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Statement of the problem

Geometry : a 2D waveguide with periodic real refractive index np

Ω

Γ

Cj−2 Cj−1 Cj Cj+1

Objective : find the infected cell Cj and the support of the defect

q = n2 − n2p in Cj from far field scattering data

Already some litterature on inverse scattering for periodic

structures (T. Arens, A. Kirsch, A. Lechleiter, ...) : but the

objective was to find the unknown periodic geometry of the structure

from scattering data (no defect)



Outline of the talk

• First part

1. the forward problem (briefly)

2. the inverse problem with near field data

• Second part

1. the inverse problem with far field data

2. numerical experiments



The forward problem

Ωb

Γb

S+S− C

The forward problem : u = us + ui
(∆ + ω2n2)u = 0 in Ωb

∂2u = 0 on Γb

±∂1us = T±u
s on S±

• np ≥ c > 0, np is 1− periodic

• n ≥ c > 0, contrast q = n2 − n2p with D := supp(q) ⊂ C

• ui solves ∆ui + ω2n2pu
i = 0 in Ω and ∂2u

i = 0 on Γ

• T± : Dirichlet to Neumann operator on S±



The forward problem

Ωb

Γb

S+S− C

Homogeneous waveguide : the forward problem has a unique

solution u in H2(Ωb) expect for at most a countable set of ω

Periodic waveguide :

• Proposition : assuming np is constant near the transverse

sections of the cell, the forward problem is of Fredholm type

• Conjecture : the D-to-N operator is an analytic function of ω

• Theorem : the forward problem has a unique solution u in

H2(Ωb) expect for at most a countable set of ω

(proof : Fredholm analytical theorem provides uniqueness)



Factorization method (A. Kirsch)

Inverse problem with near field data : we measure on

Ŝ = S− ∪ S+ the scattered field ũs(·, y) associated to the incident

field ui = G(·, y) on Ŝ : find D

• Near field operator : Ñ : L2(Ŝ)→ L2(Ŝ)

(Ñh)(x) :=

∫
Ŝ

ũs(x, y)h(y) ds(y), x ∈ Ŝ

• Self-adjoint operator : Ñ] = |ReÑ |+ |ImÑ |

• Characterization of D (with assumption that q ≥ c > 0 or

q ≤ −c with c > 0):

z ∈ D ⇔ G(·, z)|Ŝ ∈ R(Ñ
1
2

] )



Justification

First step (factorization of near field) : Ñ = H∗TH

• Reflectivity operator T : L2(D)→ L2(D)

(Tf)(x) = ω2sgn(q(x))
(
f(x) +

√
|q(x)|v(x)

)
, x ∈ D

where sgn(q) = q/|q| and v solves
−(∆v + ω2n2v) = ω2(q/

√
|q|)f in Ωb

∂2v = 0 on Γb

±∂1v = T±v on S±

• Herglotz operator H : L2(Ŝ)→ L2(D)

(Hh)(x) =
√
|q(x)|

∫
Ŝ

G(x, y)h(y) ds(y), x ∈ D



Justification (cont.)

Second step (range test) : z ∈ D ⇔ G(·, z)|Ŝ ∈ R(H∗)

Third step (fondamental theorem) :

Consider Hilbert spaces X ⊂ U ⊂ X∗ (dense inclusion) and

V = V ∗, operators F : V → V , H : V → X and T : X → X∗ with

F = H∗TH

Assumptions :

1. H is compact and injective

2. ReT = T0 + T1, T0 self-adjoint coercive, T1 compact

3.
〈
(ImT )φ, φ

〉
≥ 0, for all φ ∈ X

4. T is injective

Statement : for F] = |ReF |+ |ImF |, then R(H∗) = R(F
1
2

] )



Proof of injectivity of H

Since H =
√
|q|J , it suffices to prove injectivity of J : L2(Ŝ)→ L2(D)

(Jh)(x) =

∫
S−

G(x, y)h−(y) ds(y) +

∫
S+

G(x, y)h+(y) ds(y) x ∈ D

v := Jh is the unique solution of the transmission problem

−(∆ + ω2n2
p)v = 0 in Ω− ∪ Ωb ∪ Ω+

∂2v = 0 on Γ− ∪ Γb ∪ Γ+

[v]± = 0 [∂1v]± = −h± on S±

+ Radiation Condition

S+S−

ΩbΩ− Ω+

ΓbΓ− Γ+

D



Proof of injectivity of H (cont.)

Assume v = 0 in D

S+S−

ΩbΩ− Ω+

ΓbΓ− Γ+

D

• Since (∆ + ω2n2
p)v = 0 in Ωb, unique continuation implies v = 0 in

Ωb, in particular v− = 0 on S+ and v+ on S−

• Using jump relations [v]± = 0 on S±, we obtain v+ = 0 on S+ and

v− = 0 on S−

• By using D-t-N operators T+ and T−, v = 0 in Ω+ and v = 0 in Ω−

• Using jump relations [∂1v]± = −h±, we obtain h+ = 0 and h− = 0

We conclude h = 0 in Ŝ : the proof is completed



Near field/far field data

Ωb

Γb

S+S− C

The inverse problem with near field data : we measure on

Ŝ := S− ∪ S+ the scattered field ũs(·, y)/us(·, y) associated with

the incident field ui = G(·, y)/G(·, y) on Ŝ: find the support D of

the defect

What happens if Ŝ (support of the data) is far away from

D (defect) −→ far field data ?



Factorization method with near field data

Conjugated point source: we measure on Ŝ the scattered field

ũs(·, y) associated to the incident field ui = G(·, y) on Ŝ : find D

• Near field operator: Ñ : L2(Ŝ)→ L2(Ŝ)

(Ñh)(x) :=

∫
Ŝ

ũs(x, y)h(y) ds(y), x ∈ Ŝ

• Factorization: Ñ = H∗TH

• Self-adjoint operator: Ñ] = |ReÑ |+ |ImÑ |

• Characterization of D (with assumption that q ≥ c > 0 or

q ≤ −c with c > 0):

z ∈ D ⇔ G(·, z)|Ŝ ∈ R(Ñ
1
2

] )



Linear Sampling Method with near field data

Point source : we measure on Ŝ the scattered field us(·, y)

associated to the incident field ui = G(·, y) on Ŝ : find D

• Near field operator : N : L2(Ŝ)→ L2(Ŝ)

(Nh)(x) :=

∫
Ŝ

us(x, y)h(y) ds(y), x ∈ Ŝ

• Factorization: N = H∗TH

• Half-characterization of D (with assumption that q ≥ c > 0

or q ≤ −c with c > 0):

z ∈ D ⇐ G(·, z)|Ŝ ∈ R(N)



Sampling Methods with near field data

For z in the sampling grid,

Factorization Method: “solve”

Ñ
1
2
] h = G(·, z)|Ŝ

Linear Sampling Method: “solve”

N h = G(·, z)|Ŝ

Indicator function of defect D :

Ψ(z) = 1/||h(z)||L2(Ŝ)



Homogeneous waveguide: the guided modes
Γ

Ω

x2

x1

• The guided modes : find u such that ∆u+ ω2u = 0 dans Ω

∂νu = 0 sur Γ

• θp and λp (p > 0): Neumann eigenfunctions and eigenvalues of

the 1D operator −∆ in transverse section S

• Guided modes : u±p (x1, x2) = θp(x2)e±iβpx1 , βp =
√
ω2 − λp

for p ≤ P (propagating modes) and βp = i
√
λp − ω2 for p > P

• Assumption on ω : βp 6= 0



Homogeneous waveguide: the Green function

• Fundamental solution :

G(x, y) = i

+∞∑
p=1

eiβp|x1−y1|

2βp
θp(x2)θp(y2)

• Far field : for large x1 and ± := sgn(x1 − y1)

G(x, y) = G±∞(x, y) +O(e−α|x1|), α > 0

with

G±∞(x, y) = i
P∑
p=1

e±iβp(x1−y1)

2βp
θp(x2)θp(y2)

Short expression :

G±∞(x, y) = i

P∑
p=1

u±p (x)u∓p (y)

2βp



Periodic waveguide: the Floquet modes

• Unbounded operator A(ξ) in the cell C = (− 1
2 ,

1
2 )× (0, 1) :

A(ξ) = − 1

n2p
∆ : L2(C, n2p dx1dx2) −→ L2(C, n2p dx1dx2)

D(A(ξ)) = {u ∈ H1(C), ∆u ∈ L2(C),

∂2u = 0 on ∂C ∩ Γ, u ∈ QPξ(C)}

QPξ(C):= ξ-quasiperiodic functions for ξ ∈ (−π, π]

u(1/2, x2) = eiξu(−1/2, x2), ∂1u(1/2, x2) = eiξ∂1u(−1/2, x2)

• A(ξ) is self-adjoint, positive and has compact resolvent :

eigenvalues λn(ξ), eigenfunctions φn(·; ξ) ∈ H2(C)

0 ≤ λ1(ξ) ≤ λ2(ξ) ≤ ... ≤ λn(ξ) −→ +∞



Periodic waveguide: the Floquet modes

Ω

Γ

Cj−2 Cj−1 Cj Cj+1x1

x2

• Find u s.t. for some ξ ∈ (−π, π], u ∈ QPξ(Cj) for all j ∈ Z and (∆ + ω2n2
p)u = 0 in Ω

∂νu = 0 on Γ

For such u, we have A(ξ)u = ω2u and u =
∑
n αnφn(·; ξ) in C

⇒
∑
n

αnλn(ξ)φn =
∑
n

αnω
2φn ⇒ αn = 0 or λn(ξ) = ω2

• Floquet modes : for (x, j) ∈ C × Z

un(x1 + j, x2; ξ) = φn(x1, x2; ξ)eijξ, ∀n ∈ I(ω), ∀ξ ∈ Ξn(ω)

with I(ω) = {n, ∃ξ, λn(ξ) = ω2} and Ξn(ω) = {ξ, λn(ξ) = ω2}



Properties of the Floquet modes

• Symmetry of eigenvalues and eigenfunctions of A(ξ) :

λn(−ξ) = λn(ξ), φn(·;−ξ) = φn(·; ξ)

• Assumption on ω : ∀n ∈ I(ω), ∀ξ ∈ Ξn(ω)

λn(ξ) is simple and λ′n(ξ) 6= 0

• Group velocity :

Vn(ξ) =
1

2
λ−1/2n λ′n(ξ)

For λ′n(ξ) > 0,

u+n (·; ξ) := un(·; ξ), u−n (·; ξ) := un(·;−ξ)

• Symmetry of Floquet modes :

u−n (·; ξ) = u+n (·; ξ)



Dispersion curves

k2

λ4(ξ)

λ3(ξ)

λ2(ξ)

λ1(ξ)

−π ξ πξ1 ξ2 ξ3

I(ω) = {2} Ξ2(ω) = {±ξ1,±ξ2,±ξ3}



Periodic waveguide: the Green function

The fund. sol. G is given, ∀x, y ∈ C and ∀p, q ∈ Z, by:

G(x1 + p, x2; y1 + q, y2) =
1

2π

∑
n/∈I(ω)

∫ π

−π

φn(x; ξ)φn(y; ξ)

λn(ξ)− ω2
ei(p−q)ξ dξ

+
1

2π

∑
n∈I(ω)

{
p.v.

∫ π

−π

φn(x; ξ)φn(y; ξ)

λn(ξ)− ω2
ei(p−q)ξ dξ

+iπ
∑

ξ∈Ξn(ω)

φn(x; ξ)φn(y; ξ)

|λ′n(ξ)| ei(p−q)ξ


Reciprocity:

∀x, y ∈ Ω, G(x, y) = G(y, x)



Periodic waveguide: the Green function

Far field:

∀x, y ∈ C, ∀q ∈ Z, for large p ∈ Z and ± := sgn(p− q)

G(x1 + p, x2; y1 + q, y2) = G±∞(x1 + p, x2; y1 + q, y2) +O(e−α|p|), α > 0

with

G±∞(x1 + p, x2; y1 + q, y2) = i
∑

n∈I(ω)

∑
ξ∈Ξn(ω)

±λ′n(ξ)>0

φn(x; ξ)φn(y; ξ)

|λ′n(ξ)| ei(p−q)ξ

Short expression:

∀x, y ∈ Ω, G±∞(x; y) = i
∑

n∈I(ω)

∑
ξ∈Ξn(ω)

λ′n(ξ)>0

u±n (x; ξ)u∓n (y; ξ)

λ′n(ξ)



Far field approximation (LSM)

• Far field of the Green function G:

G±∞(x, y) = i
∑

n∈I(ω)

∑
ξ∈Ξn(ω),λ′n(ξ)>0

u±n (x; ξ)u∓n (y; ξ)

λ′n(ξ)

• Far field of the scattered field associated with G(·, y):

u±∞(x, y) = i
∑

n∈I(ω)

∑
ξ∈Ξn(ω),λ′n(ξ)>0

us±n (x; ξ)u∓n (y; ξ)

λ′n(ξ)

where us±n (·; ξ): scattered field associated with u±n (·; ξ)

• Far field operator N∞: kernel us(x, y) replaced by kernel u∞(x, y)

−→ Far field formulation for LSM: “solve”

N∞ h = G∞(·, z)|Ŝ



Far field approximation (Factorization Method)
Far field of the Green function G:

G±∞(x, y) = i
∑

n∈I(ω)

∑
ξ∈Ξn(ω),λ′n(ξ)>0

u±n (x; ξ)u∓n (y; ξ)

λ′n(ξ)

Recall the symmetry of Floquet modes:

u−n (·, ξ) = u+
n (·, ξ), ∀n ∈ I(ω), ∀ξ ∈ Ξn(ω), λ′n(ξ) > 0

Far field of the conjugated Green function G(·, y):

G±∞(x, y) = −i
∑

n∈I(ω)

∑
ξ∈Ξn(ω),λ′n(ξ)>0

u∓n (x; ξ)u±n (y; ξ)

λ′n(ξ)

Far field of the scattered field associated with G(·, y):

ũ±∞(x, y) = −i
∑

n∈I(ω)

∑
ξ∈Ξn(ω),λ′n(ξ)>0

us∓n (x; ξ)u±n (y; ξ)

λ′n(ξ)

Kernel ũs(x, y) of Ñ is replaced by kernel ũ∞(x, y) of Ñ∞ → far field
formulation of FM: “solve” N

1/2
∞,]h = G∞(·, z)|Ŝ



Projection (LSM)

Conclusion : in the far field formulation of LSM/FM, the data are the

scattered fields us±n (·; ξ) associated with the propagating Floquet modes.

(N∞h)(x) = i
∑

n∈I(ω)

∑
ξ∈Ξn(ω)

λ′n(ξ)>0

us+n (x; ξ)eiMξ

λ′n(ξ)

∫ 1

0

φn(−1/2, y2; ξ)h−(y2) ds(y2)

+i
∑

n∈I(ω)

∑
ξ∈Ξn(ω)

λ′n(ξ)>0

us−n (x; ξ)eiNξ

λ′n(ξ)

∫ 1

0

φn(1/2, y2; ξ)h+(y2) ds(y2).

Two complete basis (ψ±m)m>0 of L2(]0, 1[):

us+n (·; ξ)|S− =
∑
k>0

U+−
nk (ξ)ψ−k , us+n (·; ξ)|S+ =

∑
k>0

U++
nk (ξ)ψ+

k ,

us−n (·; ξ)|S− =
∑
k>0

U−−nk (ξ)ψ−k , us−n (·; ξ)|S+ =
∑
k>0

U−+
nk (ξ)ψ+

k .



Projection of left hand side (LSM)

(N∞h)|S− = i
∑
k>0

[·]− ψ
−
k (N∞h)|S+ = i

∑
k>0

[·]+ ψ
+
k

[·]− =
∑

n∈I(ω)

∑
ξ∈Ξn(ω)

λ′n(ξ)>0

(
U+−
nk (ξ)eiMξ(

∑
m,m′>0 Φ−nm(ξ)M−mm′h

−
m′)

λ′n(ξ)

+
U−−nk (ξ)eiNξ(

∑
m,m′>0 Φ+

nm(ξ)M+
mm′h

+
m′)

λ′n(ξ)

)

[·]+ =
∑

n∈I(ω)

∑
ξ∈Ξn(ω)

λ′n(ξ)>0

(
U++
nk (ξ)eiMξ(

∑
m,m′>0 Φ−nm(ξ)M−mm′h

−
m′)

λ′n(ξ)

+
U−+
nk (ξ)eiNξ(

∑
m,m′>0 Φ+

nm(ξ)M+
mm′h

+
m′)

λ′n(ξ)

)



Projection of right hand side (LSM)

G∞(·, z)|S− = i
∑
k>0

 ∑
n∈I(ω)

∑
ξ∈Ξn(ω)

λ′n(ξ)>0

(
ei(M+qz)ξφn(z1, z2; ξ)Φ−nk(ξ)

λ′n(ξ)

)ψ−k

G∞(·, z)|S+ = i
∑
k>0

 ∑
n∈I(ω)

∑
ξ∈Ξn(ω)

λ′n(ξ)>0

(
ei(N−qz)ξφn(z1, z2; ξ)Φ+

nk(ξ)

λ′n(ξ)

)ψ+
k

−→ Many possible choices for the basis (ψ±k )



Some numerical experiments
Linear Sampling Method

12 Floquet modes

1% noise



Some numerical experiments

Choice of projection basis :

Basis θp

Traces of

Floquet modes



Some numerical experiments

Higher contrast :

12 Floquet modes

1% noise



Some numerical experiments

Comparison with homogeneous waveguide :

12 guided modes

1% noise



Some numerical experiments

12 Floquet modes

1% noise

12 Floquet modes

10% noise



Some numerical experiments

12 Floquet modes

1% noise

6 Floquet modes

1% noise
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Some perspectives and open questions

• The forward scattering problem for periodic waveguides: an

open question

• Bi-periodic structures (many applications): defining the far

field is an open question

• Find a junction between two periodic half-waveguides

• Imaging a (periodic) waveguide in the time domain and with

realistic data

• · · ·



Thank you for your attention !


