxﬂ}(ﬁC,t - 57 5%Zt6’ 6))k7

where for a matrix M € R¥>4 M*1 = MMF k € N. If |a®| = 1, it follows from standard calculus
that

(@)
—ED S (Uaxd = Vo)) 7102 Vatb(Laxa — Vo)) ) (@, t — 6,65 2, 8)]V (2, £ — 0)

=1

o
w

oo

Z Lixa — Vatb(z,t — 5,62 27, 6))%05 V(. t - 0).
k=

When || > 1, we iterate the above formula. Combining this decomposition with the following
estimate

N
102" Vot (,t — 6,67 20, 8) |gaxa = 0| ZD'02" V., Vi(w, t — 8) + 02 ROV (x,t — 6, Z9) |gaxa
=1
<D qep2(1+ 2[R + |20 [871)| 20 e
+ 0D jar s (14 225" + 120 [RR") (1 + |27 3x)
208D e a1+ alps™ ™ + | Z2 0T (1 + |20 2w),
we deduce that

a® 52,3 x o
105" R, (@) [pe <C(d, " NE[D|] 5

X (L4 127180 e (14 Jal )

(1+| |P|aT|+3‘04 ‘+ |Z6 p\ax\erla |)

X 305 (1) Ly — Voot — 66025, 0)1
k=0

Using A¢ (see ), we have (4.25). Moreover, when k > 3, we use | Z{|¥ 13 ssen < |7 |RN77k
t n2

.
622} €Dy,

3

and we obtain

E[5™ 5 (k+ D11+ 120 e N L — Vol (@, — 6,620, 6)1

52256@,,2]

gamx(k :3) max(k 30)(p+1)(k+ 1)|at|4k©k]E[1 + |Z5 3(p4+1)+(pjaz|+3+2)|” \]

Since 62757140 < 1 (see (4.26)), we obtain the estimate

ey 3 -

102" Ry (@) ra <62 C0(d, [0 DMy (p1) (90 42| (£°)
aT o’ |+ aZ
X DODI] Dy (14 [ 11 P
Moreover, we deduce from AS(|a”|+ 3) (see (2.2)) and A§(2p|ae(+3 + 4) (see (2.7)), that
a® 52,4 3 T
|02 Ry (2)|pe <02 C(|a”)Map 05 +4(2°)

2P|z 43PV, a2
X :‘D‘Qam‘+3gv,|ar|(1 + ‘thi‘ *lreThvil ”).
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We conclude that, under the assumptions AJ(|a®|+4) (see (2.2)) and (2.3)) and AJ(max(3(p+ 1)+
(Plaz|+a +2) max(la®[,2) + 1, [~ 2‘311;‘(”2)1 +2)) (see ) and §2 np+14® < 1, then, for every z € R?,

(2°)

a® 52 E2 T
107 Ry ()|re <02 C(d |0 DM 35114 (b .4+2) max(laz .2 +1,[— 2E ) 42)

21In(n2)

3. max(ja®],2) Pl pa max([a®],2)+pv, v
XD e g Ovijar|(1+ |2]pa ).

We now focus on the study of E? . We have
3,4

—3 —3,1 =32 —33 —3,
Rt:Rt *Rt +Rt *Rtv

where we have introduced

N
Ry (2) =61 S E[ZPRO (2t — 8, Z0)VoV (@, t — 6)Vi(e, t — 8)1
=1

1,5
52 Z8€D,,

N
%Z E[Z'V Vi, t = 8)R™ (@t = 8, Z0)1 4 1y ]
1=1 t n2

3,3
R,"(x) :E[16%Zfe% RO2(x,t — 6, 20)

X 0V V(x,t — 6)Vo(x,t — 0) + 00;V (z,t — 9)

N
1
05 Vil t — )T HLV (2t~ Vil 1~ 0) + B (ot~ 6, 20))]
=1

Vi(z,t — 6)%)

Mz

Rl (2) =04 (Vo Vol(z,t — 6
=1
x (Vg V(xt— NVo(z,t —8) + 0V (x,t—9)

1
+3 ;Vz(x,t — OTH,V (z,t — 8)Vi(x,t — 5)).

Using standard computations together with hypothesis AJ(|a®| + 2) (see (2.2)) yields
*—3,4 4pjaz |12 H+PV, [0z
102" Ry (2)|ra <6°C(1a”)D{qr 12DV ar |42 (1 + [afgd T V1712),

Using a similar approach as in the study of Ri, as a consequence of A$(|a®| + 3) (see 1] and

AS(max(paz|+3(|a®| +3) + 4, [— 231?((7;52))] +2) 4+ 1), we derive

102" Ry 2 (2)|ge <63C(d, [a”]) A

max(p|az|4s(|a®|+3)+4,[— ;i:;Sf;)m)H(

[a®|+ Plaz +3(a”[+4)+pv, |z |13
X Do 5DV, jas (1 + 2] )-

From the same reasonning as in the study of E?, since lj holds, it follows from A§(|a®|+4) (see
(2:2) and (2.3)) and A§(2max(3(p + 1) + (Plarj+a +2) (max(ja®],2) +3) + 1, [~ 51tk ] +2)) (see (2.7))

that
(2°)

o’ D »3 - x
10z By (@) |re <62C(d, | Dm?max<3<p+1>+<maz‘+4+2><max<|aw|72>+3>+1,[f;i:;@ixwm

2 max(|a®],2)+3 Plaz|+a(2max(|a”],2)+3)+2pv, oz |43
x D7 D)oo |+4 DY, a3 (1 + |25 ).

Similarly, since (4.26]) holds, it follows from A{(|a®| + 4) (see (2.2)) and (2.3)) and A(max(3(p +
Hi

1) + (Plas|a + 2) max(ja®],2) + 1, [~ 55k ] +2) 4 1) (see (2.7)) that

1o )1 3 T 4
105 B (@)l <02 07D 31+ (e 4--2) ma(f ] 2)-+1, [ 212001 1211 (Z7)

P\ar\+4(max(|az|72)+1)+2Pv,\ar\+1)

max(|a”®|,2)+1
X©3©|a$‘ﬂ4 2) Qvlaz|+1(1+‘x|Rd
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We conclude that under the assumptions (4.26)) it follows from A{(|a®| + 4) (see (2.2) and (2.3))
and A3(2max(3(p + 1) + (pla= 44 + 2)(max(ja®],2) +3) + 1, [~ 22T 1 2)) (sce (2.7)) that

09" R, (2)|pe <67 C(d, |a® )9 (2%

2max(3(p+1)+(Pjaz | +4+2) (max(|a®],2)+3)+1,[— Frgo)1+2)

2 max(|a®],2)+3 Plaw|+a(2max(|a”],2)+3)+2pv, | oz |+3
x 9% 2T DY, o431+ [2]ga )-

- —5
To complete the proof, it remains to study Rt and R,. As a direct consequence of the Markov
inequality, we have

6,1 3
ZZ 162Z5¢D ] <oz _ln(d)-‘+1(Zé)7

i1 In(n2)
and

P03 2] ¢ Dy,) < 32M_ ey 4(2°),

21n(ng)
Consequently
a5 3 z 5 Plaz|+2FPV,|a® |41
95 By (@)lee SO2CUQTDI_ mor 43 (Z7) e 4200 e 1 (1 + [l )

and

a"ﬂfs 3 T 2P qx 13+ ot
05" R @ls 0RO DR, | (201D D 21+ 157005,

We conclude that under the assumptions (4.26)), it follows from AJ(|a®| + 4) (see . and .
and A(2max(3(p + 1) + (Pjas |44 + 2) (max(|a?],2) + 3) + 1, [— 5125 ] + 2)) (see (2.7)) that

21In(n2)

102" R (x,t — 0)|za <62C(d, |a” )M (2°)

2max(3(p+1)+(Pjaz | +4+2) (max(|a®],2)+3)+1,[— 3k ]42)

2 max(|a®],2)+3 Plaw|+4(2max(|a”],2)+3)+2pv, oz |43
x D D0z |44 DY w13 (1 + |G ).

To conclude, it remains to study the derivatives of ROV. We first observe that ROV (z,t — §) =

(R (x,t = 6, Z0)1 4 b zen, — B[R (x,t — 6, Z])1 4 b z3em, ]) + R}(z) + R} (x), with
~ 1 N .
R}(x — 62 ZV 115%Z¢% —El'y o 1)

=1
R(z,2) = — v (,t—0)(1 —P(022] ¢ D).

1
02 2¢ Dy,

Using A(2) (see 1.I and A([— 1:1((17 ))} +1) (see ), we obtain

N
D, 1 7 7 [
Ry (2, 2)lra =162 D VIt = 0)(5' 1y — B2y, e

1=1
pat+pv,1 1:1((5))."" K}
<605)2©V,1(1"" |$|Rd ' )(l |R " +m(_%}+1(z ))
In(n2
()
2y 1 T2
<5C©2©v’19ﬁ(7 m(a) Prl(Z(s)(l + ‘x|]§({ip2+lﬁv,1) + ‘ |]RN T(n2) ),

and using A9(3) (see (2.2)),
R (2, 2)|pa <OCDIDyp(1+ |z257PV2),

We treat the other terms by a similar but simpler (since it does not involves derivatives) method
used to study R. We finally obtain

. 5
R (2,1 =0, 2)|ra SOCM, s (3p4opat1a,[— 1202 141) (£7)
4max(3p+5pa+14,[—polo 141
« @3919 (1 + | ‘14p4+4pvs + | |R?ax 4 [~ Tatnay | ))
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Proof. First we show that for every € € [¢;(0),€(0)], every s € (3r,3), u € (0,3 — s), every p,v,v° > 0,

and every q > 4,

P(0Y IY:* <8 ) E[AYPIF ]+ A1 2 € Avug)

teT teT
SEPE[|Yo|¥] + P(3]Yo]? = €)

+ o8 (oF a2 4 maletw) 4 o )25q(1\/T2q)(1+SupIE[|Yt 519)

—4s 2(s+u) 1
+ 2 exp(— 6 ) + 2exp(—2¢ ") + 2exp(— W)
2 Y 2 2
+POL Y <e6;E|A PIEL 1AL > €2 N < S Avina),

with € (§) = max((166T2) 777, (2106T3) 72577 ), €, (§) = 2 T and
Ay ={sup |A) 5| < e} 0 {sup B[|AY 5|7 FY ] < e %}
teT teT
—~ AY _ ~ AY _
N {sup AR5 < e} {sup E[JAR |7 F 5] < e ™},
teT teT

A, :={4 Z E[AY_s[*|Fa_s] < e} {8 Z AP < e}

w,teT w,teT
w<t w<t

We begin by writing, with notation introduced in (4.28)), for every t € T,

Y2 =Y2 5+ 0328 Y, 5+ 020 Y5 + |AY 51?) + 63287 jAY ; + 82|AY 4|2

=Yg + Z 022AY Vs +0(2AY Y s +|AY %) +672AY [AY +5%|AY 52

weT
w<t

We now introduce the following event, on which we can control 6 ), ¢ |Y:]?,

3 ~ €’ ~ €®
Ay :={07] D> 2AY Y, 4| < §}m{|52 > 2AY Vsl < 57

w,teT w,teT
w<t w<t
- - €’
{18 S0 IAY P~ BIAYPIF < )
w,teT
w<t

- _ _ s
{8 D7 1H2AY AL 5 +aAY P < S ).
w,teT
w<t

Our idea is to distinguish the cases w.r.t. the event ;. We first estimate P(6 >, .p |V[?

<

€, A5, Ay .y q). We then treat each event appearing the definition of 2, separately In the sequel fort € w0
we will denote np 5, = |T|—t5~". Concerning the first term, since sup,cp |AY 5|2, sup,cp E[JAY 52| F) 5] <
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€72% on Ay 4.4, for every s € (3r, %), u € (0, % — s), we have

3 A ES
(6% Y 285 3Yuos| > 5.6 ) Wil < e Avag)

w,teT teT
w<t
3 ~ €’
<P(|2 D nrsisAY Y| > E"SZ Yi—s® < 26, Av.uq) + P(O]Yo]* > )
teT teT
3 ~ €®
<P(|o2 ZnT,é,t—éAZ_(SY;f—é‘ > 16’
teT
0% Inmsi-s P (1AY s + AP F s |Yis]* < 4(5T))%! )
teT
+P(0*) " InrsesP (AT 51 + BIAY 5P| F ) Yiesl® = 4(3|T )% 2,
teT
0> [Vios® < 26, Ayiug) + P(3]Yo|* > ).
teT

Using the martingale exponential inequality (4.28]), the first term of the r.h.s. above is bounded by
Qexp(—%). We now study the second term of the r.h.s. above. Let us denote H, = |AY |2 —

E[|AY |?|FY], t € 7. Then the aforementioned term is bounded by

P(5° Z Inrsi—s|°Hi—sYis]® = 2(6|T|)' 2", Ay,uq)

teT
+ P> Inrsi—sPIBIAY P Fs)[Yiesl® = (O T)%€ 2,6 > [Vios|* < 26, Ayug).
teT teT

Since np s < |T| for every t € T and sup,cp E[|AY 52| FY 5] < €2 on Ay 4, the second term
of the r.h.s. above is equal to zero. We then focus to the first term of the r.h.s. above. Let v® > 0. In
preparation to use the martingale exponential inequality, we consider the following estimate

P(5° Z Inrsi—s>Hes|Yis|® = 2(8|T|) %' 2", Ay,uq)

teT
<P(6% Y " Ingsi—s?Hios|Vis|* = 2(8|T)% 2",
teT
58" v sumsl (| Himsl? + B[ HiosP|FL 5] [Yaesl* < (8T 4, Ay)
teT
P Inpsems (1 Himsl? + ElHis [ FsDIYims|* = (ST 4, Ay, o).
teT

Using (4.28)), the first term of the r.h.s. above is bounded by Zexp(—2e*”°). To study the second
term, we use the Markov and the Holder inequalities and for every ¢° € [1, 1] (more specifically, triangle
inequality when ¢° = 1), we obtain

P(6° Y Insi—sl* (1Hems| + E[ Hi—s*|F 5] [Yems* > (BTN 4, Ayug)

teT

<P(GITNT 16 Y (Hisl® + E[[HosP|FL )T [Vies|'T > 670 € T4 Ay )
teT
g(;qo 6_q0(2+vo_4U) (6‘T|)q0_15 Z 2qQE[|Ht*5|2qQ |Yt*5|4qolsupte-r ]E“A}:J‘”ft‘:s]gf’q“]
teT )
<5q0€_q0(2+v0_4u)23q0_1(5|T|)qo_1(‘5Z]E[|th§|4quHAzi§|4qo|]:ty]11E[\A}’_5\q\ft{5]<e—qu}
teT )
+5ZE[|Y276‘4(1 |A3:5|4q ]'JE[\AE’_(SMFX_S]ge*qu])
teT
<67 e~ (209397 (5| T)) 7" L sup B[V _5|* ],
teT
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where for the last inequality, we use that, since ¢° < 4, it follows from the Hélder inequality that

E{Yisl " 1AY 1" Lyay iy coe] SEIYiss " EIAY 117 ey juecipr jeemseos]

<IN Y|,

Gathering all the previous bounds, we complete the estimation of P(|§2 D teT <t 2AY Y, s| >

%, 0 ter |Y:|? < €, Ay,uq). Conducting a similar approach we also obtain

~ ~ 6 6
P(|6% > AL 5P —E[AY L1 Fu_s] = > 5 AYue) = P(5°| > nrsi—sHis| > z 5 Aviua)
w,teT teT
w<t
€5 645
P(8* Y nmsisHis > =, 0"y Inrse sl ((Hisl” + B[ His*|F5]) < =, Av,ug)
8 8
teT teT
4 2 2 2| Y et
P> nrsi—sl®([Himsl? + B[ Hios*|FY5]) > < Aua);

teT

where, as a consequence of the exponential martingale inequality (4.28]), the first term is bounded
by 2 exp(— 166 4$). To complete the upper bound on the [.h.s. above, we notive that,owing to the Holder
and Markov inequalities that, for every ¢° € [1, 1],

4s
€
P> nrsesl* ([ Hems*+E[|Hy—s*| FY5)) > < Aviua)
teT

<61 e At 904 (5] -1,

—Uu

For the next term, we remark that, since sup,cy |A}C s1tay.,., < e v, it follows from the Cauchy-

Schwarz inequality that

> AN Yassllay, dypicer < [T (2 + > V22,
w,teT teT
wt

and, for v > 0, as soon as € € [(32(6|T|)28 %)u+i+v 1],

— 68 v
PO IVil* <e]6% Y 2AY Y 5| > 5 AV [Yol <€) =0.

teT w,teT
w<t

Moreover, from the Markov inequality, we deduce that for every ¢° > £, P(|Yp| > €¢7") < PE[|Yo]7°].

Finally, for every e > [166%|T|?
property, yields

s+2u, using the Markov and Holder inequalities and then the tower

~ _ _ 65
B(6* 3 5228 SAY 5 +0|AY 51 > G Avad)

weT
w<t

<SP(3°2 Y 12AY AY 4| > = — 33 |T|Pe ™, Ay g)

weT
wt

E[32¢|T[24-2554/2 Z |AY _|9emab+ug ,

voua)

weT
w<t
<32‘I‘T|2q 2 e 4 S+u)65Q/2 ZE |Aw 6| ]']EHAY 5| ‘]:Y 6]<€ qu]
weT
wt

<3205 ¢ a(s+2u) (8|T|)%
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In particular, taking ¢° = ¢, we have proved that for every € € [¢,(0), 1],

P Vil <€, 25, Ayug) < E[|Yo|F]) + P8 Yol > ) + 6% a+02% (5)T)) ¥ -1
teT
+ 99158 e a 20 (§T)% 4 5t e T 2% (5T sup B[V
teT
—4s E2(s+u)71

€ —°
+2exp(7 6 ) +2exp(726 ) +2exp(7m)

At this point, we remark that

Ao C{5Y Vol?+ 62 Y A P <> P+ S

teT w,teT teT
w<t
m{52|Y0|2+52 ZE“A sl Fa—s <5Z|Y2|2+ }
teT w,teT teT
w<t

. _1 s
In particular, for every e < 27 T==, we have ¢ < 5 and

Y WP <enA {6 Vil* <e} N n{[Yo]* <

teT teT |T|

and, remarking that 6|T| < T'. the proof of Step 1 is completed.

Step 2. We show that for every € € (0,€(0)] and u € (0,2 — 2),

€T
PG [Vil® <66 > E[AY ;717 5] > oM Avug) = 0.

teT teT

with €,(8) = min(46|T|) %77, |276|T||~ =5 ). First, we recall that Ay, 4 C {sup,ep E[|AY_2|FY ] <
€ 2%} and we observe that

€r+2u r+2u r r+2u r r

—%a € € € —2u €
—_— o(|T| — ST i
¢ T G < +9] |46\T| 2
with " 45| <€ “2Ufor e < (4(5\T|)2u+r. Therefore, on theset {0, . E NAY s2IFY 5] >
<3N {WPteTEHA " sI2|FY 5] < €24}, the following minoration holds
T+2u
0 Lejay oy Jovm 2 g

teT
It follows that

52 Z E[|AY 5| Fu_s] =26 Z EHAEJ|2|~F1§76]1E[|A}:_6\2\FZ

w,teT w,teT
w<t w<t

el
—6]>4J|T|

2 -
45|T|5 Z Legay_ 2172 )2 o

w<t
€ 16'r+2u 6'r+2u N> 637‘Jr4u
*omz 1 1 Y2

In particular, since € < |278|T||” Ee ]

{8 EIAY PR = *}0{52 Y EIALPIFI] <€) NAvug =0

teT w,teT
wt

Recalling that we have 20, C {62 E[|AY ;2| FY_s] < €} the proof of Step 2 is completed.

w,teT
w<t
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Step 3. In this part we show that for every e € (€5(5),€3()), every h,s € (3r,1) with 2h < s,

€ (0,min(§ — h, & — 31)),

~ 67‘
PO VI < e SBIAY 1R <G8 S IAL 6P > G2 WO < g Avie)

teT teT teT

gé%(a%e*ﬂmw + e Y2501 v T29) (1 4 sup E[[ Vi)
teT
q(s— 2h 3 2
+ € 2 1T+ P(0]Yp]* =€)
62(h+u)7 s €2h+2u
+2exp(fW) +2exp(—2¢"") +26Xp(—W),

with
€5(8) =(165T2) 77 |
€3(6) = min((2°4| T)) " 7=, (43| )~ === 1),
In the same way as in the proof of Step 1, we begin by writing for every t € T |

Y;Az/ :Y()A%/ + E 5% (A575A}u/)75 + Agi(;waS)
weT
w<t

‘i‘(5(|557(s|2‘*‘AA sAY )
+6%(Aéi6Aw—6+Aw—6AA )+52 w— 6Aw &

and we define for h € (3r, 5)

3 ~AY Eh 3 ~ - Eh
Az ={] Z §2AL 5V 5] < g} {02 Z Al _sAY sl < g}

w,teT w,teT
w<t w<t
2 AAY RY e"
n{[o Z Ap_sAy, sl < g}
w,teT

w<t

_ _ _ h
1,%vAY — ~ —~ AY ~AY ~ €
N {6 Z 102 (An_sAY 5+ AY 505 5) + AL ;A% 5| < g}-
w,teT

We take u € (0,5 — h). Using the exact same approach as in Step 1, the exponential martingale
inequality (4.28]) together with the Markov and Holder inequalities imply that, for every v® > 0, we

obtain the following first estimate

_ h
3 €
B(| Y 03AL Yussl > 50D I < Avug)

w,teT teT
wt
<gte ¥ (O[T F - sup B[|Yio"
teT

, 2h+2u—1 .

—v

P((S|Y0| 2 E) + 2€Xp(—W) + 2€Xp(—2€ )
Moreover, since A3 C {52 > teTwst B [JAY 2| FY ]+ |AY §|? < 2¢°} and sup;ep |AY 5| < €

on Ay, q, the inequality (4.28) yields
€2h+2ufs

E
6 | Z AY 5A §| § 91 AY7u,q) ngXp(_Wm)

w,teT
w<t

u
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It remains to study thlas term steming from the definition of 3. Using the Cauchy-Schwarz
inequality, we have

h
~AY o~ € ~
P(|8? Z AL sAY 5| > 3 82 Z AL 51 < €, Ayug)
w,teT w,teT
w<t w<t
2 25 ehme AY 2 s
5 Z |A 6‘ 64 76 Z |Aw76| <e€ 7AY,U7¢I)’
w,teT w,teT
w<t w<t

In addition, by the Markov and Holder inequalities, we derive

2h—s

< AY et a(s—2h) LAY a
P@® Y AL > o Avag) < 7 2YE[62 D AR P E LA )
w,teT w,teT
w<t w<t
q(b 2h) .
< T 9ag? 3 E[ALT 714, (8% T2
w,teT
w<t
< TETE M)
Besides, for every ¢ > (1663|T|? )h+12u, we have 63 D teTowst |Aé sl < i on the set Ay, 4.
Using again the triangle, Markov and Hélder inequalities yields
2 1L XAY AY AY  AAY AAY AY "
P(5 Z |62 (Aw—éAw—é + Aw—(SAw—é) + 6Aw—6Aw—5| > §7AY7U»Q)
w,teT

h
5 ~ XY -— ~ — AY €
<P(5%/? Z A5 A 5+ AL _5AL 5] > E,AY,u,q)
w,teT
w<t

<2053 alh+2u) (5 T))24.

In particular, for every € > €5(5), we have just shown that

P(6Y |Yi* <6y E[AY P17 ,] < ,2{1, 5 AY,uq) <

teT teT
5 (25054 a2 20~ Y G Ry, )
teT

q(s—2h—2u)

+e 7 2T L P(S|Y|? =€)

€2h+2u71 o 62h+2u75
2exp(——=—5) + 2exp(—2¢ ") + 2exp(— —z==)-
+ 2exp(— g s )+ 2exp(=267) + 2exp(— )

We notice that, similarly as in Step 1,

h
~ ~ ~ €
Az C{6Y YoAY +6° DAY S* <> VAT |+ b
teT w,tET teT
w<t

It follows from the Cauchy- Schwarz inequality, applied to ZteT Ytﬁf, and the triangle inequality
that, for every e < 1 A (46|T|) 522 ST o

2 AY 2> ¢ 2 o
teT teT
A € A " 1 oy, s 1
P(ét;mf_ap > 5,00 M;ng_ﬂz < S+ @ITDRe e +eh), Aya)

w<t

€”
PO Y AV P> 5.0% Y 1AL <€ Avay).

teT w,teT
w<t
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Similarly as in Step 2, we notice that, on the set {33,y |AY 4* > %} N Ay q then

0y Liarps. o

teT

In particular for every e < [276|T||~

{8 1AV, >

teT

7‘+2u ) 2 3r+4u
> and 0% ) |AY 5P > >S5
w,teT
wt
h—3r—4u 37 4u
7}m{52 > Ay 5P <€y =0.
w,teT
wt

and the proof of Step 3 is completed.
Step 4. We now show . In the ﬁI‘bt three steps we have proved that, for every h,s €

3r, L) with 2k < s, u € Omlnl—
2 2

s,5 —h, 7 — %)), every p,v,v° > 0, every ¢ > 4 and every

€ € [max(e;(9),€5(0),80), min(1, € (d),€2(9), 63(6))]
PO IVil* <66 > EIAY jPIF ]+ 1A 517 > €, Aviug)

teT teT

F3 9 g(s—2h—2u)
<ePE[|Yo|7]) + 2P| Yol =€)+ =

+ o4 (20t ealst20) | geaf

—4s

16

+ 2exp(—

)+ dexp(—26"") + 6 exp(—

(e 93a7q

ARV TH) (14 sup E[[Yi)
2s+2u—1

21172 )

We first observe that, as a direct consequence of the Markov inequality, for p > 0,

c AAY B X P
P(AF,q) <€ (Elsup [AR 5] ] + Elsup E[|A)57|F) 5] %)
teT teT

+EJ

At this point, we assume that ¢

P> V> <6

teT
<e’E[|Yp

~AY B e R
sup AR ¥] + Efsup B[| AR FY 5]75)).
teT teT

1
D
> S_;ﬁ. Then, for every v® > 0 such that € > 6°""°"7 | we have

ZE[IA%IQIEY_(;] HIAL P = € Avg)

teT

¥]) + 2P(8|Yo[* > )

+ €P2515(1 v T?9)(1 4 sup E[|Y;_5]%))
teT

—4s
+ 2exp(—

‘ 5 )+ dexp(—26 ") + 6 exp(—

€2s+2u—1

21172 )

Moreover, for every ¢° > 0 such that € > 6q°+2p P(8|Yp|? > €) < €?E[|Yp|?°]. In particular, we take
1

¢ = m so that this inequality is satisfied When €= 6%
Now we fix s = 5(r) := & + 7, h = h(r) := & + &7 and take u < 55 — 7. Notlce that, snce
r € (0, 15), we have s(r) € (6r,1), h(r) € (3r, S(QT)). Therefore, taking v = % — 16—17” —ut Y 4L 2 and

1

,.;H

q > max(4, —F—), we have, for every € € [|2'0(1 VT38| 2 min(|28T] f-Ho 2 %*%T)] ,
11 11

P(O) IV <e,0 Y ENAY PR )+ 1A 5 > €7))

teT

teT
P

6 _ 6 ,_, L v0 P
<E[[Yo| FE TR )) 4 20| vo T e
+ €P25%45(1 v T) (1 + sup E[|Y;_s]9])

+ e’ (E [suplﬁt 5\“]+]E[SUP]E[|A 5|9 F )

+ E[sup \At_
teT

+ 4exp(—2

")) + 8exp(—

P
u

]

P

5| %] + Efsup B[ ARG |9| 7Y 5)7%))
teT

67%+%r+2u

211(1 v T2) )
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_ 1 3 — — 2p Py — 44p i i
Now we take u = 47 — 777 and ¢ = q(r,p) = max(4, s e 2) = max(4, {—55;) (in particular

1
q(r,p) > —2—). It follows that, for every e € [|2'0(1 v T3)§|*"** " atmm | (28(1 V T))*ilffer

s—2h—2u

P8 |Ye* <6 ENAY P17 ]+ 1A > ¢)
teT teT

2pq(r,p)
ggep]EHYM q('mp)<1+v<>>+p]

+ €P251(P)5(1 v T24(P)) (1 4 sup E[|V;—_s]7P)))
teT
+ (2 + Efsup [A2 1)) 4 E[sup E[|A)_ ;|4 | FY ]
teT teT
+ Efsup [A2[17P)] 4+ Efsup B[ AR5 |42 FY )
teT teT

1 6
ez tII”

+ 4exp(72€7v ) + 8 eXp(*m)

— 51 and the

2pa(r.p)
Since ¢(r,p) > p and v° > 0, ]E[|Y0|7<T’P§J<ql+5 7] < 14 E[|[Yp|1P)]. We fix v° = & — &

proof of (4.34)) is completed.

(1]
2]

(3]
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