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1. The PAT direct problem

» Biologic tissue is irradiated by an
energy source that is absorbed by
the body. The source of energy is
non-specific, but typically consists
of visible light, near infrared, radio
waves or microwaves.

» The absorbed energy is converted
to heat, which raises fthe
temperature of the tissue,
typically by less than 0.001
degree Celsius.
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= The increase in the temperature of the fissue causes the tissue fo expand in volume,

however slightly.

= This mechanical expansion produces an acoustic wave that propagates outward in all
directions from the sight of energy absorption at the velocity of sound in biologic
tissue, approximately 1.5 mm per microsecond.

The term “photoacoustic” applies to this phenomenon when the stimulating radiation is
optical, while "thermoacoustic” is the more general term and refers to all radiating

sources, including optical.
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http://en.wikipedia.org/wiki/Acoustic_wave
http://en.wikipedia.org/wiki/Visible_light
http://en.wikipedia.org/wiki/Near_infrared
http://en.wikipedia.org/wiki/Radio_waves
http://en.wikipedia.org/wiki/Microwaves

Combine the advantages of non

Invasive techniques

= Optics = contrast, sensitivity :
functional and quantitative
information

= Acoustics = high resolution
thanks to the small acoustic
wave diffusion

Morphological and functional
information with the same
device

Clinical image showing breast fumor:
(@) mammography, (b) ultrasonic and
(c) photoacoustic images. High
contrast of the PA image implies
advanced angiogenesis indicative of a
malignant tumor




Thermoacoustic images
of biologic tissue (lamb
kidney)(C,D) in
comparison to MRI
images of the same
kidney (A,B).
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1.2. Experimental device (LMA- Fresnel Institute Marseille)

puised pressure detection ) |
. . r Absorption of energy
light by piezo tran§ducer‘
' time resolved Temperature rise

recording

Thermal expansion

Photoacoustic pressure generation
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Source : Anabela Da Silva
(Fresnel Institute)

Acoustic detector : transducer (focused at 2cm and 3.5 MHz)

Optical source via optical fiber

Phantom : Agar-agar+ water+ black ink
to simulate optical properties of biological tissues
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Rotations of the sample are performed : the red curve corresponds to
O0°and so on. At 41 us we get the optical fiber signal since all signals are
superposed. At 28.7 us we observe a more important signal due fo the
fictitious tumor in the phantom. We may estimate the distance between
the tumor and the lightened edge (red curve) : (4.09-2.87). 10> . 1540 =
0.018788 m (sound speed 1540 ms). The measured value is 18.27 mm.
Others signals are due to interfaces.



1.1 Modeling optical effect

EM wave propagation through biological fissues: Visible wavelength range
(PAT):
Biological tissues are not transparent to visible light:
o There is a strong absorption, except in the red and near infrared regions;
o Even though one chooses to study the tissue in the latter wavelength

range, the light undergo strong scattering. The physical problem then

reduces to the modelling of light propagation in absorbing and
scattering media.

The Radiation Transfer Equation (RTE) allows for modelling in a general setting
(mesoscopic scale) the propagation of the luminance L(rts) [expressed in
W.m=.sr -!], representing the power measured at a position r, at a time #t, in
the direction of observation s, in a diffusive medium.



V' Mq absorption coefficient : this coefficient shows a good contrast between different kinds
of soft tissues (healthy or not, etc.). Note that Uq=0 outside (2.

Ma € [,Uamin, ’uamax]' uamin>0.

v D : diffusion coefficient D = [3(uq + ps) '] Where Us is the reduced scattering coefficient

with is€ [us™", us™3x], us™n>0.
Ms:=(1-g) Ms', with Us' the scattering coefficient and g is the anisotropy factor (g=0

outside Q.) In general, Ma << Ms, so that D ~ (3p,)~"

Under the assumptions that the studied media
o are far more scattering than absorbing (us(r) >>ua(r)), and
o thick compared to the mean free path,

assumptions which are quite reasonable in many cases, the RTE reduces to:



%%(t, 2) + pa(2)I(t, 2) — div(DVI)(t,2) = S(t,2), (t,2) € [0,T] x O

I(0,z) =0, r € (),

where the fluence rate I is the mean value of the luminance
Intensity L

I:/ L(r,t,s)ds
B(0,1)

» v is the light speed
» S is the source
» D is the diffusion coefficient

» Uq is the absorption coefficient



- Boundary conditions

RN \/_Exlrup()lulcd boundary
\ - -
‘ Optical fiber

) is the part of the object where the diffusion approximation is
relevant. Usually, the tissues close to the surface are not included.
However, we may use the approximation in the whole oject if the
source is chosen in a appropriate way. Then the usual Robin condition

is replaced by a Dirichlet boundary condition exending the domain £
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1.2 Modeling thermal and acoustic effects

s, <T v—lpO) K AT H
0

& Y Cp N pC'p

H = u,l

@2p0 : Ug (3’2T
(‘%2 div <7Vpo> — OZW

T is the temperature
Po IS the pressure

)
)
» o pressure coefficient expansion
» K thermal conductivity
» o density

» ¥ specific heat ratio

» Vs is the sound speed



Time scale for launching a sound wave may be far shorter than that for
thermal conduction : Zero thermal conduction assumption

Thermal conductivity Kset to 0 =y =1

0 >< H
Z (T AT = —
ot ( Qo po) X pCp

OT _ ol
ot - ,OCP
82]90 . 2 Ha oI
912 div (’US Vp()) — pCp ¢



Final pression equation (acoustic wave)

(92]?0 oI
52 (t,z) — div(vZVp°)(t, z) = ﬂg(x)F(x)ua(x)a(t,x), (t,z) € 10,T] x B,
0
p(0,2) = 2-(0,) =0 reB

» Vs is the sound speed
» L) is the indicatrix function of Q

» I is the Gruneisen coefficient

» uq is the absorption coefficient
» B is a large ball



I\

1.3 The full direct problem

a_tf (t.2) = div(uIV)(t, 2) = Lo ()T ()pra(2)I (¢, @)

2/

(0,x) = gy (O xr) =0,
’ %%(t, 2) 4 (@) (t,2) |- div(DVI)(t,2) = S(t, ).
I(0,2) =0,
I(t,z) =0
I (t,z) =0,

(t,z) € (0,T) x €,

x € (),
(t,x) € B\{
(t,x) € X.

pi= (o, D), pa € [pg™, po™], D € [D™", D™, S € L*(Q)



v

A

Case of many sources S,

0 Pk (t,ZE) . diV(?@Vpk)(tax) — ]1Q(33)F(x)ua(w)]k(t,az), (t,ZE) < (O,T) X B,

Ot?
pr(t,x) =0, (t,x) € (0,T) x OB,
pr(0,z) = %(o,x):o, x € B,
(2.3)
and

(101
;%(t, ) + po(2) I (t, ) — div(DVI) (¢, z) = Sk(t,z), (t,z) € (0,T) x Q,
Ik((),il?) =0, T & Q,

Ik(t,ilf) — 0 S B\Q
\ Ik(tax) — Y (t,a;) S
p = (fta, D) fa € (™, ] D e [D™*, D"

(Sk)lgkgs with s Z 2 and each Sk n LOO(Q).

|/



1.4 Stationary approximation

' %%(t, £) + pa(2)I(t,2) — div(DVI)(t,x) = S(t,2), (t,2) € (0,T) x O,
! 1(0,z) =0, x € {1,

I(t,z) =0 (t,x) € B\
I (t,x) =0, (t,x) € X.

The speed of light is very large so that the light effect may be
considered as instantaneous. So, assume

I = I"(x)do(t)



in B

in (0,7) x 0B,
O°p div(v*Vp) = uO(x)@ in (0,7) x B j(f)
o> ot ’
p(0,-) = %(O, -) =0 in B
p= in (0,7) x 9B,

uo (= H) is the energy deposition function

This is the usual simplified model for TAT (RF source)



Usual simplified model for TAT (RF source)

@)~ @ t) = (@) (),
(TAT) { p(z,0) = 0,
dp
\ E(a:,()) = 0.
p(x,t) = (% ® (tRf)) (x,1). (5

Here, the convolution operation ® is defined by

(9® h)(z,t) = /0 g(t — s)h(x,s)ds

and the operator R, referred to as the spherical Radon transform, is defined by

(Rf)(z,t) := f( + tw) dw

4
In TAT, one is rather confronted to the nverse problem:

Recover the energy deposition function f(x) from measurements of p(x,t) for x over a
surface S outside the illuminated fluid.
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enen=(ge )

If j ~ ¢, then % h =~ ((11—? so that ( tR f ) tR f). Consequently, Equation (5)
can be approximated by
p(z,t) = Z(RS) ()

However, this integral formulation is purely linear and cannot be genelarized to non-linear
models. From the numerical point of view, the integral formulation leads to the so-called filtered
back-projection method.

21



Usual methods

e The filtered backprojection approach is the most popular > 5

However, it is not clear that backprojection-type formulae could be written
for any closed observation surface S. In ~, inversion formulae are provided
assuming odd dimensions and constant sound speed. Indeed, in this case the
Huygens’ principle holds. Roughly speaking, it asserts that for any initial
source with a compact support, the wave leaves any bounded domain in a
finite time. This is no longer true if the spatial dimension is even and /or the
sound speed is not constant. All known formulae of filtered backprojection
type assume constant sound speed and thus are not available for acousti-
cally inhomogeneous media. In addition, the only closed bounded surface
S for which such formulae are known is a sphere. Let us also mention
where a reconstruction algorithm in this vein (using the Radon transform)
is proposed.

OK if S is closed and infinite (great) number of measures

22



e [xpansion series are useful in the case where the Huyghens principle is
valid. This approach was extended to the constant speed and arbitrary
closed observation surface and modified by the use of the eigenfunctions of

the Laplacian with Dirichlet conditions on & . It theoretically works for
any closed surface and for variable sound speeds’ . One can also refer to

o The time reversal method (see for example “’>°") can be used to approximate
the initial pressure when the sound speed inside the object is variable. It
works for arbitrary geometries of the closed observation surface S. Ammari
et al.”””’ have performed sharp analysis of these problems both from the
modeling and numerical point of view.
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1.5 Sensitivity analysis

The fluence and the pressure equations have unique solutions

I: Uyg — C%0,T; L*(Q2)) N L*(0,T; H (9))
po— Ip)

p: Upa — C°(0,T; Hy (B))
p — ply]

K — (,uaaD)

Una ={(pta, D) E[LZ(B)]?| pra € [ pi**] and D € [D™ D™*] a.e. in B}

The operator p is continuous from U,,; endowed with the weak

(for u,) - strong (for D) L? topology to L*(B) (with the strong topology).
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2. The inverse problem

Recover u.and D from measurements of p(x, 1) for x over a
surface @ outside the illuminated fluid.
This is an ill posed problem

——— — Formulation as an optimal control problem

in J
Inin ()

Ud ={ 1 = (tta, D) € [LZ(B)?| pta € [pg""s iy *®) and D € [D™ D™ a.e. in B}

25



2.1 The cost functional
J(pn) = F(p) + f(p)

e Fitting data term

Flw) = 3 /[ Bl ) 0,

@ is not closed, and codimension 1 or 2




Theorem 2.1. Assume that o« > 0 and 5 > 0.
Then, Problem (P) has at least a solution o = (fiq, D).

Idea of the proof
» choose a minimizing sequence (u, D™)pen
e a priori estimates and convergences
uweakly converges to fi, in L?(Q)
D™ strongly converges to D in L*(Q)
e use the lower semi-continuity of the functional J

O Uad is closed

Uniqueness is an open problem (at least 2 measurements) .



 Reqularization term

+00 otherwise.

) = { oz/Q(B,ua)Q(x)dx + BTV (D) if D € BV (Q2)

B may a pass band filter or mollifier operator, or the identity.

The TV term seems fto be the weakest one that provides an
existence result while respecting the physical requirements
since discontinuities (and contours) are preserved.
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2.3 « Basic » example : the classical TAT case

otz '’ Ot
0
200.2) = 2 (0,2) = 0, B

{ Oy’ (t,z) — div(vZVp°)(t, z) = ]IQ(J;)F(:U)a—H(t,a:), (t,x) € [0,T] x B,
Ot

H = pu,l

Set u(t.z) = lo(x)T(2)H(t.z) and p(t.z) — /O D0 (s, 2)ds

' (@ — div(v?Vp)) (t,x) = u(t,z), (t,x)€ |0,T]|x B,

Ot?
p(t,x) =0, (t,x) € |0,T]| x 0B,

p(0,2) =0, %(O,x) =0, B

D =Dp[y] .



obs

1 2 Qo 2
J(u) = 5 Iplu] - p HL2([O,T]><w) Ty lullZ2 jo,11x0)

n J
Jmin J(u)

In this case u — plu] is linear and J is strictly convex.

There exists a unique solution u characterized by

Yu € U,y (J/(I_L),u—ﬂ)Lg > ()

Usa is a set of bounded functions with support in Q

30



Computation of (JT'(u),v)

7p/ [u] ' U) L2((0,T) X w) + (uv U>L2((O,T)><Q)

is the solution of the (linearized) equation

P div(v2Vp) = v in [0, T] x B
[ ] 8p [
p(07 )_ a(oa ) =0 inb

p=20 on [0,T] x OB

3



Optimal control (duality) technique : use of the adjoint state g

9 div(v2Vq) = (pla] — p°**)1,, in [0,T] x B
52— div(v;Ve) = (pla] —p™) Lo in [0,77] X
_ 9¢ . .
a(T,) = - (T,) =0 in B
q=0 on [0,T] x OB
(plu] —p™*, p'[u] 'U)L2((0,T)><w) = / (pla] — p®**)1updt dx
(0,T)xB

0%q
:/( o <8t2 div(v?Vq))lbdt dx
0,1") X
0°1
:/( o ((‘%g div(v?Vgﬁ)) qdt dx
0,1") X

— / qvdt dx
(0,7) x 2

32



J'(u) - (u—1u)= /(O " Q(q + au)(u — u) dt dx

Finally Yu € Uyg (g + at,u—1u) >0

Yu € Uyg (0 —q—au—u,u—u) <0

That is

HUad (ﬂ - q - Ozﬂ)

=g
|

33



Finally, the solution uis characterized by

0%p _
o (52~ ave29p)) (to) = u(t.o), (t.a) € [0.7] x B,
equation p(t,z) =0, (t,x)€][0,T] x B,
p(0,z) =0, g—((),a?):(), r € B

r@—dw( °Vq) = (p — p°*®)1,, in [0,T] x B
Adjoint ot L
equa’rion \ cj(T, ) _ %(T, ) — 0 in B

L g=0 on [0,7T] x OB
Projection

equation
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2.4 The general case

State function : (p, 1)

Control function (parameters to identify) p = (ia,D)

Admissible control set

Uad = {1t = (pta; D) E[LZ(B)* | pa € [pg"" p*] and D € [D™ D™ ae. in B}

35



State equations

I\

Y/

( %(t, ) — div(v;V)(t, x) = To(z)T(2)pa(x)I (¢, 2), (t,2) € (0,T) x B,

p(t,z) =0, (t,x) € (0,T) x 0B,
Op

\p(O,w):E(O,x):O, T € B,

r 101 .
;E(t’x) + po(x)I(t,x) —div(DVI)(t,x) = S(t,x), (t,x) € (0,T) x €,
I1(0,2) =0, r €,
I(t,z) =0 (t,z) € B\Q

I (t,x) =0, (t,x) € X.
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Cost functional and optimization problem

J(pn) = F(p) + f(p)

Flw) = /[ o BlBE) ™0, e

+00 otherwise.

) = { oz/Q(B,ua)z(a:‘)dw + BTV (D) if D € BV (Q)

in .J
Inin ()

37



p— plp] is no longer linear (because of the term o1 |1] )

J is no longer convex

#

Existence OK but no uniqueness

The optimality system is no longer a
necessary and sufficient condition

J is not Gateaux differentiable because of
the TV term

38



in J
Inin ()

|

min  F(p) + () + .. (1)

pE[L>(2)]2
, (:E) . 0 if v € U4
HUad | +00 otherwise.
V
0 € d(F(m)+ f() + (1))
Moreover

O(F () + f(1) + i,y (1) C DF(p) + 0f (1) + Oty (12))
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Computation of dJF

Proposition 2.1. For every £ = (£,,€p) € L*(Q) x L*(Q), the functional F is
Gateaux-differentiable at = (pq, D) in the direction & and

(dF (), &) 20y = / VF(u
-/ (%ma, D@ + 2 (1o DY) a7

40



Adjoint state equations

2
CA  div(2Va) = (p— p™)Le, in [0.7] x B
Q1(T7'):%(T,'):O in B
q1 — 0 o1 [O,T] x 0B
10
» aqf - g2 — div(DVqa) =T'peqr in Q
QQ(Ta ) =0 on §

g2 = 0 on ..

41



Projection equations (1)

min max]
.

FEquation on u,. For every u, € L (€2) such that u, € [u", ut

Ot

Equation on D.

OF
oD

where B* is the L?-adjoint operator of B.

(fig, D) € 0TV (D)

42

OF
< (MaaD)+2aB*Bﬂaaﬂa_Na> >0,
L2(2)

aL[Dmin’Dmaxb



Projection equations (2)
Vita € L®(Q), s.b. piq € (g™, ph™],

T
(/ Lol'(q1 — g21) dt + 2aB* Bfig, fta — ua,) >0
0 £2(Q)

36* € 0TV (D), VD € L*®(Q) s.t. D € [D™™, D™?¥]

T
(/ (VI-VCD)dtcS*,DD) > 0.
0

L2($2)

43



Optimality system If = (., D) is a solution, then

State equations

Adjoint equations

Projection equations
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3. Numerical computation (simplified case)

The «simplified model» for TAT (no optical effect)

azp 2 JJ

572 d“(;(v Vp) = Uo(fﬁ)a
B

p —

Uo is the energy deposition function

in (0,7) x B

in B
n (0,7) x 0B,




0°p

w(t,x) — div(v2Vp)(t,z) =0 (t,z) €[0,T] x B,
p(t,z) =0, (t,x) € |0, T] x 9B,
p(0,z) = Lo()l(x)pa(x)(x) z€B,
%(O,a})z(), r € B.

te(x)I(x) — div(D(x)VI(xz)) = S(z) =€,
I(x) =0, T € Of).

. b o
min  FaD)i= [ (o D) =92+ 5 [ 12+ 5VIVDE T
(,LLCUD)EUCLCZ CUX(O,T) 2 0

46



Optimality system

2
%tq; le(U?Vql) = (p —pObS)]lws in [0,T] x B
q1 (T, )—%(T,.):O in B
1 =0 on [0,T] x OB
. 0 .
taqe — div(DVqs) = —Fua%(()) in 2
g2 = 0 on Of)
(@F (s D). (€ 60)) = | ~002(0.)7 + @)1E,, — (Ve - VD)

+ o [ pau + 60y [ dG/IVDIE+ )
Q Q
0 (< 0 if we add constraints on (g, D))
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We chose to solve the optimality system by means of the gradient algorithm.
The forward and backward problems are solved by means of a leapfrog
discretization scheme on a staggered grid. In order to avoid handling large

grids (due to the size of B ), we use an appropriate PML (Perfectly Matched
Layer) technique

6e-01 — 1
H0.98
2e-01
0e00 - H0.96
-2e-01 =
-4e-01 =
_68_01 I | I I I | I I I | I

—6e-01 —-4e-01 -2e-01 0e00 2e-01 4e-01 6e-01
48



4 sources (lightning) Summation ( T'u, 1 )

6e-01 — 6e-01 -
.0071
4e-01 4e-01 4
I 0.0053
2e-01 — 2e-01 —
0600 - 0e00 - 0.0036
—2e-01 — -2e-01 4
| .0018
—4e-01 -4e-01 —
0
—-6e—01 r , r , : , : I T I r , -6e-01 y T T T T T T T T T T !
~6e-01 -4e-01 -2e-01 0800  2e-01  4e-01  6e-01 -6e-01  -4e-01  -2e-01  0e00  2e-01  4e-01  6e-01
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Reconstruction without D (=1) - 4 sensors - 64 pixels - « = 0.1

6e-01 - 025
4e-01 —
0.017
2e-01 -
0e00 — G 8.0095
-2e-01 -
.0019
-4e-01
.0058
-66-01 T I T I T I T I T I T I

-6e-01 -4e-01 -2e-01 0e00 2e-01 4e-01 6e-01
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Reconstruction without D (=1) - 2 sensors (left/right) - 64 pixels - « = 0.1

6e-01 - 026
4e-01 -
0.018
2e-01 —
0e00 -0.01
-2e-01
.0025
-4e-01 —
.0055
-66—01 T T T T T T T T T I T |

-6e-01 -4e-01 -2e-01 0e00 2e-01 4e-01 6e-01

S|



4 sources (lightning)

6e-01 1
4e-01 -
-).98
2e-01 —
0e00 - .96
-2e-01
93
-4e-01
91
-66-01 T I T I T I T I T I T I

-6e-01 -4e-01 -2e-01 0e00 2e-01 4e-01 6e-01
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Reconstruction without D (=1) - 4 sensors - 64 pixels - o = 0.1

6e-01 — 023
4e-01
0.016
2e-01 —
0e00 — 6.0085
-2e-01 —
.0014
-4e-01
.0057
-66-01 T | T | T | T | T | T |

-6e-01 -4e-01 -2e-01 0e00 2e-01 4e-01 6e-01
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