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ABSTRACT. We present an abstract framework for establishing smoothing properties within a specific
class of inhomogeneous discrete-time Markov processes. These properties, in turn, serve as a basis
for demonstrating the existence of density functions for our processes or more precisely for regularized
versions of them. We also use them to show the total variation convergence towards the solution
of a Stochastic Differential Equation as the time step between two observations of the discrete time
Markov processes tends to zero. The distinctive feature of our methodology lies in the exploration of
smoothing properties under some local weak Hormander type conditions satisfied by the discrete-time
Markov processes. Our Hormander properties are demonstrated to align with the standard local weak
Hormander properties satisfied by the coefficients of the Stochastic Differential Equations which are the
total variation limits of our discrete time Markov processes.
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1. INTRODUCTION

1.1. Context. For 6 € (0,1] and d,N € N* we study a sequence of independent random variables
79 € RN t € m%* (we use the notations 7° := N and 7%* := §N*), which are supposed to be centered
with covariance matrix identity and Lebesgue lower bounded distribution (see for definition). In
this paper, our focus is on the Re-valued discrete time Markov process (X7 ),c.s defined as follows:

(1.1) X5 =0(X], 1,002, 5,0), ten’, X)=x}eR"
where ¥ : (z,t,2,y) — ¥(z,t, 2,y) € C°(R? x Ry x RY x [0,1];R?). Our primary challenge is to

demonstrate that, under suitable properties on v, we can construct a process (X, );c.s that is arbitrarily
close to (X?),cns in total variation distance (for any fixed ¢ € 7). Additionally, this process satisfies the
smoothing/regularization property: For every a, 3 € N% there exists C : R? x 7%* — R, (which does

not depend on ¢) such that for every T € 7% x € R and every f € C®(R%; R), bounded,
o -0
(1.2) 09 E[0° f(X7)|1X5 = X]| < C(X, )| f oo

A refined version of this result is exposed in Theorem[2.1] Relying on those regularization properties,

we can infer that Yf, t € n°, admits a smooth density (see Corollary . A main application of those
results is provided in Theorem where we identify a total variation limit (along with explicit rate of
convergence) for X7, t € 7%, as ¢ tends to zero. This weak limit random variable is given by the solution,
at time ¢, of the Stochastic Differential Equation (SDE),

t N t
(1.3) Xt:xg+/ VO(XS,s)ds+Z/ Vi( X, s)dWE,
0 i=1 70
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where (W})i>0,i € {1,...,N}) are N independent R-valued standard Brownian motions and Vj =
By (., 0,0) + 1N 9%4(.,.,0,0), Vi = d.9(.,.,0,0), i € {1,...,N}.
More particularly, we show that, for € > 0, for T € 7%, T > 26, if Xg = X = x € R?,

1

dry (Law(X7), Law(X5)) =3 sup [E[f(X1) — F(X)]|
fRI—[—1,1],f measurable
1, 14 x5
1.4 <92 —— R Cexp(CT).
(1.4) DAL p(CT)

where ¢, C,n are positive constants and V,(X) € (0, 1] under a local weak Hormander type property
(of order L, see for details and definititon of Vy) at initial point X. It is noteworthy that, the rate
82 can be replaced by ¢ if the third order moment of Z?, t € 7%*, are supposed to be equal to zero.
Consequently, X; admits a density which can be approximated (uniformly on compact sets) by the one

6
of X,. Similar estimates also hold for the derivatives of the density. Those results are derived under
polynomial type upper bounds on the derivatives of ¢ in conjunction with the aforementioned local weak
Hoérmander type property.

Processes such as (X?),crs commonly appear in weak approximation problems where the perspective
differs from the introduction of the earlier results. The problematic is to consider a process (X¢)i>o
solution to a given SDE similar to . Subsequently, the aim is to build the weak approximation process
(X2),exs and then compute an approximation for E[f(X;)] by means of E[f(X?)]. Two interconnected
questions naturally arise. First, what is the rate of convergence of the approximation as J tends to
zero? Second, for which class of functions f does this rate hold? Among others, this paper addresses
those questions by providing an upper bound for the total variation distance (that is when f is bounded
and measurable) with rate §37¢. It’s worth noting that this rate could be improved to §'~¢ or even
§™~¢, m € N, regarding some conditions on Z?, t € 7®* and v. Considering smooth f bounded with
bounded derivatives up to some given order, it is well established that the weak convergence of the
Euler scheme (¢¥(z,t, 2z,y) = Vo(z, t)y + Zf\il Vi(x,t)z%) occurs with rate § (see [30]), but various higher
order methods (see e.g. [29], [22], [I]) propose better rates (that are referred to as weak smooth rates in
this paper). An intriguing question emerges: do these weak smooth rates still apply to total variation
convergence? In the case of the Euler scheme with Gaussian increments, the total variation convergence
with order ¢ is established in [8] in a homogeneous uniform weak Hormander setting. For higher order
methods, a solution combining the use of existing results concerning weak smooth rates and regularization
properties similar to is provided in [7]. In this article, it is shown that for (X?),cs defined as in
, the total variation rate aligns with the weak smooth rate under the restriction that 1) has smooth
derivatives and satisfies a uniform elliptic property (i.e. uniform Hormander property of order 0): For
every (z,t) € R? x Ry, span(V;,i € {1,...,N})(x,t) = R9,

The results [8] and [7] offer first insights for establishing total variation convergence under Hérmander
type conditions for processes satisfying . The complexity of our approach relies both in the abstract
definition and in the weak Hormander properties at any order L considered in a local setting. To
provide clarity on our intentions, let’s delve into specifics. To begin, we give an alternative formulation
of by employing the Stratonovich integral:

t N t
(1.5) Xt:Xg+/ Y_/O(Xs,s)ds—kZ/ Vi(Xs,8) 0 dWY,
0 i1 /o

with Vp = 1, —% Zfil V. V;Vi. In this article, Vi, Vi, i € {1,..., N}) and its derivatives are supposed
to have polynomial growth in the space variable except for the order one derivatives in space which are
simply bounded so that the existence of an a.s. unique solution to is guaranteed. The infinitesimal
generator of the Markov process (X;):>0 expresses as A = ‘_/08950 + % Zjv:l(viazi)?. As demonstrated in
the seminal work [I7], the hypoellipticity of A + 0; and then the existence of a smooth density for X; is
closely related the dimension of some Lie algebras generated with the vector fields Vp, V;, i € {1,...,N}).
This type of properties are referred to as Hérmander conditions, which we now introduce.

We consider, for fixed t > 0, the vector fields on R? given by, z +— Vy(x,t) and z = Vi(w,t), i €
{1,..., N}. Subsequently, we introduce the extended vector fields on RY x R, denoted by Vi : (z,t) —
(Vo(z,t),t) and Vi ; : (z,t) = (Vi(z,t),0), ¢ € {1,..., N}. In particular, the following relationship on Lie
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bracket holds: For V, W, two vector fields in {Vp, Vi,...,Vn} and (z,t) e RE xRy, j € {1,...,d + 1},
Vi, We|(, )] =(Vo WV (2,8) — V VW (2,8)) + O, WIVIT (2, 8) — 0, VIWIT (2,0)
:[Vva W](xv t)J + 6tW>ZV*d+1(x7 t) - 6tV*jW*d+l(x7 t)

It’s worth noting that = + [V, W](z,t) is a vector field on R? and we use convention [V, W]4*+! = 0.
We are now in a position to present the Hérmander properties which mainly consists in assuming that
the vector fields generated by the Lie brackets is full in R?. Various versions of Hérmander properties
appear in the literature serving to prove hypoellipticity. We try to give a brief overview. Let us introduce

V.o ={Viiie{l,...,N}}.
Vint1 =V, U{[Vio, V], [Vii, V],i€ {1,...,N},V €V,,}, neN.

Similarly, we define V,,, n € N, in the same way but with 1_/*’0 (respectively Vi 1,..., Vi n) replaced
by Vo (resp. Vi,...,Vn). The weak local Hérmander assumption (at initial point (Xo = X,0)) in
inhomogeneous setting (i.e. when Vp,...,Vy depend on time), which is the one we use in this paper,
consists in assuming that

span(U, V.. ,)(X,0) = R%.

In the homogeneous setting (i.e. Vp, Vi,...,Vn do not depend on the time component), it consists
in assuming that: span(U2,V,,)(x,0) = R? (see e.g. [20]).Obviously, if coefficients Vj, Vi, . .., Vi do not
depend on the time component, this last condition is equivalent to assume that span(US2 oV, ,)(X,0) =
R,

Notice that, when span(V,) = R?, we are in the elliptic setting. The hypothesis is termed 'local"
Hoérmander because V., ,, is considered at the initial point (Xo = z,0). In the case where, for every
(y,t) € R? x Ry, we have span(US_, V. ,,)(y,t) = R, we refer to it as "uniform" Hérmander property.
The term "weak' Hormander pertains to the definition of V., (or V,). Specifically, the "strong'
Hormander property corresponds to the case where ‘_/*10 is replaced by 0 in the computation of V.
The investigation of Hérmander properties in inhomogeneous setting is, for example, conducted to prove
existence of smooth density in [I2] or [I3] for the weak uniform setting, in [I] for the strong local setting
or in [I8] or [27] for the weak local setting. For the homogeneous case, refer e.g. to [20], [24], [6] or [26]
for applications of local weak Hérmander properties. We finally point out that, following the observation
made [31I] in the uniform Hérmander setting for SDE with inhomogeneous coefficient, hypoellipticity
may not hold if only span(U® ,V,,) = R%.

The results presented in this paper offer, among others, the opportunity to extend the abstract framework
from [7] so that, it can be applied to the total variation approximation of inhomogeneous SDE having
polynomial bounds on their coefficients and their derivatives and satisfying the ususal weak local Hérmander
property. In terms of the function 1, it simply consists in supposing a weak local Hormander type
property (see (2.5))) and assuming polynomial growth properties on the derivatives of ¢ (see (2.2) and
(2.3)). In the homogeneous case, those assumptions are similar to the ones made in [20] concerning the
coefficients of (|1.5)). We also highlight that the regularization properties established in this current paper
(see Theorem enables to demonstrate that the total variation rate of convergence in the local weak
hypoelliptic setting, aligns with the weak smooth rate. (see Remark . Total variation convergence
with high rates of convergence can thus be obtained for the methods presented e.g. in [29], [22] or [I].

Similar results have previously been explored but only restricted to the case where (Z),cs.- is made
of standard Gaussian variables and for some specific ¢ (see e.g. [§] when ¢ is the Euler scheme of
a homogeneous SDE satisfying weak uniform Hoérmander property). In particular standard Malliavin
calculus can be applied to derive total variation convergence. It is worth mentioning that analogous
results are also investigated under a different (and weaker) condition from the Hérmander one, called
the UFG condition, but we do not discuss this type of hypothesis in this paper (see e.g. [19] for an
order two rate scheme still in the homogeneous setting). In [8], the methodology differs from ours in the
sense that the estimates are obtained relying on the proximity (in the LP-sense for Sobolev norms built
with Malliavin derivatives) between a well chosen coupling of the scheme (X),cs and the limit (X;);>0
which satisfies standard regularization results under suitable properties (see e.g. [20]). More particularly,
a continuous time version of (X?),crs which satisfies a similar SDE as (but with freezed coefficient)
can be built. In this SDE context, specific to the Euler scheme, the Malliavin calculus techniques are well
known and used by the authors to bound the Sobolev norms. Conversely, our approach is self contained
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and regularization properties for (ylj)teﬁa are derived without using the ones satisfied by (X;)¢>0. Our
techniques draw inspiration from Malliavin calculus but is adapted to our discrete setting and also to
not only Gaussian random variables because the law of (Z?),c.s+ may be arbitrary. Due to the liberty
granted to the choice of ¥ and to the law of (Z7),cs.«, our result may be seen as an invariance principle.
Moreover, the law of X; depends on v only through his first order derivative in y and first and second
order derivatives in z evaluated at some points (z,t,0,0), with € R% ¢ > 0. Hence a similar limit is
reached for a large class of function 1 and random variables (Z9),cé.«.

1.2. Organization of the paper. Section |2 introduces the key technical result of this paper, focusing
on regularization properties of discrete time Markov process with form , namely Theorem
Additionally, the hypoellipticity result, meaning existence of smooth density for solution of
exposed in Theorem as well as a slightly more general version of approximation and a density
estimate result. Then, in Section [3] we delve into the development of a Malliavin inspired discrete
differential calculus in order to prove the smoothing properties of Theorem [2.1] Finally, Section [ is
dedicated to prove some estimates on Malliavin weights as well as on Sobolev norms and Malliavin
covariance matrix moments. These estimates collectively contribute to the recovery of the regularization
properties detailed in Theorem [2:1]

1.3. Notations. For E and E° two sets, we denote by EE° the set of funtions from E° to E, and for
d € N*, we use the standard notation E? := E{1@} We denote by M(R?) (respectively M;(R?)), the
set of measurable (resp. measurable and bounded) functions defined on R?. C?(R9), ¢ € NU {+oc}, is
the set of functions admitting derivatives up to order ¢ and such that all those derivatives (including

order 0) are continuous and C{(R?) (resp. Ck(R?), Cgol(Rd)), g € NU {400}, is the set of functions

belonging to C?(R?) such that all the derivatives (of order 0 to q) are bounded (resp. have compact
support, have polynomial growth).

We will also denotes M(R?; R) for measurable function on R? taking values in R (and similarly for other
set of functions defined above).

When dealing with functions defined and taking values on Hilbert spaces, we introduce some notations:
Let H,H® be two Hilbert spaces. For f : H — H® and u € H, the directional derivative 85 f
of f along u is given by (when it exists) (‘)Ef(m) = lim¢_,g M for every x € H. When
f is Frechet differentiable, we recall that u 85 f(z) is a linear application from H to H°® that
we simply denote oF f(z). When H® = R, we denote a¥ f(x) (which is uniquely defined by Riesz

theorem) such that for every u € H, (‘35]"(36) = (de(x),u>H. For f € My(R%4RY), we introduce
the supremum norm || f||sc = sup,cga |f(z)|gec with |.|gee the norm induced by the scalar product

(f, fO)gae = Zj; f7f3. When f takes values in RY*° we denote || f||gae = SUP¢cRa® je| o =1 | [E|Rac

For a multi-index a = (a',--- ,a%) € N? we denote |a| = a® + ... + a?, |la|| = d and if f € Cl*/(R?),
we define 0“f = ((’91)“1 ...(8d)"df =0%f(x) = gll g‘:f(x) Also, for 8 € N% | we define (a,3) =

(at,---,a, B, ..., 7). In addition, we also denote Vo f = (9, fi)(.)ef1,....do} x{1,...,ay for the Jacobian
matrix of f and H,f = ((8Ijamlfi)(l,j)e{l,...,d}x{l,...,d})i€{17...,d°} for the Hessian matrix of f. In
particular, for v € R oTH,f € R¥*% and (vTH,f)" = Y| 8,:0, fivl. We include the multi-
index @ = (0, ...,0) and in this case 9% f = f.

In addition, unless it is stated otherwise, C' stands for a universal constant which can change from line
to line, and given some parameter ¢}, C(¢) is a constant depending on .

Also, 1, stands for the Kronecker symbol, meaning 1, = 1 if a = b and is zero otherwise.

Finally, for a discrete time process (Y;);cxs, we denote by FY := (Y, w € 7°,w < t) the sigma algebra
generated by Y until time ¢.

2. MAIN RESULTS

In this section, we present our main result about the regularization properties of (X?);c 5. Once the
regularization results are established (Theorem [2.1)), we infer the existence of a total variation limit for
Xf, for fixed t € 7%, in terms of a solution to a specific SDE (Theorem [2.2)).

2.1. A Class of Markov Semigroups.
Definition of the semigroups. We work on a probability space (Q2, F,P). For § € (0,1] and N € N*,
we consider a sequence of independent random variables Z? € RV, ¢ € 7%*, and we assume that Z?, are
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centered with E[ZZ>7] = 1;; for every i,j € N := {1,..., N} and every t € 7%*. We construct the
Re-valued Markov process (X?);cns in the following way:

(2'1> Xer(; = w<X?’t75%Zf+676)7 te 776, Xg = Xg € Rd
where
Y e C®(RYx Ry x RY x [0,1;R?)  and  V(z,t) € R? x 7%, 4)(x,t,0,0) = z.

Let us now define the discrete time semigroup associated to (X?);c.s. For every measurable function
f from R? to R, and every = € R?,

ver, Q@)= [ Qs = BFXDIXE =l

We will obtain regularization properties for modifications of this discrete semigroup. Our approach relies
on some hypothesis on ¥ and Z? we now present.

Hypothesis on 1. Polynomial growth and Hormander property. We first consider a polynomial
growth assumption concerning the derivatives of ¢: For r € N*,

Af(r).  There exists ©,D, > 1,p,p, € N such that D > Dy, p > py and for every (z,t,2,7) € R xRy x
RN x [0, 1],

r r—la®|—|a’|
x t z Y _Pr
(2.2) > ST 10270 02700 Ylga(w b2 y) < Dp(1+ [zl + 07 F |2,

o7 [+t [=0 [a* [+ ]av =1

and

d N N
(23) {Z |6a:lay¢|]Rd + Z |awlaz”yb|]Rd + Z |6J;laziazjw|]l§d}(xa t7 Z, y) < 9(1 + 67% |Z|[EN)

=1 i=1 i,j=1

Without loss of generality, we assume that the sequences (D,),en+ and (p,)rcn+ are non decreasing.
We denote Af(+00) when AJ(r) is satisfied for every r € N*.
Notice also that, we obtain exactly the same results if we add ©3~!|y| in the r.h.s. of (2.3), or if we
add ©,.671|y| in the r.h.s. of . This is due to the fact that the function v is only used for y = ¢
(or y = C6§, C < 1) so the assumptions above are then satisfied replacing ® (respectively ©,.) by 29
(respectively 29,.). Also, we do not give explicit dependence of the r.h.s of or w.r.t. the
variable ¢ because in our results, ¢ is taken in a compact interval with form [0, 7.

At this point, let us observe that we can rely this assumption with the one in [20] where the authors
directly study the existence of density of the solution of by means of standard Malliavin calculus
but when coefficients do not depend on time. Taking 4 linear in its third and fourth variable, and
homogeneous, i.e. ¥ : (z,t,z,y) — = + Vo(z)y + vazl Vi(z)z" then, exactly AJ(+o00) is the regularity
assumption made on Vp,...,Vy in [20] (combined with a weak local Hormander property) to derive

similar estimates as (2.1]) in Corollary

The second hypothesis we need on v is local weak Hormander property on some vector fields we now
introduce. We denote the Lie bracket of two C! vector fields in R%, [,] : (C' (R4, R%))? — CO(R?, R?),
Ji, fo = [f1, 2] == Vafafi = Vafifo.

We denote Vo = 9,1(.,.,0,0)+1 SN 924(.,.,0,0), V; = ,:9(.,.,0,0),i € N, Vo = Vo— 3 N | vV, V;Vi.
For a multi-index a € {0,..., N}l and V : R? x R, — R%, we define also V[ using the recurrence
relation VIOl = [V, VIe] 4- 9, vel 4 %Zf\il[Vi, [Vi, VIel]] and V@D .= [V, VIl if j € {1,...,N}
with the convention V% = V. We are now in a position to introduce our Hérmander hypothesis on 1:
For L € N, the order of our Hérmander condition, let us define for every (z,t) € R% x R,

N
2.4 % t):=1A inf V[a] N b2
(2.4) (z,t) beRdl,ﬂa\Rd:I Z Z( N (z,t),b)ga
ae{0,...,N}lal; i=1
<L

We introduce, for x € R%:
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A, (X,L). Our local weak Hérmander property of order L € N,
(2.5) V5 (x,0) > 0.

Especially, this hypothesis is used at initial point for X = Xg. We will sometimes consider a

uniform weak Hormander property of order L,

(2.6) Ve© = inf inf Vi(z,t) > 0.

teR z€R

In this case, we denote A3°(L) instead of Az(X, L). Also, we usually denote V(z) := Vi (x,0).

It is worth noticing that, with the notations introduced in the Introduction, (2.5)) is satisfied for some

L € N if and only if span(U® V. ,)(x3,0) = R?, which is why, we refer to it as local weak Hérmander

property. A similar observation holds for (2.6) in the uniform setting. The case L = 0 corresponds to
the elliptic case.

Hypothesis on Z°. Lebesgue lower bounded distributions. A first assumption concerns the
finiteness of the moment of Z%: For p > 0,

Al (p).

(2.7) M,(Z2°) =1V sup E[|Z]|%x] < cc.

temo*

We denote Aj(+00) the assumption such that A3(p) is satisfied for every p > 0.

A second assumption is made on the distribution of Z°. We suppose that the distribution of Z° is
Lebesgue lower bounded:

Al There exists z. = (2x,t)ens+ taking its values in RY and e,,7. > 0 such that for every Borel set
A C RY and every t € 7%,

(2.8) LS (ev,r)  P(Z) € A) > e Ao, (AN By, (244))

where Ay .}, is the Lebesgue measure on RY.

Let us comment assumption Ai. First, notice that holds if and only if there exists some non
negative measures p with total mass u(RV) < 1 and a lower semi-continuous function ¢ > 0 such that
P(Z} € dz) = pl(dz) + (2 — 2.,)dz for every t € m%*. We also point out that the random variables
(Z?) s~ are not assumed to be identically distributed. However, the fact that 7, > 0 and e, > 0 are
the same for all k represents a mild substitute of this property. In order to construct ¢ we introduce the
following function: For v > 0, set ¢, : RY — R defined by

U2

(2.9) wu(2) = 1)z n<v +€XP (1 — )2)1v<\z\RN<2v-

o2 = (elan — v

Then ¢, € C°(RY;R), 0 < ¢, < 1 and we have the following crucial property: For every p,q € N,
every z € RN
: 2 C(g,p)N%
e 2% )
(2.10) Y maefEe e < SRR
a?eN

leZlef{l,.., q+1}

with the convention In ¢, (z) = 0 for |z| > 2v.
As an immediate consequence of (2.8)), for every non negative function f : RY — R, and t € 7°, t > 0,

B 22 [ orpplz =2 ) ()
R
We denote
My = Ex / Or, j2(2)dz = e*/ Or, 722 = 24 4)dz
RN RN

We consider a sequence of independent random variables Xf € {0,1}, Ut‘s, Vt‘S € RN, t € #%*, with
laws given by
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P(x) =1) =m., P(xj=0)=1-m.,
]P)((Si%ljif5 € dZ) :;* 907'*/2(2 - Z*,t)dza

IP’((S_%V;S € dz) =1 (P(Z¢ € dz) — pre(z — 24¢)d2).

*

where pr. satisfies 1) with v = 5. Notice that P(V? € dz) > 0 and a direct computation shows that
]P)( 5U5 _ ) 4 _ 1 4
XeUP + (1 —x)VY €dz) =P(62 Z) € dz).

This is the splitting procedure for Z?. Now on we will work with this representation of the law of
Zf. Consequently, we always use the decomposition

8520 = U7 + (1 — X))V,

The above splitting procedure has already been widely used in the literature and is usually referred to
as the Nummelin splitting. In [25] and [21], it is used in order to prove convergence to equilibrium of
Markov processes. In [9], [I0] and [33], it is used to study the Central Limit Theorem. Also, in [23], the
above splitting method (with 1p, (.. ,) instead of ¢,._/2(2 — 2.)) is used in a framework which is similar
to the one in this paper. Finally in [7], it is used to prove regularization properties of Markov semigroup
under the uniform ellipticity property: inf , ;yeraxrs Vo(w,t) > 0.

We introduce a final structural assumption specifying that the time step d needs to be small enough.
For ¢ € (0,1], when (2.3)) holds, we define

107
md[20(1 4 79
1 1 ]_ 1 1
72(9) :=min(d " 2n1(0) " 4, §|5§8@|—m),

(2.11) n1(8) :=5"%51 min(1

+) and

with p given in (2.3)). For T € n%*, X € R%, we introduce the following assumption:
AJ(X,T). Assume that (2.3) and A(X, L) (see (2.5)) hold and that ¢ € (0,1] is small enough so that

L(L+1)

21-% 2(40(L+1)N RIS
’ TVL(X)m*
L(L—1)

2170 + 21 1o0|m.[28(1 + T)[M310N = 413" ") and
772((5) >1.

(2.12) 71 () > max(1, = ,

Similarly as the assumption Ay (X, L), this hypothesis is used at initial point for X = xJ.

Considering the lower bound of 7 (d) in , it becomes apparent that while it remains independent
of 4, it may assume excessively large values. This minimum could potentially be decreased with
modifications to the proof structure, but at the expense of possibly higher upper bounds on the semigroup’s
derivatives. In this paper, we tailor our proof to minimize the reliance of C(z,T') in with respect
to #(r) and % Specifically, our proofs are designed so that the constant n appearing in Theorem
Corollary [2.1] and Theorem [2.2] are as small as possible. Explicit values for 7 are given in the prool of
those results.

2.2. An alternative regularization property. In this section we provide the regularization property
for a modified version of X°. We consider a d-dimensional standard (centered with covariance identity)
Gaussian random variable G which is independent from (Z?),¢s.«, and for 6 > 0,

(2.13) Vi@ = [ 1y @) = B (X + 8°G) X = al, Ter

It can be seen as a regularization by convolution of the semigroup @°. From a practical viewpoint, the
modified version X% + 6%G is easily computable and then well adapted to simulation based approaches
such as Monte Carlo methods.
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Theorem 2.1. Let T € 7%, X € R, L € N and f € I‘fgl(Rd R) satisfying: there exists D¢ > 0 and
ps € N such that for every x € RY,
[f(@)] S Dp(1+ |z[ph)-
Then we have the following properties:

A. Let g €N and a, 8 € N? such that |a| + |ﬂ| q. Assume that A{(max(q+3,2L +5)) (see (2.2
and ') As(x, L) (see m) Aj(+00) (see (W) Aj§ (see ) and AS(x,T) (see|2.19))

hold. Then,
1+ |x]%4)C exp(CT)
2.14 9° QY08 <D ( R
( ) | QT f(X)| f (VL (X)T)n )
where n = 0 depends on d,L,q and 0 and c¢,C > 0 depend on d,N, L,q,D,Dnax(q+3,20+5), P

Pmax(q+3,2L+5), Pf> o m*, ~ L 0 and on the moment of Z° and which may tend to infinity if one of
those quantities tends to infinity.

B. Assume that hypothesis from are satisfied with AS(max(q+3,2L+5)) replaced by AJ(2L+5).

Then,
5.0 (1 + [x]ga)C exp(CT)
(2.15) QFf(x) = QF f(X)| 0" T

wher@ n = 0 depends on d,L and 0 and c¢,C > 0 depend on d, N, L,q,D,D2145,p, Par+s,P7,
771 o L 9 and on the moment of Z° and which may tend to infinity if one of those quantities
ends to infinity.

Remark 2.1. We point out that, in the case where py = p, = 0 for every r € N*, then ¢ = 0

in 2 2.14) and (2.15). This remark remains valid in Corollary (see (2.16)) and Theorem (see
but not (2.19)) stated later in this Section. Assuming further that A3 (L) holds, the upper bounds

estabhshed in Theroem [2.]] thus become uniform w.r.t. X.

A consequence of Theorem [2.I] concerns the existence of a bounded density with bounded derivatives for
X8 + 6°G. The proof of this result is given in Section Notice that an explicit value is given for 7.
This type of result is usually referred to as hypoellipticity property of the operator Q.

Corollary 2.1. Let T € %%, x € R and L € N. Let ¢ € N, let o, 3 € N¢ such that |a| + |8| <

Assume that A‘f(max(q+d+3,2L—|— (see (2.4 (W and (.)) Ay(X, L) (see (2.5 (W) Aj(+00) (see )
Aj§ (see @) and A3(x,T) (see ) hold.

Then, for every y € R?, lee (x, dy) = qu’e(x, y)dy and q%e € C1(RY x RY) satisfies, for every p > 0,
(14 |X|ga)C exp(CT)
(Ve (X)T)1(1 + [ylga) ’

where n = 0 depends on d,L,q and 0 and c,C = 0 depends on d,N,L,q, D, Dax(q+d+3,2L+5)s P
Prmax(q+d+3,2045)s Pfs 7 m*, T* .0, p and on the moment of Z° and which may tend to infinity if one of those
quantities tends to infinity.

Moreover, if po = 0 (see hypothesis Aj) and there exists z° > 1 such that a.s. SUD; s | Z0 gy <
z%°, then,

(2.16) 1020543 (x,y)| <

Cexp(CT - X2
exp( ) exp(—|y ‘Rd)’
VL(x)T)n cr
where 1 is the same as n , ¢ >0 depends on 1 and z°°, and C > 0 depends on d, N, L, q,9,
D max(q+d+3,2L+5), P pf7 P Tl ,9 cmd z°° and which may tend to infinity if one of those quantities tends
to infinity.

(2.17) |6365q‘%9<x, y)| <

2.3. An invariance principle. Let us consider (X;);>0 the R%-valued It6 process solution to the SDE
[T3).

In the following results, we show that, for a fixed T' > 0, X% converges in total variation towards Xr.
Notably, our result is stronger than the total variation convergence since we consider measurable test
functions with polynomial growth. Moreover, X is endowed with a density which can be approximated
by the one of X% + 6%G. In an ideal situation, we would like to approximate the density of X using
the one of X7. 8 However, due to the absence of regularization properties for the random variable XT, we
cannot offer any assurance regarding the existence of its density. Actually, since the random variables
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(Z?)1ens» do not necessarily have a density, we can easily build an example such that X% does not have
a density, for instance by considering X3 = D tembt<T Z9. In contrast, since X + 0?G satisfies the
regularization property, we can guarantee the existence of its density together with an upper bound on
this density.

Exploiting Theorem and Corollary we can deduce the convergence of the law of X% towards the
one of X7 as ¢ tends to zero. We are, among others, interested by obtaining an upper bound for

[E[f(X1) — f(X7)| X0 = X3 = 2|

which writes C(2)0™ sup,ega | f(x)| when f € My(R?) (and similarly when f has polynomial
growth). One main technical point is that the upper bound does not depend on the derivatives of

I

This result may be seen as an invariance principle under two aspects. First, the law of the limit
X7 only depends on derivatives (of order one and two) of 1 evaluated at some points (z,¢,0,0) with
(z,t) € R? x R,. As a consequence, if we replace ¢ by any function ¢ giving the same evaluations of
those derivatives, the limit of X2 remains X7. Another aspect is that the law of (Z;);e s+ is not specified
explicitly and can be chosen in a large set of probability measures. In particular, in the following result,
we show that only Aj(+00) (see ) and Aj (see (2.8))) are assumed concerning the law of (Z;),cps.-.

Theorem 2.2. Let T € 70, with T > 26, x € R?, L € N and m > 0. We have the following properties:
A. Let f € M(R%R) satisfying: there exists Dy >0 and py € N such that for every x € R,

(@) < Dp(1+|algh).
Assume that AS(max(6,2L+5)) (s and ), As(x,L) (see ), AJ(+00) (see ),
)

A5 (see @) and AS(x,T) (see hold. Then, for every e > 0,

1 1+ [x]5a
2.18 E[f(X1) — f(X3)] X0 = X = X]| 62D j———EL Cexp(CT
(2.18) [BLF(Xr) — F(X3)|X0 = X] = ]| g O e ),
where n > O depends on d, L and < and c,C = 0 depend on d, N, L,D,sup,.cy- Dr, P, SUP,.cn+ Pr

pfwi s Tl ;¢ and on the moment of Z°% and which may tend to infinity if one of those quantities

tends to infinity.

B. Assume that hypothesis from[A] are satisfied.
Then, Xt starting at point X has a density y € R4 pp(X,y) with pr € C°(R? x RY).
Moreover, for every 6 > , g €N, a,8 € N with |a| + 8] < q, p=0, e >0 and every y € R?,

(1 + |X|ga)Cexp(CT)

VL(x)T)1(1 + |ylza)

where n = 0 depends on d L,q,0 and L and ¢,C > 0 depend on d, N,L,q,9D,5up,.cn- Dr, P,

Sup,.cn+ Prs Pr, m*, - L gp L c L and on the moment of Z5 and which may tend to infinity if one of
those quantities tends to infinity.

(2.19) 050 pr(x,y) — 0205 47" (x,y)| <6% ¢

Remark 2.2. (1) Let us recall that for p and v two probability measure on R?, the total variation
distance between p and v is given by
1
drv(p,v) = sup |u(A) —v(4)|= sup S u(f) =v(f)l
AeB(R4) FEMEBRER), [ flle<1
1

= s hup-w)

fecg RER),||flloo<1
where (i(f) = [pa f(@)p(dx) and similarly for v(f). The last equality above is a direct consequence
of the Lusin’s Theorem.

In particular, provides a bound on the total variation distance between the law of
Xt starting from X € Rd (denoted Pr(x,.)) and the one of X% also starting from X (denoted
Qr(X,.)). In particular, under the hypotheszs from- mn Theorem then

(2.20) A (Pr(x,.), Op(x, )) <o T Xl

oy et
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(2) If we suppose in addition that > 2 and for every t € n%*, i € N, E[(Z})?] = 0 and we replace
Aﬁ(max(G, 2L +5)) by A§(max(7,2L +5)) in then Theorem (and also ) holds with
627¢ replaced by 6' ¢ and (Dmax(6,2L+5)s Pmax(6,20+5)) Teplaced by (Dmax(7,20+5)> Pmax(7,2L+5))
in the r.h.s. of and .

(8) More generally, let us suppose that, in addition to hypothesis from Theorem the assumption
Aj(+00) hold and, given m > 0, 8 = m + 1 and there exists g(m) € N such that: For every

fe€Coo (R4, R) such that for every a € N% and every x € RY,

10 f(2)] < Dg.a(l+ [2P),

with D¢ > 1 and p(a) > 0, then, for every t € 7,

(2.21) EIf(X0s) = f(Xess)| Xe = X = 2] <™ Y7 DpaC(l+ [2l),

lal<q(m)

where C' and p do not depend on D¢ o ord. Then, Theorem holds with §3 ¢ replaced by §™ €
nd (Dmax(6,2L+5)s Pmax(6,2045)) Teplaced by (sup,.cy« Dy, SUp,.en- Pr) in the r.h.s. of and
(and also ). In this case n, ¢ and C may depend on m.

When assuming simply that for every t € m*, i € N, E[(Z})3] = 0, we have automatically that
holds with m = 1, which leads to the previous remark.

(4) By a straightforward application of Corollary and Theorem under the hypothesis from
Theorem [2.9 point [Bl], we derive easily the following estimate of the density of Xr: Let q € N,
let o, B € N such that |a| + || < q and let p > 0. Then, for every y € R,

(14 |X|ga)Cexp(CT)
Ve()T)" (L + |ylga)
(5) When uniform weak Hormander property holds, that is AP (L) (see ), then 82 can be

replaced by 82 in or (but not in ) When we assume holds, similar

conclusions hold but with §2¢ (respectively 5%) replaced by 6™~ (resp. 6™).

1030, pr(x,y)| <Dj

Example 2.1. (1) Let us consider X = (X', X?), the solution of the 2-dimensional system of R

valued SDE, starting at point X = (x',x2) € R? and given by

dX} =b(X} t)dt + o(X},t)dW,

dX? =X}dt
where (Wy)i>0 is a one dimensional standard Brownian motion, b and o are smooth with bounded
derivatives of order one and polynomial bounds for higher orders. In the setting from ,
we have Vo : (x,t) — (b(xl,t),2') and Vi : (x,t) — (o(x',t),0). In this example local
ellipticity holds for X' as long as o(x',t) # 0. However ellipticity does not hold for X since
dim(span((0,0)))(x,0) < 1. Nevertheless, let us compute the Lie brackets. In particular

[Vovvl] : (va = (3I10(x1,t)b(xl,t) - ax1b(:61,t)0'($1,t), *U(Ilat))v
and, for o(x',0) # 0, span((c,0),(0p10b — dpibo + 00, —0)(X,0) = R? so that local weak

Hérmander condition holds. Now, let us consider the Fuler scheme of X, given by (Xg’l, Xg’Q) =
X and fort € 7°,

X0 =X b(X) 06 + o (X)L OVEZ]
X)5 =X07+ X,
where Zf € R, t € m*, are centered with variance one and Lebesque lower bounded distribution
and moment of order three equal to zero. With notations introduced in , for o(x§,0) #0,
Vi (X)

1
=1A inf <V1(Xa O)a b>]12§d + <[Vb - *V$‘/1‘/1, ‘/i](X7 0) + at‘/l(xv O)a b>]§d
beR?,|bla=1 2

. 1
=1A bGRd1,|r]lf)f‘Rd:1<(o-7 0),b)2a + ((9p10b — Dpibo + 502@%10 + 0yo, —0),b)a(x",0)

>0,
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and for every f € M(R%R) stafisfying hypothesis from Theorem we have, for T € ©°,
T >25, €€ (0,1],

1+ [X|ga

[ELf(Xr) = F(X2)]| <670y 5

Cexp(CT).
where n, C, c can explode if € tends to zero.
(2) In a similar but simpler way, we can give an extension of the central limit theorem in total
variation distance, including the iterated time integrals of the Brownian motion.
1

We considere Z;* € R, t € 7% n € N*, which are centered with variance one and Lebesgue
1
lower bounded distribution and we define Sl(o) = 22:1 Zy,leN, and for h € N*, Sl(h) =

I s,

Then (Sﬁo),...,Sﬁlh)), h € N, converges in total variation distance, as n tends to infinity,
toward the random variable (Wy, fol Wsds, ..., fol e 082 W, dsy ... dsp) where (Wi)i>o is a one
dimensional standard Brownian motion.

3. A MALLIAVIN-INSPIRED APPROACH TO PROVE SMOOTHING PROPERTIES

Our strategy to obtain regularization properties is to establish some integration by parts formulas
(Theorem ([d:3))) and then to bound the Malliavin weights appearing in those formulas (Theorem [4.1
(4.4)). These bounds on Malliavin weights are derived by bounding the Sobolev norms constructed with
Malliavin derivatives (Theorem and by bounding the moments of the inverse Malliavin covariance
matrix (Theorem [4.3). In this section, we present the discrete Malliavin calculus tailored to our
framework, and subsequently present our key regularization property results. Integration by parts
formulas and estimates on the Malliavin weights will be derived in the next section.

3.1. A generic discrete time Malliavin calculus. Since we are interested in random variables with
form , where the laws of random variables Z° are arbitrary (and thus not only Gaussian) the standard
Malliavin calculus is not adapted anymore. Therefore, we remain inspired by Malliavin calculus but we
whether develop a discrete time differential calculus which happens to be well suited to our framework

as soon as Z° involves a regular part i.e. is Lebesgue lower bounded. In this section, we always assume
that Ag (see (2.8)) holds true.

In the following, we will denote X° = (x)iexss, U = (UD)iexs» and VO = (V{),cpe- and given a
separable Hilbert space (H, (.,.}#) equipped with an orthonormal base $ := (b, )nen+, we will consider
the class of random variables:

S H) = {F = f(X*, U, V®) : ¥(x,v) € {0,1}" x R™ >N
wes f(xu,v) € CEo (RN ),

—+oo
oF L OO U VY e M LP(Q), Yur,...,u € RT N 1€ N},

p=1

In the previous definition, we have denoted by CF’”(RWS’*XN;H), the set of functions defined on the
vector space R *N “that take values in H and which admit Fréchet directional derivatives of any order.
When H = R, we simply denote S°.

We now construct a differential calculus based on the laws of the random variables U° which mimics the
Malliavin calculus, following the ideas from [5], [2], [3] or [7]. We begin by introducing the basic element
of our differential calculus.

Derivative operator and Malliavin covariance matrix. We consider the set of {0, 1}"5'*XN—valued
vectors (ug),iyers- xn such that for every ¢,s € 7% and every i,j € N, (ul)s; = 1;51;;. For F €

SO(H), we define the Malliavin derivatives D°F := (D?t’i)F)(t’i)eﬂs,*XN € S5 (H)™ N py

D}y o F = X085 F(X°, U, V), (i) € 7 x N,
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For T C 7%*, we define D®TF = (D?t,i)F)(t,i)eTxN € SO(H)T*N. When T = n%* or when it is explicit
enough, we simply denote D°F. For s € (t — 4,t], with t € T we define also

D‘(SS’Z-)F = Dfm)F

and D? . = 0 otherwise. The higher order derivatives are defined by iterating D?. Let o =
(s9)
(ab,...,a™) € (7%* x N)™, m € N. We define

DF=D% ---D..F

am

when m >0 and DS F = DgF = F if m = 0. We also introduce
D*TMF = (DS F) pe(TxN)a-

The Malliavin covariance matrix of F € S%(H) on T, is the matrix defined for every b, h° € $ by
U%T[hv ho] = 6<D5’T<F7 h>H’ D(S’T<F7 bo>’H>RTXN

N
(3.1) =063 > Dl (Fh)y Dl ) (F, 5%

teT I=1

If T = (0,7]N7° with T € 7%* then

T
ok rlh,b°] = /O D{, 1 (F.0)3. DY, 1y (F,h%)3ds.

It is worth noticing that O‘%’T can be seen as a linear operator on H such that for every h € H,
a%yTh = Zh,fﬁeﬁ J%T[h,bo](h, h°)xbh. When #H has finite dimension, this is the standard matrix
product.

Now, we define, when it is possible, the inverse Malliavin covariance matrix. We consider the trace class
norm of a bounded linear operator £ on the Hilbert space H given by |L|: := Zh eo(VL*Lh, b)y where
L* is the adjoint operator of £ for the scalar product (, ). We say that an operator is trace class if it
is bounded, linear and | L] < +o0.

When a%,T — Iy (with Iy [h,b°] = 1p40,b6,h° € $) is a trace class operator on H, and the Fredholm
determinant det JéF,T of o‘sF,T (which is the standard determinant when  has finite dimension) is not

zero, we define 4% = (0%.) !, the inverse Malliavin covariance matrix of F'.

Divergence and Ornstein Uhlenbeck operators. Let G° = (GY) with G¢ € S°(H)N.The

divergence operator is given by

tETk’é’*

ARGE =0 Z Gy'D}, \T9 + D}, GY' € S°(H),

teT i=1
with, for t € 7o+
T2 =g, (0 20 - z.,) € S°(R).
In particular, for i € N,
Dg, I)F‘s =6"3x20, Inp,. /2(67%[]3 — 2.4) € S°(R).

Finally, we define the Ornstein Uhlenbeck operator, for F € S®(H),

N
LyF = —AYD°F = =% > D.yDtoyF + Dt.iy FD}, T € S°(H).

teT i=1

Notice that, if T = (0,7] N 7° with T € 7%*, then (denoting t(s) =t for s € (t — §,t], t € ™>*),

&F = / ZD (s.yD(s.iy Fds — 522% »FD, yT) € S°(H)

teT i=1
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*

Remark 3.1. The basic random variables in our calculus are Z{,t € m* so we precise the way in which
the differential operators act on them. Since (ﬁZf = XU +/n(1—=x)V?, it follows that for w,t € ©0*,
TcCn’, i,j€N,

(3.2) 82Dy 287 =x5 1w 1,
(33) LéTZf’i :Xfazi In ()Dr*/2(6_%U1‘fS - Z*7t)1t€T-

3.2. Regularization properties for approximations of the semigroup. In the following, we will
not work under P, but under a localized measure which we define now. For T C 7%*, we denote
|T| = Card(T). When |T| > 0 we define

1 My
Ar=3-—=> x> :
(o>

Using the Hoeffding’s inequality and the fact that E[y}] = m., it can be checked that for T =
(s,t]N7°, 0< s <t

mZ|T|

PO\ Ar) < oxp(~ ",

).

The next step consists in localizing the random variables Z° and the Malliavin covariance matrix U%.

For the first one, we aim to control that the norm is not too high while for the latter, we aim to control
that it is not too low. We first introduce a regularized version of the indicator function. For v > 1, we
consider ¥, € Cg°(R;[0,1]) such that W, (z) = 1if |z| < v — 1 and 0 if [z| > v and that the function
z € RN = U, (|z|g~ ) belongs to CﬁO(RN; [0,1]) (e.g. for |x| € (v—%,v), U, (z) = exp(l— W))

Given T C 7%*, we introduce
(3.4) Orm1 = OFam,1On,, 1A, With

®F1G7n17T = \Pm (G det ’Y?:’,T% and 67]27T7t = H \Dn2(|ZSJ|RN)7 te 7T57
we((0,¢])NT)

with O, 1 = Oy, T 0.

3.2.1. The regularization property for a modified measure. We still fix § > 0 and we consider the Markov
process (X?),cxs, defined in (2.1). In order to state our results, we first introduce the tangent flow

process (X¢);eqrs defined by X = Ijxq and
(3.5) Xy o= Oxs X7,

the Jacobian matrix of derivatives of X® w.r.t. the initial value X$, which appears in our Malliavin
weights.

We introduce (Q%°®),crs such that,
(3.6) VT e Q°f(x) :=EOf(X1)|X) =al

where © = ®X%,det(8X5X§)2,n,T following the definition 1D with T = (0, 7]N7°, n = (m1(5),n1(6))
0
defined in (2.11)).

Notice that (Q’@)teﬁs, is not a semigroup. We will not be able to prove the smoothing property for Q°
but for Q%°. The proof uses result established in Section 4l Our approach consists in demonstrating an
integration by part formula in Theorem [£.1]built upon our finite disrete time Malliavin calculus, and then
bounding the moments of the weights appearing in those formulas exploiting Theorem and Theorem
&3

Theorem 3.1. Let T € %%, T = (0,T|N7°, x € R? and f € ol (R%R) satisfying: there exists Dy > 0
and py € N such that for every x € R?,

(@) < Dp(1+ |zlgh).

Then we have the following properties:
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A. Let g €N and «, 3 € N such that |a| + 18| < q. Assume that AS(max(q+3,2L +5)) (see ,
(.)) As(x, L) (see (W) AJ(+00) (see (E/) A (see (@) and AY(X,T) (see (2.13)) hold.

Then,

(3 7) |8QQ5,@ale(X)‘ <D 1 + 1pmax(q+3,2L+5)+pf>0|X|]1§d
: T S Vi (X)T)13L3d(%q2+2q+3)

X :Dgax(q+3 ar+5) exp(C(1 + T)Mc(2°)D%).

with C = C(d, N, L, ¢, 9, Pmax(q+3,2L+5)> pr, o LY > 0 which may tend to infinity if one of the
arguments tends to infinity.

B. Let h > 0. Assume that hypothesis from are satisfied with AS(max(q + 3,2L + 5)) replaced
by AS(2L +5). Then,

1+1 2L+5 0l|X ¢
(3.8) QY f(x) — QR° F(x)] <6"Dy parsstps>0|X|ga

vy (X) 13L3d max(4,93%

x DODS)  :Mc(Z°)C exp(CTM(Z°)D%).

with C = C(d,N,L,p,p,par+5,07, mi, h) = 0 which may tend to infinity if one of the arguments
tends to infinity.

Remark 3.2. (1) In the case of uniform Hérmander hypothesis A3°(L) (see (2.5)), if we consider

§ < 8o for some &y small enough, then for any x € R, %ef(x) can be replaced by the localized

probability measure mE[@f(X%ﬂXg = x| and the conclusion of Theorem still hold.
=

In case of non uniform Hormander property, g would depend on x so it is not uniform anymore
and we can not obtain the same result.

(2) Using our approach, we can easily show that under uniform Hérmander hypothesis A (L) (see
), (VL (x)T)~18"3d(3¢°+20+3) cap be replaced by (VEOT)*de(%qur?q*l) in the r.h.s. of
and Vi, (X) can be replaced by 1 in the r.h.s. of (@

Proof. Let us prove [Al] We have

(3.9) "y f(x)= > E[OIf(X§)P,(X3)|X{ =x],

1BI<IvI<q

where P, (X$) is a universal polynomial of ap X2.1 < |p| < g¢—|y|+ 1. Using the integration by
parts formula (4.3)) and the estimate (4.4 obtalned in Theorem we derive

[E[00" f(X3)Py(X7)| X3 = X]| =[E[f(X3)Hy (X7, OP,(X7)[7]| X3 = X]|
<OFE[(1 + [ X250 [ HE (X7, OP, (X)W1 XE = X]
gC(d,q)Qf X A1 X A2 X Ag X A4
with, using Lemma [£.1] and Lemma [£.3] combined with the Cauchy-Schwarz inequality,

Ay =1V E|[|det Wig7T|%q2+4q+21@>o|Xg = X]%

Ag =1+ E[[ X2 34005 X5 = x4

R4,6,T,1,q+1
5 +65116 5 1 5 14d(q+2)? 5 1
+ B[ Ly X105 3 1 1XE = XISE[ X a0 L X8 = x]3

As = Z | det(X9) |5 8, T q— ml X3 = X]¥

m=0
1
Ay =E[(1+ | X220 Py (X9)% R 51,1 1 X0 = XIF,

with X% defined in (3.5). Using Theorem u 4.3 yields
1+ 1P2L+Q>O‘X‘C(d Loaparts)
(VL( ) ) 13L3d(%q2+2q+3)

x exp(C(d, L, q,p2r+5) (1 + T)Me (g, 1,4,

1 x

1
®2Li5L7q)O(d N, L, 7P,P2L+5)

4
P7P2L+5,qi2(5))( )® ))7
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with qu =[1- %1 which does not depend on §.

Moreover, using the results from Theorem we obtain

A2 X A3 X A4 <(|X|Rd(1pq+3>0 + 1pf>0> + ©q+3)C(d,q,pq+3)

1
C(d7 N7 77 q;pq+37pf)

*

X exp(C(d, q,Pq+3, ]Jf)(T + l)mC(p,q,p,pq+3,pf)(26)92)'

We gather all the terms together and the proof of (3.7) is completed.
Now, let us prove For every = € R%, we have We have

Q5 (%) — QY€ F(x)| <E[f(X3)(1 - ©)[X§ = x]
<OE[(1+ [ X3[5)%|1X = x]2E[1 - ©|X] = x]*
<D2E[1 + | X512 |X0 = X]FP(O < 1|X) = X)*?.

We obtain an upper bound for P(© < 1|X$ = z) by using (4.17). The upper bound of E[| X?|?P/| X =
x] is obtained using Lemma It follows that, for every a > 0 and every p > 0,

QS ()= QS| < (67 g * supMa(Z27) 4y (14 Vi (x) 710

x DDDF s M(Z°) (1 + (Lpyyys50 + 1, 50)[X]Ga)C exp(CTM (Z2°)DY).
with C = C(d, N, L,p,p,p2r+5, ¢, mi*) which may tend to infinity if one of the arguments tends to

infinity. We chose p = p(h) = max(0, 52 — 4) so that 7 (6) =P+ < " C(h) (1 + TCM). Similarly we

chose a = a(h) = 2(h + 1) max(p + 1, %) so that n2(8) "M =1 < M C(D,p, h)(1 4+ TC™) and

Q7 (@)= QF° T ()] < 8 (1 + Vi (x) 713724
X @f@CQQCL+5fmC(Z5)(1 + (1P2L+5>0 + 1Pf>0)|X|§d)CGXP(CT9ﬁC(Z‘S)©4)7

with C = C(d, N, L,p,p,p2r+5,07, mi, h), and the proof of 1} is completed. O
From a practical viewpoint, an issue of this last result resides in the computation of Q%®. Indeed, © is
not simulable (at least easily) and then methods such as Monte Carlo do not seem to be applicable. A
solution is provided by Theorem [2.I} where we show that the regularization properties are also satisfied
by Q%%. In this case, Monte Carlo methods can be designed by simply simulating the sum of X% and

of an independent Gaussian variable. The proof of this result exploits the one we just established in
Theorem [3.11

Proof of Theorem[2.1} Let us prove (2.14)). As in (3.9)), we write
Q" 0°f(x) = 37 E[0Vf(0°G + X)Py(X)|X = X],
EINRIN]
where P, (X)) is a universal polynomial of ﬁ)p(SXf, 1< |p| € qg—1|yl+ 1. We decompose
0
E[0"f(0°G + X7)Py(X7)| X5 = X] = A1 + A2
with
Ay =E[00" f(8"G + X9)P-(X3)|X§ = X,
Ay =E[07 f(6°G + X3)P,(X])(1 - ©)|X] = X].
with © = G)X;,det(X%)z,n,T defined in 1) The reasoning from the previous proof shows that
1+ 1pmax(q+3,2L+5)+pf>0|X|]]€d
(V2 (0T) 32

X gglax(q+3,2L+5) exp(C(l + T)mC(Z6)©4)

1 <Dy

with C'= C(d, N, L, q, 9, Pmax(q+3,2L+5)s P f mi*, %) Moreover, since G follows the standard Gauss-

ian distribution and is independent from X° and O, we have

Ay = E[P,(X3)1—0) | 87 (6% + X3)(2r)~F e du|X¢ = X].
]Rd
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Now, notice that
O f(8"u+ X3) = 670 (f(6%u + X7)),

so that, using standard integration by parts, we have

Ay = 6 PIE[P(X5)(1 - ©) | F(6%+ X§)H, (u)(2m) e~ du|X] = X],
Rd

where H, is the Hermite polynomial corresponding to the multi-index ~.
Finally, using the results from Theorem we obtain

| 4| <67MPDE[1 - 6)X] = X}%(|X|Rd(1pq+3>0 +1p,50) + Dyp3) (B aPataps)

1
X C(da Na raqqu+37pf)

*

X eXp(C(d, q, pq+37 pf)(T + 1)mC(P»q’P7Pq+3an)(Zé)©2>‘
with, using Theorem (see (4.17)) for every a > 0 and every p > 0,

E[l - 0|X{ = 2] <P(© < 1|X] = x)

<

<O Ty M, (29)

+ —(p+4) 1+ 1p2L+5>0|X|H€d
h Vi (x) 18534 4)

x DYDY, L Mc(Z°)C exp(CTM(Z°)DY).

with C = C(d, N, L,p,p,par+s, %) We chose p = p(¢f) = max(&% —4) and a = a(qh) =
2(gf + 1) max(p + 1, %"). Therefore

1+ (1pmax(q+3,2L+5)>0 + 1Pf>0)‘X‘[gd
(V1 (X)T)13"34 max (L 542 424+3)

X gr?lax(q+3,2L+5) eXP(C(l + T)WC(Z5)©4)-

10°Q3 9% f(x)| <Dy

with C = C(d, N, L, q,9, Pmax(q+3,2L45): P> %*’ L ) and the proof of ([2-14) is completed. Remark

Ka
that with our approach, under the uniform Hoérmander hypothesis A$°(L) (see E[)), we can show that
(Vi (x)T) 18" 3dmax(57 +2,30°+2a+3) can be replaced by (VoT)~13"d(3a°+2¢+1) in the r.h.s. above.

Let us prove (2.15)). Since f has polynomial growth, it follows that

1Q5F(X)—Q%° F(X)| < |[E[O(f(X2) — F(X5 + 67G))|XE = x]|
+0,0(pp) (1 +E[ XL 1XS = x]F + 6% E[| G2/ ]2)E[L — 0]X§ = x]*

d 1
<6 [ B0, 90X + X7G)G1X = Xl
j=1"0

+DC(py) (1 + [X[ph) exp(TD*Mep ) (2°)C b))
x E[l — ©]X = x]2.
Using Theorem (see (3.7) with ¢ = 1) and the estimate of E[1 — O] X = X] obtained in the proof
of with p = p(#) = max(0, 3% — 4) and a = a(f) = 2(6 + 1) max(p + 1, %) we obtain

C
1+ 1p2L+5+pf>0|X|]Rd
916 E)

(Qrf () = Q2 S () <0y (B 3

X DF] 15 exp(C(1+T)Me(2°)DY),

with C = C(d, N, L,p,p,par+s, 07, mi, 0) > 0. Notice that under the uniform Hormander hypothesis

916 25

AP (L), (Vi (x)T)3"3dmax(553. %) can be replaced by (V3°T)3 4% in the r.h.s. above. a

We now show the existence as well as upper bounds for the density of X%. This result is mainly a
consequence of Theorem It is noteworthy that we also propose an Gaussian type bound when
relying in a simplified framework. It is derived combining a representation formula for the density,
Theorem [2.I] and the Azuma-Hoeffding inequality.
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Proof of Corollary . Since holds, the existence of of the a density is due to Tanigushi (see [31],
Lemma 3.1).

We first give a representation formula for qgle. Let f € C°(R%; R) (set of functions in C°°(R%; R) vanishing
at infinity). Let us define g : R? — R such that for every x € R%,

o(@)i= | Sz

Then g € C;‘;l(Rd;R). In particular we can apply Theorem with the test function g and for
v = (1,...,1) € N% since 9°g = f, it follows that, with similar notations as in the proof of Theorem

2.1

8“@%985]0()() :804@%98([5,’70)9()()
= ) E[BI9(0°G + X3)Py(X7)|1XG =]
0<|y|<g+d
+E[079(8°G + X3)P,(X9)(1 - ©)|X{ = X].

= Y E[g(0°G+ X)) Hy(X], 0P, (X)) X§ = X]
0<|y|<g+d
+E[5P, (X$)(1 - ©)H,(G))|X§ = X]

-/ O s Hlo )1 = Xdy.
ye

with (using notation T = (0,7 N 7°),

H(a,B)= Y Hp(X], 0Py (X)[7] + 0P, (X3)(1 - ©)H,(G).
o< |v|<q+d

Moreover, following the same procedure as in the proof of Theorem [2.1} we have,

2| v6 L L+ 1Pmax<q+d+3,2L+5>>0|X|H§d
E[|H (o, 8) X3 = ]} <D; R C exp(CT)

Hence, using [31], Lemma 3.1, 59G+X% has a smooth density qgie and 1) holds. We can observe
that we have the following representation formula for q‘}’e and its derivatives:

020507° (x,y) = (~1)/PIE[1, <50 xs H(a, )| X3 = X].

The estimate (2.16]) then follows from the Cauchy Schwarz inequality, Lemma combined with
Markov inequality and a similar approach as in the proof of the previous result to bound the moments
of H(a, ). In particular

(1 + 1pmaX(q+d+3,2L+5)>0|X|]1(§;d)cexp(CT)
VLT (L + |ylza) ’

5,0
1050, a7 (%, )| <

where n = 13L3dmax(% +2,2(d+¢q)*+2(d+¢) + 3) and C > 0 depends on d, N, L,q,D,
Dmax(q+d+3,2L+5)> Ps Pmax(q+d+3,2L+5)> Pfs iv %, 6, p and on the moment of Z% and which may tend to
infinity if one of those quantities tends to infinity.

Now let us prove (2.17). Using Taylor expansions of ¢ and recalling that ¢ (z,¢,0,0) = x for every
(z,t) € R? x R, and then the Azuma-Hoeffding inequality yields
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P(y <0G + X2 X3 = x) = P(z — 6°G < X3 |X{ = x)

<P(y —a —8°G <3TDa(1 + 2 + 65 > ZZ‘“ $(X7,£,0,0)[ X5 =X)
temd t<T i=1

< Hlnn P(y’ — x7 —3G7 — 3TD,(1 + |2°%) <
J

ey 225;5 W(X?,t,0,07| X =x)
temd t<T i=1
) (7 —xI — 67G7 — 3TDo(1 + |2°°2))?
< E -
jLpin.  Elexp( 3(30,2%)°T )
. (7 —x) = 3TDy(1 4 |2%))?
< —
i exp 3302 T 10 )
cT '

<Cexp(CT —

where ¢ > 0 depends on ®; and z* and C depends on 5 and z*°. Using the Cauchy-Schwarz
inequality combined with the preceding estimate concludes the proof. ([

We end this section with the proof of the invariance principle established in Theorem Our strategy
is to decompose the error using the Lindeberg approach and semigroup properties. Our focus is then
on the short time estimate i.e. the error made on simply one time step of size . Then, we replace Q°
by Q%?. Applying Taylor expansion techniques leads to a representation of the error involving some
small variations of the process X%? satisfying also regularization properties. Exploiting them leads to
the expected result. A similar strategy can be designed to prove higher order convergence.

Proof of Theorem[23 For x € R%, s,t € ©°, s < t, we define Q% f(z) := E[f(X})| X = 2], Q07 f(z) :=
E[f(X] + 0°G)|XS = 2],Psif(x) = E[f(X:)|Xs = 2] = E[f(X:(s,2))] (Xi(s,2), being the solution
of 1) at time ¢ and starting from z at time s), Af(z) := Qf)H&f(z) — Pyyisf(x) and A%f(z) :=

Qf’+5f($) — Piiysf(x). It is straightforward to see that the results from Theorem remains true

replacing (Qf’ )i>0 by (Qg ¢)i>0 for any s > 0. For sake of clarity, we assume that P satisfies the same

regularization property (2.14) as Q%?. Similar ideas as in [7] can be used to conclude under the actual
hypothesis of Theorem [2.2]

We prove the result for f € ol (R%). The extension to f simply measurable with polynomial growth

follows from the Lusin’s theorem. We provide the main key points avoiding heavy calculus which can be
dealt with using similar arguments as the one we already developed to derive Theorem Using the
semigroup property satisfied by Q° and P, we have

QPf(X) = Prf(X) = > Q) AriysPirsrf(X)

temd t<T

Z Qg’,?AgtMPtM,Tf(X)

temd t<T

Q) Qs — QY )+ (R, — QYNQYY ) Prvsr f(X).

Now, as a result of Taylor expansions, Afﬁt +5f(X) can be written as a finite sum of term with form
/ O* f(Ys(X)B(X,t,8,\)dN], a€N |a] <3

where Y 5(X) takes values in {X, X+ \(¥(X, t,62 Zt+6,5)—X—|—59G), Xitas(t,X)} and, for any p > 1,

sup  E[|B(X?7,t,6, )% 5%

tend t<T

Lo o X0 =X <82 (1+ [x[5a)C exp(CT),
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where T = (0, T]N7° (we refer to (4.1)) for the definition of our Sobolev-
It follows that QgﬁAf’tHPHg,Tf(X) is a finite sum of terms with form

).

1
E| / 0% Prysr f (YA s (X)) B(X, .5, \)AA|XE = x].
0

At this point, we observe that a similar approach as the one developed in this paper ensures that the
results from Theorem H remains true taking T =t and replacing Xf -0 by }Qig(Xf ’9). It hinges on the

fact that our Malliavin derivatives of Y} + s (X,§S ’9) — Xf % can be bounded by a term of order §. Moreover,
Piys1f has polynomial growth. It follows that for ¢ > 1T55, ¢ small enough, exploiting the integration

by part from Theorem . with F' = th5(X(S 9)) in a similar way as in the proof of Theorem . yields

1
B[ 0% Prosir (V25X ) BOXE, .6 NN =] < 530, o - Bkt cempcm).
0 L

Now let t < 176° so that T—¢ 0 > T(1—£6°) =6 > 2T~ > +T. We write Q0§ A?,, sPrs7f(X)

as a finite sum of term with form
1
E| / 0 (Svy o) Prvor /) (Vs (XD BXD? 1,6, AN X = X]

+QYIAY L 5((1 = vy (x)) Prssr ) (X),

where ¢y, (x) is a smooth localizing function satisfying, for every y € R4,

wN

VL (X)

1|VL(y)*VL(X)I<VLiX) < ¢VL(X) (y) <1

Ve (y)-Ve(X)I<

and having derivatives uniformly bounded by a polynomial of Vp(z)~!. Since T—t—¢§ > 1 31, applying
- ) for P;is57f enables to bound the first term of the r.h.s. above. To bound the second term, we
remark that, since f has polynomial growth then so has P57 f and we can show that Dp, ; .r = Dy
where C' doest not depend on f. Hence

1-— P, < 1 ca)l
(1= v, ()W) Prrsrf(y) < CDp(1+ |y|ga) V)= Ve )|

Therefore, using Af(max(6,2L+5)) (see (2.2) and (2.3 . and ¢ < $T6%, applications of Markov and
Doob (see (4.31))) inequalities yields

VL(X) .

|}£|C

6,0 ﬁ 6 ] §_€ Rd

; —+ L X < 6 @f ‘708 CT
O’t t’t 6( |VL() VL( )‘>V iX))( ) i |Vl (:I)T‘ Xp( )

and the bound on the second term follows from the Cauchy-Schwarz inequality and the proof of
(2.18) is completed. If AS°(L) is assumed, the localization procedure with the function ¢y, (x) is not

necessary anymore and the achieved convergence rate ¢ 3¢ in i can be replaced by d 3,

Approximation (2.19)) follows from an application of Theorem 2.6 i in [4]. Notice that this application

is also a reason why the convergence happens with rate §2~¢ instead of 6 even in the uniform Hormander
setting AS°(L). O

4. MALLIAVIN TOOLS AND ESTIMATES

In this Section we provide three main results which are crucial in the proof of regularization properties.
First, we establish an integration by part formula in Theorem The proof of regularization results
then falls down to bound the weights appearing in those formulas. As a consequence of Proposition
it can be achieved by bounding the Sobolev norms of X in Theorem and by bounding the moments
of the inverse Malliavin covariance matrix in Theorem (.3

4.1. The integration by parts formula. In this section, we aim to build some integration by parts
formulas in order to prove the regularization properties. This kind of formulas is widely studied in
Malliavin calculus for the Gaussian framework. In this section, we always assume that A§ (see (2.8))
holds true and consider T C 7%*. For F' € S°(H) and ¢ € N, we begin by introducing the Malliavin-
Sobolev norms:

(4~1) |F|’2H,6,T,17q = Z 5j|DiF|g-u |F|’2H,6,T7q = |F|%-l + |F|’2H,6,T,1,q
a€e(TxN)J
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and for p > 1

1 1
1F 116000 =EIF B 51147  IFl#sTar =EUFE]" + 1Fll#5T1,00-

Below, we define the Malliavin weights that appear in our integration by parts formulas.
Let F € 8%(H), G € S° and h € $. We define

HY(F,G)[b] := — (Gypo Lo F h)y — 6 > (D*T(Gyp(b,5°]), DOT(F, b°) g )prsn.
heoen

Considering higher order integration by parts formulas, for h = (1, ...,h?) € H? we define H§(F, G)[b]
by the recurrence

(4.2) HY(F,G)[b] :== Hy(F, H3(F,G)[b", ..., 577" ])[b7).

The purpose of this Section is to establish the following result which is a localized integration by parts
formula together with an estimate of the Sobolev norms of the weights. In the following result we denote

by Cpol the subset of functions f in CF’OO, such that f and its Frechet derivatives of any order have

polynomial growth.

Theorem 4.1. Let T C n%*, ¢ € N*, ¢ € CFOO(H;R) with 0 := dim(H) < co. Let F € S°(H) and

pol
G € 8° be such that E[| det 3 1 [P1iGy, 5z, >0) < +00 for every p > 1.

Then, for every b = (h',...,p9) € H9,
(4.3) E[0f 6(F)G] = Elp(F)H}(F, G)[b]]

with H3(F, G)[b] defined in . Moreover, for every m € N,

(4.4) |Hy(F, G)[b]lz,0.m.m <C(2,q,m)e(2,q,m, T, F,G)
with
¢(d,¢,m, T, F,G) =(1V det~§g)4mFerD)
X (L4 PR e T IR s g )IGls o
First, we observe that in our framework, the duality formula eads as follows: For each F,G € S°(H),
E[(F, L5G)#] =E[(G, L3 F)3] = 6E[(D>TF, D®T Q) 3y xn]
(4.5) _5221@ o F Dy Gl

teT i=1

This follows immediately using the independence structure and standard integration by parts on
RY: Indeed, if f,g € C2(RY;R) and t € 7%*, then

N
> E[0u f(UF)0uig(U7)]

i=1
N
= Z/N Oy f(u)0yig(u)0™ 2 @r y2(67 2u — 24 ¢ )du
R
Ex al 2 auiwr*/Z((si%u_Z*,t) _N _1
= Z f(u)(aulg(u) + au’g(u) 1 )6 2 SDT‘*/Q(é u— Z*,t)du
My = JRN ©Or, /2072 — 24 4)

FU7) Z 2.9(UD) + 04 g(U7)6™ 20, o, (072 U7 — 2.4)].

Now consider F,G € S°(H), so that F = f(x°,U°, V%) and G = g(x°,U°% V?) with for every
(x,v) € {0, 1}”6’* ) RN gy flx,u,v) € CF"’O(R’TMXN; H) and similarly for g. Now, we introduce
the functions f,, := (f, bn)w, 9n := (g, bn)n, n € N*, which belong to CF’OO(IR”MXN;R). It follows from
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the calculus above that

00 N
E[(DOTF, DT Gpgran] = Y 3 S ENGOE fu(x, U, V)0 (X0, U, V)]

==Y E[f.(° U V) > N
n=1 teT

x Za a0, U, V) +autgn(x5,U5,v5)5*%azi g, 207207 — 2,4)]

FZZD(tz)thG+D )G D, Ta) ]
teT i=1

=5 "E[(F, Ly G)l,

which is exactly 1) We have the following standard chain rule: Let ¢ € CF’l(’H; H®) with H® a
Hilbert space and F € S°(H). Then

(4.6) DYTH(F) = 05 v no(F) € ST (HO) TN,
More particularly, when H® = R we have
(4.7) DYTH(F) = (d¥ ¢(F), DY T F)y € SO (R)TN,

Moreover, one can prove, using (4.6) and the duality relation (or direct computation), that

(48)  Lyo(F) = (dFo(F), LyF)s +6 3 0kl o(F) (D> (F, by, DT (F.5%)3) o
h,h°EHN

In order to prove Theorem we will combine those identities with the following result.

Proposition 4.1. Let F € S°(H) with d := dim(H) < oo, and G € S°(R). Let m,q € N, and
bh=(h',...,p") € H" with1 < q. Then

‘H’%(Fa G)[E] |R,5,T,m <0(07 q, m)C(D, q,m, Ta F7 G)
with
¢(,¢,m, T, F,G) =(1 V det 73, p) "+

20 + +2
X (14 |Fl et + LY FI3s momtg1)

The reader can find the detailed proof of this result in [2], Theorem 3.4. (see also [5]).

Proof of Theorem[4.1 We prove the result for m = 1. Then, a recurrence yields (4.3). Using the chain
rule (4.7)), we have for every h® € $,

<D6’T¢(F)a Dé’T<F7 ho>H>RTXN = Z(dF¢(F)7 h>H<D67T<F’ b>'Hv D67T<F’ bO>H>RTXN
hen

—5_128 F)ot.z[h,5°]

heh

Using with F' = ((F,5°),¢(F)), H = R? and ¢ : (2,y) — zy, [L5) with F = ¢(F)(F,5°)%
(respectively F = G o[, B°1(F, b)), G = Gayp b, b°] (resp. G = 6(F)) and H = R (resp. H = R)
and finally with F = ((F,§%)4, G’V}S:’T[b, h°]), H=R? and ¢ : (z,y) — zy, it follows that
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E[0F ¢(F) —6bozeﬁE Gz[0, 0D TS(F), DO (F,5°) 3 )]
}hozg) G210, 0 (L (S(F)(F, 5°)30) — d(F)LE(F, b°)3 — (F,5%) 5 Lpd(F))]
5 Z F)(F,5°) % Ly (GYpp [0, 5°]) — (F)Gy 2 p (b, h°] L3 (F, %) 3
h—ez(mﬁ (GYl0, 6°1(F, h)70)]
=- bozeﬁ F)(Ggyplb, 01 L (F,5%) 3 + 6(DV T (Grp (b, 5°1), DT (F,5%) 30 e

which is exactly (4.3]) for ¢ = 1. Iterating this formula, we obtain (4.3)).

In order to obtain we simply apply Proposition and remark that H$(F,G)[h] and its
Malliavin derivatives are equal to zero as soon as G = 0. ([

In the sequel we establish an estimate of the weights Hf} which appear in the integration by parts
formulas (4.3)) when G is replaced by GO with © € [0, 1] the localizing random weight. The next result
provides a bound on the Sobolev norms of GO.

Lemma 4.1. Let ¢ € N. Let G € S°(H) and © € S°. Then
q

(4.9) GOl 5.0 < C(@) Y |Glr.6m.m| Ol g—m-

m=0

Proof. We prove the result by recurrence. For ¢ € N, we define Hy = H and Hq41 = (’Hq)TXN. The
result is true for ¢ = 0. Assume it is true until some ¢ € N and let us show it still holds for ¢ + 1. We
have

GO, 5041 = \G@|H+Zél“\D“<@D5G+GD‘S )|t
=0

with
D (OD°G) 3y, <07 2|OD°Glyran 51,

l !
_L i
<)o~ = Y " 10lr00-m| D Clag, s wm =07 C(1) Y 1Olr6.m0-m|Glrsm1.me1,

m=0 m=0

where we have applied (4.9) with G replaced by D°G, ¢ = [ and H = H;. Similarly

IDM(GD° Oy, =| Y Y IDAUGDEO)RIZ =] ) IDM(GDRO)f,, |2

|a|=l]8]=1 |8l=1
<| Y 0IGDLOR, sl
[B]=1
!
_ L 1
)0~z Z |G34,6,T,m] Z ID2®\%,57TJW 2
m=0 181=1

!
+1
<CW6™ 7 > Glasrml®rsTii-m

m=0

and the proof is completed. O
The next result provides a bound on the Sobolev norms of ¢(F) when F € S°(R?).
Lemma 4.2. Let ¢ € N. Let 0 € N*, let F € S°(R®) and ¢ € C1(R?,R). Then

(410) | ( )|H 6T,q Z |‘F|]Ra ,0,T,1,q+1— m| Z |83¢(F)|]2R|5

m=0 a€N?;|a|<m
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Proof. We prove the result by recurrence. For ¢ € N, we define Ho = R and Hyy1 = (Hy)T*N. The
result is true for ¢ = 0. Assume it is true until some ¢ € N and let us show it still holds for ¢ + 1. We
have

q
|6(F) 501 = [0+ D 6HDY TGP,
1=0

Moreover, using Lemma 1' with ¢(F) replace by (“)g(cj ) ¢(F) and the Cauchy-Schwarz inequality
yields

DY (P, , = DY (D°G(F)),,, = ZlD‘” G(F)D°FI)3,,,

)
<ot Z \3g(cj)¢(F)D5FJ |%{1,6,T,l

j=1
0 l
<YW D 109 () ot a-m Dy, 5:0m
j=1 m=0
0 l l—m
_ o ; SR
<oWsty | FIE s aiiiomomel D 050V S(F)RIZID°F |y, 5mml”
j=1 m=0m®=0 a€N?;al<m®
l l—m
- o 1
SO DY |F&s 6,1,1,041—m—me [ F|Ro 6,T,1,m+1] > 07 o(F)I&IZ 7
m=0m°=0 a€N?;|a|<m°+1
+1
- 1
SCOIN DY NF R soiveml D, 1056(F)RIZP
m=0 a€eN?;lal<m

and the proof is completed.

Lemma 4.3. Let g € N. Let 0 € N*, let F € S°(R®) and G € S°. Then

plat2)?

(4.11) W (G det v ) [r,5m0 SC(@)[ Wy [looqf YA+ 1Flgo $p.1,641)
q
X Z ‘thla,ts,T,q—m
m=0
and
(4.12) | U, (120 |2 [R,5,7,0 SC(@) W0, (1[5 o0

Proof. First let us recall that it is proved in [5], Proposition 2, that

20 +1
+|F3Y ).

| det 7?«",T|]R,6,T,q < C(q)| det 715?,T|q+1( H,5,T, 1 g1

Using Lemma and Lemma and that ¥, € C;°(R), we have

“1/771 (G det ’Yf«iT) |R,5,T,q

q
g , 5 1
q) Z |G det Vg plRs 5.7,1,041—m] Z |05 Wy, (G det’YF,T)|n2§|2

m=0 a€N?;|al<m

q
) F) 1
<C’(Q) Z |G|$D,6,T,q+1—m| det 7F,T|$°,6,T,q+1—m| Z |8§\D7}1 (Gdet ’YF,T)|]%§‘ 2
m=0 aeN?;lal<m
q

m —m)m 20m(g+2—m
SO@Wnllooig D GBS 51 ge1—m (1 + [ det 73 p|@H2mmy(1 4 [FISTEE2 )

m=0

<SC(@[n, [loo,q (1 +

2 q

12)2 o let2) .
YA+ Fly 570 1,041) Z [EF -

m=0
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and the proof of (4.11) is completed. In order to prove (4.12)), we simply use (3.2]) together with
Lemmald.2l O

4.2. Sobolev Norms. Before we state our results, we recall that 8X3Xf, t € n°, is the tangent flow
and is introduced in 1.) In a similar Way7 for a € N4, 9% X 9 denotes the derivatives of X)) of order

L 09
X‘S)1 (Xé)d
Sobolev norms appearing in the upper bound of the Malliavin weights established in Theorem [£1]

|| w.r.t. X§ and is given by 0% X?. The followmg result provides an upper bound for the

Theorem 4.2. Let T € 7%* and T = (0,T]N7°. Letq € N, ¢° € {0,1}, p > 1 and a € N a multi-index.

Assume that AS(q+ |a| +2) (see and ), Aj(+00) (see ) and AS (see (@) hold. Then
1
(4.13) E[ngp \3§3Xf|ﬁd75¢’qoﬁq] » <(\X8|Rd(1pq+‘a‘+2>o + 1g0=|aj=0) + ©q+|a|+2)c(q’p“+“"+2)

X C(d N aqqu+|oz|+2)

x exp(C (q’p,PqHam)(T + DMC.0.0,p41 101420 (£7)D?).

Moreover, if we replace the assumption AS(q + |a| +2), by the assumption AS(q+ 4), then
1
(4.14) E[fgg |L6TXE|%d,6)T)q] v <(|X8|Rd1pq+4>0 + @q+4)0(qypq+4)

x C(d, N, ,q Pa+4) exp(C(q, P, Pgra) (T + 1)Me(p.g,pp,sa) (Z°)D?).

Ty

Remark 4.1. This result was obtained in [7] (see Theorem 4.2) in the case p, = 0 for r large
enough in the assumption Aj(r) (see m)

4.3. Malliavin covariance matrix. In this Section, we provide an upper bound for the localized
moments of the inverse of the Malliavin covariance matrix of (X?),c.s defined in . In the statement
of our result, we employ the following quantities

(5_d£ _d44 10d )
md|210(1 + T3)|%
g 2TE AT+ )N
n, ==max(1, —,2(
d— 2 TVL(XO)m*

We will also use the following assumption

(4.15) 528D < 1.

Y13 91, o+ 21 150 (ma|25(1 4 T)[ 310N =7 )35,

Theorem 4.3. Let T € 7°* and T = (0,T]Na° and p > 0. Assume that ; € (n,,7,(0)], that

Ny € 1,6_%771_%] and that holds. Also assume that A$(2L + 5) (see and ), Aa(x3,L)

(see ), AJ(+00) (see ) and AS (see ) hold. Define also qT72 =[1- 211?1((‘:7)2)] Then

C(d,L,p,p2r+5)
1+ 1P2L+5>0|X0|]Rd @C(d’L’p)

Xg,,dct(Xg,)z,n,T>O} = (VL(Xg)T)ISLSd(p+4) 2L+5

(416)  Efldetr, 1o

1
x C(d, N, L P par+5) exp(C(d, L, p,par+5)(1 + T)mC(d,L,p,p,ngJrs,qu)(Z6)©4)'

and, for every a > 0,
(4.17) P(@Xg,det(xg)Z,n,T <1) <6 Ty M (2°)

51C(d,L,p,p2r+5)
7(p+4) 1+ 1P2L+5>0‘X0|

% (Xg)wL 3d(p+4)

+

1
X QC(d’Lyp):DQC[Si’g)p)mc(d7L,p,p,p2L+5)( )O(d N L 7p7p2L+5)

X exp(C(d, L,p, p2L+5)TDJ?C(d7L7p7p7p2L+5 5 )( )@4)

g

Remark 4.2. We have the following observations concerning the result above.
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(1) Under the assumption A3(x3,T) (see ), we have m € (1,,7,(5)], 6727, (6)"7 > 1 and

holds.
(2) The terms 13% in the r.h.s. of both and can be replaced by (12 + a)’, a > 0, but

the miscellaneous constants C(.) may explode when a tends to zero or to infinity.
(3) When the uniform Hérmander hypothesis A3°(L) (see (2.5)) holds, the estimates and

can be improved. In particular the term (TVL(Xg))’13L3d(p+4) in the r.h.s. of may
be replaced by (VioT) 13" and Vi (x8)~13"34®+4) may be replaced by 1 in the r.h.s. of
In this uniform elliptic setting (L = 0) we thus recover the results from [T] Proposition 4.4.

4.4. Proof of Theorem We begin by introducing for every (z,t,z,y) € R? x 7% x RN x [0,1] and
(i,5) € {1,...,N},

1
(4.18) Al(z,t) = 0,4p(x,,0,0), Ay (x,t,2) = / (1= X)0.:05¢(x, t, Az, 0)dA
0

1
A3(a:,t,z,y) :/ ayw($7t,z7>\y)d)\
0

We will also denote A; := (A%);en and A := (Ag’j)i,jeNz. Before we treat the Sobolev norms of X°
and L‘STX % we establish some preliminary results. The first one gives an estimate of the Sobolev norms
of L5TZ‘S.

Lemma 4.4. Let T C 7%* andt € 7°, t > 0. We have the following properties.

A. For everyi=1,...,N, we have

(4.19) E[L5Z0) = 0.
B. Assume that holds for v = %-. Then, for every q € N and p > 1,

1

C(N,p,q)ms

(420> HL%‘Z?HRN,&T,q,p < ’l“q+1 - 1t€T-
*

Proof. We prove Using the duality relation |i with H = R, we obtain immediatly IE[L‘EFZ;S 1] =
Z(w,j)eeTxNE[D?wd)lD?w,j)Zf’l] = 0. In order to prove We recall (see (3.3])) that

L‘STZf’i :Xfazi In @T*/Q(éféUf — Zet) LieT
and
L5TZf zvaz In @r*/g(é_%Uf — Zut)1iem.
For a multi-index o = (al,...,a%) with o/ = (¢;,i;), t; € 7°,t; > 0,4; € {1,...,N},
DOLGZY = 675 008 Inp, o (673U — 2o lierlng_ (imt)
with o := ((a)?)jen, (a¥)? = 1;—; + >, 1;,=;. In particular,

S VDL Z R =X Y. 108 g, (672U — z)PLier

a€(TxN)JI aveNN
i<aq [a®]e{1,....q+1}

Since the function ¢,._/5 is constant on B,_/(0) and on R?\ B,._(0), using (2.10), we obtain

E[| Y &IDaLyZ][3n]?]
ae(TxN)J
i<aq

B[0P o
=ler———+ EXJ }/ | ) |0 lnw%(é_%u—z*,t)|2|g5%@%(6_%u—z*,t)du
* RN
aveNN

latef{l,...,q+1}

“tiere. | | 02" e (u) 2 o (w)du
= s /2 |u| <y Z “ : :

a*eNN
la®e{1,..., q+1}

_CWN.p, q)ﬁa*IW%T*INl
= Tf(q-i-l)

teT-
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In order to derive (4.20)), we observe that m. > & €4 ALeh (B(0, %)) so that 5*|7r2

N < Cm,. O
Now, we establish a bound on the moments of (XJ),c

Lemma 4.5. Let T > 0, T = [0,T] N 7° and p > 1. Assume that A{(2) (see (W and (.)) and
AJ((p+1)(pV2) (see ) hold. Then,

(4.21) Efsup X 217 <(1+ X3 |ga) exp(C(P)TD Y My 1) (pva) (2°)7).
S

Proof. Consider t € n%*. Using the Taylor expansion yields
8, 8,1 4,1
X7 e =1XP_sl%a + PIXP_slha ZX O )

+ZX6 t61®J

t,j=1
1
<p [ (1= DIXE, + M - X;la)v’-?li:j
+(p—2)(1 = NIX s + MX) = X 5) b (X5 + MX] = X7_5))imydA
with notation x;g; = x'x’ for x € R, 4,5 € {1,... ,d} and, with notations from (4.18)),

X =X7_ 5+5222‘“/ Dp(XP 5.t — 6,07 Z0 0)dN + 6 A5(XP 5.t — 6,62 20, 6)

=1
N

=X 5+02 > ZPANX) 5t —6,0,0)+ 6 Z 70709 AL (X? 5.t — 6,62 70,0)
i=1 1,j=1

+6A5(XS 5.t —06,6270,6),

Moreover, for every (z,t,2,9) € R? x 70 x RN x [0,1], we have

d 1
aylﬂ(% Z, t? y) :8?!1/](07 Z, ta y) + Z xl / azl yd’(}\xa Z, ta y)d)‘
1=1 0

with similar formulas for the derivatives w.r.t. z. Moreover, it follows from assumption A$(2), (2.2)
that

N N
[10,00ks + 3 10utlgs + 3 10240l } (0,1, 2, y) <Da(1 + 6% |2[22)

i=1 ij=1

Combining the previous inequality with A9 (2 . ) yields

N N
[0, 0lga+ S 10ectbla + 3 10ustlpa} (2,1, 2, ) < Da(1+ 5F [2]23)

i=1 ij=1

+Z /{wl yw|Rd+Z|a 101[a + Z 100102105 Ra Y (A, , 2, y)dA

4,j=1
<Dy(1+ 57 |z\ 2) + D|z|pa(l+ 62 2B n) =: D(z, 2,0)
In particular, since ® > ®5 and p > po, for p > 2
B[ X7 [Ra] —E[1X7_sl%a]l < pOEL|XP_slfa" D (Xf 50227 ,8) (14127 3]
+p(p—1)02 B[ X7 5|52 D(X]_5,82 20, 0)* (14| Z] | )’
+0ED(X] 5,62 27,60 (1+|Z] )]
éC(P)im(pH)(pvz)(Zé)gpvzfm[l + |Xt§—5|ﬁd]
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and (4.21)) follows from the Gronwall lemma. For p € [1,2), it simply remains to use the Cauchy-
Schwarz inequality.
O

In order to obtain estimates of the Sobolev norms which appear in Theorem [f.2] we derive some estimates
for a generic class of processes which involves the Malliavin derivatives of 9¢, X % and L5 X7. We first
0

write, for ¢t € 7°,

N
X7 s =X{ + 07 ZZSJ(SAI X7, t)+6 Z Zf;(;ijgA” (X7,t,02 20, 5)
1,7=1
+ As(X7,1,02 20, 5,9),

with A, Ay, and Az defined in (4.18). We introduce the R?*4-valued process (Bi);crs such that for
every t € 775

By =03 ZZ‘“(;V ALXD ) +6 Z 200 20N A (XD 1,05 20 5) + 0V, As(XP 1,87 20, 5.,9).

1,7=1
We now consider a Hilbert space H and introduce some H9%valued processes (B} );exs, (B )sens, which
are both adapted to the filtration (0(Z2,...,Z))iens and (B})ieqs which is adapted to the filtration
(0(Z,..., 20 5))tens and for every h € H, (Bl “ Yy, 1 =1,2, and (B3, h)y, all belong to (S%)¢. In this
proof we will consider a H%valued generic process (Y;);crs which satisfies,for every ¢ € 7°,

t+0 t+6
i=1

N
(4.22) Yt+5=Yt+BtY}+6%ZZ51B“+5%ZL5Z51 B> 4 B}

Sy smqp(B', B> B%) =1

+SUP(||Bt 5|| HAN 5T qp T ||Bt 5||(7—N)N 5T,qp 1 | Z B} ol 5,m,9.0)-

wems
w<t

where for (B(i,1))(i,1eNx{1,...,dy taking values in H, |B|gayn = |Ef\i1 Zle |B(i,l)|%_t|%. Before
we estimate the Sobolev norms, we recall the Burkholder inequality for Hilbert space. We consider a
separable Hilbert space H, we denote |.|; the norm of H and, for a random variable F' € H, we denote

|Fllwp = E[|F3, ] Moreover we consider a martingale M,, € H, n € N and we recall Burkholder

inequality in this framework: For each p > 2 there exists a constant b, > 1 such that
- p.1
(4.23) vneN, | {sup }Mk||y,p <BE[(D My — My_1[3)?]7.
ke{0,....,n k—1

As an immediate consequence

(4.24) | sup Mugllap <b |Z|\Mk—/\4k 12017
ke{0,...,n} =1

This first result gives an estimate of the Sobolev norms of (X?)ier, (Y;)teT w.r.t. the quatity above.

Proposition 4.2. Let T >0, T = (0,7]N7°. Let ¢ € N and p > 1. Assume that Aj(q+2) (see
and ), AJ(+00) (see ) and A§ (see @) hold. Then

1
(4:25) Elsup | X7 1 F (oL, 50 + Dyga) C07052
[S

x exp(C(g, p, Pq+2)(T + )M (p,g.p,ps2) (2°)D?).
when q > 1. Moreover, for (Yi),cxs satisfying (4.29), if we assume that AS(q + 2) holds, then

1
ll;-ld,&T,q] !

Efsup|Y;
teT
q 1
<(E[|YO|§{§757T7Q] 2Tp + GHd,é,T,q,qu(Blv B2a Bg))(|xg‘Rd1Pq+3>0 + @q+3)C’(q,pq+3)

1
(4.26) x C(d, N, m,, —4, pa+3) exp(C(N, q,p, pg+3)(T + DM (p.g.ppy.a) (Z2°)D?).
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Proof. Step 1. Let ¢ = 0. We first prove that

1 1 1,1
E[Su}r)|yt|§.[d]” <(E[|Yo/%,a]7 + b2 o(2°)5 T2 G344 5.m,0,(B*,0,0)
te

1
C(N, £ a1
+ [’p7< Tp)m T Sa6m,0,p(0, B%,0) + Sppa 51.0,(0,0, B%))
2
(4.27) x exp(C(p)(T + 1)Myy(p4)(2°) 7 D).

We study the terms which appear in the right hand side of (4.22)). We consider i,j € N. Notice
that for every ¢t € 70, E[LLZ0)5] = 0 (see 1} and BP' is FZ -measurable. It follows from 1'
(with H replaced by H?) and (4.20)) that

E[sup |52 ZZLTZ‘“L;B% 7 <028 > K| ZL‘SZ%B“ Jr
teT i=1 wend tens
w<t t<T

CN,pm*% ol i P2
<oz CDIE 5 5 ) 3 B2 )

* tens i=1
t<T
C(N,p 2
o2 CODIME B2,
* tend
t<T

In the same way,

% i 2 2
E[sup |62 Z >z By P <b zm,,(zé)prup E[|B} " [7yyan] 7
teT 1=1 weT
w<t

Using A; (see (2.3)) together with (4.24) (with H replaced by H?) yields

t<T

E[sup |62 Z ST 20 VL ANXS w)Ylh ) b%ZEHZZ‘“(,V ALXE YL

‘d

teT i=1 wend temd i=1
w<t t<T
2 5\ 252 p 12
<62, (2°)3D% S E[VilP,)7.
tems
t<T

Applying A? (see (2.3)) with the triangle inequality also gives

Sup|5 Z Zg)ié &iévagJ(X& w, 6 Zw—i—é)Y |f,l.[al]B

teT wens
w<t
1
<0 Z E |Zf+15Z6’j5V A (XD 1,62 2], 5)Y, tl5a]”
temd
t<T
<2My 2y (Z2°)7 D8 Y E[|Vfb,]7,
temd
t<T

and similarly

1

Efsup s S VaAs(X0,w, 6220, 5,0)Yulhu)r <6 > B[V, A3(X] 1,62 2], 5,0)Yi[]7
te

wend temd
w<t t<T
1 1
<2y, (Z2°) 76 Y EB[Vifh )7
temd
t<T

We gather all the terms and using the Cauchy-Schwarz inequality, we obtain
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1 1 1,1 . 1
[SUP Dﬂq{d]p <E[|Yo %d]p + bpimp(zé)pTz sup E[Btl |€’,L[d)N}p

tem tend
t<T o
C(N,p)mZ i
+ bp%T sup E[| B} |(7—Ld N] + sup E|| Z |B3 |44 |P] %
* tem
t6<T t<T wwe<ﬂ;
1 2.1
+ (4T% =+ bp)i)ﬁp(p+2)( p 6 Z E |)/t|Hd]p)é
tend
t<T

Hence, using the Gronwall lemma yields (4.27]).
Step 2. Let us prove (4.25). For ¢ € N, we define Ry = R and Ry41 = (R,)T*N and we have

[sup|X6 % =F sup Z | D% X ¢ %do]%'
q

q°1

|Rd6T1q

First, we focus on the case ¢ = 1 and prove that

1 _sim 21
§°E [jgp\D‘sX‘; 4|7 =0*Efsup| > Z\D(w X [Ral 2]7
weT =1

(4.28) <D3(1 + [Xglf2) exp((T + 1)D2My, (11 (pyv2) (2°)2C (, p3)).-
We remark that for every t € 7%, w € T, and every i € N.
5 D(w z)Xt+5 (Idxd +Bt)5 ‘D(w z)Xﬁ (Bit)w,iv
with, for (w,7) € T x N,

d, ,
(Bit) —Xt+61w t+6(5 2 A (Xf, +5ZZ1:+]5 1"’11 J)AZJ(Xf7t 5 t+6)
j=1

+63 Z 200520 0. AF XY 4,6 20 ) + 6204 A3 (X] 11,67 20, 5,9)).
J)l=1
In particular, 5%D’5Xf = (62D?w 0 )(w’i)eTxN is a R{-valued random variable and, for ¢t € 7%,
we have

§2D°X t+6 (Idxd+Bt)5%D6Xt6+Bit'

Then, (4.28) follows from Lemma [4.5| (see (4.21)) and (4.27) with Y = 62 D°X?% H = Ry, and B3
thus defined since the assumption A{(3) (see (2.2))) implies that

GRf,J,T,O,p(Oa 0, Bi)

1 1
=1+ sup E[| Z Bled]p :1—|—supE| Z Z| Blw Ywts,ilzal 2 ]p

s
ter wens wens i=1

t<T t T
< w<t < w<t

p,1
SLHE[ DB oo | fay |27

tems
t<T

1
<1+T25 H SUP EH(BI 1)t4s,. |(]Rd)N]”
tens

t<T

<L+ 5TED3(My,(2°)7 + My, (2°) 7 E [sup|Xde1 My (2 (2°)7).

Now let us focus on the case q € N, ¢ > 2. Similarly as in the case ¢ =1, §2 D‘s’qX‘S isa Rd valued

random variable and, for ¢ € 7°, we have

52 D%IX) 5 =(Igxa + By)62 D¥IXJ + 63 ZZ‘“ 4+ B2,
=1
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with, B%Z =0, Bi defined in the beginning of Step 2, and for ¢ > 2

Byt =03 (DP X?)TH, AL (X!, t)D> 71 X) + 6% D‘SB;“”

B3t_5 (B31+B32)D5q 1)(5_|_(Y52D(s t+5ZBq 1t t+5’

with, for (w,v) € T x N,

B}t =6 Z 22 (0 DO X)) THLAY (XP,4,62 20, 5)
1,7=1

+ 663 DO X)) TH, A3 (X)), 1,82 70, 5,0)

(B0 = Xl 5Lt 1s (02 VL AVXD 1) +6ZZE::5 14 1) VL ASI (XD, 1,62 20, 5)

j=1
N
+02 Y 220V AV (XD 1,67 2 5) + 020V, As(X] 1,0 2] 5,0)).
i,j=1

First, we remark that, since B% = 0, it follows from Lemma and lj that, for [ € N, if
assumption A{(g+ 1+ 1) (see (2.2)) holds, then

6Rg,5,T,l,p(B;,.7 07 O)
<6Rg,5,T,l,p(5%(D5X5)TH,UA1 (X?,.)D%=1X3 0,0 + GRgiljé,T,HLp(B;_l)., 0,0)

qg—1

Gra _1,(0
Z R joy1:0THa0+ 1.0

q°=1

l 1
<C(d,q, l)@q+l+1E[§£ L4 XD IR P+ X7 B ]

<1<1+1

(D’ X)TH, A, (X°,)D%19° X? 0,0)

N

Moreover

GRg,é,T,l,p(OaOaBg,.) <SR ,51,1,»(0,0, 5T (33 '+ B*?)Da-1x?%)
"'GRd 5Tl+1p(0 0 Bq 1,. )

+Grusm1,(0,0,0 Z B, DZ%)

i=1
q—1
<<1<>z::1 6R§—qo+1’5T’lI°+l 1,50, (Bgl BS’Q)D&qquXé)
a—1
+ Z GR —qo10Tha+H— 1.(0,0, 52311 a°, D(;Z.éjé)
P} P

+ 672(11757T7q+l—1,p(07 0, Bi)'
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Using a similar approach as for the case ¢ = 1, assuming AJ (g + [ + 2) holds (see (2.2))), then

g+i—-1

p.1
6R1,6Tq+l 1p(0 0, Bl )—1+SUP]E| Z 57 | Z D B |3zd HE
tem? q°=0 wems
t<T w<t
N q+l1-1 .
p, 1
—1+5upE Z Z Z 39| D> ( B1w)w+6z|no\2]"
t<T wemd i=1 ¢°=0

w<t

A+T36 3g+ b sup  sup R[0T DO (BE,)ss, e, )7

ten? ¢°€{0,...,g+1-1}
t<T

1 1
SL+T20(d, ¢, )Dg4142Mp(p,4110+2) (Zé) v

X Blsup 1+ X7 5[50 P10+ X0 571

1
R,1,q+1-1 .

Moreover, for ¢° € {1,...,q — 1},

6R2—q°+175 T,q°+1— 1p(0 0, 6 (B3 1 +BB’2)D6’q_qOX5)

S B Y 5B BN,
tte<7; w’w€<7.;

1
P

<1+ ) E| |6 B3 pha—a® x) D q<>+H]%
—a®+1’

temd
t<T
3,2 19,q—q° I |P 1
+supE| E 5§ B D X9 wlra <>+17q<>+l_1]za,
temd 5
T weT

w<t

with, since AS(q + 1+ 2) (see (2.2) holds,
1 1

E[|5*T B D=0 ) ;)zd o+17q°+l—1]p < O(d, 4, DMy, 4142+2) (2°) ¥ Dvien

51q+1 5P 1
E[fggll + [ X R 1 g P11+ [ XL (R 2P

and

3,2 n6,q—q° 517 1
E[ 3 6" B DY X, L
wems

w<t

_E|ZZ|5 (B3?) 6, D" X3

wend =1
w<t

p,1
|R§ffqmq<>+z—1 =]”

21
DY ZE 6% (B s D2 X3 2 geri-a] |
s 1
S

)

together with the estimate

o 1 1
H(S (BS 2) ’iD&q ’ Xfu %Z—quH—l]p < C(d7q’l)amp(lﬁq+l+2+2)(26)pg’ﬂr”l

S1g+1l—2 o P B
Elsup [1+ | X714 7,y 1L+ X2 )3,
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Finally, for ¢° € {1,...,q — 1}, assuming A{(q +1) (see (2.2)) yields

8 r70,1
6RZ—q°+1’5 Tyqo+1- 11” 0 0 5234 q°, D Z~+5)
i=1
Z 2 701 |2 b
<1+E| Z o ‘Bq q°,w (w+6z) +5‘Rd7 <>,q<>+l71‘2}p
wens is1 a—q
w<t

p,1
<1 —|—E | Z 5|Bq q°,w |?R27QQ)N,QO‘H*1‘2}I7

wens
w<t

1 1,2 i
<1+7e félITﬂEH Z By e, t|<7zd Q)N,q°+z—1]p

<1 + TgGRZ,qo"S’T»qQ‘H*LP(Bq q<> ,0 0)

Sl=

)-

<1+ T30(d, ¢, 1)y (1 + E[suITa L+ X | P+ X R 1P
o 1,

More specifically, we have shown that

1
GRg,é,T,l,p(Ov 0, Bg,) SC(CL q, l)(l + T)mp(pq+z+z+2)(26) P QQ‘FH‘Q
1
1 B U+ XS 0y P X,
Since A(q + 2) holds, taking I = 0 and applying (4.27) yields, for ¢ > 2

1

1 1
E[ilelg |X§|§<d,5,T,1,q] v <O(d, ¢, ) (1 + T)Miy((p,0vp)+2) (£°) 7 D2

x exp(C(p) (T + 1)My(p42) (2°)70?)
X E[sup|1 XDy g P11+ X7 Patzip)y

Using a recursive approach cimbined with - 4.28)) yields (4
Step 3. In thls last step, we prove (4.26). For ¢ € N, we deﬁne Ho =H and Hyy1 = (Hy)T*N. For
Y satisfying (4 ,We have (remember that D%9Y;, t € 71'5 belongs to ’HZ) for every t € 7°

N
03 DY, 5 =6% DY, + B,64 DY, + 62 > Z)} Bl + 6% Z LYZYsBYi + B2,

i=1

with
By =03D° Byt , + 6% (D X)) HL AL (X7, )D* 'Y,
2,1 2 N

B2 =§:D°B2" |,

N
1 q . 1 .

B3, =62D°B5 |, +06% ) V,A(X],1)D°(6° 2] 5)D™71Y,

=1

ﬂ
2

l\DM—‘

N
Z (6275 2}V AY (X7 1,67 2}, 5,0)) D*71Y,
1,J=
52D (8, A3(X],t,62 20, 5,6) D11y,

N
+062) Bl D82 20 ) + B2y D LY (62 Z) ).

=1
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Now, we remark that for [ € N, it follows from (4.9) that

Gﬁg,a,T,l,p(B;,.y 0,0) < Sya sy p(5%(D6X6)THxA1(X67 D>y, 0,0)

+6H§_1,6,T,l+1,p(B; 1.,0,0)

‘1‘1+

q
< E Syya )
= Hq,qoﬂ,&T,q“rlpr(

q°=1
+ G351 g11,p(B',0,0)
<6’Hd,5,T7q+l,p(Blv 07 0)

(DX TH, A, (X%,.)D>9°Y? 0,0)

1
+ O, 0, DD yrsaBlsup |1+ [XPILL o 0+ (X010 2]
te

2 1
{1+ E[fg}r) Y130 g1-a1%7)
and similarly Gy 51, (0, B2 ,0) < &34.57,g41,5(0, B,0).
Now, similarly as in Step 2, we denote for ¢ € 7 and (w,v) € T x N,

3,1 0,0 78 i,
By =6 Z 2,5 2055 (02 D° X)) H, AL (X7, 1,6 Z0. 5)
4,5=1

+5(5 D(SX(S)TH AS(Xtat 5 Zt+575)

) ) d,j v,j 3
<B? 2) Xt+61w t+6(5 Va Aj (Xtéa + 52 Zt+]6 1 + 1U:j)va2 ]<Xf,t,(52Zf+5>

j=1
N

+ 08 3 220500V AN (XD 4,65 20, ) + 020,V As(X] 4,02 2] 5,0)),

3,5=1
and we have

S .5,m,1,5(0,0, B})

< Gy 5mp(0,0,6"7 (B 4+ B¥)DMY) 4+ Gpya5m141,(0,0, B3y )

N
3 o 3 70 i 16
+Gp05m5(0,0,62 Y Bty D°(622°) + By, DLy (52 2%))

i=1
I <
—q 3,1 3,2 5,q—q°
gZGHj,qu,é,T,quzﬂ,p(, ,0 2z (B> + B>)D Y)
q°=1
q 1 1 1
"E Li  DS(527% 2 oy sk 0
* Z 6”37q<>+1’57T7q<’+l—17p(0’0’52 Bq q°,. D (5QZ,+5)+Bq q°,. D LT(52Z.+6))
=1 i—1
3
+Se,5m,9+1,0(0,0, B)
Moreover, for ¢° € {1,...,q},
Q*qo 3.1 372 6,q—q°
6Hz,qo+1,57T7q°+l—l7p(7 ;0 2 (B +B )D Y)
3,1 3,2 q—q° 1
_1+supIE| E (B2 + B2 ) qqywmd ol
tems 9—q® 11’
t<T wen?
w<t
© 1
a—a°y|P 1
<1+ ) E[ Yt\wiqmﬂmfl]p
tensd
t<T
q— q 1
+ sup EJ[| E 3325 Doa— qy| . 1%,
tem? _goqd®Hi=1
t<T wemd

w<t

33
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with, using (4.9) and assuming that A{(q+ 1+ 3) (see (2.2))) holds,
E[

—° 1 1
T %Z—qo+1vq°+l—1]p S C(d’q’l)(simp(Pst-*‘?)(Zé)p©q+l+3

1 3 L 2 L
Efsup|1 + X7 [ty gt P11+ | X [R5 2] 20 (1 + Efsup [Yilgs g41-1])

and

B[ Y B3 D‘;’q‘quw|

wems
w<t

=E[ > Zl (B32),15:0°3 DP1=0Y,, e

wend i=1
w<t

N
<6 > S R[5 (B wgsid”

wemrd i=1
w<t

T =

q© ,q°+l— 1]

p.1
<>aq<>+171| 2]1”

v Jo 3
Rd,qo ,q°+1—1

together with the estimate

E[|6~%(B3?),,

—_a° 1 Sy L
e Yw|;€H‘;7qo)N7q°+lfl]p < C(daqvl)émp(quJrg-i-Q)(Z )p©q+l+3

1— L L
Blsup [1+ [P0 gy P70+ X7 575 P19 (1+ Efsup Vil o )%).

Finally, for ¢° € {1,...,q},

N
1}: Lyi S5k 0
6R57q<>+1’5’T*q0+l*1*p(0’0’52 Bylge, D (522.+6))
i=1

1
<1+T267237q0,5,T,q<>+171,p(B ~.,0,0)
<L+ T26a 51 g11-1,(B1,0,0)
1 S1q+l—1 5P =
+T3C(d,q, l)@qﬂﬂE[fgIT) L+ X | PP+ [ XD R P2

1

2p 35
x (1+ E[ig}r) |Y\Hd’q+172]2 ).

Moreover, recall that for a multi-index a = (!

i _ e u _1
DOLYZ)Y =067 x)0u" g, /2(0 Uy *Z*,t)lteTlmgzl{t:tj}a

C. Rey

,...,Oﬂ) with o = (t]‘,ij), t; €7T6,tj >0, € N,

with of' := (o) ‘)JeN, (a ) =1,;+> ;,1;=;. Using (4.9) with the estimate from Lemma
[4.4) yields, for every ¢° € {1,...,q},
N
3 2, 576 (5L 6
Sz, 0o +1-1(0,0,07 ZBD Ly (52 2%%))
-
2, S, p.1
s+ ]E | Z 26|Bq Zq<> w+5 Z)LT(62 Zwi§)|7.[d_ <>7q<>_i_l_1|2]‘°
wend =1 a—q
w<t
2, 9 p.1l
SEDY Zaqu A oD DO 20 a7
wend i=1 a—q
w<t

1
gl + C( )T2 bupEHBq q°, tl Q)N,qOJ’,lfl]zp ||L’ZSI‘Z£$||RN,6,T,q°+l,2p
—q

1

2p

1 M«
<1+ T2C(N, Q7P)W6H(1,6,T,q+l71,2p(07 B?,0).
T«
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In particular, we have shown that
: 1 1
67—[2,6,T,l,p(0ﬂ 07 Bd ) < O(d? q, l7p)(1 + T )m (Pq+1+3+2)(zé) P+ ©q+l+3

% E[Sup ‘1 + ‘X(s Q+l+Pq+l+3|2p|1 + ‘X& f{zp;illi%)]% |(1 + ]E[Sup |}/i|]12{; qul*l]%)
’ teT ’

+ T§6Hd,5,T,q+l—1,p(Bla Oa O)

210

1 TN«
+T=C(N,q,p) q+l+167{ 6og+1-1,2p(0, B%,0) + G340 51, 411,(0,0, BY).

Since AJ(q + 3) (see (2.2)) holds, taking I = 0 and applying (4.27) and (4.25)) concludes the proof

of (129

O

Now, we are in a position to prove Theorem

Proof of Theorem[4.4 We do not treat the case (p,)nen+ = 0 which is similar but simpler. The result

is a consequence of the fact that we do not use Lemma in this case. Let us focus on the case

(pn)nen Z 0. We treat the Sobolev norms of 8;5Xf. In the case |a| =1, 1} is a direct consequence
0

of Proposition [£:2} since
O%s X S s = a;;gxf + Bta;ggxf.

For a = (at,...,a%) € N? with |a| € N*, we consider igp € {1,...,d} such that o € N* and

Y
a” ={al,... ;a7 ao — 1, %t . o). Then

O%s Xiis = a;gX§+Btau5X5+5 ZZtHB“—i—BM,
=1

with Bl = B3 =0 if |a] = 1 and for |a| > 2
BM —(axs,ion)THxAi(Xf,t) s X7+ Oxoio B,

a,t T
B}, =Bj°0g, X7+ 0y MOB e

with

% 8,0 79, 7,
Bio =§ Z 20 20 (Do X THL AY (XD, 4,63 27 4)
1,j=1

+ 8(Dxoi0 X0V TH, Ag (X[ 1,62 Z0, 5, 6)

In particular, if we assume that A$(q + |3| + 3) (see (2.2)) holds, for every p > 1, and every i € N,
and every multi-index 8 € N¢, using a recursive approach, we obtain

» 4,4,P

© +81a+1B81+2 P 1
<C(d, q,1B1)D g4 |8|+3 Sup Z E[l1 + |8§3Xf‘%d,|§|1qo7q|p|l + | X7 Parees )

q°€{0,1},a®°€Nd
1-¢®<|a®|<|al+|B]

||af<gBl,

B 1,
+ 1105 0x5.00 By (lIre 67,0,
<C(da q, |Oé|7 |ﬁ|)©q+|a\+lﬁ|+1

X Sup Z EHl + |a§§Xf|fI+|a\+|5| ‘p|1 + |X5 pq+\<’\+\/3\+l|p]%

R4,5,T,q°,q
T ,6,T,
tE€T ocf0,1},a0eNd
1—-g°<|a®|<|al+|8]

Since AJ(q + |a| +2) (see (2.2))) holds, applying this estimate to the case 3 = () yields

HBi,tH(Rd)N,aT,qp\ (d q, |a|) q+|al+1

1
xsup D0 B[ g XTRI o  PIL+ XT R )
teT oe01] a0 ENd
1-q°<la®|<|a|
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and similarly,

|| Z Bi,w”Rd,(S Tap S (d q, |04|)(1 + T):Dq+|a|+29:np(pq+|a\+2+2)(ZJ);

wend
w<t

X Sup Z EHI + ‘6§§Xf|]lllg,lg"1‘,q° ‘p|1 + |X5 Pq+\a\+2|P]%.
€T ocq0,1},a0€Nd
1-¢°<la®|<|a]

Then ) follows from Proposition combined with a recursive approach. We now study the
Sobolev norms of L5 X?. We have

2,1 3
t4s tro Bt + By,

N
L3XP, s =Ly X)) + B,LEX) + 02 Z Z}sBY 460y Ly )
=1 1=

with

d
B =" 0,0, AY(X], t)(D° X7 DOXO pran = Tr(aﬁ(f’THxA’i(Xf,t)),
l,r=1

BY =A|(X],t)

N
4,1 4,7 d, 8,1 %7
B} =6 Y (Z)\ 5Ly 25 + Z0{sLa 2yl + XiisLig) Ay (XD,1,62 20, 5)
ij—=1

+ 205 2005 (Tr(0%s pHo Ay (XD,8,62 20, 5)) + 62 ZaZlA” (X702 20, 5) LY 27
=1

+Xt+6‘sza Aw Xf>t+5 Rk Zt+6))
=1

+ Tr(0%s pHoAs(X], 1,022}, 5,0 +5QZazlA3 (X7,,05 20, 5.0) L5 20,
=1

+Xt+5<szazlA3 X0, 4,62 20, 5,9).
=1

Moreover, for every p > 1, and every i € N, using AJ(q +4) (see (2.2)),

1,4 2 2 1
1B oy o < Cd:0)DgeaspE(IL+ KPR | PIL+ X753,

. 1
1B | oy~ 51,90 < C(d, q)©q+1§ng>E[|1 + X7 [y P11+ X7 R P]

and

|| Z B ”Rd 6, T,q,p < (d q)(l +T)©q+4m2p(rlq+4+2)(zé)%

wemnd
w<t

S =

< spE[L+ XPILE o PIL+ X 2 )

x (14 sup ||L%\ZEHRN,57T7(J7QP).
teT

We finally use (4.20) from Lemma and Proposition to complete the proof of (4.14)).

4.5. Proof of Theorem [4.3l

4.5.1. Preliminaries. Before we focus on the proof of Theorem we provide a representation formula
for the Malliavin derivatives using the variation of constant formula and some technical results we will
employ in our proof.

Representations formula. Let w,t € 7®*,i € N. Then D?wﬂ.)Xf(x) = 0 for every w > t and for
w < t,
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DYy XD = X000(X] 5t — 8,6 20 6)Lupmy + Votb (X7 s, t — 8,62 20 6) DY, o X7 s ().

(w,i
We consider the tanget flow process (X;);crs defined by Xo = I, and
Xy = 0xs X = Vah(X}_g,t — 6,02 20, 6) Xy 5.

We now define the inverse tangent flow. To prove the invertibility, we consider the Hilbert space
(R4 Ypaxa), with the Frobenius scalar product defined by (M, M®)gaxa := Trace(M°M7T) = Z?Zl(MOMT)M,
M, M° e R4, Notice that for M € R4 | M|ge < |M|gixa < d2|M|ge. Also, for k € N*,
|M¥|gaxa < ||M||ga|M*Hgaxa < |M[Eica (with MO = Iguq and M = MM'™' 1€ {1,...,k}).
Now, since V,1(x,t,0,0) = Igxq for every (z,t) € R? x 7, it follows from the Taylor expansion of V),
that
N 1
Vol (XP 5.t — 0,02 2),0) =Igua + 0% > 2} / DV (X 5t — 6,067 20, 0)d.
1=1 0

1
+5/ Oy Vb (XD 5.t — 6,67 20, A6)d),
0

and using the assumption A; (see ([2.3))) yields
(4.29) Lasca — Vb (X{_5,t — 6,02 Z0,6)|gaxa <024D max(|Z] 2L, 1).
In particular, under the assumption (4.15]), we remark that, on the set {|Z|gv < 72}, We have

|det Vop (X0 5.t — 68,6220 8)|7 > inf  |Voh(X0 5.t — 6,62 20, 6)|pa
EERY[E|pa=1

=21 - ||Id><d - Vzw(X?,(;,t - 6; 5%Zt6a6)”]Rd

1

>1-0220(1+ 5t > 5

The matrix V(X 5.t — 6,62 Z0,6) is thus invertible on the set {|Z|gv < 72}. We are now in a
position to introduce the inverse tangent flow, namely ()o(t)te,ra satisfying Xy = I;xq and which is well

defined for every ¢t € 7%* as soon as we are on the set {©,), 76« 4 > 0}. In this case

)0(26 = X;1 = thévmw(Xté—Svt - 57 Z?v 6)71'

In particular we introduce )D(UN = )D(tlgm 52 >0 which is well defined for every t € 7.
We conclude this introduction observing that we have the so-called variation of constant formula. On
the set {0, zs.- ; > 0}, for every (w,i) € 7>* N (0,¢] x N,

n2,mT

(4.30) D2 XD =8 X, X0, (X0 5w — 06,6220 .5).

(w,i)

Before we give the proof Theorem we start with some preliminary results which are crucial in the
study of the determinant of the inverse of the Malliavin covariance matrix.

Preliminary resuls. Two standard results will be used in our approach, namely the Burkholder
inequality (see ) and an exponential martigale inequality, we recall thereafter. First, let us introduce
some notations. Given a R-valued process (Y;),cs progressively measurable w.r.t. a filtration (FY );cqs,
we denote AY =672 (Vs — E[Yiys|FY]), A = 6 'E[Yips — Yi|FY].

Let (M;)icxs be a R-valued local square integrable (F;)crs-martingale. We denote [M], = |Mo|* +
8 wens |AM[2 and (M), = E[|Mo|*] + 6 3 ens E[|AM 2| FM]. Then (see [14] Corollary 3.4 or [15]), we

w<t w<t
have the following extension of the Freedman inequality [I6]: For a,b > 0 and t € 7%,

2

(4.31) P(sup |M,| > a,[M]; + (M) < b) < 26Xp(—%)
wens

w<t
Now, let us give some additional intermediate results which are proved in the Appendix The first
one is a technical result that is used to bound the probability that the determinant of a random matrix
¢ is under some threshold by studying P(¢7€¢ < ¢) for € € R4,
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N
N

Lemma 4.6. Let X be a R -valued random variable and e € (0, dT)? Then
2
1 1
(432) P inf  €TSE< i) <OWe ™ sup PETSE <) +B(IS ] > ).
§€Rd;\§\w&d:1 2 EGRd§‘§|Rd:1 3e

The second result provides an estimate of the moments of the inverse tangent flow.

Lemma 4.7. Let T > 0, T = (0,T|Nn°, let p > 2 and let o > 1. Assume that (.) from Ay and
Ag(p(qflz V(2p+2))) (see ) hold and that holds. Then,

(4.33) ElSup 1511516, x.00F < Od) exp(CDITMyqp viapszy (29)791).
€

with q3, == [1 — 2112((‘;)2)] introduced in Theorem .

The next result is a discrete time Lie expansion satisfied by our process X together with a control of
the remainder appearing.

Lemma 4.8 (Discrete time Lie expansion). Let V € C}(R? x Ry) and let 1y > 1. Assume that 1 €
C3(RY x Ry x RN x [0,1]). Then for every t € n%*

N
Xﬂz,tV(Xté’ ) Xﬁz t— 5V( t—5it — + 5% Z Zt&z)o(ﬂz,t*lsv[i] (Xt(sfévt - 6)
i=1

+ X, s VIOUXT 5.t = 6)) + Xy s sROV(X] 5, — 6, 7))
Moreover, let us introduce the R:-valued functions defined for every (z,t,z) € R x n%*x € RN by
RV (z,t —6,2) =R’V (x,t — 6, 2) — E[R°V (z,t — 6, Z)]
RV (x,t —6) =E[R°V (z,t — 6, Z0)].

Let o® € N and assume that Ad(|a®| + 4) (see and ) and A$(2max(3p + (pjas|+a +
2)(max(|a®],2) + 3) + 4, [—21200] 1 2)) (see ) hold, that V€ €l (R x R RY) = {f €

21n(n2)
C|aw|+3(Rd x R4;R ),3@ﬁ|az|+3 > 1,pf7|azl+3 c N,V(x,t) e RY x R,, |f(z,t)‘Rd < ©f7|az|+3(1 n
|ﬂc|§{;‘am‘+3)} and that holds.
Then, for every (z,t,z) € R x 0% x RV,

5 9
IR(z,t — 6, 2)|gd gécgﬁmax(ﬁp—i—lOm-{-QS,(— 1:}%))]“)@ )

In(8)
In(n2)

4 max(6p+10p4+28,[— 1+1)

(4.34) X DD (1 4 |ay TP Heve o108 ).

and

102" R (,t — 0)|pa <62 C(|Ja”|)IM

n Al
2max<3p+<w‘+4+2><max<|aw|,2>+3>+4,[f231L<;52>>1+2>( )

max ot 2max(|a®[,2)+3)+2pv, |az |1
(4.35) x 9 @fam'irila |2)+3@\/|m|+3(1+\$|§4 ra@max((aT],2)+8)+2pv. 2,

The last result is a Norris Lemma adapted to discrete time processes. In the continuous case, this lemma
can be found in [24], Lemma 2.3.2. Before giving this result, we introduce some notations. Let ¢ > 0
and T C 7%*. Given a R-valued process (Y;);crs progressively measurable w.r.t. a filtration (F} );crs,
we denote,

(4.36) Ny,r(9) ::1+§U$E[|Yt—6| ]HE[SHPIA 5 ]+1E[SLIP1E[|A sl
S

JrE[SuplA |]+]E[SIIP]E[|A Vsl 5]

Lemma 4.9 (Discrete time Norris Lemma). Let T > 6, T = (0,T] N w°. Let (Y;);ens be a R-valued

random process progressively measurable with respect to a filtration (FY )iens, let 7 € (0, 75) and let

44p
7 1-12r

Nyr(q(r,p)) < +oo.

p > 0. Let us introduce q(r,p) = max(4 ) and assume that
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Then, for every € € [|219(1 + T3)g| o507, 128(1 —|—T)|_1—1112r], then
(4.37) P Y |Vi* < €6 EIAY P17 5]+ A 51> =€)

teT teT

_1-—-12r
22

2q(r, 5q(r,p)+5
<eP(1+T a( p))z q(r,p) Ny, 1(g(r,p)) + 12 exp(— 7211<1 n TQ))
4.5.2. Proof of Theorem [{.3

Proof of Theorem[[.3. Step 1. For every i € N, we introduce the R?-valued process (‘i’i,t)teT defined
for every t € T by W, , = X; sV, 10,00(X?_4,t — (5,5%Z§575). Notice that, for every ¢t € T,
Xo0b(X )5 t — 6,65 70,6) = W, .
2

We introduce the notation 92 = 997 € R¥¥9 for a vector v € R%. Using the variation of constant
formula |D denoting 5?@3 =02 (t.erxn Xi (Wie)?, on the set {©,, 1, > 0}, we have

U()s(g,,T =4 Z (D(t z)XT) =0 Z Xf(XTXtazi¢(Xf—57 t—9, 6%Zt55 5))2

(t,i)eTxN (t,i)eTxN
:6 Z Xf(XTlilut) = XTUX6 szj:
(t,i)eTxN
_1 1
We first show that the proof of (4.16)), boils down to prove that there exists ¢ € (n; ? d—i] and C >
2
_1
(which do not depend on § and will be made explicit in the sequel) such that, for every € € (n; ,%¢),
(4.38) sup  P(¢T JXJ 1€ <26,0,, 1 >0) < CelPHY,
EERL|€]pa=1
and
- 1
(4.39) P(Haﬁ(:&rmnw > = Opr > 0) < CedPt2),

In this case
E[|det 7%; xl"To,, , 0] <C(d:p)C+ [

where :Y}S(s XT ’yX(; X7 and follows from the Cauchy-Schwarz inequality together with
T’
Lemma [.7}. The result of Step 1is mamly a consequence of Lemma [4.6] We begin by noticing that

P(|det7%; rlle 02 ¢ ?) =P(|det 5%, ol < e, Oxs ;1 > 0)

X&Z,n,T
Since | det 6§(%’T| >n; ' on {GX%M’T > 0}, the quantity above is equal to zero as soon as €% < ;!
and for every e > n; L
P(| detaXa ol < ed,@X%m’T > 0) <P(|det & O'X5 | <et,0,,>0)

P inf 759 < €0 > 0).
(§€Rd§‘f‘u§d:1£ x5,18 S 6Oz > 0)

Applying Lemma (with and ), for every € € (171_%5)7

P(| det 5% | < €, O 1 > 0) SC(d)Ce’PT2).,

N

Therefore
[m]—
- (k+1)? __
E[|det7§<;,q~\p1®x5m¢> d)C Z gz + [e
’ k=l
(k+1)P Ca _
CZ is e < O(d)c2r c +[e 4,

and the proof of Step 1 is completed.



40 C. Rey

Step 2. In this part, we focus on te proof of (4.3§ - More par‘mculaurly7 we demonstrate that, if

m e (1,6~ dsrier min(1, d|210(1+1g:)|d913436 )] and 7 € (1,67 21, } then for every r € (0, &), if we fix,

1
B i 23 TV (x9,0 L
4 min(—, (Xo )L(L+1)) y 10+ Lrso|m.
dz 40(L+1)N—=z

281+ )|

|T—L+1
L(L—1)
2

)

-

%),

(4.40) sup  P(¢T 0X5 18§ <260, 1>0)
EERL[E|pa=1

then, for every € € [

_3d(ptd) C(d,L,p,p2r+5,7 1=137)
ST VLXG) T T )L+ Ly gsolXlaa TR

c(d,L,p,t,—L C(d,L,p,%, = 57) 5
x DOBLPy 1_12T)592L+5 o mc(d,L@yP,Pu-;—s,%,?ll%)(Z)
1 1
x C(d,N, L, —, Sy —————
( p— Py P2145: 1—12r>

1

1
X exp(C(d, L;p;par+s, 7’ W)Tmc(d,L,P7P,P2L+5,q22’%,ﬁ)(Z6)®4))’

Notice that |D is obtained by taking r = 113

Step 2.1. For every | € {0,...,L} and ¢ € R we introduce the R -valued process (Vg 1Lt)teT

defined for every t € T by Ve, = Y aent 2ien'é )OQ,(;Vi[O‘] (X)_5,t—6))2.. Let r € (0, 15), and denote

ol

_ o 149
Ny, = (ﬁ)rlélllfr Hé NI™77 Assume that 5, € (1 57ﬁ] and 1y € (1,67 21, *?] with v, > 0.
Then, for every ¢ € RY with |¢| = 1 and every € € [, ?,1)

(4.41) PG > xE Wia)ha < 26,0, 1 > 0)

(t,4)€TXN

L—1
ZP52V51t Ny €" 62‘/§l+1t>Nl+1r€ ,Op,T > 0)
= teT teT

) 10 sy o
P(ét;;wug@ﬂ)m*N 2 0,1 > 0)

c(d,t, 1 C(d,p,ps,
+6d(1’+4)©3( v v)(1+1p3>0‘X8|Rd( P:P3

11
v D

)
)M d.p.p, ps,i»,,)(Z )

11 Symd
)exp(c(d7p5p3a Ea 5)Tmc(d,p,p,p3,qf72,%,%)(Z )© )

| =

X C(d7pap37 )
).

vl <
ST

+ 2exp(—€~

First, we notice that

PO > X&) < 26,0y, >0)

(t,i)eTxN

<P x{Veor < 86,0, > 0)
teT

+PO Y (& — X sVi(X] 5.t — 6))Ea > 26,0, 1 > 0),
(t,i)€ETXN

with
P60 X Veos < 46,0y, > 0) <P Y (x) — ma)Ve o] > 26,0y, 1 > 0)
teT teT

. 10
+ P(zs;vmt < e 0,1 > 0).
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Now we have

5Zv0t\ 10 Oy > 0)

teT

o ! o 141
< Z ]P’(CSZ Vear < Nppe” ,52 Veat1,t > Nig1p€” .0y, 1 >0)

1=0 teT teT
ﬂ5 E ‘/flt Nl7‘€ @7727T>0)5
=0 teT
) ) L(L+1) L(L+1)
with, since sup;cqo,.. 1y Nip < Nop N7 27 = anO*N 2

10 ra+yn |
ﬂéZVw < Ni€ 0,1 > 0) < 522%“ (L+1) =N~z 0,1 > 0).

=0 teT teT 1=0 M

Moreover, for v°® € (0,v),

(5|Z Xt m* 772;T>0)
teT
6‘ Z M 19712 Tt—5
teT
623 (m(1—m) + () —m))le,, x,_ss0lVeoul? <2¢27077)
teT
P(62| Z 167/2,T,t—6>0|‘°/£70;t|2 > 262_‘_0—1}0)'

teT

Using (4.31)), with M; = >

wensn 0(X0 — m*)lenQ,T,t,po‘}g,O,t, the first term of the r.h.s. of the
wt
inequality above is bounded by 2exp(—e_(“_”0)). In order to treat the second term, we remark that,

10/57(” =D ientés Xt_(;Vi(Xfié»%d and using the Markov inequality, for every a > 0,

N
P2 31D (e X s Vil XD 5.t — 0)2ul* Lo, x, s50 > 2¢2707)
teT i=1

<0t (DT Elsup || X5 Lo, 7. s>0(L + sup | Xi—sl52) "]
teT teT

24v

In particular we chose a = — (vai(ﬁ;ﬁ)nl{;(glj dln( 5 (remember that § <7, ¢ so that a <

and apply Lemma (see (4.33)) and Lemma (when 4a < 2 we also use the Holder inequality).

Now, we study P(6 20, ;) eTxN<§ i — Xy sVi(XP 5.t — 0))24 > 26,0, 1 > 0). Recall that, on
the set {©,, T > 0}, we have |Z27] < ny. We denote D,, = {z € RN |2| < d2mp,i € {1,...,N}}. We
fix (z,t,2,y) € R? x T x D, x (0,1]. Using the Taylor expansion ylelds

|Vm¢_18z”/’(xat - 57 Zvy) - V;({E,t - 5)|Rd <5%772 Z ‘azj (Vziﬁ_laziw)(%t - 57 Z, y)hRd
jJEN

+ 5|ay(v11/}_18z’¢)(xvt - 5, Z, y)|Rdv

d(p+4) )

with
0y (Vb ™10,:00) = Vautp 710, Vo Vot 710,100 + Votp 19,019
0.5 (V™ 10,:0) = Vo 10,5 Vo Vo 7 0,00h + V10,4 Lith.

We focus on the study of the second term above. The study of the first one is similar and left to
the reader. Remark that

Z |8zj (vmw_laziw)hkd <Hv$w_1”]12w Z ||8zfvocw||Rd Z |aziw|Rd
i,jEN JEN i€EN

+||vmw_1”]Rd Z ‘azjzithd'

i,jEN
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We show that, the function [|[V,1~1|g« is bounded on R? x T x D,,, x (0,1]. We consider the
following decomposition

Vo YNt —6,2,0) = Iyxa — (Vot(2,t — 8,2,0) — Iyxa)Ved Ha, t — 6, 2,0).

Now, assumption A; (see (2.3)) implies that (4.29) holds. It follows that under the assumptions
(4.15), for every (z,t,2) € RYx T x Dy,, ||[Voto(2,t — 6, 2,6) — Iyxallre < 5 and then ||V 1~ |pa < 2.
Moreover

d
S 02 Vatblzs < 301102000132

JEN JEN =1

d
<D0 102500 za

JEN I=1

Using similar estimates for the term 9,(V,119,:1)) together with A;(3) (see (2.2)), we obtain, for
every a = %,

PG Y (& — Xy sVi(X] 5.t — 6))Fa > 26,0, 1 > 0)
(t,i)ETXN

<C(a)d"n3"e D3 T (E [SupllXt slIEi L0, r..o 5>o(1+Sup\Xt slga)]

+ C(a)dn3 e “Elsup | X,—s]|24 16, r, ;500 O |Z] |35 4,,3 .
teT Py

Moreover, the Holder inequality (since 2a > 1) yields

|(<)‘ Z |Z5|4333 ‘211 T2a IE 5 Z |Z6 8aps ” < T2am8ap3 (Zé)
teT teT

145
We chose a = max(3, [— ln(md)(f;rfln)(?)@ézun(mﬂ) (remember that § < 7, %n, = so that a<| (p+4)])

and conclude using Cauchy-Schwarz inequality, Lemma (see (4.33)) and Lemma Gathering all
the upper bounds together, (take v® = %), we obtain (4.41)
TV (XE,0)m.  \p—L
—L(L+1)) ]v
40(L+1)N 2

Step 2.2. Let us show that, for every € € (0, (

10
622‘/5”\ (L+1)— NEER 0,1 > 0)
teT 1=0 M

<6d(p+4)v (X ) (P+ )

5:C(d,L, ,x
(14 Ty, pp s X5 SLHFPPar2000))

x DOLp.7 )Qc(d’L’p’T)fmcw L,p,p,p4+zL,%>(Zé)

1 1 1
X C(d N L —, D, Pat2r, )eXp(C(d7 Lap7 Pator, 1_ 2’ ;)TmC(LLL,p b, p4+2L,q’]2,T)(Z5)®4)
VL(X )
+ 26Xp(7’"L—(;V+L)
32¢ N (VD)

It is worth noting that, in case of uniform Hoérmander properties, we have a similar result but with
Vi (x3) replaced by 1 in the r.h.s. above.

L(L+1) L

Now let us focus on the proof. of Step 2.2. Let us denote ¢, = (L + 1)%]\7 z ¢ . Let

S:={J,..., fﬁw} Since € < (%m)fL, then S C T. Therefore,
Ve(X A0(L+1)N 2
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L
P(0Y S Vers < (L+1)Np € Oy,1 > 0)
€T 1=0
522‘/5” €r,1,, Oyyr > 0)
teS =0
5‘8‘ Z Z V[a] (X0))2a — €rL

|a|<L =1

<5y N Z| & X sV (X5t —8) — VI (x))zal%, O, > 0)

teS |a|<L i=1

N
<P(sup D0 D16 K s VI (Xt = 0) = VIV (G, 0))a* >

la|<L i=1

Sup Z Z|Mazt 6‘2 (

tes ‘a|<L =

L(x}) 2
Z ZP Suleazt 5\2 T_Sup|3a,i,t7(§| )
la|<L i=1 SN( ) tes

with for every ¢t € T,

My =0% Y A Baii=96

weT;0<w<t

where Y, ;0 = 0 and for every t € T,

Ya,z}t = <€7 )0(772,25‘/;'[04 (Xfa t) -

Now we decompose our estimate in the following way

522%” < (L4 1N, 0y, > 0)

Z Z\Bazt 51%)

43

We study the second term of the r.h.s. above. Using the Markov inequality, for every a > 0, we

teT [=0
Z ZIP’ sup|M(“t 5|
|| <L i=1
Ppl B> JNE))
have
B(oup|Bosi—sf? > 1]/&7V(>((]\““ BT IALIF >

<4%0%|S|* sup E[|AZLX({ @
tes

In particular, we chose a = % so that §%|S|* < C(a,

As a consequence of Lemma with V = Vi[a] and Cauchy—Schwarz inequality, we have

_—
E[lA;%5

4 <C(d, a)©3af;aza©v[a

x E[[| X1-sll3i 16, x>0]2 (1 + E[1X{ sl

VLX) e,

2 max(3p+5pa+14,[—

and we bound the r.h.s. above using Lemma [£.7] (see (4.33])) and Lemma [4.5] (when 4a < 2 we also

use the Holder inequality to conclude).
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Moreover, for v/ > 0

V(X))

sup [My i —s)? > ——20
Plsup [Mavii—s|” > 16N(N1J\§L))

Vi( x2 L
su Maz 2 0 5 E A fX =+ A 2<€2+u’
(tep\ t° = 16N N+L ;es HAZS PIFE S+ 1Ay )
+P(6 Y E[IAy PRIEXS] 4 AN >6721LW)

t— t—3 = .
tesS

5
Using the Doob exponential inequality (4.31)), the first term is bounded by 2 exp(— Vi (Xp)

— ) )
32e2F0 N(VEF)
In order to bound the second term we take a > 1 and using again the Markov and Hoélder inequalities
and that AYei = AMai | yields

P(§ Y E[IAM 2

tes

~ TL
X AN 2) > (7 ) < golg|ee TR0t supE[lA o

Qa]

L
At this point, we chose a = 24P+ o ¢hat §%IS|%e =7 < C(a, N, L, 2, 1YLoV (X, 0) %t P+4),

(14v")rkt Ym0 T

Remark that a < %. In order to bound the r.h.s. above we use Lemma E Hence

AYa,i|2 6ay14 5\2
E[lA, 25 1%] <C(a, ):9 ‘D, agv[a 8 max(2a,1) max(3p-+5ps+14,[— 111“(37‘2) (Z2°)

8a(Tpa+2p viel 5 )
12),

and then use Lemma [4.7| (see (4.33)) and Lemma Remarking that @V[a C(|a|)©i£‘20|‘2‘ and

1+2)

W=

o 1
x B[ Xe-sllgiLe,, x>0)% (1 + E[ X7 5|z

pv[a] 5 < C(lal)pato)al and takmg v’ =1 concludes the proof of Step 2.2.

Step 2.3. Consider the case L € N*. Let [ € {0,...,L —1}. Assume that n; € (1,6~ %]. Let us
show that for every

_1 [219(1 + T3)| e -~

AR It
Nl,r ’

Nl,r ] ’
then

5ZVth Ny € 5ZV§l+1t>Nz+1r6 , O, > 0)
teT teT

1 C(d,Lp,+, )
<6d(p+4)@C(d,L,P,1 T TS 12,)@ T TorE mc(d

é
2l+7 7L7P7P792L+77%)(Z )

§5,C(d,L,p,p =)
(1+1P2l+7>0‘ O| T )

1 1
d,N, L, —_—
XC( 7p,p2l+77ra 1—127“)
x exp(C(d, L, p, paiyr, 1 — 12T) mc(d,L,p,p,p2l+7,q%2,%,ﬁ)(Z )D%)
| |71 127
lre
12 —_—
FL2exp(= )

First, for « € N! and i € N, we introduce the R-valued process (Y it)ienee such that Y, o =0
and Yy, , = (¢, )0(772 — ,;V[a](Xt‘s st — 6))ga, t € 7>*. In particular, on the set {0,, r > 0}, Vgu =

Y aent 2ien Yo, ;|?, t € °. In particular, it follows from Lemmaw1th V= V[ ol , that, for ¢t € 7°

Yo?,i,t—&-& a,i,t =4z Z Z(sj 5; n2,t —5V[(a7])]( t - 6)>Rd
Jj=1

606, Xt s ViIOONXD gt = 8)))ma + (€ Xyt sROVINXD 5,8 — 8,20 )

N
1

_6222 )/(a])lt+5}/(a0)zt+<§ th 5R6V[a](Xt 5>t _5723»11%‘1
Jj=1
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and
i -1 e Yy,
Verrre = 3 SOE[A — 673 (g, Xy s ROV (XD gt — 6. 20))mal 55
aeNLieEN
AVt _ 5 e X sROVIXS = 6))pal?
+| t <§7 n2,t—9 i ( t—6’t )>Rd‘ .
Therefore,

5ZVglt Ny €” 52‘/51+1t > Nipq e —urt @nz,fr > 0)
teT teT

ST DD M AR

teT— aeNlieN
~Y?o. _1 ° ~ @ Yy,
03N STEIA - 57 E (e, Xy s ROVIUXT 5t — 8, 20))pal 1 F, %)
teT aeN! ieEN
—-vY°o. a ”
A = 5HE, Ky sRVIN (XD gt — >>Rd|2>Nz+ue )
o)t 2, Y, 1., S}
<D D PO D YL P N6 R A 2] 4+ AV 2 > N AN e )

aeN! ieN teT— teT

+ 3 S PO BTG X s ROV (K] 5t 0, 20))ral)

aeN!IiEN teT

o 1.,
F6HE, Xyt s ROVIVXD 8 — 0))pal® > v AN e

141

1+1

)

where T~ = T \ {sup{¢,t € T}}. We bound the the first term of the r.h.s. above. Since Nij1, =
ANYINT 7€ (0, 1), and Ny € [|2'0(1 + T3)8|55, 28(1 + T)| " 7177, this bound is obtained by
applying Lemma H with Y° =Y°.

wir T =T, e=N, Te’“l, and p = @. In particular we have to
bound Ny - (¢(d,r,1,p)) (this quantity belng defined in ) with ¢(d,r,1,p) = max(4, %)

_ ~Y°
We notice that A " = (€, V (XO, 0))rd, AA *" = 0 and that, for t € 7%*, as a consequence of Lemma

A8,

Yo _ o —0 a
AtA ' :Y(?x,O,O),i,t"'(s 1<§>an,t75R V'[( ’0)]( t 6>t_5)
_ o —5 _ o —5=—5. la
HE, X ms(ROVIDOXT 5t — 8))ga + 072(6, Xy o sR R V(XD 5, — 6))ga,s

and

N
o, 8,7 1 «,0
AA _ZZ ]Yv(oz 0,])zt+§ <€ X772t 5R6V[( )]( 6 Zé)

Jj=1
+ 671 209(6, Xy s ROVINI(XD 5,1 — 6))pa
+ 073, Xt s ROR V(XD 51— 6, 20)) g

Applying (4.35]) and ( -, we obtain

1 1 1
1_v'1—127" r) 4g(d,r,l,p) max(3p+6p7+16,[ - 5] 42)
« Dba(d.r l,p)@ (l)q(d 7,1,p)

Nys o (a(d,,1.p)) <C(Lp, T (2°)

« ]E[sup ||Xn2,t— HQQ(d )T lap)]% (1+ IE[sup |X |2C(l q(d,r, l7P)F’2z+7)]%).
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Using the Markov and Cauchy-Schwarz inequalities gives also, for every a > 0,

P(6 S EJ6 (€, Xy sROVIVXD .t — 6, 20))pal?)
teT

« ]. . Tl+1
10718 KRV (Xt = )l > TN T N
a 1 1
ééfef‘"H TC(N,—,l,7,a)
My
s
x My, max(6p-+10pa+28,[ — 3] 42) (2°)
ooy
° a1t aC(l) 1
X Elsup | X e-sl[§]# (1 + Blsup | X7 5270 )
teT
In particular, we chose a = _Tlfﬁi_(? l)n(”;f 7 S0 that §5eor'™ < @) (notice that since § < 7
1)—3n

and r € (0, 75), then a < 2d(p+4)) and then apply Lemma (see (4 ) and Lemma to conclude
t

the proof of Step 2.3 (when 4a < 2 we also use the Holder inequality
Step 2.4 We are now in a position to conclude the proof of Step 2. Gathering the estlmates

obtained in Step 2.1, 2.2 and 2.3, we have proved that, if 1 € (1,0~ 2+v] and ;€ (1,677, K | with
v, ¥ > 0, for every r € (0, %) and for every

1 M| 210(1 + T3)5| o756
e €max(n; *, 150 m. |27 10 )9 )s
23 TV, 0 25014+ T) = e
mln(Tv 0 L(L+1) ) 1= + 1L>0|m* L(L-1) ‘ ))a
dz 40(L+1)N~— = ION ==
then
SupfeRd?|§|Rd=1P(£T5—§(f,Tg < 26, 67727’1‘ > 0)
_ 3d(p+4) (d,L 5,4, 11 1
ged(”+4>(1+VL(XS) L )(1+1p2L+5>0|Xg|Rd PP2L45 T T m))
1 C(d,L,p,%,%,+,1=%
« fDC(d7L,ZL;,%7%,1,112T)®2£+5)LP VIS T T lzr)mc(d,L,ppp2L+5,—,l,l,1 o )(Z(S)
111 1
XC(dNL 7pap2L+57;75 ;71—127’)
111 1
X eXp(C(d, L7p7p2L+57 57 57 ;7 1— 12,,,)T9:nc d,L,p,p,p2r+5, qﬂ2 IS %71—1121‘)(25)94))
1—12r
_y Vi (x) m I 2
+2C(d)(exp(—€"2) + exp(———F————) + 6exp(— ———=7)).
32¢F N (Vi) 211 (1 + T2)

We fix v = 31::16’” and ¥ = 1 and the proof of Step 2 is completed.
Step 3. We now focus on the proof of (4.39)). In particular, we show that for every e € R*,

(1.42) P(I0%y e > ) <P (xdlgaTp,50 -+ D)0
x exp(C(d, p,p3)(T + )Moap,p ps 0, ) (2°)D).
First, we notice that, using Cauchy-Schwarz inequality, we have
15%s ellre <lloks zlleall Xr 2
<|Xf|]2Rd,6,T,1,1HXTHD2{d'
As a consequence of the Markov inequality and again the Cauchy-Schwarz inequality, we obtain

1
&7 @772,T > 0)
LedPt2)gdr+2)| x 9| 12

~0
P(Haxf,THRd >

||4d p+2)

w\»—A

R%,§ T,1,1,4d(p+2)E[buP HXt lo,, >0] 2.

To conclude the proof of Step 3, we then apply Proposition [4.2] (see (4.25))) and Lemma and
obtain (4.42)).
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Step 4. In order to complete the proof of Theorem [4.3] it remains to show that (4.17) holds.
Similarly as in Step 1, we have

5 n
P(|det 3% ol > 5 Oxg . > 0) <P(|det 5%, p| < 2077",0,,1 > 0)

1
<P inf 50 <27 L 4,0 > 0).
X (§€Rd;\£\w:1£ X2, T§ Ui n2,T )
!
Using the result from Step 2, (see D with e =237, ¢ and r = %) for p > 0, we have

m
2’

_ 1 C(d,L,
<y PV v (x§) TP (1 4 1y, o Y|SB E PP

> @C(d’L’p)QC(dé’p)mc(d )(Zé)

P(|det 735 ol = % Opair > 0)

,Lpppar+s

xC(d,N,L,—,p, p2L+5)eXp(C(daLapap2L+5)T9ﬁC(d,L,p,p,p2L+5,q‘flz)(Z(S)©4))'

My

To conclude the proof, we simply observe that

P(Oxs po <1) < P(|det7§(g;p| = )+ > P(Z ey =m0 — *)
teT
n
<P(|det 1g xl > B O > 0) +ZP 12l > m) + Y P(Zen > 2)
teT teT
12
(|demX5 ol > @W’T > 0) —&-2;1@ | Z0 |gn > ?).

APPENDIX A. PROOF OF TECHNICAL LEMMAS
A.1. Proof of Lemma [4.6l

Proof. First notice that, since € € (0, \/%), there exists {1,...,8{n (@} with & € R N(e) < 7d324¢=24

(see e.g. [32] Theorem 1.1 or [28] Theorem 2 for a refined constant) such that {¢ € R |¢|ga = 1} C
U € € RY, € — Elpa < S} Moreover

L 1 1 1
B(_ jnf  T8< g =P(_nf  €79C< e |8]ke < 5) +B(IS ] > 50
(eepd & ZES 59 =Pl € RS g0l < ) +P(IElre > 50

In particular for every ¢ € R?, |¢|ga = 1,
€756 =€/ 06 + (6 — &) (3¢ + 27¢)
26756 — 2|6 — ElpalZllre — |& — E[Ral|Cllre-

Therefore
. 1 1 N(e T
P f '8 < e |Blra < o) <P 5¢;
(Eelel;\ré\Rd,:lg £< 6 l8lRe < ) <P(UL &7 X6 <€)
and the proof of (4.32) is completed taking C(d) = 7d32¢. O

A.2. Proof of Lemma In this proof, we are going to use the Burkholder inequality (see (4.23])) on
the Hilbert space (R (,)gaxa), with the scalar product defined by (M, M®)gaxa := Trace(M°MT) =
ijl(MOMT)i,i, M, M?° € R¥*4. Recall that for M € R™*9 || M||ga < |M|gaxa.

Proof. Step 1. First we show that

o 1 $ 1
Efsup | X[Bucale,, ,50]7 <d+Efsup| > Tylh,..]7
teT teT werdN(0,4]

1
+ E[sup | Z T ‘Rdxd}p

wemin(0,t]
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A

where we have introduced Ty = 19n21T1t>0)°(t_5(Idxd—Vaﬂ/)’l)(Xfﬂ;, t—0, (ﬁZf, 9), T, = E[Tt\ftzjé}
and ¥y, = 1) — Yt, t € 7%*. On the set {6,, T+ > 0}, we have
Xo=loxa— Y. Xu—sUawa — Varp (X0 _g5,w — 8,62 20,0)).
werN(0,t]

Now, using the triangle inequality yields

1 1
[sup|Xt|Rdxd1@,,2T>o]p <Vd+E[sup| > Tulhucale,, r>o0l?
€T wemdN(0,t]

1
<Vd +Efsup | Z Yo lpaxal 7 »
teT wemdN(0,t]

and, using the triangle inequality once again, the proof of Step 1 is completed.
Step 2. Let us show that, for ¢ € T,

|Tt |Raxa <6|)°(t_5 |Raxa 1®n2,T‘t—5>039©2mq%2\/(2p+2) (Z(s)

We begin by noticing that, since le, 5, >0 = 15%ZfeD,,2 lo,, v, s>0 (With D,, = {z € RV, |27 <
5%77272' € N} introduced in the proof of Theorem , for every t € n0*
N o 1,5 Al
|Tt|RdXd :|Xt761@n2,T,t—6>OE[IdXd - xw ( t st — 5752Zt ) 5)15%Z§‘6D"2 |ft76]|RdXd

Now we remark that,using the Neumann series, we have, on the set {§ %Zt‘s eD,,}

(Vath ™' = 2L gaq + Vo) (XO 5.t — 6,62 20, 6)|paxa

< M = Vet (XLt — 6,64 20,6) b
k_

so that

N o 1 5
Tilraxe <|Xi—slraxalo,, 1., s>0(|E[(Taxa — Vo)) (X{_ 5.t — 6,67 27, 6)1 |FZ 5]lraxa

6%ZfeDn2
1 5

E |Id><d - w,(/J(Xt 67 - 6762Zg7 6)|]§4Xd15%zéeD ‘]:th(S})

P t n2

On the one hand, using the Taylor expansion of V1,
N
Vot (X 5.t — 0,03 20,0) = Lyxa + 02 > Z)'V,Vi(X] 5.t — 0)
i=1

+5/ 0,V atb (X0 5.t — 56,6420, A6)d\

+6 Z z2 7z / (1= N0, Varh(XP 5.t — 6,062 20, 0)dA.
il=1 0

Now, we remakr that

N
E[é% Z Z?lvw‘/l(Xta—(S’ [ 6)(1
1=1
The Markov inequality, combined with (2.3)) implies that,

1
stzsep,, T 5%ZfeDn2)|

N
E[6%] Y Z)'VVi(X] 5.t —6)1 lrana |FZ'5] <SDE[Z0]0%].

1
5228¢D,,
=1

In particular

|E[(Id><d - z’l/})(Xt st — 5 5§Zg’5)16%Z5€D “Ft%SHJRdXd

<ODE[|Z) “"2] + 06DE[1 + |2 [2E7).
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On the other hand, using (4.29)), for every k € N,k > 2, we have

1 8
El[Laxa = Vot (Xi_g,t = 6,07 27,0) [gualyy yo o]

<5%7751672)(¥3+1)4:k;gkIE[max(|Z§S ]QR(JSJA)? 1)].

. 1 . .
Since 62ng+14© < %7 the geometric series converge and

e 5
E[Z |Id><d - wa(Xf—av t— 57 5%Zt63 6)|]1k§d><d15%2;s€[) 2 |‘FtZ—6]
k:2 t n

<6320 My 4 1)(20).

We gather all the terms together and the proof of Step 2 is completed.
Step 3. Let us show that

~ 1 1 o 1 1
E[|T¢[Raxale,, z._s>0]7 < I2E[Xi 5[Raxal? 101@2mp(q5"2\/(2p+2))(zé) 7).

First, we remark that
|Yt|]Rd><d g |Tt|RdXd + |Yt|Rd><d.

We have already studied the second term of the r.h.s. in Step 2 so we focus on the first one.
Proceeding similarly as in Step 2, we have

o 1
|Tt|Rd><d <|Xt,5|Rd><d1@n2’T’t_5>0(|(Id><d — Vm)(Xf,g,t — 0, 622?76)16%236D7,2 |Rd><d

£ 37 Maxa = Vot(XE st = 8,602, 6) ey 1y oy -
k=2

Using (4.29)), it follows that
. 1
EHXt—é‘%dxdl@m,T,t75>O|Id><d - de)(Xf_aa t— 57 42 Zfa 6) ﬂgdxdl&%zfeDnZ]

g(ng“j{t—é ‘%dxd 1®n2,T,t—5 >0]®p4p29ﬁp(¥3+1) (Z(S)

Moreover, since 62nb 14D < 3, on the space {6220 € D,,}, we have

> axa = Varb(X] 5.t — 6,68 2], 6)[buca < 0320°(1V |20 5ETY)
k=2

and

o0
% ) L6
B[ X slfaxale,,me o0l 3 Haxa = Vet (X{5t = 6,03 20, 0) [pual " 13 4oy, |
k=2

SOPE[|X1—sBunalo,, x.5>0132° D 2o 41)(2°).

Gathering all the terms concludes the proof of Step 3.
Step 4. We are now in a position to conclude the proof. First, employing the Burkholder inequality

(4.23)), we have for every p > 2,

Eup| Y TulZund] <6 EIY [TifZen)E
teT wemiN(0,t] teT

<b, (O E[Te[2ua]7) .
teT
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We deduce from Step 1,2,3 that

o 1
E[SupteTu{O} | X |]}%d><d 16,,2,1:1, >0]7

<d+Esup| 3 Tulul? + 0, (S BT,

T ersn(o.4] teT

S, 1
<d +39D%Mys v (ap12)(2°)E] > 61X slraxalPle,, 1, s>0l?
teT

1 o 2,1
+ bplolgzmp(qg2v(2p+2)) (Zé) P (Z 5E[‘Xt—6|%dxd 1@7]2,T,t—6 >0] DE
teT

Sd + bp140®29ﬁp(q§]2v(2p+2)) (ZJ)E (Z 5]E[ sup

. .
€TU{0} <t|Xw|§d><d1®,]2,-r7tia>o]p)2'
ter W w

Therefore, as a consequence of the Gronwall lemma,

S, 1 2
]E[fu}g 1XelfaLe,, x.>0]7 < V2dexp(by140°D TMy g5 y(2p42))(2°)7),
€

with b, defined in (4.23)) and the proof of (4.33) is completed.

A.3. Proof of Lemma [4.8l

Proof. Step 1. Let us show that for every ¢t € 7%*,

N
V(X2 1) = V(XD 5.t —0) =02 > Z)'V,V(X] 5.t — 6)Vi(X] 5, —6)

=1

4OV V(X[ 50t = 8)Vo(X[ 50t — 6) + 80V (X]_g,t — )

N
1
+ 6§ Z Vvl(Xtéfévt - 5)TH91V<X1§767 t— 6)W(Xt6767t - 5)
=1

+ RO X 5.t =0, Z7),
with for every (z,t,2) € R? x 70 x RV,
RO (x,t,2) =R*Y3(x,t, 2) + V. V (2, t) ROV2 (2, t, 2)

N
1 )
+ 50 > (@'E = 1) Vil ) THLV (2, 1) Vi, )

il=1

N
+20% 3 2 Wi, ) THLV (2, 1) RO (a8, 2)

=1
+ RO (2,8, 2) THLV (2, 6) ROV (2, ¢, 2)

where

1 N 1
ROV (2., 2) :5/ Oy, t,02 2, A8) AN+ > zizl/ (1= N)3,:0,1(x,t, A6 2,0)dA,
0 0

il=1

N 1
ROL2(x,t, 2) :5% > (22 = 1i2)0.:0.00(, £,0,0) + 52/ (1 — N)O2p(x,t,8% 2, A0)dA
; 0

i,l=1

1
+5%Zzl/ 0,10, (2, t, 0% 2, 0)dA
1=1 0
1Y L
S zizlzl/ (1 = N)20,:0.,0.000(x, 1, AF 2, 0)dA,
2i,j,l:1 0

C. Rey
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and
1
ROL3 (2,1, 2) = 52/ OV (x,t + A5)dA
0
d 1
+ Z/ i TV (x 4+ AR*M0(x,t, 2), t)dAR> M0 (2, , 2);
1
Z ROYO(g ¢, 2 y)z®]®k/ (1 = X)20,i0,50,, V(x + ARV (¢, 2), t)dX
i,7,k=1
with
1 X Noooon
R‘Svl*o(x, t7 Z) :5/ 8y’l/)(l',t, zZ, )\5)d)\ + (55 ZZZ/ (1 - A)aziw('r7 t7 /\Z7O)dAa
0 ; 0
and

1 1
TV (z,t) := 5/ OV (z,t + N6)d\ = 80,V (w,t) + 52/ OV (z,t + A8)dA
0 0

We begin by noticing that, using the Taylor expansion of 1 with respect to its third and fourth
variables, we have

(XD 5t — 0,62 2),6) =X]_ 5+R5’1’°(Xt st —08.20)

=X7 ,+ 0% ZZ‘”Vz (X7 5t —8) + ROVHX] 5t —6,2),
=1

=X0 5462 ZZ‘”VI X0 s t—0) 4+ 0Vo(XP 5.t —8) + ROVA(X? 5, Z7).
=1
Now, using again the Taylor expansion on the function V' w.r.t. its second variable,
V(Xfa ) V(Xt 67 ) TV(Xt 67 5)
+(TVHVNX,t=68) — (TV +V)(X{_s,t —9).
The Taylor expansion on the function 7V w.r.t its first variable yields

TV(Xfat_ ) TV(Xt 6a 5)

+ZR&1’° X2 t—6,2); /8x1TV(X5+>\R5’1’0(Xf,t—§z) t)dA
=1

Finally, from the the Taylor expansion on the function V w.r.t. its first variable, we have also

V(Xf7 t— 6) :V(Xf,(;, t— 6)
+ VL V(XP_5,t — ) (X7 — X[_)

1
U AL =00 = 5E

5,1,0( 5
+* § ROMVO(XD 5.t — 06,2 )igien
i,5,k=1

1
X / (1 = N)20,10,50,, V(X?_ s + AROVO(X?D 5.t —6,20,6))d),
0

and gathering the terms completes the proof of Step 1.
Step 2. Let us show that for every ¢ € 7%*, on the set {62 Z) € D,,} (with D,, = {z € RV, |27| <
5%772,1' € N} introduced in the proof of Theorem , we have
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N
Vot (X gt — 0,03 20,6) = Iaxq — 67 Y 2DV Vi(X] 5.t — 0)
i=1

N
—5<v Vo(XP_s,t 5)—2%\4()(3_6,15—5)2)

=1
+ RO} (X)) 5.t —6,20),

with, for every (z,t,2) € R? x ° x RN,

N
RO%(x,t,2) = RO®3(x,t, 2) — RO>2(x,t,2) + 6 Z (22" — 1,2V, Vi, )V Vi, t)
i,0=1

N
— 43 Zzl (Vo Vi(z,t)R*?1 (2,1, 2) + R*> (2,1, 2)V, Vi(z, 1)) — RO? Y (x, t, 2)*
=1

where

1
RO (., 2) :5/0 vxaw(g;,t,é%z,/\é)d)\

N 1
+0> zizl/ (1 = A)V28,:0,0(x, £, A67 2,0)dA
0

il=1
and

1

RO22 (¢, ¢, 2) :52/ (1— )\)vxﬁjq/)(x,t,é%z,)\é)dA
0

N
1 il
+ (55 ' lgi (z'2" — 1,0)V40,:0,19(x, t,0,0)

N

vl

0

+

1 ! )
3 (21272 l/ — N2V ,0.:0.;0,1(x, t,A\6% 2,0)d\

<.

i,3,0=1

_|_
%"’W
Mz

1
zl/ V.0,10,0(z,t, A6% 2,0)dA
0

~

1
and

R6’2’3($,t, Z) = (Vmw_l — Tgxa — (Idxd — V;E’(/J) — (Idxd - leﬁ)Q)(x,t,é%z, 6)

where for a matrix M € R¥>*? M2 =
both

N
Vatb(XP 5.t = 0,032 ,0) = Iawa + 02 > ZP'VVi(X] gt — 0) + ROPN(X] 5.t — 6, 2)
=1

and

N
V(X 5t — 6,02 2),0) = Iaxa + 067 Y ZP'VoVi(X) 5.t — 8) + 0V, Vo(X) 5.t — 0)
=1
+’R’622(Xt 6a _57225)

We gather all the terms together and the proof of Step 2 is completed.

C. Rey

= MM. The proof simply boils down to notice that we have
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Step 3. Let us show that for every t € 7%*, on the set {©,, 7 > 0}, we have
XtV(Xf»t) Xt V(X t 5:t—96)

N
+0% Y 2P X V(XD 5t —0) + 0X,sVIU(XP 4t 0))
i=1
+ X, sROV(X) 5t —06,70)
with, for every (z,t,2) € R? x ° x RN,
R(SV(:E, t,z) = R‘S’l(x, t,z) + R‘S’Q(m, t,z) + R‘S’?’(nc7 t,z),
with R%%(z,t,2) = R%2(z,t,2)V (x,t) and

N
RO3(x,t,2) = =0 Z 22t — 1,0V Vi, )V V (2, t) Vi, t)
i,0=1

N
H(=0(VaVola,t) = Y (VaVila,1)?) + R*2(,t, 2))
=1

x (52 Z VLV (2, Vi@, t) + 6V, V(z, t)Vo(x,t) + 60,V (x, 1)

=1

N
1
05 D Vile ) THV (2, )Vi(a, ) + R (2,1, 2))

N
— (023" 21V, Vi(x, 1))
=1
N
} g T - 5,1
X (8VV (2,6)Vo(x, 1) + 60,V (x, 1,1) + 05 > Vilw, ) HLV (2, )Vi(x, t) + RY (2,1, 2)).

1=1
First, we write
X V(X0 1) — X sV (X 5,6 —6)
=X, Ve (X5t = 0,67 20,0) (V(X],1) = V(X{_g,t = 0))
+ X (vmzp(xf,&,t —5,6320,6)7 1 — Idxd) V(X 5.t —0),
Using Step 1 and Step 2,
Vb~ ( D5t = 06,20, 8)(V(XP, 1) = V(X{_s5,t = 9))
%ZZ‘”V V(X[ 5.t = OVI(X] 5.t —0)

=1
FOVLV (XD st — ) Vo(X g,t —0)

+ 00,V ( t(;,t—é)

+0= sz X0 5t —0)THLV (X 5.t — V(X[ 5.t —5)

—6Zv Vi(XD 5.t = 8)Vu V(X st = O)VI(X]_g,t — 0)

+ R673(X1§575’ - 6a Z?) + Ré,l(Xff&t - 57 Zf)

The study of the other term was done in Step 2 and the proof of Step 3 is completed.
Step 4. Let us prove (4.35) and (4.34). In the sequel, for i € {1,2,3}, t € 7%* we introduce the

functions defined for every x € R? by R;(z) = E[R% (2,t — 6, Z0)1 | and for i € {1,2},5 €

§2Z€D,,
{1,2,3}, R}’ (z) = E[R%"I (x,t — 6, Zg)la%z«‘en ] (with the notation R%?J = R%2JV). In particular,
t n2
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since {©,, 14 > 0} = {Op, m4_s > 0} N {6328 € D, }, then RV (x,t —6) = 320, Ro(w) = B[R (.t —

—4 -5 .
4, Z‘é)lé%ZfeDnz] + R, (z) + R, (z) with

N
4 1 7 it
.’E) =452 E V[](mvt_é)E[Zf 16%ZE¢D772]’

R, (z) = — oVI(z,t — 5)P(62 2 ¢ D,,).

We first study ag”ﬁtl for a® € N<.
We observe that, for every t € 7%*

N
M (220 = 12)0.00.0%(w, t — 6,0,0)1

1
52 Z5eD
i,l=1

n2

N
8,1 76,1 8,i 76,1
:;(Zt Z 15%25@"2 —E[Z}' Z; 16%Z56D"2])aziazm/}(x,t,o,O)
il=1
N
8,4 r70,
_ Z E[Z)" Z, llﬁzmnz]aziaﬂ/)(x,t,o,()),
il=1
with | Y0 E[Z)' 20"

31In(d) 31n(d)
|—_21n(772 21n(n2)

A;(Ja®|+3) (see 1' and A§(max(p|ae|4+3+3, [— 23&?((7;1)1 +2)) (see ), we obtain, for every x € R?,

54 254D 1| < n,'E[|Z) 2+q] for every ¢ > 0. In paritcular we take ¢ =
t n2

)] (recall that we have necessarily < 0). Using standard calculus together with hypothesis

z—1,2 3 aZ
07 R, (x)|pe <62CM ")D 3 (1 + [l )

max(pmm |+3+3, |'7 23121(:;2)) ]+2 (

By similar arguments, it follows from A;(|a”| 4 2) (see (2.2)), that

02" R, () g <62C(Ja"])M

)
max(p|az |42 (|a®|+3),[— o) m)(Z )

2n(n2)
[a®|+3 Plaz|42(l2”[+3)+Pv oz |43
©|a1|+2©V,|az\+3(1 + |x|Ra ° )

At this point, we remark that
R, =R, +V.VR,“ +R,",
with, for every x € R? and t € %%,
5.1y
R E[262 Zz —OTH,V (z,t — 8ROV (,t — 6, 25)16%23@712]

[R‘S’ Ma,t — 6, 20T H,V (z,t — §) RO (x,t — 6, 23)15%25@”2]7

which satisfies, using hypothesis A;(Ja®|+2) (see (2.2) and A§(2p|qe |42 +4) (see (2.7)),

At sld 3 o
07" Ry (2)la <62 C(|a” )Moy e)p+4(2°)

2 2p|ae | 42HPV, |0 |42
X Dlgr 12DV, jar42(1 + |zlg )-

We conclude that, under the assumptions A4 (|a®|4+3) (see 1.} and A§(max(pae|+3+3, [— 2311111((:2)) 1+

2)) (see ), then, for every z € R%,
02" Ry (@) s <57 C(Ja" )

" Z0
max(maz‘+3<\aw\+3>+4,ff;lL(f;)Hm( )

|a®]+3 Plaz|+3(|”|4+3)+pv, |0z |13
X ©|az|+3®V,\oﬂ”\+3(1 + |$|Rd )

Now, we focus on the study of Et.
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Using similar arguments as in the study of 89‘30?;’2, under the assumptions Aq(Ja®| 4+ 4) (see lb
and A%(max(paz|4a + 3, [— 2311?((7;52)1 +2)) (see ), then, for every = € R?,

22,2 3
|09 R, (x)|ga <5§C(d7 |a®)om 31n(s) WJFQ)(Z‘S)@‘az‘1L45‘3v,‘oém‘

2Tn(n2)

max(p|az|+a+3,[—

(1 + |1_|P|af|+4+¥3v |aT|)

We then bound the derivatives of Rf‘s For every = € RY,

R6’2’3(x,t, z)V(x,t — 5) :(vm1/171 —Tgwg — (Idxd - Vﬂ/’) - (Idxd - V$¢)2)(xat75%2ﬂ 5)

oo

= (Idxd—va/}(SC,t—(S,(S%Zf,(S))k,
k=3

where for a matrix M € R4 M+l = MM* k€ N. If |[o®| = 1, then

02 R ()

Mg

S (Uina = Vath) =102 Vb (Liwa — Vatb) =)t — 5,65 20, 6)]V (a,t — 6)

=1

Z Lixa = Vo, t — 6,65 2, 8))102°V (w,t — ).

b
w

We consider now o® € N¢, with |o®| € N*. Iterating the formula above and observing that we have
also

N
|8:£va:w(x7t — 576%21?’ 6)|Rd><d = 5%| Z Z?lagtva;‘/l(xﬂf - 6) + 8;1”735,2,1(:13’ t— 6’ Z?)hRdXd
=1
T R S P

+ 0D e g3 (L + 20" + 12005707 (1 + | 273w )
1 aT a®
<202 D 0o 13(1+ |20 ™1 4+ | Z2 P (1 + | 202w ).
Therefore,

52,3 T a® Plaz|rs|a®| Plaw|isla®]
07 R, (7)|pa <C(d, | \)E[@}M}Jrg( + [z Rl +\Z5 jaet+ale”ly

x (1+ |1 Z 2 NDy ey (14 o)

max(S max(3—k,0)
xY 6 = (k+ 1) NIixg — Vo |hax — 46,6220, 01 .
kzo ( ) |d><d ¢|Rd d( t ) 52 ZfeDnz]
Using A9 (see ), we have (4.29)). Moreover, when k > 3, we use |Z‘S|RN152Z5€D < |Z‘S|RNnk 3
and we obtain
max(3—k,0) x o +2
[0 (b + 1111+ |20 80 g = Vol t = 6,08 20,001, ]
t n2

<6"‘axéki) n;nax(k—?),o)("-‘rl)(k + 1)\(1 \4]4:@/<:E[1 + |Z5 3(p+1D)+(pjam+3+2)]a” |]

X

Since 62np+14© < (see - we obtain the estimate
©—2.3 3 5
107 R, (2)|ga <520(d |O‘$|)9ﬁ3(p+1)+(p|az|+3+2)|az (2°)
Plaw AL
< D Q}ar\+3gvla1|(1+|x| laz |43l [+py,) \)
At this point, we observe that,

—2 =23 =22 —24
Rt:Rt *Rt *Rta
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where we have introduced the function RfA defined for every x € R? by

—2.4
R, (z) =E[R*>*>'(x,t — 6, Z0)*V (2, t — Nyh yiep,.

N
463 Z ZO  Vi(z, t — §)RO> (w,t — 6, Z)V (w,t — 6)1

1 }
82Z%5e€D
=1 t n2

N
1
+ 62 IZ: ZUROP (2t — 6, Z0)V V(e t — )V (,t — 5)15%2561)"2},
=1

which satisfies, using hypothesis A{(|a®|+ 3) (see (2.2)) and A3(2p =13 +4) (see (2 )
ot 2,4 3 T
02" Ry (2)|ra <82C(Ja”)Mapy 0y +4(2°)
2P| s
X @fam\+3©v,|aw|(1 + \$|RZ‘ Py ).

We conclude that, under the assumptions A‘ls(|a+ 4) (see (2.2) and (2.3)) and A(max(3(p+1)+
i

(Plaz|+a +2) max(ja®|,2) + 1, [ 2311?((“52)1 +2)) (see (2.7)), and 62 77'”14@ < 1, then, for every z € R?,

a2 3 T )
10 By (@)t <02 CUA 1O DMy (35 1)+ (0 442) max(lan] 241, 220 142 (Z7)
x DD DDy (1 [t TP,

We now focus on the study of Et.

—3 —3,1 =32 —=33 —34
R, =R, - R, + R, — R,
where we have introduced

N

R, (x) =0% > E[Z]'R*(x,t — 6, Z0)V.V (x,t — 6)Vi(x,t — 5)16%256%

N
Il
_

N
By %(2) =6% Y E[Z)'V.Vi(a,t — 6)RY (x,t — 6, Z)))1

1
6§ZfeD,,2]

N
I
-

3,3

R, () :]E[16%ZE€D"2 RO2(x,t — 6, 20)
X 0V V(z,t —0)Vo(z,t — ) + 60,V (x,t — 9)
N
1
+ 03 > Vilw,t = 8)"HLV (2.t — 6)Vi(w,t — 6) + R™ (3, — 6, Z)))]
=1
Ry () =6%(V,Vo(a, t — 6) vaxt— )2)

x (VaV(x,t — 6)V0(x,t —0) 4+ V(x,t —9)
1 N
+5 ; Vi(z,t — 8)THLV (z,t — 8)Vi(x,t — ).

Using standard computations together with hypothesis Af(|a®| + 2) (see (2.2)) yields

c—3.4 4pjae|rot Py ae
109" R, () e <O°C(|0” ) D)4 2Dvijar 2 (1 4 [fph/ =72 TPVIw12),

Using a similar approach as in the study of Ei , as a consequence of A{(|a®| + 3) (see 1] and

Ad(max(pjae+3(|a®| +3) + 4, [— 23111[1((52))] +2) 4+ 1), we derive

z—=3,2 3 5
0 Rl BNy a2 ()
+ Plaw+3(le”|+4)+pv, an
gizzi+3©vvla’\+3(1+|x|ﬂa‘d |+3 Vile® I3,

and ) and AS(2max(3(p+1) + (p‘ar‘+4+2)(max(|az| 2)+3) +1, [~ 5= +2)) (see (2.7))

From the same reasonning as in the study of E?, since holds, it follows from A{(|a®|+4) (see
l'
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that
02" Ry (@) s <0%C(d, [a” )0, max(3(+1)+ (b4 +2)(max((07],2) 431, S22 (Z)
‘D Q‘Q?Tﬁaﬂ 2)+3©V|at|+3(1 n ‘x|§\;z\+4(2max(|a1|72)+3)+2pv,|az|+s).
Similarly, since - holds, it follows from AJ(|a®| + 4) (see and ) and AJ(max(3(p +
1) + (Plaz|+a + 2) max(|a®[,2) + 1, [— 2311;1(7752))] +2)+1) (see ) that
0" R @)ls <03 O™ DM 1) 9100 52) a2 1 s 115)11(2°)

3 max(|a®|,2)+1 Plaz|ra(max(|a®],2)+1)+2py oz |41
X DD x| 14 @V|aw|+1(1 + |2]ga )

We conclude that under the assumptions (4 it follows from A¢(|a®| +4) (see (2.2) and (2.3))

and AJ(2max(3(p + 1) + (Pjae |44 + 2)(max(|a?|, 2) +3)+1,[— 231:1((7;52))] +2)) (see ) that

53 3 z g
105 By (2)lpe <O CUA 10" DMy (3541 4 by 042 (max(a=].2)43) 11— 222 1 2) (Z7)

2 max(|a®|,2)+3 Plae|+4(2max(|a®],2)+3)+2pv, oz |13
x D ©| 2|44 ©V|a7|+3(1 + |2 )-

To complete the proof, it remains to study Rt and Ef . As a direct consequence of the Markov
inequality,

N

5 3 s

E[} 7 Lot s, ) S 02T ey 1 (2)
=1

In(n2)
and
P03 7] ¢ Dy,) <OIM_ i) 1(2°).
21In(ng)
Consequently
am—4 3 x a® + |l
05" By (@) et SOFC(™ DM mto 13 (Z°) D 12D e (1 g™ 12771714
and

a®Hd 3 x 5 2P 0 |+3+PV, |0z
0 Ry (2)lpa <02C(a" NI o) 44 (2°) Do 5Dvijarp2(L + falg™ " ‘”)-

We conclude that under the assumptions (4.15)), it follows from A{(|a®| + 4) (see and .

and A(2max(3(p + 1) + (Pjas 4 + 2)(max(|a?],2) + 3) + 1, [~ 5] +2)) (see (2.7)) that

a” T )
05 R, = 6)|ps <5FC(d, " )M 2 max(8(p- 1) (plae +5-+2) (max(la®],2) +3) 41, S0 1.2 (Z2°7)

2 max(|a®],2)+3 Plaz|+a(2 max(|a”],2)+3)+2pv, |z |43
x D D\ar| 44 CDV|o¢1|+3( + |2 |ga ).

Finally, let us remark that RV (z,t—0) = (R?(x,t—6, Z?)1
R}(z) + R} (x), with

~E[R(x,t—5, Z2)1 D+

15 1.5
§225eD,, §223eD,),

N
sl [i] — 6 (% —E[2
Z) =-0z Z: v (l"t 6)(2: 16%2¢Dn2 E[ 152 Z¢Dn2])

RY(x,2) = —5vl(5(x,t—5)(1 —P(62 2} ¢ D,,)).

1
02 2¢Dy,

Using AJ(2) (see (2.2)) and AJ([— 3] +1) (see (2.7)),

N
> 1 [ % 8,1
R} (2, 2)|pe =02 ;V[](m,t =)'y —E[Z; 15%25@"2]”]1@
n _ In(9) 1+1
<OCDDy (1 + |z |p2 le)(|Z|RN1n(nQ) Jrf)ﬁ’—_ 1n(s) -‘_H(Zé))

In(n2)
In(3)

(Zé)(1+‘13|]§(dp2+pv’l)+‘ | 2[— n(n2)

§5C®2®V719ﬁ 1n(5) -|+2).

)1+1
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and using A9(3) (see )7
RS (2, 2) |pa <OCDIDyo(1 + |z[32Pv2),

We treat the other terms by a similar but simpler (since it does not involves derivatives) method
used to study R, we finally obtain

R(z,t — 6, 2)|pa <ICIM

In(5)
(n2)

é
2 max(3p+5pa+14,[— 1+1) (Z )

In(6)
14p4+4 4 max( 3p+5p4+14,[71n 14+1)
% @3@1@ (1 + | ‘ patipv,s + | |RN (n2)

).

A.4. Proof of Lemma [4.9

Proof. Step 1. First we show that for every € € [¢,(6),€1(8)], every s € (3r,3), u € (0,5 — s), every
v,v® > 0, and every q > 4,

POY_IViI* <6 Y EIAY PR ]+ AV 51 > € Ay,ug)

teT teT
SEPE[|[Yo|¥] + P(3|Yo]? = €)

+ 68 (5T emalet) o malote) L —a B9 F 21 1 724)(1 4 sup B[V 4]))
teT
—4s —v° e2(s+u)—1
+ 2exp(— 16 )+ 2exp(— )—&-Qexp(—W)
2 AY 2| Y A 2
S < a3 BIAY (Y 1AL > 0l < o A

with

1 1 R 1
€,(8) = max(|166T2|577 , |2106T3| 7725775 ), &,(8) = min(|32T3| -, 2777),

and
Ay g —{SuPIA sl < “}ﬂ{supEHA sl FLs) < ey
m{§g¥|At—6| kN {SupIEHA VSlUFY ) < ey,
A :={> Y E[AY PR sl <eIn{s® D AL P < e
ot sk

We begin by Writing that, for every t € T, we have
Y2 =Y2 5+ 0520 Y, 5+ 8(2AY Y5 + |AY 5?) + 62287 JAY 5+ 2|AY 5

:yo + 3 §32AY Vi + 62AY_Yus + [AY %)

weT
w<t

+622AY SAY s+ 52|AY 2

and we introduce

 eB Z <y €’ 9 <y €*
2[2 —{52| 2Aw_5Yw_§| < g} n {|6 E 2Aw_5Yw_5‘ < g}
w,teT w,teT
w<t w<t

~ ES

N{1e® Y 1AL s —EAYPIFY] < 3!
w,teT
w<t

1% ~ — €’

{8 Y 16R2AY AL+ 1A 5P < S

w,teT
w<t
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In the sequel, for t € 7° we will denote nr;s; = (|T| — t6~!). Now we notice that, for every
s€(3r,3), ue (0,3 —s), we have

~ e’
P(j6% > 2AY Vi 4| = g,az Vil < e, Ayug)
w,teT teT

wt

~ 65
<P(16%F > nrse—sAY SYis] = E"SZ i 5] < 2¢, Ayug) + P(8]Yo|? > €)

teT teT
3 < €’
<P(|o> ZnT,é,tféAgi(S}/tfé‘ > 16
teT
08> Inmsas (1A s> + B[ AL 5 P Fs)IYis|® < 8[8|T| %)
teT
+P(8* ) InmsasP (AP + B[ AP F) Yios[* = 86|T| [P,
teT
5> Yios? < 26, Ay.ug) + P(3]Yo|* > e).
teT

Using the martingale exponential inequality (4.31), the first term of the r.h.s. above is bounded
E2(s+u)—1

by 2€XP(—W). We now study the second term of the r.h.s. above. Let us denote Hy = |Af\2 —
E[|AY [2|FY] so that (Hy);ens is a martingale. We have

P(8° ) e se-sP(1AY s + EIAY 5P| 75D Yemsl® > 8]0 T 2,

teT
8> Vios* <26, Ayu,)
teT
<SP0 " 0w s0—s”His|Yios|> = 416 T|7€ ", Ay uq)
teT
+P(0* > v s s P BN AL 5P| Fs)[Yiosl? = 26T 2,6 > [Vis|* < 2€, Ayug)-
teT teT

Since since ny 5, < |T| for every t € T, the second term of the r.h.s. above is equal to zero. We
then focus to the first term of the r.h.s. above. Let v® > 0. Then

P(5* > v si—sl* Hios|Yios|® = 48| TP 7, Ay.uq)

teT
<P(5* ) [0, Hemsl Vies|? = 410 T 72,
teT
0N Inmsasl* ([ Hios|* + Bl Ho s IR sDIYimsl* < 7774, Ayug)
teT
+ PO Inmsosl*(Hios|* + Bl Ho s IR sDIYimsl* = €774, Ayuy)
teT

<

Using 1) the first term of the r.h.s. above is bounded by 2exp(—€7; ). To study the second

term, we use the Markov and the Holder inequalities and for every ¢° > 1 (more specifically, triangle
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inequality when ¢° = 1), we obtain

P(6° ) Inpsimsl ([Hems| + E[ Hi—s*|F 5] [Yems* = 071 Ayg)

teT

<RSI =5 3 Hof? + B H AP Wil > 67 )
et . o

o o 00 —du o o o 40°

<ot e @+ )|6‘T||5q 1522q +1E[|Ht—5‘2q |Yt—6| ? SupteT]EHA ~s19F ]ge—qu]
teT
U R AT G TP (5 Y B[V ' EB[IA [ F )1 EAY [a|FY ]<eau]
teT
+0 Y B[V " |AY 5" 1 EIAY [a|FY ]<eau))
teT

with, as soon as ¢° < ¢/4,

49° | A Y |4¢° 4¢°IIAY 14¢° | Y
[|Y;: s[™ |A |* 1]15[\AY 6|q‘]—‘t‘:§]<6*qu} :Eﬂn—é‘ I EHAt % |]:t HEHAL&\“"O\F,?:(;]<6’4"°“]
< MUE]Y; |4,
Hence,

P " Inrsisl* ([ Hims|® + B[ Hes|*| F D) [Yics|* = €777 Ay 1 g)
teT
<69 = (2Hv)a" 9302 559"~ sup K[|V, _s]%°].
teT

Notice, that from the same approach we obtain

~ €’ €’
P(|6% Y |AY 5P —E[AY P Fy 5] = > 5 Aviug) = P(6%| Y nrsesHi s > > 5 Aviua)

w,teT teT

w<t

2 € 2 2 2| Y €'

<P(0* > nrsi-sHis > — 6" Inmoe s ([Hios + B[ Hios*| 7 5]) < — Aviug)
8 8
teT teT
645
P(6* > " Inrsi—sl* ([ Hes|* + E[|Hy—s|*| 7)) > 5 A
teT

where the first term is bounded, using l , by 2exp(71i66’45). Moreover, it follows from the
Holder inequality that, for every ¢° € [1, 7]

648
P(5* Y Inm s 0ol ([ Hios"+E[ Hios|*| F5]) > 5 Avaa)
teT
<5q0674(s+u)q°26q°+2 |5|T‘ |3q°71.

We also remark that, since sup;cp |AY 5|1 Ay.ug S €%, it follows from the Cauchy-Schwarz inequality
that
= 3 1
DAY Yasllay, Ay <|TIZe (€72 + > [V%)2,

w,teT teT
w<t

. J B
and, for v > 0, as soon as e € [|32|6|T||262 |7+, |32|0|T||3| F-],

€® v
PO [Yi* <e16% D 280 Vsl > oo Avug [Yol <€) =0
teT w,teT
w<t

Moreover, from Markov inequality, for every ¢® > 2, P(|Yp| > ¢7") < PE[| Y4
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Now for every € > |1653|T|? %, using the Markov and Holder inequalities yields

P(5> Y 163287 A% 5 +01A% 5P > T Av)
weT
w<t
B Y [2AY_ ALl > &~ FITPE Ay)
weT
w<t
E[329|T*26%0/2 Y " |AY 5|7 11, ]
weT
wt
<329|T[P9 2 alotul5oa/2 3 EHAZﬂS|q1JE[\A;j_6|q\f;j_5]<e—qu]
weT

w<t
<3295% ¢a(sH+20) |5 %9,
In particular, taking ¢° = 4q, we have proved that for every € € [¢,(0), |32|(5\T||% \_ TS*“],
PS> Vil* <6, %5, Ay,uq) < PE[Yo|7]) +P(5]Yo|* > €) + 58902 25 7
teT

(2+v°%)q
1

+ 32053 (52w |5 |20 4 5 e 2% +2|5|T|| %~ sup E[|Y;_s )]
teT
—4s 7110 2(s+u)71

€
2 — 2 2 —_— ).
+ 2 exp( 16 ) + 2exp(— 5 ——) +2exp(— 211|5\T||2)

At this point, we remark that

ES
W {0 Vol +0% D 1AL s <d) Vil + 5}

teT w,teT teT
w<t
N{Y IYolP +6% > E[AY 1*I1F0_s <5Z|Yt|2+ }
teT w,teT teT

w<t

1

It follows that, for every e < 27 7—=,

2 2 2 €
{6Z|Yt| <etNAs C {5Z|Yt| <et N N{|Y]" < W},
teT teT
and the proof of Step 1 is completed.
Step 2. We show that for every € € (0,€(0)] and u € (0,2 — 3f)
€T
52 Yil* <e 5Z]E AV 5P Fs) = 579l17¢4Y,u,q) =0.

teT teT
with €(d) = [276|T|| "= 57 . First, we notice that,
on the set {6, .+ E AY S12|FY 5] > <3N Ay g, we have

r+2u
0D LAy Iy s 2
teT

and it follows that

5 3 EIAY SPIFL ) 20 Y EIAY GPIFY sy e

w,teT w,teT
w<t w<t

or
—(5]246|T|

45|T|5 Z l]EHAY 12Ty 512 25

w,teT

w<t
€r 1 €r+2u €r+2u 637’+4u
> - 1) > ——.
w2 1 o Y2 o

In particular for every € € (0,]276|T||~ 373i74u]

61
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{8 EIAY PR 2 *} N{8? Y ENALPIFL_s] < e} NAyug = 0.
teT w,teT
wt
and the proof of Step 2 is completed.
Step 3. In this part we show that for every e € (€5(5),€3()), every h,s € (3r, 1) with 2h < s,
€ (0,min(§ — h, & — 31)),

1
2 Y ¢ 2 o
§Z|Y2| <66ZE|A 6| |}— ]<5 6Z|A §7A17|Y0| 6‘T| AYU!Z)
teT teT teT
<% (5t a2 = (1 T2)(1 4 sup E[|Y;-4]9))
teT
a(s— 2 20) 4 9
+e 22977 + P(0|Yo|” =€)
e2(htu)-1 —v° e2h+2u—s
+Qexp(—W)+2exp(— ) + 2exp( W)
with

€5(5) =[166T2|77 7,

€3(6) = min(|2%6|T||~ "5, (48| T|) E-"—,|46|T||~ === ,1).
We begin by writing for every t € T
YA =YoA) + Z FE(AY SAY 5+ AN Y s)

weT
w<t

FO(AY_, [ 4 AR AY )
+ 5 (Aw 5Aw ) + Aw 6Aw 6) + 52Aw 6Aw )
and we define for h € (3r, 5)

3 ~AY Eh 3 ~ - Eh
™Az :={] Z 57 AL 5V, 5| < g} n{éz] Z A A% 5l < g}

w,teT w,teT
w<t w<t
2 AAY AY e"
Nn{lé Z Ay_sAy_sl < g}
w,teT
wt
h
~ €
N0 30 105 (ARTAY 5 + AL A7) +0AL AT 4| < 3.
w,teT

w<t

We take u € (0,5 — h). Using the exact same approach as in Step 1, (4.31) together with the
Markov and Hélder inequalities imply that, for every v® > 0,

| Zé% 1Au w75| %5Z|}/t <€AYuq)

w,teT teT
w<t

a _ (2+v%)

<ote T 2T 28T F L sup E[|Ys—s]]
teT

e2(htu)—1 6_1)0)

+P(3|Y0]* > €) + 2exp(— W)*‘QGXP(—i

In the same way, the inequality (4.31)) yields

6 B . 62h+2u75
5 | Z AY 5A sl = Z g 52 Z EHA 5| | w—s] <€, Ayuq) < 2€XP(—T|T|)-

w,teT w,teT
w<t w<t
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Moreover,

h

~ AY ~ 6 ~
P(|8? Z AR sAL sl = §752 Z [An_s> < €, Aviug)
w,t€T w,t€T
w<t w<t
2 AY 12§ s, Y 2
PE* Y AR > =07 X ALl < € Avag).
w,teT w,teT

w<t w<t

From Markov and Hélder inequalities, we have

h* —2h) ~ AY q
(s Z AL > Aviug) <" 2%9E[|6” Z AL 511214y, ]
w,teT w,teT
w<t w<t
a(s—2h) 2h.) ~AY B
<e 2%5% 3 B[|A 514y, JI6° T2
w,teT
w<t
<€q(e 2h— 2“)23q|(5|TH’1

Besides, for every € > [1663|T|?| zerl using Markov and Holder inequalities yields

1, v AY = ~ —AY —~AY — e
P(8? Z 102 (Anp_sA) 5+ Al _sAL 5) + 6AL AN 5 > §»AY,u,q)
w,teT

oy o h
<P(5°/2 Z ALTAY s+ AY AL > %;»-Axu,q)
w,teT
w<t

25q+1(526 q h+2u)|5|TH2q.

In particular, for every € > €5(9),

P8 |Yi* <6y E[AY 217 ,] < ,%79[37«4&%(;) <

teT teT

I R e T L)

teT
a(s=2h—2u) o 2
4T 930 L PSIYL > €
6Q(h-i-u)—l —'U<> 2h+2u—s
2 _ 2 2 .
+ EXp( 29|5‘T||2)+ eXp( 2 )+ exp( 275|T‘ )

We notice that, similarly as in Step 1,

— _ _ 6h
s C {0 YoAY +06% D |AY 5> <d8|> VAT |+ b
teT w,teT teT
w<t

It follows from the Cauchy-Schwarz inequality, that for every e < |[40|T|| T 7= 2

2 25 € 2 o
P(s E [Yi|” <e,0 E |A 5= Z 5 21, As, [Yo|* < 5|T| s AY wg)
teT teT

<P Y |AY 5|2>f 02 DT JAY P <+ [8IT]F e (eF + e2), Aviay).
teT w,teT
w<t

In particular, for € < 1 A |49|T||” 5= 7% the r.h.s. of the above inequality is bounded by



64

PG |AY 5|2>— 82 Y AT 5P < 26", Avag)-

teT w,teT
w<t

Similarly as in Step 2, we notice that, on the set {6 > ,cp [AY 5> > S} N Ay, then

T+2u 5 2 3r+4u
621‘AY|2 e > and ¢ Z |A 5| 275|T|
teT w,teT
wt

In particular for every e < |286|T||” #=3r—a= 5

(6> 1AV > 1N {e” > 1AL <2y =0.
teT w,teT

and the proof of Step 3 is completed.

C. Rey

Step 4. We now show (4.37). In the first three Steps, we have proved that for , every h,s €
(3r, L) wi

1) with 2 < s, u € (0,min( — s, 5 — h, 2 — 3¢

1)), every v,v° > 0, every ¢ > 4 and every € €
[max (€, (6), €5(5)), min(1,€(5),€(0), (3))],

5Z|Yt|2<652E|A LsPIF s+ 1AL )P >

teT teT
<PE[|Yo %)) + 2P(8|Yo[? = ) +
+ ot (208 malst2u) | 3-a 950k (1 | T20) (1 4 sup E[|Y;_5]%))
teT

—4s ¢

—U
16 )+ dexp(— 5 —— )+ 6exp(—

€y Avug)

93a7q

€2$+2u—1

WA+ 1)

+ 2exp(—

We first observe that

P(AY,. ) <6p(E[§g¥IAtA_5I ]+E[SHPIEHA sl F )]

+ Efsup |AR] €] + Elsup B[ AR || 7Y 5] 7))
teT teT

At this point, we assume that ¢ > s_fhp_%. Since € > §27°°*q , then

P(3Y Yl <6 EIAYPIFL]+ 1A = € Aviug)
teT teT

<EPE[|Yo|*]) + 2P(3]Yo|* > ¢)
+ 2L 4 T2) (1 4 sup E[|Y;_5%])
teT

6_48 —v<>
16 )+ dexp(— 5 ——) +6exp(—

625-‘,—2u—1

+ 2exp(— 7211(14_7,2))

0o

Moreover, for every q° > 0 such that e > 577 , P (6|Y0|2 >
DY

)

€) < e’E[|Yp]?°]. In particular, we take

q° = q(lf% so that this 1nequahty is satisfied for € > 6>+ * 4
Now we fix s = s(r) = 24+ Zr, h = h(r) = &+ 191r and take u < 5 — 2r. Since
r € (0,%), s(r) € (6r,3), (z‘) (3r, 3(27”)) and min(§ — s(r), 3(2 — h, h(r) — 3)) > 0. Moreover,
taking v = 2 — Spr —u+ 2+ 37> and ¢ > max(4, %) we have, for every € € [|21°(1 +
11 11
1 _ 1 1
79677 min(|2°T| FA o )
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PSSl < €6 Y BIALPIFL) + AL > €,
teT teT

<SPE[[Yo| T T 5+ ) 1 2P E[|Y,| T %7 ]
+ P22 (1 4 T%9)(1 + sup E[|Y;5])
teT

P
au |

v, -
+ e (Efsup |AR 4| ¥] + E[sup E[|AY |7,
teT teT

P

~AY P ~ Y
+ Elsup |A2 ] 7] + Elsup E[| AR 4|7| 7 4)5])
teT teT

—v° 6—%+%r+2u

€

_ 1 3 _ _ 2p Py — 44p i ;
Now we take u = ;; — 737 and ¢ = ¢(r,p) = max(4, e pnt P) = max(4, 1—5;) (in particular

1

q(r,p) > —22—-). It follows that, for every e € [|21°(1 + T7%)J| 2 T |28(1 + T)|_71_1112T]’

P65 Vi < e.6 S EIAY PIFY 5]+ 1AL P > ¢,
teT teT

2pq(r,p)
<BePE[| Y| atrm+eo1r]

4 €250+ (1 4 724(mP)) (1 4 sup E[|Y;_s|7P)])
teT
+¢(2+ Efsup [A2 1)) 4 E[sup E[|A)_ ;|4 | FY ]
teT teT
— AY ~ AY
+ Efsup |AL|707)] 4 E[sup E[|AR 40P | FY 1))
teT teT

< 146
v e 2z tII”

€
+ 46Xp(77) + 8€Xp(7m)

2pq(r.p)
Since ¢(r,p) > p and v° > 0, E[|Y0|q<r«rffl+5°>+v} < 1+ E[|Yp[?P)]. We fix v° = &5 — &7 and the

proof of (4.37)) is completed.
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