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ABSTRACT. We present an abstract framework for establishing smoothing properties within a specific
class of inhomogeneous discrete-time Markov processes. These properties, in turn, serve as a basis
for demonstrating the existence of density functions for our processes or more precisely for regularized
versions of them. They can also be exploited to show the total variation convergence towards the
solution of a Stochastic Differential Equation as the time step between two observations of the discrete
time Markov processes tends to zero. The distinctive feature of our methodology lies in the exploration
of smoothing properties under some local weak Hormander type conditions satisfied by the discrete-time
Markov processes. Our Hormander properties are demonstrated to align with the standard local weak
Hormander properties satisfied by the coefficients of the Stochastic Differential Equations which are the
total variation limits of our discrete time Markov processes.
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1. INTRODUCTION

1.1. Context. For 6 € (0,1] and d,N € N* we study a sequence of independent random variables
79 € RN t € m%* (we use the notations 7° := N and 7%* := §N*), which are supposed to be centered
with covariance matrix identity and Lebesgue lower bounded distribution (see for definition). In
this paper, our focus is on the Re-valued discrete time Markov process (X7 ),c.s defined as follows:

(1.1) X5 =0(X], 1,002, 5,0), ten’, X)=x}eR"
where ¥ : (z,t,2,y) — ¥(z,t, 2,y) € C°(R? x Ry x RY x [0,1];R?). Our primary challenge is to

demonstrate that, under suitable properties on v, we can construct a process (X, );c.s that is arbitrarily
close to (X?),cns in total variation distance (for any fixed ¢ € 7). Additionally, this process satisfies the
smoothing/regularization property: For every a, 3 € N% there exists C : R? x 7%* — R, (which does

not depend on ¢) such that for every T € 7%* and every f € C®(R% R), bounded,
—5 . =0
(1.2) 0SB0 f(X7)[ X = 2| < C(2, T floo-

A refined version of this result is exposed in Theorem[2.1] Relying on those regularization properties,

we can infer that Yf, t € 7°, admits a smooth density (see Corollary ??). A main application of those
results is provided in Theorem where we identify a total variation limit (along with explicit rate of
convergence) for X7, t € 7%, as ¢ tends to zero. This weak limit random variable is given by the solution,
at time ¢, of the Stochastic Differential Equation (SDE),

t N t
(1.3) Xt:xg+/ VO(XS,s)ds+Z/ Vi( X, s)dWE,
0 i=1 70
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where (W})i>0,i € {1,...,N}) are N independent R-valued standard Brownian motions and Vj =

By (., 0,0) — 1N 924(.,.,0,0), Vi = d.i9(.,.,0,0), i € {1,...,N}.
More particularly, we show that, for € > 0, for T' € 7%, T > 204, if Xo = X§ = 2 € R?,

1
dpy (Law(Xr), Law(X$)) =3 sup [E[f(X7) — F(XP)
fRI—[—1,1],f measurable
1 14 |x‘cd
1.4 <027 — R Coxp(CT).

where ¢, C, n are positive constant and Vr,(z) € (0,1] under a local weak Hérmander type property
(of order L, see 1) for details) at initial point x. It is noteworthy that, the rate ¢ 3 can be replaced by
§ if the third order moment of Z?, t € 7%*, are supposed to be equal to zero. Consequently, X; admits a

0
density which can be approximated (uniformly on compact sets) by the one of X,. Similar estimates also
hold for the derivatives of the density. Those results are derived under polynomial type upper bounds
on the derivatives of 1 in conjunction with the aforementioned local weak Hormander type property.

Processes such as (X )ters commonly appear in weak approximation problems where the perspective
differs from the introduction of the earlier results. The problematic is to consider a process (X¢)i>o0
solution to a given SDE similar to . Subsequently, the aim is to build the approximation process
(X?),exs and then compute an approximation for E[f(X;)] by means of E[f(X?)]. Two interconnected
questions naturally arise. First, what is the rate of convergence of the approximation as J tends to
zero. Second, for which class of functions f does this rate hold 7 Among others, this paper addresses
those questions by providing an upper bound for the total variation distance (that is when f is bounded
and measurable) with rate §27¢. It’s worth noting that this rate could be improved to §'~¢ or even
§™~¢ m € N, regarding some conditions on Z?, t € 7%* and 1. Considering f bounded with bounded
derivatives up to some given order, it is well established that the weak convergence of the Euler scheme
(V(x,t,z,y) = Vo(z, t)y+ Eivzl Vi(x,t)z") occurs with rate ¢ (see [30]), but various higher order methods
(see e.g. [29], [22], [1]) propose better rates (that are referred to as weak smooth rates in this paper). An
intriguing question emerges: do these higher weak smooth rates still apply to total variation convergence
? A solution combining the use of existing results concerning weak smooth rates and regularization
properties similar to is provided in [7]. In this article, it is shown that for (X?);c.s defined as in ,
the total variation rate aligns with the weak smooth rate as long as 1 has smooth derivatives and satisfies
a uniform elliptic property (i.e. uniform Hérmander property of order 0): For every (z,t) € R? x R,
span(V;,i € {1,...,N})(z,t) = R4

Nevertheless, the framework proposed in [7] is not well-suited for establishing regularization properties
under Hérmander and/or local properties. To provide clarity on our intentions, let’s delve into specifics.
To begin, we give an alternative formulation of (1.3]) by employing the Stratonovich integral:

t N ot
(1.5) thxg+/ %(Xs,s)ds—FZ/ Vi(Xs,s) o dW,
0 —Jo

with Vp =V, —% Zil V. V;Vi. In this article, Vo, Vi, i € {1,..., N}) and its derivatives are supposed
to have polynomial growth in the space variable except for the order one derivatives in space which are
simply bounded so that the existence of an a.s. unique solution to is guaranteed. The infinitesimal
generator of the Markov process (X;)¢o expresses as A = VyOy, + & Zjv:l(viazi)?. As demonstrated in
the seminal work [I7], the hypoellipticity of A + 0; and then the existence of a smooth density for X; is
closely related the dimension of some Lie algebras generated with the vector fields Vi, V;,i € {1,...,N}).
This type of properties are referred to as Hormander conditions, which we now introduce.

We consider, for fixed t > 0, the vector fields on R? given by, = +— Vp(x,t) and = — Vi(z,t), i €
{1,..., N}. Subsequently, we introduce the extended vector fields on R% x R denoted by V*p sz, t) =
(Vo(z,t),t) and Vi, : (z,t) = (Vi(2,1),0),i € {1,..., N}. In particular, the following relationship on Lie
bracket holds: For V, W, two vector fields in {Vp, Vi,...,Vx} and (z,t) e RE xRy, j € {1,...,d + 1},

Vi, W, ](z,t) =(V WV (2,t) = Vo VW (2, ) + WiV (z,t) — 0, VIWIT (2, 1)
=[V,W](z,t)? + oWV (,t) — 0,V W (,1).
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It’s worth noting that z + [V, W](z,t) is a vector field on R? and we use convention [V, W]4*+! = 0.
We are now in a position to present the Hérmander properties which mainly consists in assuming that
the vector fields generated by the Lie brackets is full in R?. Various versions of Hérmander properties
appear in the literature serving to prove hypoellipticity. We try to give a brief overview. Let us introduce

V*,O :{‘/*71‘,2- S {1, Ceey N}}
Vini1 =Vin U{[Vio, V], [Vai, V],i€ {1,...,N},V € V,,}, neN.

Similarly, we define V,,, n € N, in the same way but with V. ¢ (respectively Vi 1,..., Vi n) replaced
by Vo (resp. Vi,...,Vy). The weak local Hérmander assumption (at initial point (Xo = 2,0)) in
inhomogeneous setting (i.e. when Vj,...,Vy depend on time), which is the one we use in this paper,
consists in assuming that

span(Up2 o V. n)(z,0) = R,

In the homogeneous setting (i.e. V, Vi, ..., Vx do not depend on the time component), it consists
in assuming that: span(U2,V,,)(x,0) = R? (see e.g. [20]).Obviously, if coefficients Vp, Vi, . .., Viy do not
depend on the time component, this last condition is equivalent to assume that span(USe V. ,)(z,0) =
R¢.

Notice that, when span(V.,) = R?, we are in the elliptic setting. The hypothesis is termed 'local"
Hoérmander because V., , is considered at the initial point (Xo = z,0). In the case where, for every
(y,t) € R? x Ry, we have span(U3_, V. ,,)(y,t) = R, we refer to it as "uniform" Hérmander property.
The term "weak" Hormander pertains to the definition of V., , (or V,,). Specifically, the "strong"
Hormander property corresponds to the case where ‘_/*,0 is replaced by 0 in the computation of V, ;.
The investigation of Hérmander properties in inhomogeneous setting is, for example, conducted to prove
existence of smooth density in [I2] or [I3] for the weak uniform setting, in [I] for the strong local setting
or in [I8] or [27] for the weak local setting. For the homogeneous case, refer e.g. to [20], [24], [6] or [20]
for applications of local weak Hérmander properties. We finally point out that, following the observation
made [3T] in the uniform Hérmander setting for SDE with inhomogeneous coefficient, hypoellipticity
may not hold if only span(U%_,V,,) = R%

The results presented in this paper offer, among others, the opportunity to extend the abstract framework
from [7] so that, it can be applied to the total variation approximation of inhomogeneous SDE having
polynomial bounds on their coefficients and their derivatives and satisfying the ususal weak local Hormander
property. In terms of the function 1, it simply consists in supposing a weak local Hormander type
property (see ) and assuming polynomial growth properties on the derivatives of ¢ (see and
(2.3)). In the homogeneous case, those assumptions are similar to the ones made in [20] concerning the
coefficients of (|1.5)). We also highlight that the regularization properties established in this current paper
(see Theorem enables to demonstrate that the total variation rate of convergence in the local weak
hypoelliptic setting, aligns with the weak smooth rate. (see Remark . Total variation convergence
with high rates of convergence can thus be obtained for the methods presented e.g. in [29], [22] or [1].

Similar results have previously been explored but only restricted to the case where (Z);cs.- is made
of standard Gaussian variables and for some specific ¢ (see e.g. [§] when ¢ is the Euler scheme of
a homogeneous SDE satisfying weak uniform Hoérmander property). In particular standard Malliavin
calculus can be applied to derive total variation convergence. It is worth mentioning that analogous
results are also investigated under a different (and weaker) condition from the Hérmander one, called
the UFG condition, but we do not discuss this type of hypothesis in this paper (see e.g. [I9] for an
order two rate scheme still in the homogeneous setting). In [8], the methodology differs from ours in the
sense that the estimates are obtained relying on the proximity (in the LP-sense for Sobolev norms built
with Malliavin derivatives) between a well chosen coupling of the scheme (X),c s and the limit (X;)i>0
which satisfies standard regularization results under suitable properties (see e.g. [20]). Conversely, our

approach is self contained and regularization properties for (Yf)tew‘; are derived without using the ones
satisfied by (X¢)i>0. Our techniques draw inspiration from Malliavin calculus which is adapted to our
discrete setting but also to not only Gaussian random variables because the law of (Z¢),cs» may be
arbitrary. Due to the liberty granted to the choice of 1 and and to the law of (Z9),cqs.+, our result
may be seen as an invariance principle. Moreover, the law of X; only depends on v only through his
first order derivative in y and first and second order derivatives in z evaluated at some points (z,t,0,0),
with z € R, ¢ > 0. Hence a similar limit is reached for a large class of function 1 and random variables
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(Zté)tGﬂ"sv* .

1.2. Organization of the paper. Section 2] introduces the key technical result of this paper, focusing
on regularization properties of discrete time Markov process with form , namely Theorem
Additionally, the hypoellipticity result, meaning existence of smooth density for solution of
exposed in Theorem as well as a slightly more general version of approximation and a density
estimate result. Then, in Section [3] we delve into the development of a Malliavin inspired discrete
differential calculus in order to prove the smoothing properties of Theorem [2.I] Finally, Section [ is
dedicated to prove some estimates on Malliavin weights as well as on Sobolev norms and Malliavin
covariance matrix moments. These estimates collectively contribute to the recovery of the regularization
properties detailed in Theorem [2.1

1.3. Notations. For F and E° two sets, we denote by EE° the set of funtions from E° to E, and for
d € N*, we use the standard notation E¢ := E{l~4t, We denote by M(R?) (respectively My(R?)), the
set of measurable (resp. measurable and bounded) functions defined on R?. C4(R%), ¢ € NU {400}, is
the set of functions admitting derivatives up to order ¢ and such that all those derivatives (including
order 0) are continuous and Cj(R?) (resp. Cf(R?), CI,(RY)), ¢ € NU {400}, is the set of functions
belonging to C?(R?) such that all the derivatives (of order 0 to g) are bounded (resp. have compact
support, have polynomial growth).

We will also denotes M (R?; R) for measurable function on R? taking values in R (and similarly for other
set of functions defined above).

When dealing with functions defined and taking values on Hilbert spaces, we introduce some notations:
Let H,H® be two Hilbert spaces. For f : H — H® and u € H, the directional derivative 81]; f
of f along w is given by (when it exists) 8§f(x) = lime_yg M for every x € H. When
f is Frechet differentiable, we recall that v — 87]; f(x) is a linear application from H to H°® that
we simply denote oF f(z). When H® = R, we denote a¥ f(z) (which is uniquely defined by Riesz
theorem) such that for every u € H, aff(m) = <de(x),u>H For f € My(R%:RY), we introduce

the supremum norm ||f|lc = sup,cpa |f(x)|gee With |.|gee the norm induced by the scalar product
(f, fO)pae = Z;l:l fif7. When f takes values in R% >4 we denote || f||gac = SUD¢eRa®;[¢] 4o =1 | f€|Rac .
For a multi-index a = (a!,---,a%) € N? we denote |a| = a® + ... + a?, |la|| = d and if f € Cl*/(R?),

we define 9°f = (91)* ... (3a)*" f = 82 f(x) = 8% ... 0% f(x). Also, for § € N¥, we define (a, 8) =
(at, -+ a?, B, ... B%). In addition, we also denote V. f = (8, Ji)(i.j)e{t,....d>} x{1,....ay for the Jacobian
matrix of f and Hyf = ((020: ") jyef1, ..at x{1,...a) Jic{1,...a>} for the Hessian matrix of f. In
particular, for v € R%, vTH,f € R¥ >4 and (vTH,f)" = Z?:l 0pi Oyt fiv'. We include the multi-
index a = (0, ...,0) and in this case 0“f = f.

In addition, unless it is stated otherwise, C' stands for a universal constant which can change from line
to line, and given some parameter 9, C'(9) is a constant depending on 9.

Also, 1, stands for the Kronecker symbol, meaning 1, = 1 if @ = b and is zero otherwise.

Finally, for a discrete time process (Y;);cxs, we denote by FY := o(Y,,w € m°,w < t) the sigma algebra
generated by Y until time ¢.

2. MAIN RESULTS

In this section, we present our main result about the regularization properties of (X?);c 5. Once the
regularization results are established (Theorem [2.1]), we infer the existence of a total variation limit for
Xf, for fixed ¢ € 7%, in terms of a solution to a specific SDE (Theorem .

2.1. A Class of Markov Semigroups.

Definition of the semigroups. We work on a probability space (2, F,P). For § € (0,1] and N € N*,
we consider a sequence of independent random variables Zf € RN, t € 7%*, and we assume that Zf, are
centered with E[ZZ>7] = 1;; for every i,j € N := {1,..., N} and every t € 7%*. We construct the
R9-valued Markov process (X?),c.s in the following way:

(21) Xt6+6 = w(Xfat75%Zf+675)a te 7r6a Xg = Xg € Rd
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where
P e C®(REx Ry x RN x[0,1];RY) and  V(z,t) € R? x 7% 4(x,t,0,0) = z.

Let us now define the discrete time semigroup associated to (X?),crs. For every measurable function
f from R? to R, and every x € R,

ver, Q@)= [ fwQiedy) = BFXDIXE = al.

We will obtain regularization properties for modifications of this discrete semigroup. Our approach relies
on some hypothesis on ¥ and Z% we now present.

Hypothesis on ©. Polynomial growth and Hormander property. We first consider a polynomial
growth assumption concerning the derivatives of ¥: For r € N*,
A4 (r). There exists ©,D, > 1,p,p, € N such that D > Dy, p > po and for every (x,t,2,y) € R x Ry x
RN x [0, 1],
r—la®|~|a’| , ;
a® aa’ ga® qa? r — & r
(22) Z > 10270 0270y Plpa(w, b2, y) < De(+ [afhn + 077 2[5,

la®|+]at|=0 |a*|+]|a¥|=1

and

(2.3) {Z 10,10y |ga + Z 10,10z |ga + Z 0,10.:0.50lma .1, 2,y) < D(L+075|zlhy)
=1 3,j=1

Without loss of generality, we assume that the sequences (D,),en+ and (p,)rcn+ are non decreasing.
We denote Af(+00) when AJ(r) is satisfied for every r € N*.
Notice also that, we obtain exactly the same results if we add D3~!|y| in the r.h.s. of (2.3), or if we
add ©,.671|y| in the r.h.s. of . This is due to the fact that the function v is only used for y = ¢
(or y = C6§, C < 1) so the assumptions above are then satisfied replacing ® (respectively ©,.) by 29
(respectively QQT). Also, we do not give explicit dependence of the r.h.s of or w.r.t. the
variable ¢ because in our results, ¢ is taken in a compact interval with form [0, 7.

At this point, let us observe that we can rely this assumption with the one in [20] where the authors
directly study the existence of density of the solution of by means of standard Malliavin calculus
but when coefficients do not depend on time. Taking 1 linear in its third and fourth variable, and
homogeneous, i.e. ¥ : (z,t,z,y) — = + Vo(z)y + vazl Vi(z)z" then, exactly AJ(+o0) is the regularity
assumption made on Vp,...,Vy in [20] (combined with a weak local Hormander property) to derive

similar estimates as (2.1]) in Corollary

The second hypothesis we need on v is local weak Hormander property on some vector fields we now
introduce. We denote the Lie bracket of two C! vector fields in R%, [,] : (C'(RY,R%))? — CO(R?, RY),

fi, fo= [f1, fol = Vafofi = Vafifer )
We denote Vp = 9y¥(.,.,0,0), Vp = VW — ZZ 10%4(.,.,0,0), Vi = 9,:4(.,.,0,0), i € N, Vy =
— 15N V,ViVi. For a multi-index o € {0 Nl and V: R x R, — RY, we define also V1o
using the recurrence relation VI(®0! = [V;, Viel] +8 yiel+1 ZZ Vi, Vi, VIRl and V@] .= [, viel]
if j € {1,..., N} with the convention VIl = V. We are now in a position to introduce our Hérmander
hypothesis on 1: For L € N, the order of our Hérmander condition, let us define for every (z,t) € R¢xR.,

(2.4) Vi(z,t) :=1A inf Z Z V[a] (z,1),

beR |b|, =1
R [Pl LN}Mal; i=1
uaH<L
We introduce:

A5(L). Our local weak Hormander property of order L € N,

(2.5) Vi (x5,0) > 0.
We will sometimes consider a uniform weak Hoérmander property of order L,
(2.6) V© = inf inf Vi (x,t) > 0.

teRy xR
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In this case, we denote A5°(L) instead of Ay(L). Also, we usually denote Vp(z) := Vi (x,0).
It is worth noticing that, with the notations introduced in the Introduction, is satisfied for some
L € N if and only if span(US® oV, ,)(x3,0) = R?, which is why, we refer to it as local weak Hérmander
property. A similar observation holds for in the uniform setting. The case L = 0 corresponds to
the elliptic case.

Hypothesis on Z°. Lebesgue lower bounded distributions. A first assumption concerns the
finiteness of the moment of Z%: For p > 0,

A(p).
(2.7) M,(Z2°) =1V sup E[|Z]|Px] < cc.

temo*
We denote Aj(+00) the assumption such that A3(p) is satisfied for every p > 0.

A second assumption is made on the distribution of Z%. We suppose that the distribution of Z° is
Lebesgue lower bounded:
Aj. There exists z, = (2« ¢)ieqo~ taking its values in RY and e,, . > 0 such that for every Borel set
A C RY and every t € 7%,

(2.8) LS (es,r)  P(Z) € A) 2 e, (AN By, (240))

where Ap .1, is the Lebesgue measure on RY.

Let us comment assumption Ai. First, notice that holds if and only if there exists some non
negative measures p with total mass u(RV) < 1 and a lower semi-continuous function ¢ > 0 such that
P(Z} € dz) = pl(dz) + (2 — 2.,4)dz for every t € m%*. We also point out that the random variables
(Z?) 1o~ are not assumed to be identically distributed. However, the fact that 7, > 0 and &, > 0 are
the same for all k represents a mild substitute of this property. In order to construct ¢ we introduce the
following function: For v > 0, set ¢, : RY — R defined by

U2

(2.9) Pu(2) = 12|y <o +€XP (1 - )2)1v<\Z\KN<2'u-

v? — (|z[py — v

Then ¢, € C;° (RN;R), 0 < ¢, < 1 and we have the following crucial property: For every p,q € N,
every z € RN

(2.10) D 1027 Iy (2)* 20 (2) <
a?€eNN
laZ|e{l,...,q+1}

C(q,p)N'%

LPa ’

with the convention In ¢, (z) = 0 for |z| > 2v.
As an immediate consequence of (2.8)), for every non negative function f : RY — R, and t € 7%, t > 0,

BN > e [ orppl = =20 f(2)d,
We denote
My = &y / Or, j2(2)dz = 6*/ Or, 722 — 24 t)dz
RN RN

We consider a sequence of independent random variables Xf € {0,1}, Ut‘s, Vt‘s e RN, t € m%*, with
laws given by
P(Xf =1) =m,, P(Xf =0)=1—my,

P(6~ 20 € dz) = - O, j2(2 = 24 1)dz,

m

P52V € dz) = :

(P(Z¢ € dz) — e (2 — 24¢)d2).

My

¥
where pr. satisfies (2.10)) with v = Z=. Notice that P(V;’ € dz) > 0 and a direct computation shows that
2 2 t
POAUS + (1= xO)VP € dz) =P(62 20 € dz).

This is the splitting procedure for Z?. Now on we will work with this representation of the law of
Z?. Consequently, we always use the decomposition
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027) = XU + (1= X))V
The above splitting procedure has already been widely used in the literature and is usually referred to
as the Nummelin splitting. In [25] and [21], it is used in order to prove convergence to equilibrium of
Markov processes. In [9], [10] and [33], it is used to study the Central Limit Theorem. Also, in [23], the
above splitting method (with 15 _ (., ,) instead of ¢, /2(2 — 2. ¢)) is used in a framework which is similar
to the one in this paper. Finally in [7], it is used to prove regularization properties of Markov semigroup
under the uniform ellipticity property: inf , ;)craxqs Vo(z,t) > 0.

We introduce a final structural assumption specifying that the time step d needs to be small enough.
For 6 € (0,1], when (2.3]) holds, we define

104

2.11 §) :=6=51 min(1,
(2.11) 7 (9) ( md|210(1+T3)|

—) and
2

1

12(8) :=min(6~ 2, (8) 7, |628®| ).

with p given in (2.3). We introduce the following assumptlon
Aj;. Assume that (2.3) and Ay(L) (see (2.5))) hold and that ¢ € (0, 1] is small enough so that

21-% _ 40(L+ )N e
5) > 1, .2 a3
m(8) >max(l, o A oy, )

L(L—1)
2

21L:0+21L>0|m*|28(1+T)|14310N ‘dlSL_l)'

and 72(0) > 1 where those quantities are defined in ([2.11)).
2.2. An alternative regularization property. In this section we provide the regularization property

for a modified version of X°. We consider a d-dimensional standard (centered with covariance identity)
Gaussian random variable G which is independent from (Z?),cs.-, and for § > 0,

(2.12) / F)Q% (2, dy) = E[f(X2 + 6°C)| XS =a], T e

It can be seen as a regularization by convolution of the semigroup Q°. F<rom a practical viewpoint, the
modified version X% + 0%G is easily computable and then well adapted to simulation based approaches
such as Monte Carlo methods.

Theorem 2.1. Let T € 7%*, let L € N and let f € C;gl(Rd;R) satisfying: there exists 5 > 0 and
pr € N such that for every x € R4,

|f(@)] < Dp(1+ Jz[zh).
Then we have the following properties:

A. LetqeN, let o 5 € N? such that |a| + |B| < q. Assume that Aj(max(q+ 3,2L + 5)) (see
and (.)), Ay(L) (see (2.5 (m), Aj(+00) (see (2.7 (W), AS (see ) cmd hold. Then, for

every x € R,
1+ |z|5q)C exp(CT)
2.13 92Q%P9° ()] <D ( R :
( ) | zQT f( )l f |VL(93)T‘77
where n = 0 depends on d,L,q and 0 and c,C > 0 depend on d,N, L,q,D,Dnax(q+3,2L+5), P

pmax(q+372L+5),pf, i L0 and on the moment of Z° and which may tend to infinity if one of
those quantities tends to infinity.

B. Assume that hypothesis from are satisfied with AS(max(q+3,2L+5)) replaced by A§(2L+5).
Then, for every x € RY,

1+ |z|5q)C exp(CT)
2.14 g — Q%! ) ( R
N where n = 0 depends on d, L and § and c¢,C > 0 depend on d,N,L,q,D,Dar45,9, Par+5,9f,

e L 6 and on the moment of Z° and which may tend to infinity if one of those quantities
tends to infinity.
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Remark 2.1. We point out that, in the case where py = p, = 0 for every r € N*, then ¢ = 0

in (2.13) and (2.14). This remark remains valid in Corollary [2.1) (see (2.15)) and Theorem [2.9 (see
but not (2.18)) stated later in this Section. Assuming further that A$°(L) holds the upper bounds

established in Theroem [2.1] thus become uniform w.r.t. x.

A consequence of Theorem concerns the existence of a bounded density with bounded derivatives for
X8 + 6°G. The proof of this result is given in Section Notice that an explicit value is given for 7.
This type of result is usually referred to as hypoellipticity property of the operator Q.

Corollary 2.1. Let T € n%* and L € N. Let ¢ € N, let o, 3 € N? such that |o| + |8] < q. Assume that
Ad(max(q+d+3,2L+5)) (see and ), As(L) (see ), AJ(+00) (see ), AJ (see (@)
and [A5] hold.

Then, for every x,y € RY, ?Q(x, dy) = q%e(a:, y)dy and q%a € C1(RY x R?) satisfies, for every p > 0,
(1 + |z|gq)C exp(CT)
Ve (@)T|"(1+ [ylga)

where n > 0 depends on d,L,q and 6 and c¢,C > 0 depends on d, N, L,q, ®, D nax(q+d+3,20+5) P
Pmax(q-+d+3,2L+5) Pfs mi*, %, 6,p and on the moment of Z° and which may tend to infinity if one of those
quantities tends to infinity.

Moreover, if po = 0 (see hypothesis AS) and there exists z°° > 1 such that a.s. sup;cps , |2 |y <
z%°, then

(2.15) 1020545 (2, )| <

Cexp(CT —zl3
exp( ) ex (_|y I|Rd)7
|V (x)T|n T
where 1 is the same as in , ¢ > 0 depends on D1 and 2*°, and C' > 0 depends ond, N, L, 4,9, D nax(q+d+3,2L+5)»

P, Py, mi*, %,9 and z*° and which may tend to infinity if one of those quantities tends to infinity.

(2.16) 020243 (2, )| <

2.3. An invariance principle. Let us consider (X;)¢>o the R?-valued Itd process solution to the SDE
3.

In the following results, we show that, for a fixed T' > 0, X% converges in total variation towards Xr.
Notably, our result is stronger than the total variation convergence since we consider measurable test
functions with polynomial growth. Moreover, Xt is endowed with a density which can be approximated
by the one of X% + 6°@G. In an ideal situation, we would like to approximate the density of X7 using
the one of X%. However, due to the absence of regularization properties for the random variable X%,
we cannot offer any assurance regarding the existence of its density. Actually, since the random variables
(Z?)1ens.» do not necessarily have a density, we can easily build an example such that X4 does not have
a density, for instance by considering X2 = Dtenbt<T Z?. In contrast, since X9 + ¢6?G satisfies the
regularization property, we can guarantee the existence of its density together with an upper bound on
this density.

Exploiting Theorem and Corollary we can deduce the convergence of the law of X2 towards the
one of X7 as ¢ tends to zero. We are, among others, interested by obtaining an upper bound for

E[f(X7) — f(X§)| X0 = X{ = 2]|

which writes C(z)0™ sup,ega | f(2)| when f € My(R?) (and similarly when f has polynomial
growth). One main technical point is that the upper bound does not depend on the derivatives of

f

This result may be seen as an invariance principle under two aspects. First, the law of the limit
X7 only depends on derivatives (of order one and two) of 1) evaluated at some points (z,t,0,0) with
(z,t) € RY x R;. As a consequence, if we replace ¢ by any function " giving the same evaluations of
those derivatives, the limit of X4 remains X7. Another aspect is that the law of (Z;),c .- is not specified
explicitly and can be chosen in a large set of probability measures. In particular, in the following result,
we show that only A§(+o00) (see ) and A§ (see ) are assumed concerning the law of (Z;);cps,»-

Theorem 2.2. Let T € 7, with T > 26, L € N and m > 0. We have the following properties:
A. Let f € M(R%R) satisfying: there exists D 20 and py € N such that for every x € R4,

(@) < Dp(1+ |zlgh).
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Assume that A‘f(mag(&, 2L +5)) (see and ), As(L) (see ), Aj(+00) (see ),
As |

A§ (see @) and|As.| hold. Then, for every e > 0 and every x € R®,

1+ [2|ga
2.17 Elf(X7) — F(X3)Xo = X = 2] <627D ¢ — B Coxp(CT),
(2.17) [ELS(Xr) = F(X3)|Xo = X§ = al e C e ()
where n > 0 depends on d, L and % and c,C > 0 depend on d, N, L,D,sup,cy- D, P, SUP,.en- Prs

pf,wi* s %, % and on the moment of Z° and which may tend to infinity if one of those quantities

tends to infinity.

B. Assume that hypothesis from[A] are satisfied.
Then, Xt starting at point x € RY has a density y € R — pp(z,y) with pr € C®°(R? x RY).
Moreover, for every 6 > %, q€N, a,B €N with |a| +|8| < q,p =0, € >0 and every x,y € RY,
(14 |z]%4)C exp(CT)
2.18 %08 pr(z,y —aaaﬁq‘”’ x,y g&é* R
( ) | x Yy ( ’ ) x Yy T ( )‘ |VL($)T|W(1+|y‘§d) ’
where n > 0 depends on d,L,q,0 and % and ¢,C = 0 depend on d,N,L,q,D,sup,cyn- Or, P,
SUp,.cn+ Prs Ps, i’ %,H,p,% and on the moment of Z° and which may tend to infinity if one of
those quantities tends to infinity.
Remark 2.2. (1) Let us recall that for p and v two probability measure on RY, the total variation
distance between p and v is given by
1
drv(p,v) = sup [u(4d) —v(A)|= sup §|M(f) —v(f)]
AeB(R?) FEMPRER), [ flloo <1

(2)

(3)

(4)

1
= s ulf) - )]
FECERER), [ fllo<1

where (i(f) = [pa f(@)p(dx) and similarly for v(f). The last equality above is a direct consequence
of the Lusin’s Theorem.

In particular, provides a bound on the total variation distance between the law of
Xr starting from x € R? (denoted Pr(x,.)) and the one of X3 also starting from x (denoted
Qr(x,.)). In particular, under the hypothesis from mn Theorem then
1+ |x|ﬁ.§d
Vi (z)T|"
If we suppose in addition that 0 > 2 and for every t € m>*, i € N, E[(Z})?] = 0 and we replace
Aj(max(6,2L+5)) by AS(max(7,2L+5)) in then Theorem (and also ) holds with
0z7°¢ Teplaced by 51_6 and (gmax(6,2L+5)7pmax(6,2L+5)) Teplaced by (Qmax(7,2L+5)apmax(7,2L+5))

in the r.h.s. of and ,

More generally, let us suppose that, in addition to hypothesis from Theorem the assumption
A§(+00) hold and, given m > 0, 8 > m + 1 and there exists g(m) € N such that: For every
f €C (R4 R) such that for every a € N and every x € RY,

pol
105 (@) < Dga(l + |2,
with Dy o > 1 and p(a) > 0, then, for every t € 70,
(2.20) BIf(XP15) — f(Xeps)| Xe = X = 2] < 6™ D" DpaC(1+ [2f?),

ler|<g(m)
where C and p do not depend on D¢ o ord. Then, Theorem holds with 62— replaced by 6™ ¢
and (D max(6,2L+5), Pmax(6,20+5)) replaced by (Sup,.cy- D, sUp,.cy- pr) in the r.h.s. of and
(and also ) In this case n,c and C' may depend on m.
When assuming simply that for every t € m%*, i € N, E[(Z})?] = 0, we have automatically that
holds with m = 1, which leads to the previous remark.
By a straightforward application of Corollary and Theorem |2.2, under the hypothesis from
Theorem [2.9 point [Bl], we derive easily the following estimate of the density of Xr: Let g € N,
let o, B € N such that |a| + |3| < q and let p > 0. Then, for every x,y € R%,

(14 |2]gq)C exp(CT)
Ve (@)T"(1 + |ylga)

(2.19) dry (Pr(z,.),Qr(z,.)) <67~ Cexp(CT).

020 pr(x,y)| <Df
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(5) When uniform weak Hérmander property holds, that is ASC(L) (see ), then 02 can be

replaced by 02 in or (but not in ) When we assume holds, similar

conclusions hold but with §2~¢ (respectively 62 ) replaced by 6™ ¢ (resp. 6™).

Example 2.1. (1) Let us consider X = (X', X?), the solution of the 2-dimensional system of R
valued SDE, starting at point zo = (2}, 2%) € R? and given by
dX} =b(X} t)dt + o (X}, t)dW,
dX? =X}dt

where (W)i>0 is a one dimensional standard Brownian motion, b and o are smooth with bounded
derivatives of order one and polynomial bounds for higher orders. In the setting from ,
we have Vo : (z,t) — (b(zt,t),2') and Vi : (x,t) — (o(x',t),0). In this example local
ellipticity holds for X' as long as o(x},t) # 0. However ellipticity does not hold for X since
dim(span((c,0)))(xo,0) < 1. Nevertheless, let us compute the Lie brackets. In particular

Vo, Vi] : (z,t) = (0o (2t t)b(zt ) — Opub(at, t)o (2, t), —o(zt, 1)),

and, for o(x},0) # 0, span((0,0), (0p10b — dpibo + yo,—0)(19,0) = R? so that local weak
Hérmander condition holds. Now, let us consider the Fuler scheme of X, given by (Xg’l, Xg’2) =
xo and for t € 70,

XL =X0N 40X 00+ o (X)L OV ZE,

5,2 18,2 51
Xt-s—é*Xt + X779,

where Z? € R, t € ©%%, are centered with variance one and Lebesgue lower bounded distribution
and moment of order three equal to zero. With notations introduced in , for a(x§,0) #0,

Vl (mo)

1
=1A inf (Vi(0,0), )24 + (Vo — = V. ViV1, Vi](w0,0) + 9;Vi(20,0), b)24
beR?,|b| =1 2

1

=1A inf {(,0),b)2a + ((9g10b — Oprbo + 020210 + D40, —0), b)au(z5,0)
beR?,|bl,a=1 2

>0,

and for every f € M(R%R) stafisfying hypothesis from Theorem we have, for T € ©°,
T>25, e (0,1],

ELf(Xr) - F(xD)]| <=0, LT oo,

Vi(zo)T'|"
where n, C, c can explode if € tends to zero.
(2) In a similar but simpler way, we can give an extension of the central limit theorem in total
variation distance, including the iterated time integrals of the Brownian motion.
1

We considere Z; € R, t € %%, n € N*, which are centered with variance one and Lebesgue
1
lower bounded distribution and we define Sl(o) = Ziﬁ:l Zy,leN, and for h € N*, Sl(h) =

I s,

Then (Sr(lo),...,S,(zh)), h € N, converges in total variation distance, as n tends to infinity,
toward the random variable (Wi, fol Wsds, ..., fol ... 0s2 Wi, ds1 ... dsp) where (Wy)i>0 is a one
dimensional standard Brownian motion.

3. A MALLIAVIN-INSPIRED APPROACH TO PROVE SMOOTHING PROPERTIES

Our strategy to obtain regularization properties is to establish some integration by parts formulas
(Theorem ) and then to bound the Malliavin weights appearing in those formulas (Theorem (4.1
(4.4)). These bounds on Malliavin weights are derived by bounding the Sobolev norms constructed with
Malliavin derivatives (Theorem and by bounding the moments of the inverse Malliavin covariance
matrix (Theorem [4.3). In this section, we present the discrete Malliavin calculus tailored to our
framework, and subsequently present our key regularization property results. Integration by parts
formulas and estimates on the Malliavin weights will be derived in the next section.
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3.1. A generic discrete time Malliavin calculus. Since we are interested in random variables with
form , where the laws of random variables Z° are arbitrary (and thus not only Gaussian) the standard
Malliavin calculus is not adapted anymore. Therefore, we remain inspired by Malliavin calculus but we
whether develop a discrete time differential calculus which happens to be well suited to our framework
as soon as Z° involves a regular part i.e. is Lebesgue lower bounded. In this section, we always assume
that AS (see (2.8)) holds true.

In the following, we will denote X° = (x)iexsr, U® = (UD)iers» and VO = (V{),cpe- and given a
separable Hilbert space (H, (.,.)#) equipped with an orthonormal base $) := (b, )nen~, we will consider
the class of random variables:

SIH) = {F = f(:, U, V) : ¥(x,v) € {0, 1} x RN,
u f(u,v) € CF’OO(R”E’*XN;H),

+oo
oF L OO UL V) € (LP(Q), Yar,....u e 7N 1 € N},
p=1

In the previous definition, we have denoted by CF’OO(R”MXN;H), the set of functions defined on the

vector space R™" *N “that take values in H and which admit Fréchet directional derivatives of any order.
When H = R, we simply denote S°.

We now construct a differential calculus based on the laws of the random variables U° which mimics the
Malliavin calculus, following the ideas from [5], [2], [3] or [7]. We begin by introducing the basic element
of our differential calculus.

Derivative operator and Malliavin covariance matrix. We consider the set of {0, 1}"6'*XN—valued
vectors (uj) (s iens-xn such that for every ¢,s € m%* and every i,j € N, (u})s; = 14,1 ;. For F €

SO(H), we define the Malliavin derivatives D°F := (D?tyi)F)(t’i)eﬂs,*XN € SO (H)™ N py

D}y o F = x{05 f(x°,U°, V), (ti) € 7" x N.
For T C n%*, we define D®TF = (D‘(st,i)F)(t,i)eTxN € SO (H)T*N. When T = n%* or when it is explicit
enough, we simply denote D°F. For s € (t — 4,t], with t € T we define also
§ I Y
Dy F == Dg ) F

and D?S N = 0 otherwise. The higher order derivatives are defined by iterating D°. Let o =

(', ...,a™) € (7%* x N)™, m € N. We define
D)F =D’ ---DS.F
when m > 0 and DS F = DSF = F if m = 0. We also introduce
DYTME = (DiF)ae(TxN)q-

The Malliavin covariance matrix of F € S%(H) on T, is the matrix defined for every b, h° € $ by

O-%,T[b7 ho] = 5<D5’T<F7 [’>H7D5’T<F7 h<>>7'l>]RT><N

N
(3.1) =06 Y DY (F0)uDfy (F %)

teT 1=1
If T=(0,7T]N7° with T € 7%* then

T
o8 zlh,5°] = /O D8, (F 0 D%, 1) (F, %)y,

It is worth noticing that U%J‘ can be seen as a linear operator on H such that for every h € H,
U%’Th = Zh,hOGfJ oéF’T[h,ho](h, h°)xbh. When H has finite dimension, this is the standard matrix
product.

Now, we define, when it is possible, the inverse Malliavin covariance matrix. We consider the trace class
norm of a bounded linear operator £ on the Hilbert space # given by |Lli. := Y5y (VL*Lh, h)2 where
L* is the adjoint operator of L for the scalar product (,)s;. We say that an operator is trace class if it
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is bounded, linear and |L|;. < +o0.

When U%’T — Iy (with Iy[h,5°] = 1p40,b,h° € $) is a trace class operator on H, and the Fredholm
determinant det a%,T of 0%,'1“ (which is the standard determinant when 7 has finite dimension) is not
zero, we define ’y%’T = (U%E)_l, the inverse Malliavin covariance matrix of F'.

Divergence and Ornstein Uhlenbeck operators. Let G°
divergence operator is given by

(G2),crs- With GJ € S*(H)N.The

N
ARG =0 "N G D) T+ DY, G € S°(H),
teT i=1

with, for t € m%*,
T =g, (67207 = 2.4) € S'(R).
In particular, for ¢ € N,
Do T) = 072300, In g, po(072U) — 2.4) € S'(R).

Finally, we define the Ornstein Uhlenbeck operator, for F € S°(H),
N
LYyF = —AYD°F = =63 > Dy DieiyF + Doy FD}, T € S°(H).
teT i=1

Notice that, if T = (0,7] N 7° with T € 7%*, then (denoting t(s) =t for s € (t — §,t], t € ™>*),

T N N
LyF = — /0 > DieiyDisiyFds =6 Y Doy FDf, 5Tf € 8°(H)
i=1 teT i=1

*

Remark 3.1. The basic random variables in our calculus are Z{,t € m* so we precise the way in which
the differential operators act on them. Since (ﬁZf = XU +/n(1—=x)V?, it follows that for w,t € w0*,
TcCn’, i,j€N,

(3.2) 02 DY, 1 257 =X3 1w iLiy,
(3.3) L‘STZ;M zxfazi In ¢T*/2(67%Ut5 — zt)Lier.

3.2. Regularization properties for approximations of the semigroup. In the following, we will
not work under P, but under a localized measure which we define now. For T C 7%*, we denote
|T| = Card(T). When |T| > 0 we define

1 m
Ap={— Sy >0
{m%“’ 2

Using the Hoeffding’s inequality and the fact that E[x!] = m., it can be checked that for T =
(s5,t]N7°, 0< s <t,

m|T|
2 )

The next step consists in localizing the random variables Z° and the Malliavin covariance matrix O’%.

For the first one, we aim to control that the norm is not too high while for the latter, we aim to control

that it is not too low. We first introduce a regularized version of the indicator function. For v > 1, we

consider ¥, € C;°(R; [0, 1]) such that ¥, (z) = 1 if |z| <v— 1 and 0 if [z| > v and and that the function

z € RN — W, (|z|gn) belongs to Cg°(RY;[0,1]) (e.g. for |z| € (v—13,v), ¥, (z) = exp(1

P(Q\ At) < exp(—

1
— TEE—zer)-
Given T C 7%*, we introduce
(3-4) OrnT = OFGn 1O, T1Ar  With

Oram.T =¥y, (G det ’7}{"7T)’ and Oy, T, = H \Dn2(|qu|RN)’ te 776’
we((0,¢)NT)

with 67127T - 67]27'1‘700'
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3.2.1. The regqularization pmpem‘y for a modified measure. We still fix § > 0 and we consider the Markov
process (Xt )iers, defined in . In order to state our results, we first introduce the tangent flow
process (X;);eqs defined by Xo = Igxq and

(3.5) Xp = 0y X7,

the Jacobian matrix of derivatives of X° w.r.t. the initial value Xg, which appears in our Malliavin
weights.

We introduce (Q7°®),crs such that,
(3.6) VT en® Qp°f(x) = E[Of(X3)X] = a].
where © = @X%_’det(axs X3)2,,T following the definition 1) with T = (0, T]N7°, 5 = (m1(8),m1.(9))
0

defined in

Notice that ( b )teﬂs is not a semigroup. We will not be able to prove the smoothing property for Q°
but for Q%©. The proof uses result established in Section l Our approach consists in demonstrating an
integration by part formula in Theorem [£.I]built upon our finite disrete time Malliavin calculus, and then
bounding the moments of the weights appearing in those formulas exploiting Theorem [.2] and Theorem

Z3

Theorem 3.1. Let T € 7%* and T = (0,T]N7° and let f € ;;’l(Rd R) satisfying: there exists Dy > 0
and py € N such that for every x € R?,

(@) < Dp(1+ |lgh).

Then we have the following properties:

A. Letq€eN, let a, B € N such that |a| +18| < q. Assume that AS(max(q+3,2L +5)) (see ,
(.)) Ay(L) (see (2.5 (W) Aj(+00) (see (2.7 (W) A§ (see (@) and|As.| hold. Then, for every

z € RY,

C
(5.7) 005099 1 (2) <0, L Lrmmstatsanso tpr>01
‘ z T hat (VL(z)T)13L3d(%q2+2q+3)

X @g]ax(q+3 5L+5) exp(C(1 + T)E)JIC(Z5)©4).
with C = C(d, N, L, q, P, Pmax(q+3,2L+5), P f+ 7~ m*, - LY > 0 which may tend to infinity if one of the
arguments tends to infinity.

B. Let h > 0. Assume that hypothesis from . are satisfied with AS(max(q + 3,2L + 5)) replaced
by AS(2L +5). Then, for every x € R,

) 5,0 h 1+ 1P2L+5+pf>0|'r|]1gd
(3.8) Q7 f(x) — T fz)| <6 Dy VL(x)l?,Lgd,max(él,%

x DODS) s Mc(Z2°)C exp(CTM(Z2°)D%).
with C = C(d,N,L,p,p,par+5,07, iv h) = 0 which may tend to infinity if one of the arguments
tends to infinity.

Remark 3.2. (1) In the case of uniform Hérmander hypothesis A3 (L) (see (2.5)), if we consider
§ < 8o for some &y small enough, then for any x € R, %@f(a:) can be replaced by the localized
probability measure WHE[@JC(X%”X()S = x| and the conclusion of Theorem still hold.
In case of non uniform Hormander property, g would depend on x so it is not uniform anymore

and we can not obtain the same result.

) (Vi(z —18"3d(30°+2043) oo pe replaced by (VT)~13 FAGRa* 4201 g the r.h.s. of (3
and Vi (x) can be replaced by 1 in the r.h.s. of (@

Proof. Let us prove [Al] We have

(2) Using our approach we can easily show that under uniform Hérmander hypothesis A3 (L) isee

(3.9) 00Q°07 f(x) = Y E[OFf(X3)Py(X9)|X) = 2],

[BI<]vI<a
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where P, (X2) is a universal polynomial of B;J(SX%7 1< |p] € ¢—|y|+ 1. Using the integration by
parts formula and the estimate obtained in Theorem we derive
[E[007 f(X2)P,(X{)| X3 = ]| =|E[f(X3)Hy (X, OP,(X3)[]|X( = 2]
<D B[(1 + | XA HA(X5, O, (X5) | X8 =
<O(d, q)D 5 x A x Ay x Az x Ay
with, using Lemma [£.T] and Lemma [1.3] combined with the Cauchy-Schwarz inequality,

5 2
Ay =1V E||det Wig,TPq 21 60| XE = 2]

A =1+ BlXGRIE {1 ™IX = ol

R4,6,T,1,q+1
5 016 5 1 5 14d(g+2)% 5 1
+ B[ L X |5 g 1 1 XE = 2] SR XG5 L 1X0 = 2]

q
. . N
Az =E[Y [ det(X9)? 3% 5 p g1 X0 = 2]

m=0
1
Ay =E[(1+ | X220)° P (X2 51,11 X0 = 2%,
with X% defined in (3.5). Using Theorem yields

C(d,L,q,p2r+5)
1+ 1P2L+5 >0 |x|Rd

(VL (x)T) —13L3d(2q>+2q+3)

X eXp(C(da L7 q, p2L+5)(1 + T)mC(d

Cc(d,L, 1
D545 Cd.N. L, — p.pars)

1 x )
*

(2°)2Y).,

s
Lagsp.p2rts,ay, )

with qfn =[1- %1 which does not depend on §.

Moreover, using the results from Theorem [£.2] we obtain

Ay x Az x Ay <(|z]ga(lp, 450 + L1p,50) + Dgpz) O 4ePats)

1
C(d, N, 77Qapq+37pf)

*

% exp(C(d, ¢, 9q+3, 1) (T + D)IMC(g,p,p,1505) (Z2°)D7).

We gather all the terms together and the proof of (3.7) is completed.
Now, let us prove For every = € R%, we have We have

Q% f(z) — Q5° f(x)| <E[f(X2)(1 - ©)|X] = 2]
<OE[(L+ [ X3E0)2E[L - 6|X = 2]
<O2E[1 + | X2 | X8 = 2]2P(© < 1|1X{ = x)%.

We obtain an upper bound for P(© < 1|X§ = z) by using (4.16). The upper bound of E[| X?|?P#| X =
x] is obtained using Lemma It follows that, for every a > 0 and every p > 0,

Q% f(x)—Q%° f(x)] < (53 sup M, (2°) + ny PH (1 4 Yy () 7137340+

X ©f©c©§L+5DJtC(Z‘S)(1 + (Lpyp 550 + 1pf>0)|1‘|]gd)0 eXP(CTfmC(Za)’DZl)

with C = C(d, N, L, p,p, 92045, 95, i) which may tend to infinity if one of the arguments tends to
infinity. We chose p = p(h) = max(0, 222 — 4) so that 7, (6)~®"W+4 < §"C(h)(1 + T9M). Similarly we
chose a = a(h) = 2(h + 1) max(p + 1, %) so that n7,(8) ~*Ms~1 < 6"C(D,p,h)(1+T™) and

Q% ()~ Q3 f(w)| < 8M(1 + Yy ()13 3e M+
X DDDGL s Me(Z°) (14 (Lp,, 4550 + Lp;50)|2[5a) C exp(CTM(2°)DY),
with C = C(d, N, L,p,p,p2r+5, P, L_'h), and the proof of || is completed. 0

my )

From a practical viewpoint, an issue of this last result resides in the computation of Q*€. Indeed, © is
not simulable (at least easily) and then methods such as Monte Carlo do not seem to be applicable. A
solution is provided by Theorem 2.1} where we show that the regularization properties are also satisfied
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by Q%?. In this case, Monte Carlo methods can be designed by simply simulating the sum of X% and
of an independent Gaussian variable. The proof of this result exploits the one we just established in
Theorem [B.11

Proof of Theorem[2.1} Let us prove . As in , we write
Q' (@)= Y EI(E°G + XP)Py (X)X = ],
1BI<IvI<q
where P, (X)) is a universal polynomial of 8§<3Xf, 1< |p| € ¢—|yl+ 1. We decompose
E[07f(6°G + X9)Po(X3)|X] = 2] = A1 + Ay
with
Ay =E[00] £(5°G + X§)P, (X2)|X{ = a,
Ay =E[0" f(8°G + X7)Py(X2)(1 — ©)|X] = a].
with © = exg,det()'(g)%n,T defined in . The reasoning from the previous proof shows that
1+ Lpearsnns s >0/
(V1 (o)) 3750072059

X :Dgax(q+3,2L+5) eXp<C(1 + T)mC<Z6)©4)

Aq <Dy

with C' = C(d, N, L, q,9, Pmax(q+3,2L+5): P> %*, %) Moreover, since G follows the standard Gauss-

ian distribution and is independent from X° and O, we have

Ay = E[P,(X2)(1—0) [ 07f(8% + X3)(2m)~Fe= "5 du|X? = x).
R

Now, notice that
07 f(8%u + X7) = 5~ OO (f(6%u + X7)),

so that, using standard integration by parts, we have

Ay = 6 ME[P(X8)(1 - ©) | f(6% + X§)H, (u)(2m) % e du|X] = o,
Rd

where H, is the Hermite polynomial corresponding to the multi-index ~.
Finally, using the results from Theorem we obtain

— 1
[Aa| <5™PDFE[L — O1X7 = ]2 (|2lga (Lp, 4550 + L, 50) + Dygy) T HIPare P2

1
X C(d7 N7 7’ Q7pq+3a pf)
% exp(C(d, 4, g3, 0 1) (T + 1) (p,0,0,p,1505) (2°) D)
with, using Theorem (see (4.16)) for every a > 0 and every p > 0,
E[l — ©]X§ = 2] <P(© < 1|X{ = z)
<O 1Ty *Ma(2°)

4 —(p+4) 1+ 1P2L+5>0|$|ﬂ€d
h VY, (z)1353d(p+4)

x DYDF s Mc(Z°)C exp(CTM(Z°)DY).

with C' = C(d, N,L,p7p7p2L+5,mi*). We chose p = p(¢f) = max(Q% —4) and a = a(qb) =
2(gf + 1) max(p + 1, %"). Therefore

1+ (lpmax(q+3,2L+5)>O + 1Pf>0)‘x|]gd
(Vi (z)T)13"34 max( %7 . §a%+2q+3)

X 9§1ax(q+3,2L+5) exp(C(1 + T)Mc(2°)D%).
with C = C(d, N, L, q,9, Pmax(q+3,2L+5)s P> mi*, L #) and the proof of (2.13) is completed. Remark

K )
that with our approach, under the uniform Hormander hypothesis A3°(L) (see (2.5)), we can show that

(Vp(z)T)13" 3dmax (57 +2,50°+20+3) can be replaced by (V°T)~13"d(34°+24+1) iy the r.h.s. above.

102Q% 0% f(x)| <D;
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Let us prove (2.14]). Since f has polynomial growth, it follows that
Q5 f(@)-Q% f(2)| < [E[O(f(X§) — f(X§ +67G))|X{ = 2]]
+D7C(pg)(L+ EIXGY X = 2] + 67 E[GIY)2)EL - ©]X] = o]

d 1
<> | B[O /)X + A GG
=170

+D;C(ps) (1 + |2[gh) exp(TD* Moy, (Z2°)Cpy))
x E[l — ©|X = ]7.
Using Theorem (see (3.7) with ¢ = 1) and the estimate of E[1 —©| X = z] obtained in the proof
of with p = p(#) = max(0, 3% — 4) and a = a(f) = 2(6 + 1) max(p + 1, %) we obtain
1+1 |z| S,
) 9,0 0 por+5+pr>0[L (R
|QTf(x) - QT f(x)| <(5 Qf (VL(.r)T)lngdmaX(%’%
X D51 45 exp(C(1+T)Me(2°)DY),
with C = C(d, N, L,p,p,par+5,Pf, i, 6) > 0. Notice that under theuniform Hormander hypothesis

916 25

A (L), (Vp(2)T)'3"3dmax(553.%) can be replaced by (V3oT)13" 4% in the r.h.s. above. O

We now show the existence as well as upper bounds for the density of X¢. This result is mainly a
consequence of Theorem [2:I] It is noteworthy that we also propose an Gaussian type bound when
relying in a simplified framework. It is derived combining a representation formula for the density,
Theorem [2.1] and the Azuma-Hoeffding inequality.

Proof of Corollary . Since ([2.13) holds, the existence of of the a density is due to Tanigushi (see [31],
Lemma 3.1).

We first give a representation formula for ¢3:. Let f € C§°(R%; R) (set of functions in C>(R?; R) vanishing
at infinity). Let us define g : R? — R such that for every x € R%,

o@):= [ )Ly

pol

Then g € C2,(R%R). In particular we can apply Theorem with the test function g and for
70 = (1,...,1) € N9 since 97°g = f, it follows that, with similar notations as in the proof of Theorem

21
05QY°0° f(x) = 02 QY7 g(x)
= Y E[@Ig(5°G+ X§)Py(X9)|X( = 2]
0<|y|<g+d
+E[07g(8°G + X3)P,(X3)(1 — ©)|X{ = z].
= Y E[g00’G+ X)) Hy(X], 0P, (X])|X{ = 2]
0<|y|<g+d
+E[5 P, (X0)(1 - ©)H,(G))|X) = 2]

- / OB o x H e £ X5 = aldy,
y€ER4

with (using notation T = (0, 7] N 7?),
H(e )= 3 Hp(XP, 0Py (X)) + 37717, (X3)(1 - ©) Hy ().

0<lyI<q+d
Moreover, following the same procedure as in the proof of Theorem [2.] we have,
1+1,,, >o0l|ga
E[|H (o, B)]? 3 <D max(atd+3,2L+5) R Cexp(CT
1 (0, 8)P)* <2 s tety
Hence, using [31], Lemma 3.1, §G + X9 has a smooth density qgie and 1) holds. We can observe

that we have the following representation formula for q‘}’e and its derivatives:

5,6
020y ay" (x,y) = (—1)PIE[1, <00y x5 H (o, )| X0 = 2].
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The estimate (2.15)) then follows from the Cauchy Schwarz inequality, Lemma combined with
Markov inequality and a similar approach as in the proof of the previous result to bound the moments
of H(a, ). In particular

(1 + 1Pmax(q+d+3,2L+5)>0Iml]gd)cexp(CT)
Ve (2)T|"(1 + [ylga) ’

5,0
020543 (v, )| <

where 7 = 13"3d max(2EE0? 4 9 5(4 4 ¢)2 + 2(d + ¢) + 3) and C > 0 depends on d, N, L, ¢,9,
D max(q+d+3,2L+5)s P> Pmax(q+d+3,2L+5)s Pf> mi“ %, 6, p and on the moment of Z° and which may tend to

infinity if one of those quantities tends to infinity.

Now let us prove (2.16]). Using the Taylor expansion of v(z,t, z,y) of order one at point (z,t, z,0),
the one of ¢(z,t,2,0) of order two at point (z,t,0,0), recalling that (z,t,0,0) = x and then the
Azuma-Hoeffding inequality yields

Py <6°G + X3|X{ = 2) = P(z — 6°G < X3|X{ = x)

<Py —z— 0°G <3TDo(1+[2=) + 38 3 ZZfﬁ(s@ (X7,1,0,0)| X0 = )
temd t<T i=1
< min [P(y — 27 = §°G7 — 3TDs(1 4 [2) <

Jj=1,.

DY Zz‘“ W(XP,t,0,0)7| X = z)

temd t<T 1=1

(7 — 27 — 69G7 — 3TDo(1 + [2°]?))?

< min E[exp(

)]

J=1,.., 3(3D12%°)2T
(Y9 — 29 — 3TDo(1 + [2]?))?
<
S i exp(- s ey g )
ly — x\éd
<C cT — ——=).
exp( T )

where ¢ > 0 depends on ©; and 2*>° and C depends on ®5 and 2*°. Using the Cauchy-Schwarz
inequality combined with the preceding estimate concludes the proof. ]

We end this section with the proof of the invariance principle established in Theorem Our strategy
is to decompose the error using the Lindeberg approach and semigroup properties. Our focus is then
on the short time estimate i.e. the error made on simply one time step of size . Then, we replace Q°
by Q%?. Applying Taylor expansion techniques leads to a representation of the error involving some
small variations of the process X? satisfying also regularization properties. Exploiting them leads to
the expected result. A similar strategy can be designed to prove higher order convergence.

Proof of Theorem[2.4 For x € RY, s,t € 7°, s < t, we define Q% , f(x) := E[f(X})|X? = 2], QM (x) ==
E[f(X] + 0°G)|X? = 2],Psif(x) = E[f(X:)|Xs = 2] = E[f(X:(s,2))] (Xi(s,2), being the solution
of at time ¢ and starting from z at time s), Af(z) := Qf,tﬂgf(l‘) — Pyyisf(z) and A%f(z) =
Qf +5f(®) = Pryysf(x). It is straightforward to see that the results from Theorem remains true
replacing (Qf’ )i>0 by (QS t)t>0 for any s > 0. For sake of clarity, we assume that P satisfies the same

regularization property (2.13)) as Q>?. Similar ideas as in [7] can be used to conclude under the actual
hypothesis of Theorem

We prove the result for f € C>¥ (R?). The extension to f simply measurable with polynomial growth
follows from the Lusin’s theorem. We provide the main key points avoiding heavy calculus which can be

dealt with using similar arguments as the one we already developed to derive Theorem 2.1] Using the
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semigroup property satisfied by Q‘S and P, we have
Qrf(@) = Prf(x)= Y Q) AnirsPrsrf(x)

temd t<T

4,0
Z Qo1 AL i sPrysrf ()

temd t<T
§ (16 5 5,0\ 15,0
+(Q0.(QF 445 — Qt t+6) (Qo,r — Qut)Q vy 5) Prsrf ().

Now, as a result of Taylor expansions, A?,t +sf(x) can be written as a finite sum of term with form
/ 0% F(VA5(2) B, 1,6, )], o € N, Ja] < 3

where Y3 ;(z) takes values in {z, z + A(¢(, t, 52 2720 5,0) —x+06°G), X¢yas(t, )} and, for any p > 1,

sup  E[|BX}, 4,0, ML 50 o] <02 (14 |2]50)C exp(CT),
temd t<T

where T = (0, T]N % (we refer to (4.1) for the definition of our Sobolev-
It follows that Qg’,?AﬁtHPH(;,Tf(x) is a finite sum of terms with form

).

1
E| / 0 Pryor f (Y s(XDO)B(X)?, 4,6, A XG = 2],
0

At this point, we observe that a similar approach as the one developed in this paper ensures that the
results from Theorem H remains true taking T =t and replacing X " by v, el 5(X ?). It hinges on the
fact that our Malliavin derivatives of Y} 5 (X;S ’9) — Xt‘S % can be bounded by a term of order 8. Moreover,
P15 7f has polynomial growth. It follows that for ¢ > 1T(55, ¢ small enough, exploiting the integration
by part from Theorem (with F' = Y;’_}_AX‘S )) in a similar way as in the proof of Theorem . yields

1
E[ / 0% Prysrf (Vs (XD BIXP" 4,6, NANXG = a] < 357Dy i oG C exp(CT).
0

Now let t < 176° so that T—t—8 > T(1—16°) 6 > 27— > 1T. We write Qg AL, s Prysrf(z)
as a finite sum of term with form

1
E| / 0 (b, (o) Praar ) (Y25 (XEO) B(XE 1.6, 0)dA[XE = ]

+ Qg ?At t+6((1 - QJ)VL(I))PtJr(S,Tf)(x)’

where ¢y, () is a smooth localizing function satisfying, for every y € R,

Ly vemicis@ S @) Sy, )y, <o

and having derivatives uniformly bounded by a polynomial of Vp,(z)~!. Since T—t—¢§ > 1 51, applying
- ) for Prys57f enables to bound the first term of the r.h.s. above. To bound the second term, we
remark that, since f has polynomial growth then so has P57 f and we can show that Dp, ; ,.f = Dy
where C' doest not depend on f. Hence

(1 - ¢VL(x)(y))Pt+6,Tf(y) < CQ}‘(]‘ + |y|]?§d)1‘vL(y),vL( > VL(-"”) .
Therefore, using A$(max(6,2L+5)) (see (2.2) and . and ¢ < $T6°, applications of Markov and
Doob (see (4.31])) inequalities yields
L+ |alg
6,0 A O 3_¢ AT TRa
07tAt’t+5(1\VL(4)—VL(w)\>VL4(m) )(.’E) < 02 Qf |VL((E)T|” CeXp(CT)

and the bound on the second term follows from the Cauchy-Schwarz inequality and the proof of
(2.17) is completed. If AS°(L) is assumed, the localization procedure with the function ¢y, (5 is not

necessary anymore and the achieved convergence rate § 27 in 1' can be replaced by § 3,

Approximation (2.18) follows from an application of Theorem 2.6 i in [4]. Notice that this application

is also a reason why the convergence happens with rate §2 ¢ instead of §2 even in the uniform Hormander
setting AS°(L). O
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4. MALLIAVIN TOOLS AND ESTIMATES

In this Section we provide three main results which are crucial in the proof of regularization properties.
First, we establish an integration by part formula in Theorem [£.I] The proof of regularization results
then falls down to bound the weights appearing in those formulas. As a consequence of Proposition [£.1]
it can be achieved by bounding the Sobolev norms of X in Theorem and by bounding the moments
of the inverse Malliavin covariance matrix in Theorem 3]

4.1. The integration by parts formula. In this section, we aim to build some integration by parts
formulas in order to prove the regularization properties. This kind of formulas is widely studied in
Malliavin calculus for the Gaussian framework. In this section, we always assume that Ag (see (2.8))
holds true and consider T C 7%*. For F € S%(H) and ¢ € N, we begin by introducing the Malliavin-
Sobolev norms:

,q J| « |7‘l7 | |H 4, T | |7‘[ | | ,q
( ) | |H 46, T,1 C ‘l ,0, 1,9 H,5,T,1
(XE(I XIQ)—".

and for p > 1

1 1
||F||H,5,T71,q,p = E[|F|%,5,T,1,q]" HFHH,é,T,q,p = EHFP;{] P+ HF”H,(S,T,Lq,p-

Below, we define the Malliavin weights that appear in our integration by parts formulas.
Let F € S°(H), G € 8 and h € H. We define

HY(F,G)[0] := = (G Ly F )3 — 6 > (DT (Gyp[h, 5°]), DT (F, b)) pren.
heen

Considering higher order integration by parts formulas, for h = (b1, ..., H?) € H? we define H§(F, G)[b]
by the recurrence

(4.2) Hy(F,G)[b] == Hy(F, Hy(F,G)[p',.... b7 ])[7].

The purpose of this Section is to establish the following result which is a localized integration by parts
formula together with an estimate of the Sobolev norms of the weights. In the following result we denote

by Cf;’loo the subset of functions f in CF’OO, such that f and its Frechet derivatives of any order have

polynomial growth.

Theorem 4.1. Let T C n%*, ¢ € N*, ¢ € CF’DO(H;R) with 9 := dim(H) < co. Let F € S°(H) and

pol
G € 8° be such that E[| det v |16, 5 1., >0] < +00 for every p > 1.

Then, for every b = (h',...,h9) € H9,
(4.3) E[0f 6(F)G] = Elp(F)H}(F, G)[b]]

with HY(F,G)[b] defined in . Moreover, for every m € N,

(4.4) | HE(F, G)[b]lz5m,m <C(0,9,m)c(d,q,m, T, F,G)

¢(2,¢,m, T, F,G) =(1 V det 73 )"+

20q(m4-q+2 2
x (1+ |F|H,%E$,1?m+)q+l + |L6TF‘Hq,5,T,m+q—1)|G

R,5,T,m+q-
First, we observe that in our framework, the duality formula eads as follows: For each F,G € S°(H),

E[(F, LG)s] =E[(G, Ly Fs] = OE[(DYF, DY G)yyrsn]

N
(4.5) ::6ZZE[<D?t,i)F7 D?t,i)G>H]-

teT 1=1
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This follows immediately using the independence structure and standard integration by parts on
RN: Indeed, if f,g € C*(RY;R) and t € 7%*, then

N
> E[0u f(UP)uig(UY)]

=1

Ex

N
Z/ 6uif(u)@uig(u)é_%gom/g(d_%u — zyy)du
_ RN

(9uig0”/2(57%u — Zit)
4,07*/2(57%’& - Z*,t)

Ex

N
=- Z » F(u)(92:g(u) + Dyig(u)

)577% /2(57%u — zip)du

F(U7) Z 2.9(UP) + 0 g(UD)6 20, n gy (67307 — 2,4)].

Now consider F,G € S°(H), so that F = f(x?,U%,V?) and G = g(x?,U® V?) with for every
(x,v) € {0, 1} x R XN 4y vy f(x,u,0) € cF.oo(R™"*N. 7¢) and similarly for g. Now, we introduce
the functions f,, := (f, bn)2, gn := (9, bn)2, n € N*, which belong to CF"X’(R”&’*XN;R). It follows from
the calculus above that

E[(D*"F, D> G)yrsn] ZZZE P00 (X U° V)04 90 (0 U, V)]
n=1teT i=1

:—ZEfnx UlVOY X

teT

x 28 200 (0, U, V) + 08 gn (X, U, VO 300 n g, 1p(075UF — 2.)]

= — E[(F, Z Z D?t,i)D?t,i)G + D?t,i)GD?t,i)Ft>H]

teT 1=1

=6"'E[(F, LTG)x],

which is exactly 1} We have the following standard chain rule: Let ¢ € CF’l(H; H®) with H® a
Hilbert space and F € S°(H). Then

(4.6) DT Y(F) = 0552 pd(F) € SO (1) TN,
More particularly, when H® = R we have
(4.7) DT (F) = (¥ p(F), DY TF)yy € SO (R)TXN,

Moreover, one can prove, using (4.6)) and the duality relation (or direct computation), that

(4.8) Lyé(F) = (" 6(F), Ly F)y + 6 > Ok oF o(F) (DO (F,b)py, DYT(F,5°) gy )z cn
h.h°EN

In order to prove Theorem [4.1] we will combine those identities with the following result.

Proposition 4.1. Let F' € S(H) with 0 := dim(H) < oo, and G € S°(R). Let m,q € N, and
h=(h',...,0") € H withl < q. Then

‘H’%(Fa G)[B] |R,5,T,m <C(D, q, m)c(a, qg,m, T, F, G)
with
¢(,¢,m, T, F,G) =(1 V det 73, p) "+
2 m 2)
x (1+ |F|7-?%(Tj,q7jl_+q+1 + |L6TF‘H 5T m+q—1)

The reader can find the detailed proof of this result in [2], Theorem 3.4. (see also [5]).

Proof of Theorem[].1 We prove the result for m = 1. Then, a recurrence yields (4.3). Using the chain
rule (4.7)), we have for every h° € 9,



Hoérmander Properties of Discrete Time Markov Processes 21

(DPTH(F), DYT(F,0%) g )z = > (AT G(F), ) (DT (F, §)30, DY (F,5%) 3 g e
heH

—5123F¢ O'FThb]

henh

Using with F = ((F,5°)3,¢(F)), H = R? and ¢ : (z,y) — w, with F = ¢(F)(F,h°)%
(respectively F = G'y%’T[b, heUF, 6% y), G = G’y%’T[h, h°] (resp. G = ¢(F)) and H = R (resp. H = R)

b
and finally 1) with F' = ((F, 5°) %, G’y%,T[h, b°]), H =R? and ¢ : (z,y) + zy, it follows that

E0F o(F)G) =6 3" E[GH %m0, 0D To(F), D*T (F,h°) g0 )z <n]
hoeH
=5 3 Bl 0N LR GPNE, b)) — S(F) L (P, 6 — (B 67 ()]
hOEﬁ
=3 Z HE, )1 LT (G [0, 5°]) — ¢(F) Gy b, 51 L (F, 5w
h°eﬁ

—¢(F)L5 (G20, B°T(F, 5°)30)]

== > E[p(F)(Gvprlh, b°ILG(F,6°) 3 + 6(D*T (G [h, 5°1), DT (F,5°) ) g )]
heenH

which is exactly (4.3]) for ¢ = 1. Tterating this formula, we obtain (4.3)).

In order to obtain we simply apply Proposition and remark that H%(F \ G)[E] and its
Malliavin derivatives are equal to zero as soon as G = 0. ]

In the sequel we establish an estimate of the weights H% which appear in the integration by parts
formulas (4.3) when G is replaced by GO with © € [0, 1] the localizing random weight. The next result
provides a bound on the Sobolev norms of GO.

Lemma 4.1. Let ¢ € N. Let G € S°(H) and © € S°. Then

q

(4.9) GOl < C(@) Y |Glr.6m.m| Ol g—m-

m=0

Proof. We prove the result by recurrence. For ¢ € N, we define Hy = H and Hq41 = (’Hq)TXN. The
result is true for ¢ = 0. Assume it is true until some ¢ € N and let us show it still holds for ¢ + 1. We
have

q
GO 5401 =GO + > _ 6D OD°G + GD°O)|3,,
=0

with

DM (OD° @)y, <5 2|OD° Glyyran 5wy
l l
<O+ > 18lrsmi-m D Claty srm = 6~ 2 C1)

m=0 m=0

Aty

where we have applied (4.9) with G replaced by D°G, ¢ = [ and H = H;. Similarly
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IDHGD Oy, = D Y IDAGDEO)I2 =| Y |IDY(GDEO)5, |2
la|=1]8]=1 1B1=1
<| Z 0 |GDEO 5.r412
|8]=1

l
_ 1 1
<CO™= Y Glsmml Y. D30 5w ml?
m=0 |81=1
I+1 l
<CN)5~ 7 Y |GlasrmlOlrsmiriom

m=0

and the proof is completed. O

The next result provides a bound on the Sobolev norms of ¢(F) when F € S?(R?).

Lemma 4.2. Let ¢ € N. Let 0 € N*, let F € S°(R?) and ¢ € C4(R®,R). Then

q
(4.10) D(F)sm,q < C@) D IFIB srageioml D 1050(F)IE]2
m=0

a€eN?;|a|<m

Proof. We prove the result by recurrence. For ¢ € N, we define Ho = R and Hy41 = (Hy)T*N. The
result is true for ¢ = 0. Assume it is true until some ¢ € N and let us show it still holds for ¢ + 1. We
have

q
()35 m.q1 = [S(E)E+ D 8T DGR, .
=0

Moreover, using Lemma 1) with ¢(F) replace by oy ¢(F') and the Cauchy-Schwarz inequality
yields

0
DM G(F) R, = [DHDG(F) 3, =Y |ID 0P e(F)D FI)3, |
j=1

)
<ot Z \@(cj)(b(F)D(st |’2Hl,6,T,l

j=1
? ! , i
<67 371CW) 210 G(F) ko w,1-ml D F s g
=1

m=0
0 I l-m
_ o . L8
<CWOT IS D IR s asriomemel D 020D SF)RIHD F s
ji=1 m=0m°=0 a€N?;|al<m®
I l-m I
_ o ; PRy
<C(1)o~'| D oFIE sraasimmeme )| D 1020 G(F)RIZ 1D F |y, 5.mm
m=0m®=0 J=1 aeN?;|al<m®
l l—m
<O Pl |F| | 026 (F)IZ]? 2
~ R?,6,T,1,l+1—m—m® R®,6,T,1,m+1 T R
m=0m®=0 a€eN?;|a|<me+1
+1
- 1
SCOOMDYIFB sraise-ml Y 056(F)RIZP,
m=0 a€N?;|al<m

and the proof is completed.
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Lemma 4.3. Let ¢ € N. Let 0 € N*, let F € S°(R?) and G € S°. Then

o lat2)?
)+ 1Flgo 51,041

(4.11) |0y, (G det ) 5,0 SC@)][W5, oo,
q
X Z ‘G|]§LD,6,T,q—m
m=0
and
(4.12) | oo (120 3 [R6:700 SC(@) 1 Was (-3 )l osq
Proof. First let us recall that it is proved in [5], Proposition 2, that
20(g+1)
|det v rlrama < O(@)|deth o™ (14 [FGRY o).
Using Lemma and Lemma and that ¥, € Cs°(R), we have
|y, (G det W’%m) R.6.T.q

q

<C(q) Y |G detVpplits sragriml D, 1020, (Gdetvyh )R]

m=0 a€N?;jal<m
q
1) ) 1
q) Z |GIRo 51.g41—m| A€t VE D[R 51 g11—ml Z |07 Wy, (G det 7F,T)|]§‘2
m=0 a€eN?;jal<m

q
m —m)m 20 +2—
COICllog D 1GIE 5mgs1—m (L + | detyg | @H2Tmm) (1 4 [FPEEE2 00

m=0

<C(Q)”\I’n1 Hoqu(

2

(a+2)* olat2” ! m
T+ Fly s 0,041) Z |GlR> 57,q—m>

m=0

and the proof of (4.11) is completed. In order to prove (4.12)), we simply use (3.2 together with
Lemmald.2l O

4.2. Sobolev Norms. Before we state our results, we recall that 3ngt6» t € %, is the tangent flow
and is introduced in 1' In a similar way, for a € N%, % X? denotes the derivatives of X7 of order
0

|| w.r.t. X§ and is given by 8()25)1 .. (XJ)dX‘S The following result provides an upper bound for the

Sobolev norms appearing in the upper bound of the Malliavin weights established in Theorem [:1]

Theorem 4.2. Let T € 7%* and T = (0,T]N7°. Letq €N, ¢° € {0,1}, p > 1 and a € N o multi-index.

Assume that AS(q+ |a| +2) (see and ), Aj(+00) (see ) and AS (see (@) hold. Then

1 5 C(q, o
(4'13) E[jgp‘ <5X |Rd75,T’qo’q]p <(‘XO|JR‘7Z(:I-li'qu\<>4+2>()""]-q0=|04\=0)"‘©<1-|—|0¢|+2) (@Pastial+2)

X C(d N 7q pq+|a|+2)

T

X eXp( (Qapapq+|a\+2)(T + 1)mC(p,q,p,pq+|M+g)(ZJ)QZ)'

Moreover, if we replace the assumption AS(q+ |a| +2), by the assumption Al(q+4), then

1
(4.14) E[ngp LAXP B 5p )P <OXOIraTp,,um0 + Dgaa) 0P

1
X C(d N 7q pq+4) GXp( (Q7p7 pq+4)(T + l)mC(p,q,p,qurzl)(Zé)@Q)'

Remark 4.1. This result was obtained in [7] (see Theorem 4.2) in the case p, = 0 for r large
enough in the assumption AS(r) (see (2.2 (m)
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4.3. Malliavin covariance matrix. In this Section, we provide an upper bound for the localized
moments of the inverse of the Malliavin covariance matrix of (X?),c.s defined in (3.1). In the statement
of our result, we employ the following quantities

d
7,(8) :=min(s %1, 551 10 o),
md|210(1 + T3)|2
21-%  40(L + 1)N =5 L) s
n, = max(l, =, (TVL(j(a)m )1 210 + 2L (ma25(1+ T R10N T )T,
0 *

Theorem 4. 3 Let T € 7* and T = (0,T] N 7° and p > 0. Assume that 1, € (n,,71(9)], that

ny € (1,6~ 27]1 | and that 62n2T'8D < 1 (366 (U) Also assume that A5(2L—|— 5) (see and
M/} As(L (see (E)) AJ(+00) (see (E)) and A (see ) hold. Define also qnz =[1- 2112(‘27)2”

C(d,L,p,p2r+5)
L+ 1p,,,:>0/X5|ga DC(@.Lp)

X%,det(}'{%)2,77,T>0} = (V1 (x8)T)1353d(p+4) 2L+5

)
(4.15) E[| det ’YX%’T'pl@

1
x C(d, N, L gy par+5) exp(C(d, L, p, par+5)(1 + T)WC(d,Lp,p,szmgz)(26)94)~

and, for every a > 0,

(4.16) P(@Xg,dct(X;)Z,n,T <1) <6 Ty M (Z°)

C(d,L,p,p2L+5
—(p+4) 1+ 1P2L+5>0‘X5| ( pibars)

n Vi (x0)13"3d(p+4)

X DC(d7L7p):Dgéi’g,p)mc(d,L,p,P,p2L+5)( )C(d N L 7p7p2L+5)

X exp(C(d, Lv p, p2L+5)TmC(d,L,p7P7P2L+57qf,2 ) ( )94)

Remark 4.2. We have the following observations concerning the result above.

(1) The terms 13L in the r.h.s. of both and can be replaced by (12 + a)t, a > 0, but
the miscellaneous constants C(.) may explode when a tends to zero or to infinity.

(2) When the uniform Hérmander hypothesis A3°(L) (see (2.5)) holds, the estimates ({.15) and
can be improved. In particular the term (TVL(Xg))_13L3”l(p+4) in the r.h.s. of may
be replaced by (VZOT)_I?’LdP and Vi, (x5) 71334+ may be replaced by 1 in the r.h.s. of
In this uniform elliptic setting (L = 0) we thus recover the results from [T] Proposition 4.4.

4.4. Proof of Theorem We begin by introducing for every (z,t,z,y) € R? x 7% x RN x [0,1] and
(i,j) €{1,...,N},

1
(4.17) Al(z,t) = 0,:4(x,,0,0), AL (2,t,2) = / (1 =X)0,:0,:9(x,t, Az, 0)dA
0

1
A3($,t,2,y) :/ 8y1/)(1'7t,27)\y)d)\
0

We will also denote A; := (A?);en and Ay 1= (A;’j)i7jeN2. Before we treat the Sobolev norms of X°
and L3 X% we establish some preliminary results. The first one gives an estimate of the Sobolev norms
of LY. Z°.

Lemma 4.4. Let T C 7% and t € 7°, t > 0. We have the following properties.

A. For everyi=1,...,N, we have

(4.18) E[L5 22 = 0.
B. Assume that holds for v = %-. Then, for every g € N and p > 1

1

C(N,p,q)m
(4.19) 12 e g < S,
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Proof. We prove Using the duality relation {i with H = R, we obtain immediatly IE[L‘STZ;S ’i] =
Z(w,j)eeTxNE[D?wJ)lwa ])Zf’z] = 0. In order to prove We recall (see 1| that

5,4 _1
LEZY =x00.:In g, jo(072U) — 2. p) Lier

and
LY Z) =XV, 5072 Uf — 2. 0) Lier.
For a multi-index o = (al,...,a%) with o/ = (¢;,i;), t; € 7°,t; > 0,4; € {1,...,N},
8,0 o _1
DS LS 2% = 575 X592 Inp,. 12(07207 = o) leeTln_ (1=1,)
with o := ((a¥)?)jen, () = 1;—; + >, 1;,—;. In particular,

i1 76 762 5 ol —1::6 2
E 5]|DaLTZt |]RN =Xt E |8u lnﬁ!’r*/2(5 2Uy _Z*7t)| licT
a€e(TxN)I aveNN
i<aq lav|e{L,...,q+1}

Since the function ¢,._5 is constant on B, /»(0) and on R\ B, (0), using (2.10), we obtain

E[l Y. &DalhZ][in]?]
a€e(TxN)J
Ji<aq

e [|X?‘p} u 1 p N 1
=ljfer————— 0% In@re (672U — 2, 4) 2202 @re (672U — 244 )d
e =X S 0 g (b s ) PlEF o (6 i

* a*eNN
la¥|e{1,..., q+1}

=1 Ts*/ | 102" In@re (w)[?] % pre (u)du
' Ty /2< |u| <y Z 2 2

aveNN
la®lef{l,....q+1}

OW.p,q)atearr N
= pPlatD) teT

In order to derive 1) we observe that m. > e.A[,,(B(0, 5 )) so that £o|m2 2N < Om,. O

Now, we establish a bound on the moments of (X7?);cs.

Lemma 4.5. Let T > 0, T = [0,T] N 7° and p > 1. Assume that A{(2) (see (2.4 (W and (.)) and
AJ((p+1)(pV2) (see ) hold. Then,

(4.20) Blsup | X7 [ <(1+ X3 o) exp(CR)TD My 112) (2°)7).

Proof. Consider t € 7%*. Using the Taylor expansion yields

4,1 4,1 4,1
X7 B =1X7_s15a + I X7_5|ha ZX (Xi" = Xi7s)

+ZX6 Xt 52®J
,j=1

1
p / (1= NIXE+ AXP = X2 )P21,
+(p—2)1 = N)|X)_s + NX) — X 5)Pe X5+ MXD — XD g))igydA

with notation x;g; = x‘x7 for x € R%, i,j € {1,...,d} and, with notations from (4.17)),
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N

XP=X{, 40ty Zél/ Dh(X0_5,t — 8,\0% 20, 0)dN + 5As(XD_5,t — 6,63 20,5)
=1
N

=X} 407 Z)ANX] 5.t —6,0,0)+6 Z Z0ZMI AR (X st — 6,67 7Z0,0)

=1 7,7=1

+6A3(X) 5t —6,6220.0),

Moreover, for every (z,t,2,7) € R? x 10 x RY x [0, 1], we have

d 1
Oy (z, 2, t,y) =0, (0, 2z, t,y) + le / Ot Oy Az, 2, t, y)dA
=1 70

with similar formulas for the derivatives w.r.t. z. Moreover, it follows from assumption A$(2), (2.2)
that

N N
{|8yw|Rd + Z |aziw|]Rd + Z |aziazjw|Rd}(Oa t,z, y) <©2(1 + 6'372 ‘Z|1%3V)

i=1 ij=1

Combining the previous inequality with A¢(2), (2.3) yields

N N
{10y0lzat D 10uctlias + > 10::00.0lma w2, y) < Da(1+ 67 [2[2%)

i=1 i,j=1
+Z / {1010, | pa +Z|axla |ga + Z 18,100,510 |pa } (A, , 2, y)dN
1,7=1
<D5(1+ 067 [2]2) + Dlalga (1 + 5~ 5|2[x) = D(x, 2,0)
In particular, since ® > ©4 and p > po, for p > 2
B{X7 B, )—EIX7_ 515 < pOE[ X[ s[5  D(X]_5,6% 2], 6)(1+ | Z] [3)]
+p(p — 1) R[|X]_s|5 2 D(X]_5,0% 2], 6)* (1 + | 2] |n )
+08D(X]_5,622],6)" (1 + | Z] |z~ )"
<SCP)Mp41)(pv2) (Z2°)DPV2IE[L + | X7 s3]

and (4.20) follows from the Gronwall lemma. For p € [1,2), it simply remains to use the Cauchy-
Schwarz inequality.
]

In order to obtain estimates of the Sobolev norms which appear in Theorem [£.2] we derive some estimates
for a generic class of processes which involves the Malliavin derivatives of 03, X % and L3 X?. We first
0

write, for t € 7°,
X2 s =X + 42 sz;JAz (X0, t)+0 Z 20020 A (XD 1,85 20 5)
i,j=1
+ Ag(X),t,62 70 5,6),

with A;, Ay, and Az defined in (4.17). We introduce the R?*9-valued process (Bi);crs such that for
5
everytem

B, =67 Zz VR ALXS 1)+ 6 Z 200 20T N LAY (XD 1,05 20 5) + 0V As(X] 1,85 20,5, 9).

1,j=1

We now consider a Hilbert space H and introduce some H9%valued processes (B} );exs, (B )ens, which
are both adapted to the filtration (0(Z2,...,Z))iens and (B})ieqs which is adapted to the filtration
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(0(Z,...,2) 5))iens and for every h € H, (B4 h)y, 1 = 1,2, and (B®, h)y;, all belong to (S°)%. In this
proof we will consider a H%valued generic process (Y;),c-s which satisfies,for every ¢ € 7%,

N N
(4.21) Yiis =Yi 4 BY; + 67 Z ijféBtl’l + 63 ZL%Z&&B%Z + B}
=1 i=1

GHd,é,T,q,p(Bla B27 BB) =1

1,. 2,.
+ fgg(”Btfé”(H”’)N,&T,q,p + ||Bt76||(7'ld)N757T7q7p + | Z B§u||Hd,5,T,q7p)'

wend
w<t

where for (B(i,1))(i,1)eNx{1,...,ay taking values in H, |B|payn = |Z£\L1 27:1 |B(i7l)|%_t|%. Before

we estimate the Sobolev norms, we recall the Burkholder inequality for Hilbert space. We consider a

separable Hilbert space H, we denote |.| the norm of H and, for a random variable F' € H, we denote
1

|Flla,p = E[|F[5]7. Moreover we consider a martingale M,, € %, n € N and we recall Burkholder
inequality in this framework: For each p > 2 there exists a constant b, > 1 such that

n
(4.22) VneN, || sup }Mk||H,p < BB M — My [3) %]
ke{o,..., n k=1

As an immediate consequence

1
2

(4.23) | sup }Mk\lw,p <0l Y M = Ml

ke{0,....,n k=1
This first result gives an estimate of the Sobolev norms of (X?)ier, (Y;)teT w.r.t. the quatity above.

Proposition 4.2. Let T >0, T = (0,T]Nn’%. Let ¢ € N and p > 1. Assume that AS(q+2) (see
and ), AJ(+00) (see ) and A (see (@) hold. Then
(4.24) Efsup X220, JF <X gLy, as0 + Dgpa)@Prs)
te
% exp(C(q, p, Pgr2) (T + 1)Me(prg,p.posa) (Z°)D?).

when q = 1. Moreover, for (Y;)icrs satisfying , if we assume that AS(q + 2) holds, then

1
|§-ld,5,T,q] i

Efsup|Y;
teT
SENY015, 50,077 + Sp1a5.m,0,00p(B', B, B)) (X[ Lp, 4050 + Do) @Pere)

1
(425) X O(d’ Na My 77 q, pq+3) eXp(C(Na q,DP, pq+3)(T + l)mC(p,q,p,pq+3) (26)92)

Proof. Step 1. Let ¢ = 0. We first prove that

E[suﬂ;?) |Yt|§.[d]5 Q(E[|YO|§_N]5 + bpsmp(Za)ET%GH”’,(S,T,o?p(Bl;070)
te

C(N,p)m?

r T%GHd,E,T,O,p(Oa B27 0) + GHd,S,T,O,p(O? 07 BS))

+b,
(4.26) x exp(C(p)(T + 1) My 1) (2°) 7 D).

We study the terms which appear in the right hand side of (4.21). We consider i,j € N. Notice
that for every t € 7°, IE[L‘STZSJJ] = 0 (see 1' and B> is FZ -measurable. It follows from l)
(with H replaced by H?) and (4.19) that
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sup|52z S L2 BER.) 7 <b 6ZE|Z LyZ)BY R )

teT i=1 wend ten? =1
w<t t<T

2
C(N, p)m N 2 (22
<oz QDI 5 5 g 3 B2l )

temd i=1
t<T
2
C(N,p 2
52(72)Tt€»up E“Bt |(7.[d N7
en’

t<T

In the same way,

2 2
bup|52 E E ZiiéB“p ]7 <b? Dﬁp(Z )prupEHBt |(7.Ld)N]p'
teT i=1 weT tt€<T

w<t

Using A; (see (2.3))) together with (4.23) (with H replaced by H?) yields

sup\(szz ST 20 VL ANX )Yl < b252E|ZZ5’5V ALUXD YR

teT

i=1 wend temd
w<t t<T
2 2
<M, (Z°)7 D25 > E[Vi[h,.]7.
temd
t<T

Applying A? (see (2.3)) with the triangle inequality also gives

4,1 4,7 7, 1
fg};w Z Zw-l—(SZ +(5V A J(‘X"S w, 5 Zw+5)y |Hd]p
wems

w<t

<6 Y EBIZYS 205V A (XD, 4,62 20 )il )7

temd
t<T

<2My(p12)(2°)7 D6 Y E[Vifh,]7,
tens
t<T

and similarly

1

Esup |0 Y VoAs(X),w, 0528 5. 0)Yullul? <0 E[V,As(XP 0520 5. 0)Yilh]7

teT wems tend
w<t t<T
1 1
<2Mpp(Z2°)7 D8 > E[|Vilh,u]7.
tems
t<T

We gather all the terms and using the Cauchy-Schwarz inequality, we obtain

D=

1 1 1,1 .
[SUP |Yt‘yd]p <E[|Yo %d]p + bpimp(zé)pTz sup E[Btl |](gg.[d)N}

tems tend
t<T t<T
1
C va 1
+bp7( " Jm T3 sup E[| B> ('Hd)N} + supIE| Z | B3 |44 |P] 7
tt€<7TT t<T ’ww€<ﬂ;
1 2.1
+ (4T + 6,45 (2°) 7D (3 Y E[JYil,]7)?
tems
t<T

Hence, using the Gronwall lemma yields (4.26]).

C. Rey



Hoérmander Properties of Discrete Time Markov Processes 29

Step 2. Let us prove (4.24). For ¢ € N, we define Rg = R and Ry41 = (Ry)T*N and we have

1 o 1
E[sup|X |R,,6T1q r = sup Z |D5aq Xf %do]p.
teT o q

q =1

First, we focus on the case ¢ = 1 and prove that

1 1 l p,1
§2Efsup | D° X7 |7.]7 =57 bupl > Z | D iy X7 el 217
teT ! weT 1=1

(4.27) <O3(1 + [xpIE%) exp((T + DMy 1) (pav2) (2°)2C(p, p3)).-
We remark that for every t € 7%, w € T, and every i € N.
52 2Dy 0 X1y s =(Taxa + By)6? DYy X7 + (B i
with, for (w,i) € T x N,
(B s = sTss(GEAS (XL, 0) 4 65 28,14 110y A3 (X 1,5 28 )
y j=1

+0% Y Z)0 20 0. AV (X] 1,03 20 5) + 630, As(X] 1,02 Z) 5, 0)).
,l=1

In particular, 6%D5Xf = (62D‘(5w 0 )(w,i)GTXN is a R{-valued random variable and, for ¢ € 70,
we have

§3D° X0, s =(Iyxa + Bi)d*D°X? + B,

Then, (4.27) follows from Lemma (see (4.20)) and (4.26) with Y = §2D°X% H = Ry, and B?
thus defined since the assumption A¢(3) (see (2.2))) implies that

6Rf,6,T,07p(0’ 0, B%)

1 1
_1+SUPE|ZBled]p: SUPE|ZZ|Blww+M|Rd| J?

tew
te<T wend < wend i=1
w<t w<t

SLHE[ Y (BT oo frayn | 5]7

tend
t<T

1

<14T36°3 sup E“(Bl £)t+s.. |(]Rd)N]p
tem
t<T

<1+ 5T D3(Mop(Z2°)7 + My, (Z2°) 7 E [sup|X 51517 4 My, 12y (2°)7).

Now let us focus on the cabe g €N, ¢ > 2. Similarly as in the case ¢ = 1, §2 D% 1X7 is a Rd valued
random variable and, for ¢ € 7%, we have

N

S DX}, 5 =(Laxa + Br)o* D*X} + 6% 3" 20/ Bri + B3,
1=1

with, B%Z =0, Bi' defined in the beginning of Step 2, and for ¢ > 2
Byt =%(D°X))TH, AL (X], ) D1 X} + 65 DBl

N

B}, =6"7 T (B + BY?)DPa-1X0 4 53 2D°B2 |, +46Y B! D0z,
=1
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with, for (w,v) € T x N,

B}t =6 Z 232 (0 DO X)) THLAY (XD, 4,62 28, 5)
1,7=1

+ (62 DO X)) TH, Ay (X],,02 70,5, 0)

(B2 o = Xl s Luwmt s (02 VL AV(XD 1) +5ZZE::5 14 1) VL AST (XD, 1,62 20, 5)

j=1
N
+02 Y 220V AV (XD 1,67 2 5) + 020V, As(X] 1,0 Z] 5, 0)).
i,j=1

First, we remark that, since B1 = 0, it follows from Lemma and (| - ) that, for [ € N, if
assumption Af(qg 414 1) (see (2 ) holds then

6Rg,5,T,l,p(B;,,7 07 O)

a _
<Brasmip(07(D°X°)TH, A (X%, ) D1 X?,0,0) + GRg_l,ﬁ,T,FFLp(B;fl,J070)
q—1
a=aH1 5 s s 5,q4—q° v6
S Zl6R27q<>+1x5»T,q°+l—1,p<5 2 (D X )THIAl(X 7')D meX ’070)
q°=
it 1 X7 B P,

<C’(d7 q, l)©q+l+1E[su¥ |1 + |Xt6‘]Rd,1’q+l_1
te

Moreover

Sra5m,1,(0,0, B ) <SR ,51,1,(0,0, 5T (33 '+ B¥?) DX

+6ra  sm141,(0,0, 3371,.)

q—1’
N
1,6 5,i
+6Rasmp(0,0,6 > By, D°Z%)
=1

(B31+B32)D5q q X(;)

q—
Z q q0+1,6Tq0+l 1p(

- N
1, 5780
Z +1,5,T,q°+171,p(070752quqo“D Z-&-ZzS)

»Q

i=1
3
+ 672?,57T7q+l71,p(0’ 0,B7 ).

Using a similar approach as for the case ¢ = 1, assuming AJ(qg + 1 + 2) holds (see (2.2))), then

q+i—-1

p.1
Sresgri-1p(0,0,B) ) =1+ supE[ > 67| > DB} 7. |2
tens fryr e a®+1
t<T w<t

N q+i-1

=1+ supE SN0 6D (B )w+5,¢|3zqo\%ﬁ

wend =1 ¢°=0
w<t

=

© <
<1 +T%5’%|q+l|% sup  sup  E[§T DB ), [Fpu ]
ten® ¢°€{0,...,q+1—1} a©
t<T

1
<1+ T% C(d7 q, l)©q+l+2mp(Pq+L+2+2) (Zé) P

4 +1-1 p 1
X Elsup [+ X1 glfi!y 00y P+ XD s 5 2P
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Moreover, for ¢° € {1,...,q — 1},
5,g—q° 6
6R?—q°+1’6 Toqo+l- 1;0(0 0, 57 (33 ! 3372)D A9 X0
=1+ Sup E Z (5 B3 1 + B3 2)D5,q q X5 O—H_l]%
ten® wens 0+1aq
< w<t
3.1 pé.a—q° 510 1
<L+ Y E[l6*F B D X L
tend
t<T
1
+supE|Z§ BBzDéq qXé %d q<>+z_1]",
temd wend Ot
t<T wet

with, since A9(q+1+2) (see (2.2) holds,

1 1
[|5733 1D§’q a X6 %d <>+1vq<>+l—1] v g C(da q, l)(smp(pq+l+2+2) (Za) p©q+l+2
—q

51q+1 5 1Pa+i 1
Blsup |1+ IXPIEE, g0 P11+ X )
and
32 5 5 p i
B[ > §7 B3?D%i9° X9 o,q°+l71]p
S
oo

N
a-1 p,1
=E[| Z ZMT(BEE YD1 X5|Rd ,q°+171|2]”

wend i=1
w<t

2 1
<6 Z ZE|5 (B3?)yy5:D774 X6 ovq°+z—1]p|2’

wend i=1
w<t

together with the estimate
1

—2 o 1 1
E[|6"F (B3?), D"~ X5 %g_qo,qw—l]“ < C(d, q,1)0M e, 110012)(Z2°) P Dgyi4n

-2 s|p 1
Efsup |1+ X7 IR ayaa P+ | XD Rt P

Finally, for ¢° € {1,...,q — 1}, assuming A{(q +1) (see (2.2)) yields

1,2 9,1
67211 5T7q°+l lp 0 0 623 <> D(SZ__HS)

q—q%+1’
i=1

b p,1
<L+E[ ) Z&Q\Bq oo wDlws s wié\%jiqo,qul_l\z]p

wend i=1
w<t

Pl
<L+E[] Y 5|B;_qo7w|§RZ_QQ)N,QO+I_1\z]p

wend
w<t

N
<1—|—T2su E B
sup E IZ

<1 +TiGRgiqo,é,T,qOJrlfl,p(Bq ¢,.+0,0)

1
a° t|(73d O)N,q°+l—1]p

'U\'—‘

<L+ T3C(d,q,)Dgei(1+ E[sug 11+ |Xf|§jf;;+l N L
te
More specifically, we have shown that
1
GRfl,é,T,l,p(Oa 0, BS,) gC(da q, Z)(l + T)mp(Pq+l+2+2)(Zé) P ®q+l+2

l 1
x (14 E[fleuT) 1+ IXP & oy P+ X7 B2 ] ).
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Since A9(g + 2) holds, taking I = 0 and applying (4.26) yields, for ¢ > 2,
1

1
Elup X7 (R 5m0,0) 7 SC(dy @ 0) (1 + T)Dy((p, vy +2)(2°) 7 D2

2
x exp(C(p)(T + 1)Myy(p42)(2°)7D?)
X Efsup |1+ | X7 [Fa, o P[1+ X7 Pat2 )y
teT o
Using a recursive approach cimbined with - 4.27)) yields (4

Step 3. In thls last step, we prove (4.25). For ¢ € N, we deﬁne Ho =H and Hyy1 = (Hy)T*N. For
Y satisfying (4 ,We have (remember that D%9Y;, t € 71'5 belongs to ’HZ) for every t € 7°

52 D%, 5 =63 DY, 4+ B,6% D*9Y, + 62 Z 20 B+ 6% Z LYz} B, + B2,
